Immediate effect of neurofeedback in passive BCI
for alertness control
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Abstract—We develop a passive brain-computer interface
(BCI) which uses neurofeedback to maintain a high level of
attention during the accomplishment of a prolonged task. The
attention degree is estimated from EEG signals using methods of
nonlinear and statistical time-frequency analyses. We find that
the feedback increases the duration of the maximum interval
during which the subject maintains substantial attention (150140
s with feedback versus 100+20 s without feedback). However, the
mean degree of attention during this interval is 27% lower than
without feedback. The obtained result evidences that the cognitive
reserve is limited, and therefore, to maintain high performance
for a prolonged time, the brain operates in a “safe-mode” regime.

Index Terms—Passive BCI, alertness control, mental fatigue,
EEG analysis, brain resource.

I. INTRODUCTION

The general aim of BClIs is to repair or improve human
performance, for example, to help paralyzed people to control
prosthetic devices [1] and interact with environment [2].
Currently, there are two types of BCIs, active and passive.

Active BCIs imply that the operator voluntarily generates
specific patterns of his/her brain activity which can be au-
tomatically detected in real time. The resulting information
can be translated into control commands and used as an input
modality for controlling a technical device by thought [3].

Passive BCI utilize biomarkers derived from the operator’s
brain signals to improve his/her performance with no aim of
voluntary control of the system [4].

Both types of BCI require a permanent information ex-
change between brain and computer, i.e., two-way data transfer
in the BCI, where the information arriving from the brain to
the computer allows continuous monitoring of the brain state
evolution and generation of control commands for hardware.
On the other hand, the information which comes back to the
operator, is used either by the operator for self-control of
his/her brain activity or by hardware/software to affect the
brain directly. Such exchange of information between brain
and computer is known as biological feedback.

Obviously, the feedback is a key part of human-machine
systems. At the same time, its effective use for controlling
brain dynamics requires a deep understanding of basic princi-
ples of neural brain activity under this type of control.
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It is known that feedback control can dramatically change
the behavior of a nonlinear system. In the same way, the
human brain, being a strongly nonlinear system, can also be
affected by feedback in an unpredictable way. Unfortunately,
the main principles of the brain feedback control are not yet
established. Although it is known that cognitive training allows
enhancing cognitive performance, the possibility to immedi-
ately enhance human performance using the BCI system was
not considered, to the best of our knowledge [5].

In the present work, we are interested in how feedback
control affects human attention during visual perception. To
quantify visual attention, we develop an algorithm based of
the analysis of the time-frequency structure of EEG signals.
The effect of this control can be described as follows. As
soon as the subject’s attention falls, an audio signal is sent to
inform his/her about it, and after that the attention increases.
We expected that such feedback control will maintain a high
mean level of attention during the whole experimental session.
However, our assumption was wrong. The results of the
present work showed a rather unexpected outcome. Although
the feedback control did enlarge time intervals of a relatively
high level of attention, the mean level of attention during these
intervals was not so high as in the group without feedback
control.
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Fig. 1. Passive brain-computer interface for alertness estimation and control
of attention via neurofeedback.



II. METHODS
A. Subjects and stimuli

Twelve healthy subjects, males and females, between the
ages of 20 and 28 with normal or corrected-to-normal vi-
sual acuity participated in the experiments. All participants
provided informed written consent before participating in
the experiment. The experimental studies were performed in
accordance with the Declaration of Helsinki and approved by
the local research Ethics Committee.

As a visual stimulus, we used the Necker cube [6]. This is
a popular bistable image widely used in psychological and
neurophysiological experiments and theoretical models [7],
[8]. Since this cube has transparent faces and visible edges,
an observer without any perception abnormalities perceives it
as a 3D-object due to the specific position of the ribs (Fig. 1).
Bistability in perception of the Necker cube consists in its
interpretation as either left- or right-oriented, depending on the
contrast of the inner edges. The task was to quickly classify
presented Necker cubes according to their orientation. As was
recently shown, this visual task required sustained attention of
the observer [9].

B. Experimental design

All subjects were divided into two groups. In the first
group (Groupl) the feedback control was not used, while
in the second group (Group2) the control was applied. The
experimental procedure consisted of two sessions for all sub-
jects. The subjects from Groupl participated in both sessions
without feedback control, whereas the subjects from Group2
took part in the first session without feedback and in the second
session with feedback control. The design of our experiment
is illustrated in Fig. 1. All participants were instructed to press
either left or right key on the input device depending on their
first impression on the cube orientation at each presentation.

For all subjects, the second session was performed one
month after the first session. Each session lasted 30 minutes.
Each Necker cube was presented for short intervals between
1.0 and 2.0 seconds. Such a relatively short duration of the
stimuli presentation was chosen to reduce the stabilization
effect [10], because the probability of persisting interpreta-
tion of a previous image strongly depends on the stimulus
duration. For the Necker cube, the required time of consistent
observation was found to be about 1.0 second. Although the
“memory” effect cannot be completely avoided, it can be
significantly diminished by making the length of stimulus
exhibition shorter than 2.0 seconds. Moreover, a random
change in the control parameter g also prevents the perception
stabilization. Lastly, to draw away the observer’s attention and
make the perception of the next Necker cube independent of
the previous one, different abstract pictures were exhibited for
about 5-6 seconds between subsequent demonstrations of the
Necker cube images.

C. EEG acquisition and processing

EEG signals were recorded by five electrodes in occipital
and parietal areas (O, O, P3, P4, P.,) with a 250-Hz sampling

rate. Time-frequency EEG structure was analyzed with con-
tinuous wavelet transform [11]. The wavelet energy spectrum
E™(f,t) = /W,(f,t)? was calculated for each n-th EEG
channel in the 1-30 Hz frequency range. Here, W,,(f,t) are
the complex-valued wavelet coefficients and n = 1,.... N
is the EEG channel number (N = 5). The mother wavelet
function was the complex Morlet wavelet [12].

Wavelet energy spectrum E™(f,t) was analyzed in time-
frequency domain. At the every moment of time the maxi-
mal values of wavelet energy were extracted and defined as
the dominant spectral components of EEG signal. In order
to analyze dynamics of dominant spectral components, we
extracted frequencies of five of them (f],. .., ff') correspond-
ing to maximal values of wavelet energy E(f{"),..., E(f%),
and studied how the values of f{*,..., f2' evolved in time.
According to recent works, visual attention is associated
with the interplay between a (8-12 Hz) and 8 (15-30 Hz)
frequency bands in occipital and parietal areas. Therefore,
we considered only those components for which the values

T, ..., f2 belonged to these particular frequency bands.

We used spectral components to quantify the efficiency
of the stimulus processing by the observer and compared
the brain dynamics in 1-s intervals immediately before and
after the onset of stimulus presentation. For this purpose, we
introduced the values A!, A%, B}, B? statistically described
the location of the maximal spectral components, as follows
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These values were calculated using EEG data taken from
all occipital and parietal channels before and after the onset
of image presentation during presentation of i-th stimulus.
Here, £™(¢) and ¢"(t) defines the occurrence of the spectral
components in « and S frequency bands, calculated as
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Here, f;' is the location of the k-th maximal spectral
component belonging to n-th channel, K = 5 is the number of
analyzed spectral components, and Atﬁ’z indicate the 1-s time
intervals preceding and following the ¢-th image presentation.

According to existing works on human attention, visual
attention is associated with activation of an “attentional center”
in the parietal cortex which operates at 15-30 Hz frequencies
[13], i.e., S-waves. In addition, visual stimuli processing
strengthens connectivity between occipital and parietal areas
in a and $ frequency bands [14], that in turn causes a growth
of -activity in occipital cortex. Finally, many studies evidence
that visual information processing along with an increase in (-
activity simultaneously inhibits a-wave activity. According to



our recent study [15], the increasing visual attention causes
a percept-related increase in [-activity accompanying by a
decrease in a-activity.

Taking into account the above observation, the subject’s
attention during visual stimulus processing can be quantified
as
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where Z: ? and E; ? define the values of A; 2 and Bi1 2 aver-

aged over six preceding events (¢ — 6, ...,¢). Such averaging

is performed in accordance with our observations, that when
stimuli are processed in a short time, the subject sometimes
exhibits low attention I during a single event, even while
demonstrating overall high attention during the whole session.
One can see that I(¢;) reaches a maximal positive value, if
the values in both brackets in Eq. (5) are high and positive.
It corresponds to a state of high attention when A; > 4. and
E? > Ej , i.e., a-activity decreases and [3-activity increases.
On the contrary, (i) reaches a minimal negative value when
A, < A and B; < B,. Finally, I(i) is zero when changes
in - and (-activity are insignificant.

The value of attention [ was calculated after each visual
stimulus was processed by the subject and compared to the
threshold value Ii,. In our study, I;;, was set to zero, and
the feedback was organized as a short audio tone after the
stimulus was processed, each time when I < Ii;,. The subject
was previously instructed to associate this sound message with
a low attention state.

III. RESULTS

Fig. 2 shows a typical change in the attention degree I for
one subject from Group2 during the first (a) and second (b)
experimental sessions. One can see that the attention degree
oscillates with average period of T =~ 150 s. During each
period, the subject processed about 20 visual stimuli. We
suppose that the time intervals with I > 0 are associated
with the states of increased attention. In these states, a large
group of neurons actively participate in visual information
processing. On the other hand, the intervals with I < 0 are
related to a refractory state of neural dynamics.

One can see from Fig. 2 that feedback leads to an increase
in the period of the attention I(¢) oscillations. At the same
time, the amplitude of these oscillations becomes lower.

In order to statistically quantify these effects, we extracted
maximal values 07’77 and 7;'77 obtained in the first and
second sessions. These values correspond to the maximal time
intervals during which the subject is able to maintain sustained
attention. Then, we calculated the ratios between these values
in the first and in the second session, i.e. 7/ P** and
TP /o7 for both groups.

The obtained results are presented in Fig. 3 as mean+SD
for subjects from Groupl (white box) and Group?2 (black box).
One can see that the ratio 077 /07** (Fig. 3(a)) for subjects
from Group2 is higher than that for subjects from Groupl
(1.6 + 0.52 versus 1.1 £+ 0.51). This evidences that feedback
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Fig. 2. Typical fragments of I(¢) dependency during (a) first (without

feedback) and (b) second (with feedback) experimental sessions. The solid
lines (above zero) show the traces of high brain response, while the transparent
lines (below zero) indicate the refractory intervals of neural ensemble activity.
The red line shows mean value of I achieved during each time interval.

control increased the maximum duration of the state of high
attention for subjects from Group2. The statistical analysis
of the values 0777 obtained in the first and second sessions,
performed via Wilcoxon signed-rank test yielded p < 0.05 for

Group2 and p = 0.893 for Groupl.

While the maximal duration of the time interval during
which I > 0 increased in the presence of feedback, the
maximum mean value of I achieved on this interval, de-
creased. This decrease of attention is demonstrated via the
ratio ¥ /~P** in Fig. 3(b). One can see that the ratio
VI /P is equal to 0.71 £ 0.08 and 1.13 £ 0.44 for
Group2 and Groupl, respectively. The Wilcoxon signed-rank
test provided p < 0.05 for Group2 and p = 0.686 for Groupl.

Finally, we compared the mean values of attention during
the first (I7) and second (I;7) experimental sessions for every
subject from Groupl (without feedback) and Group2 (with
feedback) to find the difference AT = I;; — I;. As seen
from Fig. 3(c), the mean difference between I; and I;; in
Group?2 is positive (AT > 0), while in Groupl it is negative
(AI < 0), in spite of a relatively large standard deviation
(SD) among different subjects in the group. In order to define
whether or not the change between I; and I;g is significant
for these groups, we applied the Wilcoxon signed-rank test,
usually used to compare two related short samples. As a result,
we obtained p = 0.345 and p = 0.51 for the first and second
group, respectively. This evidences that the changes in the
mean level of visual attention between the first and second
sessions in both groups are insignificant. While for Group! this
result was expected because the subjects demonstrated more
or less the same mean value of I in two different sessions, for
Group2 the result was rather surprising. The reason for this
kind of behavior can be understood if we suppose that the
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Fig. 3. Statistical analysis. (a) Changes in the mean value of attention I during the first and second sessions. (b) Ratio between values 67*** and 6777,
characterizing a length of time intervals of sustained attention. (c) Ratio between values v7"** and v7;** characterizing mean degree of attention during these
intervals. The results are obtained for the first and second sessions for subjects from Groupl (white boxes) and Group2 (black boxes). The data are shown

as mean+SD (¥p < 0.05 by Wilcoxon signed-rank test, n = 6).

cognitive reserve to maintain sustained attention for a long
time is limited, so that the brain needs rest to recover its
resource.

IV. CONCLUSION

The obtained results evidence the following two effects.

(i) The degree of attention (DA) estimated on the base of
spectral properties of parieto-occipital EEG oscillates in time.
The time intervals during which DA is high alternates with
periods of lower DA.

(i1) Neurofeedback implemented via a sound message which
informs the subject about decreasing DA, leads to an increase
in the duration of intervals with high DA, but does not affect
the mean DA during the session.

Having considered brain dynamics under the effect of
increasing mental workload, one has to take into account the
limited brain resource, that can cause the limitation of brain
ability to consciously perceive and process information [16].
In this context, neurofeedback is aimed to increase the capacity
limit of information processing in the brain. At the same time,
according to our results, the capacity enhancement cannot be
achieved during a single feedback control session. In order
to increase the stimulus-related brain response amplitude, the
functional structure of the brain network must be adjusted
to process more complex workload. According to the recent
review [5], this can be done using cognitive training which
demonstrates a high efficiency in behavioral performances.
It was demonstrated, that in addition to the training-induced
changes in the brain activity, morphological changes can also
be induced by cognitive training [17].
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