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Abstract—In this paper, we present an analysis of modern
tools for processing brain neuronal connectivity graphs — feed-
forward artificial neural network. Different configurations of
multilayer perceptron were considered and tested against an
inference of functional dependence in model systems, specifically
on Rossler oscillators generated data. Graphs of training, test
and dynamics were considered. Furthermore, analysis and com-
parison of the r-squared scores and executed time were collected
to measure the efficiency of the configurations.

I. INTRODUCTION

Considering two coupled oscillatory systems we expect
to see a functional dependence with increasing of coupling
strength. Its explicit form varies from system to system and can
be very complicated [1], [2]. Therefore classical mathematical
methods can depict this dependence only partially [3]–[5].
On the other side, feed-forward multilayer perceptron (FF
MLP) can infer nonlinear functions serving as a universal
approximator.

Other systems under study could be neuronal ensembles
interacting with each other. In Ref. [6] Frolov et al proposed
a novel method the essence of which is to use FF MLP
to detect functional connectivity between epileptic ECoG
channels’ regions. We applied this method to EEG dataset and
enhanced it, reducing time complexity to make this approach
more applicable for large amount of data.

II. MLP CONFIGURATION AND ITS EFFICIENCY

Inheriting configuration from [6] to setup network we
used Adam optimizer with a rate 0.005. To avoid possible
issues related to overfitting and overestimation, the model was
dropped if the difference between loss function on training set
and on validation set was more than 0.01 for 10 consecutive
epochs. The training process stopped in case the model fails
to decrease the value of a loss function for more than 10−7

for 15 consecutive epochs.
To test our FF MLP configurations to detect functional

dependence in coupled chaotic model systems we considered

This work is supported by the Center for Technologies in Robotics and
Mechatronics Components (Innopolis University, Russian Federation).

TABLE I
MEAN R2 SCORES AND EXECUTION TIMES FOR DIFFERENT

CONFIGURATIONS OF FF MLP

Configuration R2 score Execution time
(s)

10 softmax + 10
softmax

0.98 44.47

10 elu + 10 tanh 0.97 18.6
30 elu + 40 tanh 0.97 15.0

a pair of coupled Rössler oscillators which is a classical
nonlinear model for the study of synchronous behavior.

ẍ1,2 = −ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2), (1)
ÿ1,2 = ω1,2x1,2 + ay1,2, (2)
z̈1,2 = p+ z1,2(x1,2 − c) (3)

The control parameters a = 0.15, p = 0.2, and c = 10 have
been set for both systems, while ω1 = 0.99 and ω2 = 0.95
by the analogy with [6]. For testing we used unidirectional
coupling, therefore ε1 = 0 and ε2 = ε.

The model dataset consists of 50 × 25 points per variable.
Data is normalized in range [0, 1], shuffled and separated
equally into train and validation sets.

We started off with the configuration given in [6]. MLP
consists of 2 hidden layers, each containing 10 softmax units.
The number of both inputs and outputs is determined by the
embedding dimensions of coupled systems. Output artificial
neurons have a linear activation function.

Inherited MLP configuration succeeds in recognizing func-
tional dependence when epsilon exceeds GS (generalized syn-
chronization) threshold of 0.11. The connection is established
in case of R2 score more than 0.5 and it is equal to 0.98. In
case ε1 is equal 0.03 it is not possible to find a connection.
Hence, R2 is equal to 0.3. This advocates that the model is
performing adequately on the given dataset.

Despite the fact that these results are proving this configura-
tion is applicable there is one big issue – a time of execution.
It performs for 42 seconds per each equivalent model dataset
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Fig. 1. Inference of functional dependence using MLP with 30 elu neurons
and 40 tanh neurons (a) (e) Test sample of response Rossler oscillator time
series (blue curve) and its prediction x’2 via ANN (orange points) (b) (f)
History of loss function per epoch on training set (blue curve) and on
validation set (orange curve) (c) (g) History of metric per epoch on training set
(blue curve) and on validation set (orange curve) (d) (h) Regression analysis
of x2 variable prediction by ANN model

(Fig.1). There is no problem with small real datasets (eg.
ECoG data with 6 channels), but it is not applicable to EEG
or MEG datasets. If the performance of the calculations is the
same for EEG channels, there will be approximately 330 days
for data processing (10 windows per channel, 10 channels, 15
trials, 10 test subjects, 1 hand, 1 group for 42 second per
window). To decrease execution time we implemented several
different configurations and had chosen the most efficient one.
We will use the same argumentation for further observations
of different models. Next model also has 2 hidden layers, elu
serves as an activation of the first hidden layer and tanh for
the second hidden layer.

This model also succeeds in recognizing functional con-
nectivity. It has no overfitting and R-squared score is 0.971
(Fig.1). In case of ε1 = 0.03 R2 score is equal 0.3 which

denotes no connectivity. As such, this model can also be
considered for evaluation of efficiency. To compute the task
the model spent 20.5 s, which is twice less than the previous
model.

A slight modification of the previous model is to make 30
elu neurons and 40 tanh neurons (Fig.2). This model has no
overfitting, R2 is equal 0.98 and 0.3 for ε2 = 0.15 and ε2 =
0.03 respectively. The task was computed in 10.2 s.

According to the time spent by models in computing 11
different intervals of time from oscillators, it can be concluded
that the configurations with 10 elu neurons + 10 tanh and 30
elu + 40 tanh infer equivalent results and their average exe-
cution times are 2.3-2.5 times less than softmax configuration
execution time. It is worth mentioning that 30 elu + 40 tanh has
sufficient problems with its design. On some intervals it stops
at the local minimum of loss function that is not optimal. In the
above statistics, patience of learning was changed from 15 to
45. It is visible from the educational graph. Due to changes to
the model, some intervals tend to execute for 20-26 seconds. It
is not possible to identify the amount of those intervals before
computation, but it performs faster than previous configuration
on the average.

III. APPLICATION TO EEG DATASET
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Fig. 2. Matrix with R2 score for each pair of channels averaged over all
volunteers and trials.

Tested EEG dataset was taken from “Frolov N S et al,
EEG dataset for the analysis of age-related changes in motor-
related cortical activity during a series of fine motor tasks
performance”1. EEG data were recorded for 10 volunteers with
15 trials of 12 seconds each with a sampling frequency rate
250 Hz. To infer functional dependence between one EEG

1https://figshare.com/articles/EEG-dataset-for-the-analysis-of-age-related-
changes-in-motor-related-cortical-activity-during-a-series-of-fine-motor-tasks-
performance//12301181/1
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channel and another we try to predict the brain state in the
first channel area based on one in the second channel area
using the chosen MLP configuration.

EEG dataset was filtered by the 5th-order Butterworth filter
with cut-off points at 4 Hz and 8 Hz. We estimated the
parameters of the embedding space of the experimental signals
using mutual information approach [7] to determine the delay
time τ and the false nearest neighbor method [8] to determine
the embedding dimension D for each channel trial. Thus, the
architecture of MLP is such that it contains D̂ inputs and
D̂ outputs with D̂ equal maximum embedding dimension for
one trial between two channels. The same is for time delay –
for each trial, we computed maximum time delay τ̂ between
two channels. With these parameters, we reconstructed phase
space of each trial between two channels, separated trials into
10 bins (discarding the baseline). Each bin was shuffled and
separated into train and validation sets and put into train. Thus
we computed connectivity matrix for each bin, trial, pair of
channels, and volunteer.

The matrix with R2 score for each pair of channels averaged
over all volunteers and trials is shown in Fig. 3.

IV. CONCLUSION

The presented results contributed in such the multidisci-
plinary fields of science as mathematics, physics and neuro-
science. Based on previous paper [6] we studied the novel
method for processing brain neuronal connectivity with the
help of feed-forward artificial neural network. We analyzed
the different configurations of multilayer perceptron and tested
against an inference of functional dependence in model cou-
pled Rossler oscillators. Furthermore, we applied the method
to real EEG data set corresponding motor execution of human
subjects.
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