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INTRODUCTION

The fundamental phenomenon of intermittency is
of great interest to researchers since it is observed in
variety of systems (e.g., physical, biological, chemical,
and social). There are several types of intermittency:
type I–III intermittency [1], on�off intermittency [2],
needle�eye intermittency [3], and ring intermittency
[4]. Each type is characterized by two regimes that
alternate with one another being presented in a tem�
poral series (at fixed values of the controlling parame�
ters). At the same time, each type of intermittency has
its own features and characteristics.

One of the most interesting problems in studying
intermittency in a system of coupled oscillators is
transitioning from a set of asynchronous dynamics to
one that is synchronous through intermittency. Two
types of the intermittent behavior of chaotic systems
that is observed upon the termination of the phase syn�
chronization regime when the eigenfrequencies of
interacting oscillators differ slightly, are currently
known: type I intermittency and needle�eye intermit�
tency [3]. If we reduce the coupling parameter, the
regimes of needle�eye and type I intermittency follow
after termination of the synchronous regime. Using
the example of a system with few degrees of freedom,
the authors of [5, 6] showed that needle�eye intermit�
tency is equivalent to type I intermittency with noise
in the supercritical region of the controlling parame�
ter. It is of interest to see if this regularity is observed in
more complex, spatially extended systems. This work
is devoted to answering this question.

DETERMINING TYPES OF INTERMITTENCY 
IN UNIDIRECTIONALLY COUPLED 

PIERCE DIODES

We selected two unidirectionally coupled Pierce
diodes as our model system. A Pierce diode [7] con�

sists of two infinite planar parallel grids, penetrated by
an infinitely wide electron beam. The space between
the grids is filled with a neutralizing background of
immobile ions with density equal to the unperturbed
charge density in the electron flow. Using the hydrody�
namic approximation, the system under study is
described by a set of equations of motion and continu�
ity, and by the Poisson equation

(1)

with boundary conditions

(2)

where ϕ is the dimensionless potential of the space�
charge field; ν is the dimensionless flow density; x is
the dimensionless coordinate; t is the dimensionless
time; and α is the Pierce parameter, which is the con�
trolling parameter for each system: α1 = 2.858π and
α2 = 2.862π]. Indices 1 and 2 denote the leading and
driven systems, respectively.

Unidirectional coupling between the systems is
accomplished using the variation in the dimensionless
potential at the right boundary of the driven system,
while the potential at the right boundary of the leading
system remains invariable:

(3)

Here, ε is the coupling parameter and  are the
oscillations of dimensionless density of the space
charge detected at the output of each system.
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In this system, with thus specified parameters, the
boundary of the phase chaotic synchronization corre�
sponds to coupling parameter εPS ≈ 0.012.

To compare regimes of type I intermittency with
noise and needle�eye intermittencies, the authors of
[5, 6] analyzed the duration distributions of laminar
phases and the dependence of the average duration of
laminar phases on the supercriticality parameter. To
construct such distributions, we must isolate the lami�
nar and turbulent phases from their temporal imple�
mentation. To accomplish this, the authors used the
method proposed in [8]: the phase difference between
interacting systems Δϕ(t) is considered to be the mag�
nitude of study, and phase ϕ(t) for each system is intro�
duced as the angle of revolution on the phase plane:

(4)

These phases are reduced to the range 2π wide. The
regions of synchronous (laminar segments) and asyn�
chronous (turbulent segments) dynamics then differ
qualitatively, allowing us to separate the entire ana�
lyzed temporal implementation into laminar and tur�
bulent phases easily.

Using this approach to analyze our model system,
however, a number of difficulties arise due to the more
complex dynamics caused by the spatial state of the
analyzed system’s extention. Consequently, this
method cannot be used for such systems with an infi�
nite space. We therefore used a modified method in
which we analyze the sliding average of the phase dif�
ference instead of the phase difference between inter�
acting systems in this study, in order to separate the
laminar and turbulent phases:

(5)

where  is the phase difference in the corresponding
instant of counting and N is the number of phase dif�
ference values by which averaging is performed. This
modified approach makes it possible to separate all
laminar and turbulent phases even in temporal imple�
mentations of systems with complex dynamics, e.g.,
spatially extended systems.

Using this method, we analyzed the dynamics of
our selected model system: unidirectionally coupled
Pierce diodes. We found the duration distributions of
laminar phases for various values of the coupling
parameter. It is known [9] that such distributions in
the needle�eye intermittency regime (and thus type I
intermittency with noise in the supercritical region)
obey the exponential law

(6)
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where T is the average duration of laminar phases,
determined for needle�eye intermittency using the
expression [3, 10]

(7)

(c0 and c1 are constants), and for type I intermittency
with noise in the supercritical region of the controlling
parameter with the expression [11]

(8)

where k is a constant, D is noise intensity, and εc is the
critical controlling parameter.

It is of interest to see whether these regularities of
the intermittent behavior of finite�dimensional sys�
tems are observed in spatially extended systems. To
answer this question, let us compare the numerical
results for coupled Pierce diodes and theoretical
dependences (6)–(8). Figure 1 shows the duration dis�
tributions of laminar phases and the corresponding
theoretical dependences. It can seen that the calcu�
lated distributions agree well with the exponential law
predicted theoretically.

If the regimes of needle�eye intermittency and type I
intermittency with noise are a combined type of behavior,
the dependence of the average duration of laminar phases
on the supercriticality parameter should satisfy both
Eq. (7) and Eq. (8). Figures 2 and 3 show their numeri�
cally calculated dependences and the corresponding the�
oretical curves. It can be seen that the intermittent behav�
ior of two Pierce diodes can be interpreted as both nee�
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Fig. 1. Time duration distributions of laminar phases of
unidirectionally coupled Pierce diodes. Points corre�
sponding to coupling parameter ε = 0.0075 are shown by
diamonds; those corresponding to ε = 0.008, by circles;
and those corresponding to ε = 0.0085, by crosses.
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dle�eye intermittency and type I intermittency with
noise, and excellent correspondence between the numer�
ical data and theoretical dependences is observed in both
cases. This confirms two things: First, the same type of
intermittent behavior as in systems with few degrees of
freedom occurs in spatially extended systems near the
boundary of the phase chaotic synchronization. Second,
our results could be additional proof that needle�eye
intermittency and type I intermittency with noise are the
same type of dynamics of nonlinear systems.

CONCLUSIONS

The dynamics of spatially extended systems in the
region of intermittent behavior was investigated using the
example of unidirectionally coupled Pierce diodes. It was
shown that the same type of intermittency as in certain
finite�dimensional systems, i.e., needle�eye intermit�
tency and type I intermittency with noise, is observed in
our investigated system. Our results allow us to conclude
that the same regularities of intermittent behavior are
characteristic of both spatially extended systems and
finite�dimensional systems. We also found additional
confirmation that the needle�eye intermittency regime is
identical to the type I intermittency regime with noise.
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Fig. 2. Dependence of the average duration of laminar
phases on the supercriticality parameter. Dots show the
numerical results and the solid line shows the theoretical
dependence for the needle�eye intermittency regime. The
arrow shows value ε1 = 0.0065 for the emergence of the
needle�eye intermittency regime.
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Fig. 3. Dependence of the average duration of laminar
phases on the supercriticality parameter. The dots show the
numerical results, and the solid line shows the theoretical
dependence for the type I intermittency regime with noise.


