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The paper studies instabilities of charge transport in strongly coupled semiconductor superlattices with 
an applied electric and a tilted magnetic field. We reveal the bifurcation phenomena, which are associated 
with the transitions between different regimes of charge dynamics, and also investigate effects of the 
temperature on these bifurcations. In addition, we find out that the development of an instability can be 
accompanied by a graduate change of the dominant transport mechanism.
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Introduction

Semiconductor superlattices (SSLs), nanostructures formed by 
several alternating layers of different semiconductor materials 
[1–4], are subjects of a great research interest for both the funda-
mental and applied sciences [1,5–10]. Being biased by an applied 
electric field they are able to demonstrate a large number of in-
teresting quantum-mechanical phenomena such as Wannier–Stark 
ladders, sequential and resonant tunneling, Bragg reflections, and 
Bloch oscillations. These phenomena strongly influence collective 
charge transport along the SSL inducing negative differential con-
ductivity and traveling charge domains of high concentration [3]. 
In Ref. [11] it has been theoretically shown that two main types of 
charge domains can be generated in transferred electron devices 
with negative differential conductance, namely the pure accumula-
tion domains and dipole domains. With this, Ref. [12] has reported 
the detailed experimental study indicating that the current oscilla-
tions in superlattices are most likely occurring in the pure charge 
accumulation mode. Recently, it has been found out that a tilted 
magnetic field applied to an SSL can strongly affect the electron 
drift velocity in this nanostructure [13,14] and, correspondingly, 
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the dynamics of the SL in regime of charge domains propaga-
tion [15,16].

From the viewpoint of collective charge dynamics, an SSL can 
be considered as an active nonlinear medium, where the spatio-
temporal patterns (e.g. high concentration charge domains) can be 
generated by a voltage applied to the contacts of the SSL [3,10]. 
When the applied voltage is small, spatially extended patterns of 
charge concentration are stationary in time. For higher voltage the 
stationary state becomes unstable and charge domains start to 
propagate along the SSL, thus generating the current oscillations. 
One of the typical instabilities giving birth to the current oscil-
lations in the SSL is the supercritical Hopf bifurcation [17,18]. In 
this case, the current oscillations in the vicinity of the bifurcation 
are close to be harmonic. With further increase of the voltage, the 
shape and timescales both of the moving charge domains and the 
related current oscillations are considerably changed. In the ab-
sence of the magnetic field these modifications are rather gradual, 
whereas the presence of a tilted magnetic field seems to induce 
additional bifurcation phenomena, which are not clear at the mo-
ment [16].

In this paper we study the bifurcations induced by a tilted 
magnetic filed, and investigate, how the change of temperature af-
fects the instabilities. The structure of the paper is the following. 
Section 1 presents the mathematical model describing the charge 
transport in the SSL biased by an electric and a tilted magnetic 
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field. The evolution of the charge dynamics with variation of the 
voltage applied is discussed in Section 2. The instabilities occurring 
in the system and the underlying mechanism for low temperatures 
are considered in Section 3. Section 4 is devoted to the transport 
regimes and the bifurcation phenomena at high temperatures. The 
final remarks are given in the Conclusions.

1. Model equations

In order to describe the collective charge dynamics in the SSL 
we use a set of dimensionless current continuity and Poisson equa-
tions [19,20]:

∂n

∂t
= −β

∂ J

∂x
, (1)

∂ F

∂x
= ν(n − 1). (2)

In Eqs. (1) and (2) the dimensionless volume electron density, elec-
tric field and current density are denoted as n(x, t), F (x, t) and 
J (x, t), respectively, x and t are the dimensionless space and time 
variables, β = 3.1 × 10−2, ν = 15.8 are the dimensionless con-
trol parameters. The dimensionless quantities are related with the 
physical (primed) ones as:

x = x′/L′, t = t′/τ ′, n = n′/n′
D ,

J = J ′/(en′
D v ′

0), F = F ′/F ′
c, F ′

c = h̄/(ed′τ ′),
β = v ′

0τ
′/L′, ν = L′en′

D/(F ′
cε0εr), (3)

where d′ = 8.3 nm and L′ = 115.2 nm are the period and the 
length of the superlattice, e > 0 is the magnitude of the electron 
charge, �′ = 19.1 meV is the miniband width, n′

D = 3 × 1022 m−3

is the n-type doping density in the SL layers, F ′
c = 3.2 × 105 V/m

is the normalization value of the electric field, ε0 and εr = 12.5 are 
the absolute and relative permittivities, respectively. The quantity:

v ′
0 = γ

�′d′

2h̄

I1(	)

I0(	)
(4)

is the maximal possible value of the dimensionless drift velocity 
without the tilted magnetic field, where

	 = �′/(2k′
B T ′) (5)

characterizes the temperature T ′ , while I0(x) and I1(x) are the 
modified Bessel functions of the first kind. Parameters γ =
[τ ′

e/(τ
′
e + τ ′

i )]1/2 and τ ′ = γ τ ′
i are determined by the scattering 

events. These parameters depend on the elastic τ ′
e and inelastic 

τ ′
i scattering times. In our study we use the following values: 

τ ′ = 250 fs and γ = 1/8.5. The values of the physical quantities 
are taken from recent experimental works [14,21].

Within the drift-diffusion approximation the dimensionless cur-
rent density can be written as:

J = nvd(F ) − D(F )
∂n

∂x
, (6)

where vd(F ) is the dimensionless electron drift velocity (vd =
v ′

d/v ′
0) and D(F ) is the diffusion coefficient [3]:

D(F ) = vd(F )d
exp(−κ F )

1 − exp(−κ F )
,

κ = h̄

k′
B T ′τ ′ = h̄	

�′ , d = d′

L′ . (7)

The diffusion coefficient (7) may be neglected when T ′ → 0
(	 → ∞). If there is no tilted magnetic field, the drift velocity 
Fig. 1. The dependences vd(F ) (a) and I(V )-characteristics (b) for the case without 
the tilted magnetic field (the dashed line 1) and with a tilted magnetic field (solid 
lines 2–4). The curves 1 and 2 correspond to the parameter value 	 = 	1 = 25
(T ′ = 4.2 K), curve 3 to 	 = 	2 = 1.1 (T ′ = 100 K), and curve 4 to 	 = 	3 = 0.6
(T ′ = 200 K).

vd(F ) is governed by the Esaki–Tsu formula [1], which in its di-
mensionless form can be written as:

vd(F ) = F

1 + F 2
. (8)

In this case the dependence of the drift velocity on the electric 
field demonstrates only two extrema at Fc = ±1 (Esaki–Tsu peaks). 
In the presence of a tilted magnetic field the drift velocity vd(F )

for an arbitrary temperature can be obtained numerically, e.g. us-
ing the approach described in [16]. In our calculations we apply a 
magnetic field B ′ = 15 T tilted with respect to the SL axis x at an 
angle of α = 40◦ .

The calculated dependencies vd(F ) for different 	 are shown 
in Fig. 1(a). One can see that for all temperatures the vd(F ) curves 
exhibit multiple maxima. The first maximum observed for the low-
est value of F = Fc is the Esaki–Tsu peak, which is associated with 
the onset of the Bloch oscillations. Nonlinear interaction between 
the electronic Bloch oscillations along the SL and cyclotron mo-
tion in the plane of the layers induces chaotic semiclassical elec-
tron dynamics, which, depending on the ratio between the Bloch 
and cyclotron frequencies, either accelerate or decelerate charge 
transport through the SL [13,14]. As a consequence we observe 
other maxima on the dependencies vd(F ) corresponding to the 
Bloch-cyclotron resonances, which occur due to the resonant ac-
celeration of the electrons whenever the ratio of the Bloch and 
cyclotron frequencies equals r = 0.5, 1, 2, . . . (Bloch-cyclotron res-
onances) [13]. Thus, at the presence of a tilted magnetic field 
there are two major transport mechanisms, namely the conven-
tional Esaki–Tsu transport [1] and the Bloch-cyclotron resonances, 
when the Bloch and cyclotron frequencies are commensurate, the 
electrons exhibit a unique type of quantum chaos, which does 
not obey the Kolmogorov–Arnold–Moser theory [22]. This type 
of chaos is characterized by the formation of intricate web-like 
structures, known in the literature as “stochastic webs” [22,23], 
which extend throughout the phase space of the miniband elec-
trons. The appearance of these webs abruptly delocalizes electrons 
in real space, thus significantly increasing their drift velocity due to 
nonlinear interaction between the Bloch oscillations and cyclotron 
motion [13,15].

Remarkably, as the temperature increases (	 decreases), the 
Esaki–Tsu peak dramatically weakens, whereas the resonant peaks 
become more prominent [16]. Moreover, new resonant peaks arise 
from the background with the drop of 	 (compare curves 2, 3 
and 4).

The dimensionless bias (constant) voltage V = V ′/(F ′
c L′) ap-

plied to the SSL creates a global constraint:

V = U +
1∫

F dx, (9)
0
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Fig. 2. Dependence I(t), projection of the phase trajectory onto the reconstructed phase space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case without 
magnetic field for temperature T = 4.2 K (	1 = 25), and for (a) V = 10.1, δt = 18; (b) V = 11.2, δt = 33.3; (c) V = 13.5, δt = 52; (d) V = 16.8, δt = 71.5.
where the voltage U across the contacts includes the effect of the 
charge accumulation and depletion at the emitter and collector 
and the contact resistance [24]. The integration in (9) is performed 
over the dimensionless length of the system under study, which is 
equal to 1. In our study we consider a simple model of semicon-
ductor superlattice without an external resonance circuit (although
the external voltage source connected to the superlattice may be 
considered as the simplest external circuit). Some questions of the 
influence of external resonance circuit on charge domains dynam-
ics in superlattice has been considered in Refs. [12,21,10,25].

To determine the dimensionless current density in the heavily 
doped emitter contact with electrical conductivity σ ′ =
3788.0 S m−1 we use Ohmic boundary condition on the left 
boundary of the superlattice:

J (0, t) = sF (0, t) (10)

where s = σ ′ F ′
c/(en′

D v ′
0) = 17.7 is the dimensionless control pa-

rameter corresponding to the electrical conductivity of the emitter 
contact. Such condition together with Eq. (9) is sufficient for the 
determination of current on the right boundary J (1, t) of the sys-
tem under study.

The model described by Eqs. (1)–(10) exhibits both constant 
and oscillating electric current, depending on the constant bias 
voltage, V , applied to SL. Fig. 1(b) shows calculated current–
voltage I(V )-characteristics for the case without a tilted magnetic 
field and with a tilted magnetic field. For bias voltages V at which 
current oscillations are observed, the DC current was calculated 
by averaging current oscillations I(t) over time. When B = 0 the 
I(V )-characteristic reveal the usual Esaki–Tsu-like behavior, char-
acterized by a single maximum, which is associated with the on-
set of single-electron Bloch oscillations throughout much of the 
SL charge transport region. The electron dynamics changes dra-
matically when a tilted magnetic field is applied to the SL. All 
of the current–voltage characteristics reveal clear Bloch-cyclotron 
resonances, which manifest themselves through the appearance of 
additional features in the curves. For low temperatures, the Bloch-
cyclotron resonances produce sudden changes in the slope of the 
I(V )-dependence and also shift the position of the current peak. 
As temperature increases, these effects become more prominent 
and, eventually, give rise to additional maxima in the I(V ) curves, 
e.g., the double peaks at T = 200 K. This evolution originates from 
the variation of the vd(F )-dependencies with changing tempera-
ture, shown in Fig. 1(a) (see also [16]).

2. Charge dynamics in semiconductor superlattices in the 
absence of magnetic field

The current oscillations in the SSL typically demonstrate a re-
laxation character. This manifests itself in the dynamics that is 
highly inhomogeneous in time. However, for values of V slightly 
above the Hopf bifurcation (in the case of the absence of magnetic 
field V c ∼= 10.1), the current oscillations are almost harmonic. In 
order to study the transition from the nearly harmonic to relax-
ation oscillations with variation of V , we consider the evolution of 
the time series I(t) and surface plots of n(x, t). To better illustrate 
the changes in the current oscillations we also calculated the pro-
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Fig. 3. Dependence I(t), projection of the phase trajectory onto the reconstructed phase space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case with a tilted 
magnetic field for temperature T ′ = 4.2 K (	1 = 25) and (a) V = 15.5, δt = 13.1; (b) V = 15.9, δt = 14.3; (c) V = 16.4, δt = 33.6; (d) V = 16.8, δt = 41.8; (e) V = 22.4, 
δt = 67.0.
jections of the phase trajectories onto the plane (I(t), I(t + δt))
(where δt is the time delay) obtained using the time-delay co-
ordinates (Takens) approach [26]. The corresponding plots for the 
case without magnetic field (B = 0) and 	 = 25 (T ′ = 4.2 K) are 
presented in Fig. 2. Comparison of I(t) (left panels) and the cor-
responding projections (I(t), I(t + δt)) (central panels) reveals that 
although the amplitude, frequency and shape of the current os-
cillations change with variation of V , their topology remains the 
same, thus indicating no bifurcations. This is also confirmed by the 
spatio-temporal patterns of n(t, x) (right panels), which for all V
demonstrate qualitatively the same character. We found similar be-
havior for different values of 	, which allows us to conclude that 
in the absence of a magnetic field increase of V does not induce 
any bifurcations.

3. Instabilities in semiconductor superlattices with an applied 
electric and a tilted magnetic field

The response of charge dynamics to voltage growth is different, 
when a tilted magnetic field is applied to the SSL. The presence of 
magnetic field results in the growth of the threshold value of gen-
eration. It becomes V c = 15.5 for fixed 	 = 	1 = 25 (T ′ = 4.2 K) 
when the SSL is biased by a magnetic field B ′ = 15 T tilted with 
respect to the SSL axis x at an angle of α = 40◦ . Fig. 3 illustrates 
evolution of I(t), the projection (I(t), I(t + δt)) and n(t, x) with 
change of V and fixed 	, B ′ and α. For small V = 15.5 the shape 
of the current oscillations is close to harmonic, and the projection 
of the phase trajectory onto the plane (I(t), I(t + δt)) demonstrates 
a smooth closed curve (see left and central panels in Fig. 3(a)). The 

dynamics of n(t, x) shows moving domains of high charge density, 
which form highly ordered periodic patterns (see right panel of 
Fig. 3(a)). However, increase of V up to V c1 = 15.8 changes the 
topology of both I(t) and n(t, x). As it is illustrated in Fig. 3(b), al-
though the shape of I(t) (left panel) remains close to harmonic, the 
current oscillations start to demonstrate two peaks per period, and 
the period of the oscillations becomes twice as long. These changes 
are even more evident in the shape of the phase trajectory (middle 
panel), which now demonstrates a double-loop limit cycle compar-
ing with the single loop curve for the case of V = 15.5. All these 
observations suggest that the system undergoes a period doubling 
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Fig. 4. The profile vd(F ) (solid line) and the distributions ρ(F ) (filled area plot) in 
the case of a tilted magnetic field for 	 = 	1 = 25 and (a) V = 15.5; (b) V = 16.8. 
Arrow indicates the dominant peak in ρ(F ).

bifurcation as voltage changes from V = 15.5 to V = 15.8. In terms 
of the spatio-temporal patterns of n(t, x), this instability manifests 
itself in the branching of the propagating charge domain within 
the spatial interval x ∈ [0.3, 0.7] (right panel in Fig. 3(b)). With 
further increase of V the current oscillations become more in-
homogeneous in time, but their topology remains the same, see 
Fig. 3(c, d) and (e), which illustrate the current oscillations and 
spatio-temporal patterns of n(t, x) for V = 16.4 (c), V = 16.8 (d) 
and V = 22.4 (e), respectively.

In order to understand the relation between the development 
of the period-doubling instability and the transport mechanisms 
realized in the SSL, we consider the probability distributions, ρ(F ), 
of the electric field, F , values. These distributions were calcu-
lated for all values of the electric field F (x, t) along the superlat-
tice space (0 ≤ x ≤ 1) during one period, T , of current oscillations 
(t1 ≤ t < t1 + T , t1 is the arbitrarily chosen time moment). Fig. 4
shows the dependence of ρ(F ) together with the drift velocity-
field characteristics, vd(F ), for the case before (a) and after the 
period doubling bifurcation (b). In both cases ρ(F ) demonstrates 
multiple peaks, which are in a good agreement with the peaks of 
vd(F ). This reflects the fact that the propagating charge domain is 
usually accumulated around x, where the local electric field F (x, t)
corresponds to one of the maxima in the vd(F )-curve [19]. How-
ever, if before the bifurcation (for V = 15.5) the position of the 
most prominent peak of ρ(F ) coincides with the position of the 
Fig. 5. Dependence I(t), projection of the phase trajectory onto the reconstructed phase space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case with a tilted 
magnetic field for temperature T ′ = 100 K (	 = 	2 = 1.1) and (a) V = 13.9, δt = 18.5; (b) V = 16.8, δt = 45; (c) V = 17.3, δt = 48; (d) V = 18.5, δt = 109.7; (e) V = 19.6, 
δt = 97.5.
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Fig. 6. The profile vd(F ) (solid line) and the distributions ρ(F ) (filled area plot) in 
the case of a tilted magnetic field for 	 = 	2 = 1.1 and for (a) V = 13.9; (b) V =
19.6 Arrow indicates the dominant peak in ρ(F ).

maximum of vd(F ), which corresponds to the Bloch-cyclotron res-
onance with r = 1, after the bifurcation (for V = 16.8) the highest 
peak of ρ(F ) coincides with the peak of vd(F ), which corresponds 
to the onset the Bloch oscillations (the Esaki–Tsu peak). This sug-
gests that the development of the instability associated with the 
period-doubling bifurcation is accompanied by the change of the 
dominant transport mechanics, which is the Bloch-cyclotron reso-
nance before the bifurcation, and the Esaki–Tsu transport after the 
bifurcation. Note, that in the case without magnetic field, when 
only Esaki–Tsu transport is realized in the system, we did not ob-
serve any bifurcations with increase of V (see Section 2).

Fig. 1 indicates that increase of temperature can significantly 
affect the structure and the heights of the peaks in vd(F ) curve. 
It also influences on the threshold of Hopf bifurcation, i.e. it be-
comes slightly smaller in comparison with the case of low temper-
ature considered above (V c = 13.9 for 	 = 	2 = 1.1 (T ′ = 100 K), 
V c = 13.2 for 	 = 	3 = 0.6 (T ′ = 200 K)). Therefore, to examine 
whether the change of dominant transport mechanisms associated 
with the period doubling instability is robust against the tem-
perature variations, we analyze the current oscillations I(t) and 
spatio-temporal patterns n(t, x) for smaller 	. Fig. 5 displays the 
evolution of I(t), the projection of the phase trajectories onto the 
plane (I(t), I(t + δt)) and n(t, x) for 	 = 	2 and different V . The 
plots indicate that the drop of 	 down to 	2 does not destroy 
the period-doubling bifurcation. However, in contrast to the case 
Fig. 7. Dependence I(t), projection of the phase trajectory onto the reconstructed phase space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case with a tilted 
magnetic field for temperature T ′ = 200 K (	 = 	3 = 0.6) and (a) V = 13.2, δt = 26.8; (b) V = 15.4; (c) V = 15.7, δt = 62; (d) V = 19.6, δt = 114.1; (e) V = 22.2, δt = 148.5.
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	 = 	1, the current oscillations, which are highly homogeneous 
near the threshold of generation (see Fig. 5(a)), first become in-
homogeneous (Fig. 5(b)), and only then undergo the period dou-
bling bifurcation (Fig. 5(c)). Moreover, the bifurcation takes place 
for V larger than in the case 	 = 	1. As before, from the view-
point of spatio-temporal dynamics of n(t, x), the period doubling 
bifurcation is reflected in the branching of the propagating charge 
domains. Further increase of V makes the oscillations more inho-
mogeneous, but does not produce any other instabilities (Fig. 5(d) 
and (e)).

We calculated the distribution ρ(F ) for V = 13.9 before the bi-
furcation and for V = 16.8 after the bifurcation, and its shape with 
the profile of vd(F ) for 	 = 	2 (see Fig. 6). Although the height 
of the Esaki–Tsu peak for 	 = 	2 is smaller than in the case of 
	 = 	1 (compare curves 2 and 3 in Fig. 1), it is still quite promi-
nent and plays an important role in the generation of the collective 
charge transport. This is confirmed by Fig. 6, which shows that, as 
in the case of lower temperature 	1, before the bifurcation the 
most prominent peak of ρ(F ) takes place at the F value, corre-
sponding to the Bloch-cyclotron resonance with r = 1 (Fig. 6(a)). 
However, after the bifurcation the most probable value of F cor-
responds to the Esaki–Tsu peak (Fig. 6(b)). This concludes that 
such a change of dominant transport mechanism associated with 
period-doubling bifurcation is a robust phenomenon which can be 
realized within a range of temperatures.

4. “Death” of the current oscillations

As Fig. 1 shows, the increase of the temperature can eventually 
lead to the situation when the Esaki–Tsu peak in vd(F ) becomes 
indistinct (curve 4). In order to study whether it affects the devel-
opment of the period-doubling instability we calculated I(t) and 
n(t, x) for 	 = 	3 and different values of V . The corresponding 
plots are presented in Fig. 7. As in the previous cases discussed 
above, the oscillations born via the Hopf bifurcation are homoge-
neous near the threshold of generation (Fig. 7(a)). However, the 
increase of V up to V = V 	3

c1 = 15.2 leads to oscillation “death” 
[16] caused by an inverse Hopf bifurcation. Thus, in the range of 
V ∈ [V 	3

c1 , V 	3
c2 ], where V 	3

c2 = 15.7, the SSL does not demonstrate 
current oscillations (Fig. 7(b)). In this case the spatial distribution 
of the charge concentration is stationary, i.e. does not depend on 
time: n(t, x) ≡ n(x). Despite of its stationary character, n is highly 
inhomogeneous in space, particularly near the contacts of the SSL 
(right panel in Fig. 7(b)). Further increase of V restores the oscil-
lations (Fig. 7(c)), which appear again due to the Hopf instability 
developed. Remarkably, for this value of 	 = 	3 the period dou-
bling instability is not developed for the physically meaningful 
range of voltages V ∈ [0, 22.2] (V ′ ∈ [0, 0.8] V), see Fig. 7(e).

The corresponding evolution of the probability distribution 
ρ(F ) is illustrated in Fig. 8. Similar to the cases considered in 
Section 3, for small V the ρ(F ) curve demonstrates a pronounced 
maximum at the value of F corresponding to the Bloch-cyclotron 
resonance (Fig. 8(a)). With onset of the oscillation death (Fig. 8(b)) 
the shape of ρ(F )-distribution changes only slightly, developing 
however a tail for larger values of F . Reappearance and further de-
velopment of oscillations with increase of V significantly deform 
ρ(F ), which demonstrates multiple peaks with the larger one not 
associated with any of peaks in the corresponding curve vd(F )

(Fig. 8(c)).

5. Conclusion

In conclusion, we have revealed the electric instabilities, which 
can be developed in strongly coupled SSLs subjected to a tilted 
magnetic field. The onset and the extinction of the current os-
cillations induced by charge domains moving along the SSL are 
Fig. 8. The profile vd(F ) (solid line) and the distributions ρ(F ) (filled area plot) 
obtained in the presence of a tilted magnetic field for 	 = 	3 = 0.6 and for 
(a) V = 13.2; (b) V = 15.7; (c) V = 19.6. The vd-curve contains several peaks 
depending on the applied voltage V : (a) the only one well-pronounced peak cor-
responding to the resonance 1:1 between Bloch and cyclotron frequencies; (b) two 
peaks corresponding to 1:1 and 2:1 resonances; (c) four peaks corresponding to 
Esaki–Tsu peak, 1:2, 1:1 and 2:1 resonances. Arrow indicates the dominant peak in 
ρ(F )-distribution.

typically associated with the Hopf bifurcation both for the case 
of absence [17] and presence of the magnetic field [19]. However, 
a tilted magnetic field can induce an additional period doubling in-
stability, whose development with variation of V is accompanied 
by change of the dominant transport mechanism. Before this bifur-
cation (for lower V ) the resonant Bloch-cyclotron dynamics [13,19]
plays a leading role in the charge transport along the SSL. How-
ever, with the development of the period doubling instability (for 
higher V ) the conventional Esaki–Tsu transport [1] starts to dom-
inate. This instability exists within a certain temperature range, 
but for high enough temperature the period doubling bifurcation 
disappears. Our results suggest that the bifurcation phenomena 
can be utilized for controlling the dominant transport mechanisms 
in SSLs. Since these mechanisms crucially affect the amplitude 
and frequency characteristics of the high-frequency electromag-
netic waves generated by SSLs [19,21], the results presented are 
useful for development and design of sub-THz sources that use the 
SSLs as key elements.
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