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A B S T R A C T

Deep learning approaches are state-of-the-art computational tools employed at analyzing big data in fun-
damental and applied science. Recently, they gained popularity in neuroscience and medicine due to their
ability to recognize hidden patterns and nonlinear relations in large amounts of nonstationary and ambiguous
neuroimaging biomedical data. Analysis of functional connectivity matrices is a perfect example of such a
computational task assigned to deep learning. Here, we trained a graph neural network (GNN) to classify
the major depressive disorder (MDD) based on the topological features of the brain functional connectivity
identified using fMRI technology. We show that the most important feature of the functional brain network is
the shortest path, which defines the optimal number of GNN layers to ensure the most accurate classification
in patients with MDD. The proposed GNN-based classifier reaches an accuracy of 93%, which is in line with
the achievements of the best connectivity-based classifiers for MDD. The maximal F1-score is observed when
we input the sparse graph consisting of 2.5% of the connections of the original one, which avoids feeding
large amounts of data to the GNN and reduces overfitting.
1. Introduction

Functional connectivity (FC) of the brain refers to statistical depen-
dence between measures of temporal neuronal activity recorded from
the spatially distributed regions of the brain [1–3]. Studies of functional
brain networks are carried out non-invasively, with FC defined usu-
ally as the presence of the temporal correlation between time series
of electrical activity or deoxygenated blood levels in distinct areas
of the brain [4]. The first can be realized using electro- or magne-
toencephalography (EEG/MEG), which reflects temporal dynamics of
averaged post-synaptic potential and dendritic currents of local neural
ensembles and, hence, provide a direct measurement of neural activity
on the macroscopic level [5]. The second approach uses functional MRI
(fMRI) and blood-oxygen-level dependent (BOLD) signals that reflect
temporal changes in the metabolic demand, providing an indirect mea-
surement of this neural functioning [6]. While the first approach allows
for the analysis of fast changes in functional connectivity, e.g., during
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stimulus processing, but with low spatial resolution, the second method
does not allow to analyze of rapid neuronal activity changes due to the
MRI features of brain metabolic registration but provides high spatial
localization of FC between distant regions of the brain. In the latter
case, therefore, the analysis of FC in the resting-state condition is of
particular interest, reflecting the slow dynamics of brain activity in the
form of resting-state networks [7–9].

Studying functional brain networks, including resting-state net-
works, is of particular interest for diagnosing various neurophysio-
logical disorders. FC measurements are highly effective in diagnosing
schizophrenia, bipolar disorder, autism spectrum disorder, and atten-
tion deficit hyperactivity disorder, as well as major depressive disorder
(MDD). The latter is a leading cause of disability worldwide [10].
The exact pathophysiological mechanisms of MDD remain unclear.
Symptoms of a depressive episode include anhedonia, insomnia, sad-
ness, anxiety, and suicidal ideation [11]. In addition, the condition
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is characterized by impaired cognitive and emotional processing of
information [12]. For this reason, considerable research effort has
focused on the neurobiological underpinnings that support emotion
processing and mood regulation, which are affected in patients with
depressive disorder [13]. A large number of studies aim to explain brain
abnormalities in depressive disorders based on FC methodology [14].
Based on the variety of methods proposed to measure FC among brain
regions using fMRI [15], it has been shown that the brain networks
that are taught to be involved in MDD are the default mode network,
executive control network, and salience network [16–18]. However,
other brain regions also participate in pathological changes in FC. For
example, decreased thalamic connectivity with the salience network
was reported in patients with MDD [16].

However, the restoration of functional brain networks is only the
first, already well-studied stage of the analysis of the functional inte-
gration of the brain. In the second stage, we should use mathematical
methods of graph-based data analysis to provide potential biomarkers
for classifying or predicting brain disorders. Feature extraction from
a large amount of FC measures as a biomarker for building a model
to classify brain disorders is an important and challenging problem
at the interface between complex network theory, machine learning,
and biomedicine [15]. Among the commonly used feature selection
methods in classification strategies in fMRI FC are the filter-based
method [19], where feature selection is independent of classifier/model
building, and the wrapper methods [20], which involve optimizing
classifiers as part of the feature selection. Embedded mathematical ap-
proaches [21], which combine classification and feature selection into
a single decision-making process, have also been applied to the classi-
fication of FC data. At the same time, more interpretable approaches
can also show high efficiency. In our work [22], traditional character-
istics of complex networks, such as clustering coefficient, eigenvector
centrality, and node strength, were used to classify the FC data of
a patient with MDD. Based on these network measures, significant
differences in FC between depressed patients and healthy controls were
demonstrated, with linear discriminant analysis (LDA) demonstrated to
be highly accurate in differentiating between depressed and healthy
subjects. Along with LDA, the support vector machine (SVM), which
is a commonly used model in supervised learning, is widely used to
classify selected features.

Recently, deep learning (DL) has attracted increasing interest in
various areas and also has been applied in the classification of brain
disorders. In contrast to traditional machine learning methods, DL
methods are capable of learning the optimal representation directly
from the raw data, in our case, from the obtained fMRI-based corre-
lation matrices [15,23,24]. The DL approach is based on the nonlinear
transformation of the raw data through many layers, and the DL non-
linear model provides hidden features with higher levels of abstraction.
It leads to automatically solving difficulties in the feature selection,
especially when the dimension of features is too large or when there is
limited prior knowledge about the analyzed dataset. As a consequence,
artificial neural networks (ANNs) are often used to build classifiers of
patients using fMRI data [25,26]. In this case, ANN learns to identify
subjects with brain disorders by analyzing training datasets, including
both healthy and disordered persons, and using this information to
classify new subjects. As noted in the Review [15], an auto-encoder
is a type of ANN widely used for brain disorders classifications based
on fMRI data. The deep belief network is another class of ANN for the
classification of brain disorders using fMRI data.

However, in the last few years, a new class of DL methods, the
so-called graph neural networks (GNNs), has been actively developed
to perform inference on data described by graphs [27]. GNNs are
the ANNs that can be directly applied to process data that can be
represented as graphs and provide an easy way to do node-level, edge-
level, and graph-level classification and prediction tasks [28,29]. At
present, several applications in various fields have been solved using
2

GNNs, e.g., protein interface prediction [30], breast cancer subtype
classification [31], chemical reaction prediction [32], cognitive pro-
cesses in subject–subject interaction [33], modeling of various physical
systems [34,35], etc. (a detailed overview of the GNN applications can
be found in [29]). We believe that this new machine learning tool
can be effective in analyzing functional brain networks and allow the
classification of various neurological diseases based on the topological
features of the brain FC identified using fMRI technology. Our ap-
proach is an explorative, data-driven study aiming to investigate newer
approaches to classify features of brain FC in terms of its topology
using the GNN approach. We focus in this study on analyzing the
performance of the GNN-based classifier of MDD patients as a function
of the topology of the fMRI-based functional brain network. We show
that the most important feature of the functional brain network is the
shortest path, which specifies the optimal number of GNN layers to
ensure the most accurate classification in patients with MDD.

2. Methods

2.1. fMRI dataset

2.1.1. Subjects
The dataset included fMRI data from 84 subjects: 49 healthy con-

trols (Control group) and 35 patients with a major depressive disorder
(MDD group). Subjects having a previous history of comorbid psychi-
atric conditions, autoimmune diseases, neurological diseases, history of
head trauma, or any metal implants in-compatible with the MRI were
excluded. All participants provided a written consent form complying
with the Declaration of Helsinki. The study was approved by the
Medical University of Plovdiv Ethical Committee (2/19 April 2018).

2.1.2. MRI scanning
The MRI scanning procedure was performed on a 3T MRI system

(GE Discovery 750w, General Electric, BostonMA, USA). The protocol
included a high-resolution structural scan (Sag 3D T1) with slice thick-
ness of 1 mm, matrix 256 × 256, TR (relaxation time) 7.2 s, TE (echo
time) 2.3 s, and flip angle 12◦, FOV 24, 368 slices and resting-state
functional scan—2D echo-planar imaging (EPI) with slice thickness
3 mm, matrix 64 × 64, TR 2000 ms, TE 30 ms, 36 slices, flip angle
90◦, FOV 24, a total of 192 volumes. Before the EPI sequence, subjects
were instructed to remain as still as possible with their eyes closed and
not to think of anything in particular (see Fig. 1A). Duration time of
the resting-state functional scan was 6 min.

2.1.3. FMRI data processing
Neuroimaging data were processed using SPM 12 software (Statisti-

cal Parametric Mapping) running on MATLAB R2021 for Windows. The
functional images of each participant were first realigned, co-registered
with the high-resolution anatomical image, and normalized to standard
MNI space. Parameters for the realignment step were the following:
quality 0.9, separation 4, smoothing FWHM 5, 2nd degree B-spline
interpolation, no wrap, 12 × 12 basis function, regularization 1 with
medium factor, without Jacobian deformations, 5 iterations, average
Taylor expansion point. The co-registration method was set to the nor-
malized mutual information with the following parameters: separation
[4 2], tolerances [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01
0.001 0.001 0.001], histogram smoothing [7 7]. MNI normalization
parameters were the following: bias regularization 0.0001, bias FWHM
60 mm cutoff, affine regularization ICBM European brain template,
warping regularization [0 0.001 0.5 0.05 0.2], no smoothing, sampling

distance 3.
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Fig. 1. Schematical representation of the dataset extraction. A – experimental process of BOLD time series recording during fMRI. B – example of correlation matrix for one subject
from the control group. C – examples of the circular connectivity plot of the same correlation matrix, thresholded with different 𝑡ℎ𝑟𝑒.
2.1.4. Connectivity matrix calculation
The normalized functional MRI volumes extracted with the help of

SPM 12 were parcellated into 166 regions according to the automated
anatomical labeling atlas AAL3 [36]. To estimate the connectivity
between the regions of interest, we calculated an average BOLD time
series 𝑥𝑖(𝑡) (across the voxels in each parcellation (𝑖) and Pearson
correlation coefficients for all pairs of the mean parcellation activities.
The Pearson correlation coefficient measures the linear relationship
between two random variables and is good for low-frequency processes
as fMRI signals [37]. Connectivity matrix calculation from the averaged
activity time-series was performed with the help of Matlab statistics
‘‘corrcoef’’ function. Thus, we obtained for each subject a 166 × 166
symmetric connectivity matrix 𝑅. Each cell of the connectivity matrix
(𝑟𝑖,𝑗 ) represents the strength of the connection (or edge) between two
parcels:

𝑟𝑖,𝑗 =
∑𝑛

𝑘=1(𝑥𝑖,𝑘 − 𝑥𝑖)(𝑥𝑗,𝑘 − 𝑥𝑗 )
√

∑𝑛
𝑘=1(𝑥𝑖,𝑘 − 𝑥𝑖)2

∑𝑛
𝑘=1(𝑥𝑗,𝑘 − 𝑥𝑗 )2

. (1)

Here, 𝑛 is the length of the 𝑥 time-series, and 𝑥 is the mean of the 𝑥
time-series. An example of the correlation matrix for single subject from
Control group is presented on Fig. 1B.

2.2. Thresholding

Our dataset consists of several relatively large structures, repre-
senting summarized activity in the form of correlation matrices. Such
networks are very difficult to analyze due to the large number of
connections that make it impossible to see any structure. In this case,
a common choice is to discard the least significant connections by
applying some threshold and study the sparser network instead [38].
Although existing literature indicates that such an approach can lead to
the loss of the important features critical for understanding the system,
we believe that thresholding is convenient in the framework of under-
standing the message-passing mechanism of the graph convolutional
network (GCN) blocks.
3

We applied 20 thresholds 𝑡ℎ𝑟𝑒 to the edge weights in range from 0.0
to 0.95 with step 0.05 and binarized the resulting matrix. As a result,
we discarded the less important connections based on the 𝑡ℎ𝑟𝑒 value,
leaving only the edges with the strongest Pearson’s coefficient values.
An example of a thresholding procedure for a single subject is presented
in Fig. 1C, which also illustrates the necessity of the thresholding
procedure: we can see that, even with one of the highest 𝑡ℎ𝑟𝑒 = 0.85,
the structural features of the network cannot be highlighted. The whole
process is schematically shown in Fig. 2A. We proceeded with analyzing
the topologies of the networks by applying linear regression to the
corresponding degree distributions. Fig. 3 shows the results for each
threshold, including the initial network.

2.3. Shortest paths analysis

Since the goal of the research was to provide a correlation be-
tween the GNN performance and topological features of the data, we
considered the shortest paths as a possible indicator. In our opinion,
the differences between shortest path distributions for two considered
classes can help to explain the results of classification. Therefore, for
each 𝑡ℎ𝑟𝑒, we obtained the shortest path distributions for both groups
of subjects, and checked its dependence from 𝑡ℎ𝑟𝑒 (see Fig. 4B). Then,
for each distribution, we calculated the value 𝑑 ∗ – the length of
the shortest path with the maximum t-statistic value based on the
t-test for independent samples with the correction to the multiple
comparisons problem. We used this parameter to monitor the changes
of differences in topological properties of two considered classes, as
well as to establish the possible correlations between the shortest path
distributions and GNN performance.

2.4. Graph neural network

We used a dataset of 84 correlation matrices obtained from resting
state fMRI (rs-fMRI) data of people with major depression disorder



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 167 (2023) 113041E.N. Pitsik et al.

(
M
o

C

l
o
l
n
a
i

Fig. 2. Schematical representation of the research. A – to each graph from the initial dataset, we applied the threshold 𝑡ℎ𝑟𝑒 to discard the less important edges and study the
corresponding topological changes, as well as the reaction of GNN on them. Each graph was represented in COO format with parameters 𝑥, 𝑒𝑑𝑔𝑒 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 and 𝑦; B – each 𝑡ℎ𝑟𝑒-dataset
was fed to the GNN with different number of graph convolutional network (GCN) blocks to compare the results with topological properties of the networks. Each GNN model had
𝑛𝑙𝑎𝑦𝑒𝑟𝑠 GCN blocks, where 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 10].
MDD) and healthy control (Control) individuals (49 Control and 35
DD). For this research, we used only a positive subnetwork consisting

f connections with positive Pearson correlation coefficients.
For GNN training, each graph in the dataset was organized in the

oordinate (COO) format, as shown in Fig. 2A. The set 𝑥 corresponds
to node features. Since each node in the correlation matrix represents
one region of interest, we created a 166 × 166 binary diagonal matrix,
where the first dimension corresponds to the nodes and the second
dimension — to the features, stating that each node is unique and has
a separate feature, without specifying the nature of the feature.

The set 𝑒𝑑𝑔𝑒 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 is a 2D array containing the edges in COO
format, with the elements in the first and the second row containing
indices of outgoing and incoming nodes, respectively. Finally, a single-
element array 𝑡𝑎𝑟𝑔𝑒𝑡 contained the label of the current graph, which in
our binary classification task was either 0 or 1. Label 0 was assigned
for MDD class, and label 1 was for the Control class.

We calculated the performance of 10 GNN models, increasing the
number of GCN blocks (𝑛𝑙𝑎𝑦𝑒𝑟𝑠 = [1,10]) to check the possible corre-
ation between the depth of the model and the topological features
f the dataset. One GCN block consisted of one graph convolutional
ayer for feature extraction, ReLU() activation function, and batch
ormalization. We also added one pool layer to reduce dimensionality
nd one dense layer as final classifiers. The architecture of the model
s illustrated in Fig. 2B.

The hyperparameters of the model were chosen as follows:

(1) Learning rate = 0.0005;
(2) 166 hidden neurons on all layers;
(3) Adam optimizer;
(4) Binary cross entropy with logits as loss function;
4

(5) Batch size = 32;
(6) Dropout 20%;
(7) 100 epochs.

The dataset used for classification experiments is relatively small
and unbalanced, therefore we applied a couple of precautionary proce-
dures to prevent overfitting. In particular, we performed training and
testing with a Stratified k-fold with 10 folds to ensure the balanced
representation of each class and to test the model on several different
subsets of test data. To evaluate the model performance, we monitored
F1-score. For each 𝑡ℎ𝑟𝑒, we calculated the value 𝑚𝑎𝑥𝐺𝐶𝑁 that equals
the parameter 𝑛𝑙𝑎𝑦𝑒𝑟𝑠, for which the F1-score of the corresponding GNN
model was the largest.

3. Results

3.1. Topology analysis

After applying thresholding, we analyzed the topological properties
of graphs by calculating the degree distribution with linear regression.
As Fig. 3 shows, the topology of the networks for both classes changes
from random-like distribution (upper row) to a scale-free network
(lower row). Here, the parameter 𝑥1, shown in figures for each class,
is a directional indicator representing an angle of linear regression.
For 𝑡ℎ𝑟𝑒 = 0.95, 𝑥1 = −2.07 for the Control group, suggesting that
the topology of the rs-fMRI functional connectivity network with the
strongest links becomes fully scale-free in healthy subjects but not in
MDD patients (𝑥1 = −1.85).

Next, we calculated for each 𝑡ℎ𝑟𝑒 the shortest path distribution

for the paths of length 𝑑 = [2, 10], where 𝑑 is the number of nodes
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Fig. 3. Degree distributions of networks corresponding to each 𝑡ℎ𝑟𝑒 value with linear regression. Each figure shows degree distributions for two groups of subjects (blue — MDD
group, orange — Control group). Parameter 𝑥1 is an angle indicator; 𝑝 is a 𝑝-value of linear regression. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table 1
Detailed results of topological analysis and GNN performance
for each 𝑡ℎ𝑟𝑒.
𝑡ℎ𝑟𝑒 𝑑 ∗ 𝑚𝑎𝑥𝐺𝐶𝑁 F1-score

0.0 3 1 88.38
0.05 3 3 89.63
0.10 3 2 87.88
0.15 3 2 87.62
0.20 3 2 86.21
0.25 3 2 86.57
0.30 3 2 87.6
0.35 3 2 93.24
0.40 3 2 90.4
0.45 3 3 88.38
0.50 3 3 92.88
0.55 3 2 91.71
0.60 3 2 86.81
0.65 3 2 85.57
0.70 4 3 89.24
0.75 4 10 84.29
0.80 5 9 87.14
0.85 5 8 87.4
0.90 6 5 94.6
0.95 2 5 84.66

in the corresponding paths. In Fig. 4A, we show the mean circular
connectivity plots for both groups with only those edges that form
the shortest paths of lengths 𝑑 = 4 and 𝑑 = 5 (left and right panels,
respectively). We used networks thresholded at 𝑡ℎ𝑟𝑒 = 0.95 for these
illustrations. One can see that, despite a large number of connections,
the pattern of connectivity is rather different in the two groups. To
explore the dependence of these differences from 𝑡ℎ𝑟𝑒, we applied the t-
test for independent samples to the shortest path distributions. Results
are shown in Fig. 4B, where the white area highlights the maximum
values of t-statistic with the corresponding 𝑝𝑣𝑎𝑙 < 0.05, and 𝑑 ∗ is
the length of the shortest path, for which the differences between the
groups are most pronounced. Detalization of the 𝑑 ∗ for each 𝑡ℎ𝑟𝑒 is
provided in Table 1. Fig. 4B shows that an increase of the 𝑡ℎ𝑟𝑒 leads to
the formation of a larger amount of shortest paths of length 𝑑 > 2 in the
MDD group compared with Control. The maximum value of 𝑡ℎ𝑟𝑒 = 0.95
corresponds to the 𝑑 ∗= 2, which indicates the deterioration of long-
path structures in the MDD group, also confirmed by the shape of the
corresponding distribution (Fig. 3, lower right).
5

3.2. GNN-based classification

In the previous subsection, we considered the topological changes in
analyzed networks induced by the thresholding procedure. To see the
correlation between these results and GNN performance, we conducted
a numerical experiment consisting of feeding datasets with different
𝑡ℎ𝑟𝑒 to GNN models of different architecture. In particular, we designed
10 GNN models with a different number of GCN blocks to check the
dependence of performance on the topological features of the data.
The results of the F1-score for each (model, 𝑡ℎ𝑟𝑒)-pair are shown in
Fig. 4C. Here, the white line corresponds to the maximum F1-score for
each 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠. The corresponding values of 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠
– 𝑚𝑎𝑥𝐺𝐶𝑁 – are detailed in Table 1. First, one can see that 𝑚𝑎𝑥𝐺𝐶𝑁
increases with 𝑡ℎ𝑟𝑒. Second, the shape of the F1-score increase in Fig. 4C
is qualitatively similar to the shape of the t-statistic increase in Fig. 4B,
which indicates the possible correlation between 𝑑 ∗ and 𝑚𝑎𝑥𝐺𝐶𝑁 .
To check this, we applied linear regression to show the relationships
between the graphs’ topology and corresponding GNN performance
more clearly (see Fig. 4D). Here, we demonstrate the obvious uptrend,
evidencing that the optimal depth of the GNN model indeed correlates
with the statistical parameter based on shortest path distribution. More-
over, the estimation of the relationships between two variables with
Spearman correlation also shows an increasing trend between 𝑚𝑎𝑥𝐺𝐶𝑁
and 𝑑 ∗ (𝑟𝑠 = 0.72, 𝑝𝑠 = 0.00034).

Finally, Fig. 5 illustrates our method’s efficiency via receiver oper-
ating characteristic (ROC) curves. One can see that the model chosen
by our approach based on shortest paths (‘‘best performance’’) shows a
higher AUC (area under the curve) score than the model with 1 GCN
block, which we chose as a reference.

4. Discussion and conclusion

We have found that the optimal depth of GNN (the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠)
depends on the topology of the analyzed graphs. The F1 score varies
from 80% to 90% depending on the GNN depth. When the graph is
fully connected, F1 is maximal for the 1-layer GNN and decreases if
the number of layers grows. For large thresholds, the graphs become
sparse and 1-layer GNN fails to learn their topology. Thus, the F1 score
grows reaching the maximal value at a certain (optimal) depth. Again,
further increase in depth causes F1 reduction. We used cross-validated
F1 sore; therefore, it might decline due to underfitting and overfitting
issues. Thus, we concluded that for the fully connected graph, one
layer is enough to learn the graph topology, whereas more layers
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Fig. 4. A – circular connectivity plots for both groups, on which each edge is included into the shortest path of length 𝑑 = 4 (left) or 𝑑 = 5 (right). B – dependence of t-statistic of
shortest path distribution between MDD and Control on 𝑡ℎ𝑟𝑒. Here, the white line indicates the maximum values of t-statistic with corresponding 𝑝𝑣𝑎𝑙 < 0.05. C – results testing the
dependence of the performance of GNN with different depths on 𝑡ℎ𝑟𝑒. The white line highlights the maximum F1-score for each model configuration (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 parameter).
D – correlation between GNN depth with the highest performance (𝑀𝑎𝑥𝐺𝐶𝑁 ) and the length of shortest path with the most pronounced difference between the two classes (𝑑 ∗).
The relationships between variables are approximated with linear regression with a confidence interval of 0.95 and measured with Spearman’s correlation.
Fig. 5. ROC curves for three 𝑡ℎ𝑟𝑒 = [0.45, 0.70, 0.95] for two cases: GNN model with 1 GCN block (black curve) and GNN model with best performance (red curve). The number
of GCN blocks for models with the best performance for each 𝑡ℎ𝑟𝑒 is detailed in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
cause overfitting. For the sparse topologies, growing depth reduces
underfitting until it reaches an optimal value. Further increase in depth
causes overfitting.

It is known that overfitting of the deep GNN may be caused by
over-smoothing [39]. An intuitive notion of over-smoothing is that
the mixture of neighborhood features by graph convolution drives the
output of an infinitely-deep GNN towards a space that contains limited
distinguished information between nodes. Thus, over-smoothing erases
important discriminative information from the input, leading to poor
trainability [40].

We report the positive correlation between the optimal depth and
the length of the shortest path in the graphs. The shortest path is the
minimal number of links connecting the pair of nodes. Following the
concept of GNN, once the nodes are connected, their representation on
the layers will be similar due to shared neighbors. This is exactly what
over-smoothing means. Thus, we suppose that the shortest path defines
a characteristic scale of the graph that affects GNN’s performance. On
the layers whose number exceed the shortest path the majority of nodes
lose their distinguished information.
6

Revealed correlation allows researchers to predefine a search space
for an optimal depth before optimizing hyperparameters of GNN. It
reduces computational time when dealing with big graph-structured
data.

The proposed GNN-based classifier and the obtained results are
also essential for clinical purposes due to the differentiating between
depression patients and healthy individuals. Our classifier reached an
accuracy of 93% (when the threshold value equals 0.15 and there
are 2 layers in GNN). Such performance is in line with the achieve-
ments of the best connectivity-based classifiers for MDD. Earlier studies
in this field focused mainly on specific regions and networks, and
reached accuracy of around 90% [41]. Later, whole-brain connectivity
analyses were prevalent, where the classification accuracy reached
90%–94% [22,42]. Some recent studies identified effective biomarkers
for depression diagnosis using a fusion strategy of multiple resting-
state connectivity measures (intrinsic, dynamic functional connectivity,
effective connectivity) and achieved an accuracy of approximately
91% [43]. Remarkably, the proposed GNN shows the maximal F1-score
when we input the sparse one consisting of 2.5% (on average) of the
connections of the original graph (this corresponds to the threshold
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value of 0.9). Thus, thresholding avoids feeding large amounts of data
to the GNN and reduces overfitting.
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