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ABSTRACT

One must be aware of the black-box problem by applying machine learning models to analyze high-dimensional neuroimaging data. It is due
to a lack of understanding of the internal algorithms or the input features upon which most models make decisions despite outstanding per-
formance in classification, pattern recognition, and prediction. Here, we approach the fundamentally high-dimensional problem of classifying
cognitive brain states based on functional connectivity by selecting and interpreting the most relevant input features. Specifically, we consider
the alterations in the cortical synchrony under a prolonged cognitive load. Our study highlights the advances of this machine learning method
in building a robust classification model and percept-related prestimulus connectivity changes over the conventional trial-averaged statistical
analysis.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070493

Machine learning (ML) is a state-of-the-art computational tool
employed at analyzing big data in fundamental and applied sci-
ence. Recently, it gained popularity in neuroscience due to its
ability to recognize hidden patterns and nonlinear relations in
large amounts of nonstationary and ambiguous neuroimaging
data. Analysis of functional connectivity matrices is a perfect
example of such a computational task assigned to machine learn-
ing. Since many ML models remain as black-boxes, interpretation
of the meaningful data, based on which models make decisions,
may potentially shed light on the properties of the analyzed sys-
tem, i.e., the brain. Here, we evaluate alterations in functional
connectivity under a prolonged cognitive load from the ML per-
spective. We collect the most relevant inputs using the feature
engineering (FE) procedure and trial-averaged statistical anal-
yses of functional connectivity. We establish that the features
selected via FE provide higher model performance than ones
obtained using trial-averaged analyses. Moreover, the interpre-
tation of FE features possesses a less ambiguous explanation of
neuronal processes underlying the changes in integrative brain
dynamics.

I. INTRODUCTION

The application of machine learning (ML) in fundamental
and applied science has attracted considerable attention in recent
years.1 It is due to the ability of intelligent algorithms to generalize
poorly structured data and find hidden patterns in high-dimensional
inputs.

Regarding the fundamental problems, nonlinear dynamics and
chaos control actively implement ML tools. Recent advances in this
field demonstrate the efficiency of supervised algorithms in predict-
ing chaotic systems2–5 and excitable media,6,7 exploring epidemic
spreading,8 and analyzing complex networks.9,10 One of the spe-
cial applications of ML models in nonlinear science is detecting
synchronization. Since synchronization is a universal fundamental
phenomenon, diverse scientific areas demand advanced methods for
its diagnostics.11 Ibáñez-Soria et al. addressed the identification of
generalized synchronization in a time-dependent fashion using an
echo-state network.12 Our recent study13 demonstrated an approach
to the same problem but in terms of a stationary feed-forward neu-
ral network. Banerjee et al. proposed a reservoir-computing-based
method to infer causal dependencies and network links.14
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In neuroscience, synchronization of neuronal networks is well-
known to underlie normal functioning and pathological states of
the brain.15 Thus, alternation in large-scale interactions between the
remote brain regions and their network properties contain rele-
vant information about the brain’s state.16,17 One can implement this
concept as real-time network brain–computer interfaces on quan-
tifying, predicting, or classifying time-varying brain states.18,19 It
seems promising to assign costly and high-dimensional computa-
tion to machine learning. Recent studies show a notable progress in
recognizing signatures of autism spectrum disorder,20 Alzheimer’s,21

schizophrenia,22 etc., by feeding models with functional connectivity
features.

The problem behind such studies is that the functional connec-
tivity matrices are giant arrays of data processed mainly by black-box
ML models. Understanding the reasons behind predictions is, how-
ever, quite important in assessing trust, especially in those areas in
which it is a question of the human condition (healthcare, medicine,
neuroscience, etc.).23,24 We argue that the interpretability of ML
models, or features upon which they make decisions, is crucial in
developing robust trustworthy algorithms. On the other hand, it
can also contribute to a better understanding of integrative brain
dynamics.

The current study contributes to unraveling the black-box
problem. The main objective is to show that reducing a large set of
input connectivity features appears helpful in understanding neu-
ronal processes underlying the differences between the brain states
aside from optimizing ML performance. As a specific target within
this problem, we considered how a prolonged repetition of a cogni-
tive task (or prolonged cognitive load) reconfigured the prestimulus
functional network structure to adapt to task performance.25 Finally,
we establish advances of interpretable machine learning approach26

over the trial-averaged statistical analysis.

II. MATERIALS AND METHODS

A. Experimental task and participants

We developed the experiment in such a way as to explore the
aspects of neural processing underlying perceptual decision-making
while classifying ambiguous visual stimuli. Moreover, it addresses
behavioral adaptation and its neural correlates. Our previous studies
reported the experimental paradigm in detail.25,27

Briefly, the experimental session consisted of 400 repetitions of
the same visual classification task. The task required a participant
to respond via button clicking as quickly as possible to a short-term
presentation of an ambiguous image of the Necker cube. Depending
on the contrast of inner edges, one can interpret the presented image
as either a left-oriented cube (response using the left button) or a
right-oriented cube (response using the right button). Moreover, the
contrast of inner edges defined the ambiguity of the stimuli divided
into high-ambiguity (HA) and low-ambiguity (LA) ones according
to the measured response times (RTs).25,28 We randomly picked the
duration of visual stimulus presentation and the pause between tri-
als in 1.0–1.5 s and 3.0–5.0 s, respectively. Overall, the experimental
session for each participant lasted for ≈40 min.

Twenty healthy participants, comprising nine females, aged
25–35 (Mean = 26.1, SD = 4.6) were recruited for the experiment.

Throughout the session, the EEG recorder Encephalan-EEG-19/26
measured participant’s electrical cortical activity using 31 sensors
placed according to the extended 10–20 layout [Fig. 1(a)]. All par-
ticipants were familiar with the experimental task and did not
participate in similar experiments in the last six months. The exper-
imental studies were performed under the Declaration of Helsinki
and approved by the local Research Ethics Committee of Innopolis
University.

B. Epoch sampling

For each participant, we sampled 400 EEG epochs according to
the experimental protocol. Each epoch contained 2 s of prestimulus
electrical cortical activity. Our previous studies showed the effect of
behavioral adaptation, i.e., reducing response time from the begin-
ning to the end of the prolonged experimental session.25,27 To trace
neural correlates of behavioral adaptation, we considered the first
and the last 5 min of the experimental session as its Early and Late
stages, respectively. For each stage, we collected 40 EEG epochs in
such a way as to include an equal number of epochs, corresponding
to the presentation of left- and right-oriented stimuli, as well as HA
and LA stimuli. These criteria were supposed to exclude a potential
bias caused by the properties of presented visual stimuli.

C. Connectivity analysis

To evaluate prestimulus functional connectivity, we used the
measure of coherence.29 Coherence estimate between signals xi(t)
and xj(t) at single trials was defined in the frequency domain
f = 4–40 Hz with resolution 1f = 0.5 Hz as

Cohij(f) =
|Pij(f)|

2

Pi(f)Pj(f)
. (1)

Here, Pi(f) and Pj(f) are the power spectral densities of xi(t) and
xj(t), respectively, and Pij is a cross-spectral density of xi(t) and
xj(t). Coherence is defined on the interval [0, 1], where Cohij = 1
implies perfect correlation between xi(t) and xj(t), and vice versa
if Cohij = 0. Cohij(f) was evaluated using the coherence method
implemented in the signal processing package scipy.signal for
Python. The coherence method yielded spectral densities Pi(f),
Pj(f), and Pij(f) via Fast Fourier Transform (FFT).

Within-frequency connectivity matrices Wij sized 31 × 31 were
filled with the values of coherence averaged over the frequency
bands of interest, FOIs, such that Wij = 〈Cohij(f)〉

∣

∣

FOI
and i, j

= 1 ÷ 31. For each FOI, we produced single-trial connectivity
matrices for 20 participants with 40 trials in two experimental
conditions [20 × 40 × 2 = 1600 in total, Fig. 1(b)].

D. Network-based statistics

Inference of statistically significant differences in the prestimu-
lus functional connectivity between the Late and Early stages of the
experimental session on the group level was performed using the
following approach.

For each subject, we collected trial-averaged frequency domain
representations of coherence in Early and Late conditions. For
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FIG. 1. Pipeline of the electroencephalography (EEG) data analysis. (a) Extended “10–20” 31–sensors EEG layout illustrating the placement of electrode sites measuring
electrical cortical activity of the brain. (b) Subject-wise computation of single-trial prestimulus coherence matrices within frequency band of interest (FOI), 20 × 80 = 1600
in total. Conditions “Early” and “Late” are assigned numerical values of “−1” and “1,” respectively. (c) Reducing coherence matrices to the n-dimensional feature vectors
composed of the most informative connectivity components extracted during the feature engineering procedure. (d) Sketch of discrimination between the brain states in the
“Early,” circles, and “Late,” squares, conditions using a nonlinear support vector machine (SVM) classifier. Dashed lines indicate (n − 1)-dimensional boundaries of the
considered classes, and the solid line represents a (n − 1)-dimensional dividing hyperplane.

each triplet (i, j, f), we produced the value of subject-wise t-
statistics between conditions Late and Early. Then, for each fre-
quency component f, we computed a number of links (i, j), whose
value of t-statistic exceeded a predefined α-level separately for the
left- and right-tailed distributions. We considered three α-levels:
(i) α = 0.05, |t(19)| ≥ 1.729; (ii) α = 0.025, |t(19)| ≥ 2.093; (iii) α

= 0.01, |t(19)| ≥ 2.539. Thresholding the obtained dependencies of
the number of links vs frequency, we extracted the frequency bands
of interest, FOIs, demonstrating a significant effect.

Finally, the significance of group-level connectivity differences
between Late and Early conditions was evaluated using the network-
based statistics (NBS) approach.30

E. Machine learning

We used ML to infer changes in functional connectivity
between experimental conditions. After collecting connectivity
matrices within FOIs, we applied feature engineering (FE) to sort
connectivity features in descending order of their relevance in dis-
crimination between the experimental conditions. Taking n top
features as inputs, n = 1, . . . , N, where N is a maximal number of
features, we tested the performance of a nonlinear classifier. Thus,
we generated dependency of classification performance vs the num-
ber of top features. Then, we selected the optimal number of features
providing sufficient accuracy for a small number of inputs. The
obtained reduced set of features was further considered a sought
connectivity structure, whose coupling change was the most infor-
mative for classification. A short flow chart of the entire simulation
is shown in Fig. 1, and a detailed description of FE and nonlinear
classification is given below.

Feature engineering. FE is one of the core concepts in
ML, which greatly impacts the performance of the developed

model. Until now, connectivity matrices computed for each FOI
contain N = 31 × (31 − 1)/2 = 465 unique functional connections
between electrode sites, or features. In generally, it is undesirable
to use all features since irrelevant or less relevant features can
negatively impact model performance and greatly increase com-
putational cost. In order to select key features, filter-type feature
selection algorithm was employed31 [Fig. 1(c)]. The filter-type fea-
ture selection algorithm measures the importance of inputs based on
their characteristics, such as feature variance and feature relevance
to the response. We extracted important features as part of a data
preprocessing step, and then the model is trained using the selected
features. We used a chi-squared test as a feature selection criterion. A
higher chi-squared test score means that this feature has higher dis-
criminative power than a feature with a lower chi-squared test score.
A small feature set—top 20 features (F20) for each FOI—was consid-
ered. Top 20 features are an optimal number of features providing
a sufficient performance of SVM classifier (see the supplementary
material for details).

Nonlinear classifier. We employed a support vector machine
(SVM) with radial basis function kernel as a classifier [Fig. 1(d)].
The classification was performed on a single-trial level, i.e., taking
into account connectivity features of all 1600 EEG epochs. Classes
Early and Late were assigned numerical values of −1 and 1, respec-
tively. We used a k-fold cross-validation to train and test the selected
SVM classifier.32 This validation scheme is suitable when the data
set size is not very large. In a k-fold cross-validation scheme, the
data set was randomly permuted and split up into k = 20 groups
or folds (80 samples per group). Then, for each k, the kth group was
taken as a test data set, while the remaining k − 1 groups comprised
the training data set. We trained the model on the training set and
evaluated using the test set, resulting in k − 1 pieces of the model
training. Before training, data were shuffled once so that folds in
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each case remain the same. To assess the classification performance,
we computed the k-fold cross-validation score as

score =
TP + TN

TP + TN + FP + FN
. (2)

Here, TP is true positive, which means the model correctly assigned
class “1” to the Late connectivity. TN is true negative, which means
the model correctly assigned class “−1” to the Early connectivity.
FP is false positive, which means the model erroneously assigned
class “1” to the Early connectivity. Finally, FN is false negative,
which means the model erroneously assigned class “−1” to the Late
connectivity.

ML simulations were fully performed using sklearn package
for Python.

III. RESULTS AND DISCUSSION

A. Group-level network-based statistic

Group-level statistical analyses using NBS revealed two func-
tional connectivity structures exhibiting significant changes in
coherence throughout the experimental session. Figure 3(a) reports
the negative effect, i.e., a functional network demonstrating
decreased coherence from the Early to Late stages of the experimen-
tal session. We observed a negative effect within the frequency band
4–6.5 Hz at α = 0.01 [Fig. 2(a), left panel]. Corresponding func-
tional network, p = 0.034 via NBS, is presented in the right panel of
Fig. 2(a). It shows a reduced theta-band coherence between bilateral
frontal and frontocentral electrodes in the Late stage compared to
the Early one. There is evidence that frontal theta oscillations reflect
realization of cognitive control.33–35 Several previous studies asso-
ciate an increased frontal theta activation and phase coupling with

FIG. 2. Connectivity analysis using network-based statistics. (a) Functional network demonstrating a significant negative effect, i.e., a decreasing coherence from Early to
Late stage. (b) Functional network demonstrating a significant positive effect, i.e., an increasing coherence from Early to Late stage. In both subplots, the right panel shows
the number of links exceeding a predefined α-level vs frequency, and the left panel illustrates corresponding functional networks demonstrating a significant effect.
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the process of reinforcement learning and exploration.36,37 Cavanagh
et al. emphasize that frontal theta oscillations, a hallmark of encod-
ing prediction errors, are closely related to behavioral adaptation.
Moreover, Cohen and Cavanagh have shown that the level of frontal
theta correlates with task performance in single trials.38 Summariz-
ing the above, we can interpret our result as a meaning that at the
beginning of the experimental session, naive participants explore
unfamiliar and ambiguous visual stimuli to extract relevant features
and maximize their performance by reducing response time and
error rate.

A positive effect, i.e., enhancement of coherence through-
out the session, was found in the narrow part of the beta-band
22.5–25 Hz at α = 0.025 [Fig. 2(b), left panel]. Corresponding func-
tional network, p = 0.039 via NBS, is reported in the right panel
of Fig. 2(b). It involves enhanced brain-wide beta-band coherence
(Late vs Early), including right-lateralized occipital, parietal, and
temporal electrodes, midline sensors, as well as the left-lateralized
temporal electrode sites. Derivation of the exact implication of pres-
timulus beta-synchrony from the uncovered connectivity structure
is difficult due to the poor spatial localization of the latter. Among
the variety of functional roles of beta oscillations in human brain, we
suggest protection of “neuronal equilibrium” states39,40 and “clear-
out” of the working memory content carried during trial.40–42 The
former implies the filtering of distractions43 and maintenance of
working memory context preventing ongoing encoding.44 In this
context, we could interpret our results as a superposition of these
neural mechanisms in the prestimulus state. Enhanced beta-band
interaction between the electrodes covering the prefrontal and sen-
sorimotor cortices may, on the one hand, reflect clearing out a short-
term representation of the previous visual stimulus and related
button clicking, which should not interfere with the perception of
the upcoming stimulus. On the other hand, it may be a signature of
maintaining a developed association between the presented stimuli
and corresponding motor reactions in long-term memory.

To compare these results with an interpretable machine learn-
ing approach, we collected the uncovered functional networks and
corresponding frequency bands as a set of features for ML entitled
“NBS.”

B. Interpretable machine learning

Next, we employ interpretable machine learning to discrim-
inate between the considered brain states and highlight the most
informative functional connectivity features. To avoid frequency
variability in single trials, we considered connectivity features cal-
culated in broad Theta (4–8 Hz, 465 features) and Beta (15–30 Hz,
465 features) bands along with merged feature vector Theta + Beta
(2 × 465 = 930 features). Based on the results of the NBS analy-
sis, we also considered narrow-band Theta (4–6.5 Hz, 465 features)
and narrow-band Beta (22.5–25 Hz, 465 features) feature vectors,
along with the merged narrow-band Theta + Beta feature vector
(2 × 465 = 930 features).

We composed four different configurations of extracted fea-
tures:

• All: feature vector is composed of all 465 features in the case of
Theta and Beta bands and of all 930 features in the case of merged
Theta + Beta connectivity.

• F20: feature vector is composed of top 20 features in the case of
Theta, Beta, and merged Theta + Beta connectivity.

• nAll: feature vector is composed of all 465 features in the case of
narrow Theta and narrow Beta bands and of all 930 features in the
case of merged narrow Theta + Beta connectivity.

• nF20: feature vector is composed of top 20 features in the case of
narrow-band Theta, Beta, and merged Theta + Beta connectivity.

Figure 3 displays top 20 connectivity features extracted via
chi-squared test for broad-band FOIs (F20) and narrow-band FOIs
(F20n). Connectivity features in Fig. 3 are color-coded with the value
of 1Coh, which is a grand-average difference between coherence in
the Late and Early stages of the session,

1Cohij = 〈CohLate
ij − Coh

Early
ij 〉, (3)

where the operator 〈•〉 defines averaging across subjects.
In broad-band analysis, the F20-Theta set includes bilateral

connections between frontal sensors and occipital, parietal, and
temporal electrodes. F20-Beta set includes local left-lateralized cou-
pling between occipital, parietal, temporal, and frontal electrode
sites. Extracted features, aside from beta-band O1-Fz and O1-Fp1
connections, are characterized by positive 1Cohij. In the F20-
(Theta + Beta) set, 19 of 20 features belong to broad-band beta
connectivity, and only one belongs to theta.

In narrow-band analysis, the nF20-Theta feature set contains
several left-lateralized connections between frontal, temporal, and
parietal sensors, similar to the F20-Theta set. Moreover, nF20-Theta
includes several frontal links having negative 1Cohij, which coin-
cides with previous findings obtained via the NBS approach. The
nF20-Beta set contains fewer strengthening links in the left hemi-
sphere and more weakening large-scale connections between sensor
O1 and frontal sensors (Fz, F3, F9, Fpz, and Fp1). All features in the
nF20-(Theta + Beta) set belong to narrow-band beta connectivity.

Although functional connections extracted by the feature selec-
tion algorithm differ from NBS results, they share some common
structures. First of all, it applies to elevated left-lateralized fron-
toparietal and temporal beta connectivity. Previously, Hipp et al.
analyzed the perception of ambiguous visual stimuli and reported
similar prestimulus networks.45 They emphasized that the fluctu-
ations of large-scale beta synchrony over these areas could reflect
visual attention changes that modulate the stimulus’s perceptual
organization. We may conclude that the beta-band structures high-
lighted in Fig. 3 play an essential role in the prestimulus interaction
of neuronal processing streams bouncing perception. At the same,
theta-band connectivity features were not as informative as beta-
band ones, as follows from the bottom panels in Fig. 3. Based on
this observation, we may conclude that either theta-band features
or associated neuronal processes do not significantly change the
brain state throughout the experiment or exhibit strong inter-trial
variability.

Intending to identify which set of features and frequency band,
or combination of frequency bands, was the most relevant in single-
trial classification, we used them as inputs for nonlinear SVM.
We verified its performance via k-fold cross-validation. For each
(feature set, frequency band) pair, we collected a sample of k-fold
cross-validation scores, 20 scores per sample, indicating the perfor-
mance of the nonlinear SVM classifier, see Methods. Group means
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FIG. 3. Features selected using the chi-squared/filter method.
Each subplot displays top 20 features in different frequency
ranges: broad-band (left column) and narrow-band identified
by NBS (right column). (a) Broad-band F20-Theta, 4–8 Hz.
(b) Narrow-band nF20-Theta, 4–6.5 Hz. (c) Broad-band
F20-Beta, 15–30 Hz. (d) Narrow-band nF20-Beta, 22.5–25 Hz.
Connections are color-coded with the value of 1Coh, a
group-mean difference of coherence between Late and Early
conditions. (e) and (f) show top 20 connectivity features in
merged Theta (blue) and Beta (orange) sets.

and standard deviations are presented in Fig. 4. We compared these
samples using repeated measures (RM) ANOVA with two within-
subject factors: (i) frequency band and (ii) feature set. Primarily,
RM ANOVA indicated that SVM performance is significantly influ-
enced by a frequency band, within which the connectivity is com-
puted (F1.241,19 = 544.372, p < 0.001, η2 = .59). It turned out that
theta-band connectivity features were the least informative with an
insufficient classification accuracy of 50%–60%, on average. This
observation supports our previous conclusion on the contribution of

theta-band connectivity to the development of the integrated brain
state. Importantly, our comparison shows that broad-band connec-
tivity features provide approximately 10% higher performance than
narrow-band ones. We suppose that this is due to the well-known
inter-subject variability of oscillatory rhythms of electrical cortical
activity.46

Post hoc analysis indicated that the feature vector All-Beta
was the most informative, providing a mean classification accuracy
of 89.63% (t19 > 4.812, p < 0.001 via paired t-test). Despite that,
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FIG. 4. k-fold cross-validation scores comparison. Here, bars
and whiskers show means and standard deviations over the
folds; “***” indicates the level of significance p < 0.001 via
repeated measures analysis of variance (RM ANOVA).

F20-Beta and F20-(Theta + Beta) are of special notation. Although
supporting less classification accuracy than All-Beta, these sets
demonstrated equal suitable performance of 82.94% at lower com-
putational costs. F20-Beta and F20-(Theta + Beta) also significantly
outperformed F20-Theta as well as nAll-, nF20, and NBS-pairs,
for which the mean cross-validation score did not exceed 80% (t19

> 4.767, p < 0.001 via paired t-test). Noteworthy that NBS features
extracted based on the trial-averaged analysis provided the lowest
classification performance, which was about 50%–60%, on average.
Thus, we suppose that trial-averaged statistical analysis is inappro-
priate in selecting connectivity features in single-trial classification
instead of the considered interpretable machine learning.

IV. CONCLUSIONS

We demonstrated the applicability of interpretable machine
learning in evaluating changes in functional connectivity. By
employing an FE algorithm, we extracted sets of informative fea-
tures of functional connectivity. Their relevance was verified using
a nonlinear SVM classifier. We tested this approach against the
trial-averaged group-level statistical analysis—the test task aimed
at finding changes in prestimulus functional connectivity during a
prolonged cognitive load.

Our results emphasize the importance of selecting and inter-
preting inputs for building high-performance ML models. First, we
observed that functional connectivity features extracted via FE pro-
vided more than 20% higher classification accuracy in single trials
compared to features selected using trial-averaged statistical analy-
sis. Second, we found that FE captured functional networks of better
spatial localization and rejected several irrelevant features obtained
by trial-averaged analysis. The latter helped us to evaluate robust
changes in functional connectivity. It also allowed us to draw clear
conclusions about the modulation of the prestimulus visual atten-
tion network influencing the perception of an ongoing ambiguous
stimulus.

We conclude that relying on the results of the trial-averaged
analysis may lead to erroneous single-trial classification due to
inter-trial variability of the measured variables. We expect that our

findings could potentially bring a new perspective on the use of
interpreted machine learning in neuroscience and medicine.23,24 It
primarily applies to the development of brain–computer interfaces,
where the application of AI tools is extremely demanded.18,19

SUPPLEMENTARY MATERIAL

See supplementary material for the detailed report on feature
selection.
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