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1. Introduction

The development of in vivo neuroimaging technology has led to an incredible amount
of digital information concerning the brain. Neuroimaging techniques are being increas-
ingly used to study human cognitive processes [1] and create brain–machine interfaces [2],
as well as to identify and diagnose certain brain disorders [3]. Currently, neuroscientists and
physicians actively use various methods of brain scanning, including electroencephalog-
raphy (EEG), magnetoencephalography (MEG), functional near-infrared spectroscopy
(fNIRS), electrocorticography (ECoG), functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), and diffusion tensor imaging (DTI). Recent advances
in signal processing and machine learning applied to neuroimaging data using various
signal-processing methods have led to impressive progress towards solving several practi-
cal problems in medicine, healthcare, neuroscience, biomedical engineering, brain–machine
interfaces, cognitive science, etc.

2. Advanced Methods of Neuroimaging-Based Data Processing

In light of the foregoing discussion, this Special Issue collects original papers on
theoretical and experimental results highlighting the recent advances in neuroimaging-
based data processing using theories, algorithms, architectures, and applications. Various
topics are covered herein, mainly those related to the restoration of functional brain net-
works, the processing of EEG and MEG brain activity, brain state monitoring including
brain–computer interfaces (BCIs) and external device control, and the development of
open-source software tools.

One of the most important tasks of neuroimaging is the restoration of functional brain
networks [4,5]. Therefore, three out of ten articles in this Special Issue are devoted to the
analysis and development of methods for restoring functional brain networks [6–8]. In
the first paper, Faes, Vantieghem, and Van Hulle [6] propose a new approach to source
reconstruction from EEG data. Their method is based on directed connectivity estimation
using deep learning. The authors apply several types of artificial neural networks to
estimate directed connectivity and assess its accuracy with respect to several ground truths.
They show that an LSTM neural network with non-uniform embedding yields the most
promising results due to its relative robustness to differing dipole locations. In the second
paper, Maher et al. [7] discuss the application of multimodal neuroimaging data to revealing
connectivity patterns in the onset of seizures. The authors obtain structural connectomes
from diffusion MRI (dMRI) and functional connectomes from EEG to assess whether high
structure–function coupling corresponds to the seizure onset region. They argue that
dMRI combined with EEG can improve the identification of the seizure onset region. Their
study is a good example of dMRI’s potential in clinical practice. Finally, in the third paper,
Chen et al. [8] present a new method for constructing complex networks to assess cognitive
load. Their approach is based on cross-permutation entropy.
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Traditional research tasks in the field of neuroimaging include time series analysis of
brain activity recordings. In this regard, Pavlov et al. [9] discuss the possibility of detecting
changes in brain electrical activity associated with sleep deficit using extended detrended
fluctuation analysis (EDFA). By applying this approach to EEGs in mice, they identify
signs of changes that could be caused by short-term sleep deprivation. In another paper,
Chholak et al. [10] analyze the neurophysiological data of MEG experiments based on the
visual perception of flickering ambiguous stimuli. The results support their hypothesis
of a correlation between event-related coherence in the visual cortex and neuronal noise
and suggest that greater brain involvement in visual stimuli is accompanied by stronger
brain noise.

Several papers in this Special Issue involve the active development of neurotech-
nology. Specifically, in their paper, De La Pava Panche et al. [11] present a new method
for estimating phase transfer entropy (TE) between distinct pairs of instantaneous phase
time series to enable real-time estimation, which is important for the development of TE
application strategies for BCIs. In another paper, Kuc et al. [12] propose a monitoring
system that facilitates the evaluation of behavioral performance (decision time and errors)
during a prolonged visual classification task. The results of this work enable the deter-
mination of whether changes in pre-stimulus neural activity, as measured by EEG power,
predict behavioral characteristics. In the following article, Van Den Kerchove et al. [13]
consider the problem of the usability of EEG-based visual BCIs using event-related po-
tentials (ERPs). They introduce two regularized estimators for beamformer weights that
are well conditioned despite using limited training data and improve ERP classification
accuracy to reduce calibration time and required EEG data before BCI operation. Along
with the rapid development and exploitation of methods for the real-time processing of
brain activity, these estimators’ roles in solving the problems of the rehabilitation of patients
suffering from brain injuries or helping people with disabilities are becoming essential,
as also highlighted in the paper by Ngo and Nguyen [14], who propose an EEG-based
wheelchair control system using a grid map designed to enable people with disabilities to
reach any given destination.

Finally, Sánchez-Cifo, Montero, and López [15] describe a developed open-source tool
called MuseStudio that allows one to import and export data from brain-sensing headband
EEG devices and view and analyze brain data in real time.

3. Future of Neuroimaging Data Processing: Is the Era of Machine Learning Coming?

In recent years, significant progress has been achieved regarding the methods of
analysis and processing of neuroimaging data, primarily through the use of machine
learning. Recently, machine learning has gained popularity in neuroscience due to its ability
to recognize hidden patterns and nonlinear relationships in large volumes of nonstationary
and ambiguous neuroimaging data. Soon, biologists and mathematicians can anticipate the
greater use of machine learning approaches to gain new insights into brain behavior and
neurotechnology applications, including BCIs. Machine learning is of particular interest
for the medical diagnosis of neurological diseases, where it is a powerful tool for the
early detection of biomarkers of various neurological disorders [16]. At the same time,
appropriate methods and approaches regarding explainable artificial intelligence (XAI)
should be ready for the integration and use for neuroimaging-based data processing in
modern digital medicine [17,18].
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Abstract: Directed connectivity between brain sources identified from scalp electroencephalography
(EEG) can shed light on the brain’s information flows and provide a biomarker of neurological
disorders. However, as volume conductance results in scalp activity being a mix of activities originat-
ing from multiple sources, the correct interpretation of their connectivity is a formidable challenge
despite source localization being applied with some success. Traditional connectivity approaches
rely on statistical assumptions that usually do not hold for EEG, calling for a model-free approach.
We investigated several types of Artificial Neural Networks in estimating Directed Connectivity
between Reconstructed EEG Sources and assessed their accuracy with respect to several ground
truths. We show that a Long Short-Term Memory neural network with Non-Uniform Embedding
yields the most promising results due to its relative robustness to differing dipole locations. We
conclude that certain network architectures can compete with the already established methods for
brain connectivity analysis.

Keywords: brain connectivity; artificial neural networks; source reconstruction; granger causality;
time series

1. Introduction

A challenging problem in neuroimaging is to estimate directed connectivity between
brain regions reconstructed from scalp EEG recordings but important to unveil their joint
dynamics. Due to volume conduction, a given EEG electrode can pick up signals from
several sources simultaneously, distorted along the way due to the presence of tissues with
different electrical properties. Resolving these sources is called the “inverse problem”,
and it consists of estimating the source parameters given the scalp EEG recordings. The
number of sources is higher than the number of electrodes, rendering an ill-posed problem.
Valid brain connectivity estimation critically depends on the correct localization and time
series reconstruction in this stage. Several localization methods have been proposed, often
yielding differing outcomes. In a comprehensive set of simulations, [1] studied the influence
of several inverse solutions, the depth of the sources, their reciprocal distance, and the
Signal-to-Noise Ratio (SNR) of the recordings. They found that all these factors had a
significant impact on the resulting connectivity pattern and that the number of spurious
connectivity estimations depends heavily on the combinations of these factors.

In addition to the said factors, the choice of the connectivity estimator also has a
significant impact. Our interest lies in directed connectivity estimation, of which partial
directed coherence [2], dynamic causal modeling [3], structural equation modeling [4]
and (conditional) Granger causality (GC) [5] are well-known methods. However, they
rely on statistical assumptions that usually do not hold for EEG data, such as linearity [6],
stationarity and prior assumptions on connectivity being expressible as a relation between

Appl. Sci. 2022, 12, 2889. https://doi.org/10.3390/app13042060 https://www.mdpi.com/journal/applsci5
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time series. However, even though some of these assumptions are violated, these meth-
ods still are best practice cases of directed connectivity estimation. In what follows, we
focused on variations in traditional Granger Causality, given that it does not rely on an a
priori assumed connectivity pattern. Granger Causality is a statistical hypothesis used to
determine temporal causal effects between two time series. If the past of a second time
series (Z) together with the past of a first time series (Y) (i.e., the “full” model) results in
an improved prediction of the future value of the first time series, then the past of the first
time series alone (the “reduced” model), it is said that time series Z “Granger-causes” Y.

Two main problems with this bivariate model can be discerned. Firstly, bivariate
GC does not account for other time series that may be causing both Y and Z, resulting in
spurious connectivity patterns. Secondly, even when bivariate GC is extended towards
multiple time series by conditioning on these other variables, it is still possible that the
found influence is actually caused by a linear mixture of non-interacting sources. This is
because the signal measured from one electrode usually contains contributions of several
sources [7]. Important to note is the proposal of Time-Reversed Granger Causality (TRGC)
by [8], further validated by [7], to reduce the impact of additive correlational noise due
to source mixing. The idea is that when connectivity is based on temporal delay, directed
connectivity should be reversed when the temporal order is reversed. Concretely, it is
checked whether the obtained GC scores for non-reversed and reversed data have opposing
directions and are both significant [1]. This is clearly different from a classical way to deter-
mine significance (i.e., a likelihood ratio test). Hence, the main difference between TRGC
and traditional GC is the proposed significance procedure. Still, even with TRGC, errors in
connectivity estimation are here to stay. The question remains whether a totally different
approach could cope with the above-mentioned problems and could perform better, or at
least equally well, in comparison with the standard approaches. Artificial Neural Networks
(ANNs) were considered as particularly interesting candidates given their flexible way of
approximating highly non-linear relationships between variables [9] and the fact that no a
priori assumptions need to be made about signal stationarity nor the connectivity pattern
(for a clear overview, see [10]). Temporal convolutional networks (TCNs), as well as recur-
rent neural networks (RNNs), are usually well-suited architectures for time series [11–15].
While RNNs are often seen as the gold standard for sequence modeling, TCNs have also
proven their suitability, for instance, in financial forecasting [14], electric power forecast-
ing [16] and language modeling [17]. However, it remains unclear whether ANNs can
signal the presence or absence of connections and their strength. Although some authors
already used ANNs to derive directed brain connectivity with multilayer perceptrons and
recurrent networks [15,18], these approaches did not include source-reconstructed EEG
data. As stated before, unlike EEG source reconstruction, analyses based on EEG electrode
levels do not allow for trustworthy inferences about interacting regions [19]. Hence, the
suitability of ANNs in deriving directed connectivity between reconstructed EEG sources
remains unknown.

Our motivation to assess ANNs for directed connectivity estimation between recon-
structed EEG sources was two-fold. First, although many connectivity estimators exist, it is
not yet known which current ANNs architectures can cope better with source-reconstructed
EEG activity and under various circumstances. The authors of [1] were the first to conduct
a comprehensive simulation study on the influence of dipole location, noise level, inverse
solution and connectivity estimation, as well as the interactions between these factors.
It was shown that different circumstances call for different analysis pipelines and that
under advanced noise levels and for particular dipole configurations, even well-established
methods such as TRGC can return aberrant connectivity estimates. Second, ANNs boast
several appealing modeling properties that are potentially relevant to EEG modelers, such
as the ability to deal with non-stationarity, non-linearity and, depending on the ANN
architecture, to dispense with the prior specification of model order.

In order to assess the ability of ANNs to correctly signal the presence or absence of
directed connectivity as well as connectivity strength, we compared several ANN models,

6



Appl. Sci. 2022, 12, 2889

including Conv2D, a novel ANN model we propose, with TRGC. We compared their
performance for different dipole locations (i.e., Far–Deep/Far–Superficial) as this can
inform us whether there is a future for ANN models in brain connectivity estimation. In
addition, we evaluated the ANN models relevant for directed connectivity estimation. We
investigated these issues by means of a simulation study, thereby making use of a slightly
adapted version of the simulation framework developed by [1] in which we manipulated
the location of the dipoles and their connectivity while keeping noise level and the choice
of the inverse solution constant.

2. Materials and Methods

2.1. Simulation Procedure

The simulation framework developed by [1] was used to generate simulated EEG
data originating from three dipoles. This data generating process, as well as the forward
and inverse problems, were implemented in MATLAB (2020). Figure 1 shows the data
generation procedure. The standard length of each generated series was 1500 time steps for
Ground Truth 1 and 2.

Figure 1. Simulation Procedure followed by Connectivity Estimation. TCDF = Depthwise Separable
1D Temporal Causal Discovery Framework, LSTM-NUE = Long Short-Term Memory with Non-
Uniform Embedding, Conv2D = 2D Convolutional Network, TRGC = Time-Reversed Granger
Causality. Coordinates in the Ground Truths denote MNI-coordinates.

In Ground Truth 1, three fixed dipoles were used with the directionality of the connec-
tions as well as their strength being imposed (Figure 2), a strategy used before [20–22]:

X1(t) = 0.5X1(t − 1)− 0.7X1(t − 2) + c12(t)X2+ ∈1 (t)
X2(t) = 0.7X2(t − 1)− 0.5X2(t − 2) + 0.2X1 + c23(t)X3(t − 1)+ ∈2 (t)

X3(t) = 0.8X3(t − 1)+ ∈3 (t)
(1)

with X1, X2 and X3, three electrical sources contributing to the simulated scalp-EEG signals
and with:

c12(t) = 0.5 t
L i f t ≤ L

2 , c12(t) = 0.5 L−t
L
2

i f t > L
2

c23(t) = 0.4 i f t < 0.7L, c23(t) = 0 i f t ≥ 0.7L
(2)

7
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L = length of the generated time series (L = 1500), t = the current time step and
E = uncorrelated white noise, varying with time. We further assume an EEG cap with
108 electrodes.

Figure 2. Ground Truth 1 with three fixed dipoles.

For Ground Truth 2, we considered two fixed, one moving dipole and only one true
connection (Figure 3) and focused on the presence or absence of this connectivity as well as
its directionality:⎡⎣ Xs(t)

Xr(t)
Xn(t)

⎤⎦= ∑P
p=1

⎡⎣ a11(p) 0 0
a21(p) a22(p) 0

0 0 a33 (p)

⎤⎦⎡⎣ Xs(t − p)
Xr(t − p)
Xn(t − p)

⎤⎦+

⎡⎣ ε1(t)
ε2(t)
ε3(t)

⎤⎦ (3)

with Xs, the moving dipole, as a sender, and two fixed dipoles, with Xr the receiver and Xn
the fixed non-interactive dipole, and aij (p), i, j ε {1, 2, 3} and p ε {1, . . . , P} the coefficients
with a21 the coupling strength between sender and receiver. All aij are randomly picked
from the interval [0.3, 1]. Finally, ε is uncorrelated, biological, white noise.

Figure 3. Ground Truth 2 with two fixed, one moving dipole.

The moving dipole (the sender) changes location (far, deep, close, superficial) at every
iteration, with a total of 1004 iterations. The maximum time lag t is two. The reason for this
ground truth is that the sender can be located at really challenging locations (too close to
one of the other dipoles or very deep in the brain).

Two conditions were created for both ground truths: one condition consisted of three
superficial dipoles far away from each other, while the other consisted of three dipoles
located “deep” in the brain, but each dipole was still positioned far away from the other
dipoles. The corresponding MNI-coordinates of the two fixed dipoles that Ground Truth 1
and 2 have in common are depicted in Figure 4. The full set of coordinates of Ground Truth
1 (including the coordinates of the third fixed dipole) is denoted in Figure 1.

In Ground Truth 2, the first two coordinates are the same as in Ground Truth 1, for
each dipole condition, while the third dipole moves throughout the brain as described
above. The Far–Superficial versus Far–Deep configurations indicate (relative) distances:
“deep” denotes a distance from the origin (located at the anterior commissure) <6 cm and
“superficial” >6.5 cm. The distance between dipoles is evaluated as “far” if the relative
distance to the other dipoles exceeds 8 cm.
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Figure 4. Locations (MNI-coordinates) of the dipoles the Ground Truths have in common. Left:
Far–Superficial fixed dipoles. Right: Far–Deep fixed dipoles.

As an additional check for robustness of source localization, noise sources were added
as a background activity. These were modeled using pink noise, also called 1/f noise,
and created by scaling the amplitude spectrum of random white Gaussian noise with the
factor1/f using the Fourier transform and its inverse.

After generating these noise sources, the forward problem is construed:

Y = LX + e, (4)

where Y denotes the scalp-recorded potentials, X represents the electrical sources in the
brain (the dipoles), “e” is measurement noise (electrode noise) and L is the head volume
conductor model (also called the leadfield matrix). The leadfield matrix determines how
the activity flows from dipoles to electrodes. In this work, the New York Head model [23]
was used.

The pink noise and the source activity are then projected onto the scalp, after which
they are summed:

Ybrain(t) = γ × Yactive(t)∣∣∣∣Yactive(t)
∣∣∣∣

FRO
+ (1 − γ)× Ynoise∣∣∣∣Ynoise(t)

∣∣∣∣
FRO

(5)

Yactive and Ynoise refer to the scalp-projected source signals and pink noise activity,
respectively; both are scaled by dividing them by their Frobenius norm (||Yactive (t)||FRO,
||Yactive (t)||FRO). The Signal-to-Noise Ratio (SNR) is computed for all dipoles simultane-
ously and set to 0.9 (γ = 0.9).

Next, white noise (spatially and temporally uncorrelated activity) is added to Ybrain

to simulate electrode noise, resulting in Equation (6) where Ymeasurement represents the
simulated EEG signal. Again γ = 0.9 is imposed as Signal-to-Noise Ratio:

Ymeasurement(t) = 0.9 × Ybrain(t)∣∣∣∣Ybrain(t)
∣∣∣∣

FRO
+ 0.1 × Ymeas_noise∣∣∣∣Ymeas_noise(t)

∣∣∣∣
FRO

(6)

Afterwards, the simulated scalp-EEG data are source-reconstructed using exact low-
resolution brain electromagnetic tomography (eLORETA) [24]. There have also been
improvements to eLORETA, such as Sparse eLORETA, which uses a masking approach
to improve the source localization density [25]. The eLORETA method is a discrete, three-
dimensional (3D), linear, weighted minimum norm inverse solution [24]. In the absence of
noise, an exact zero-error localization accuracy can be obtained with eLORETA, but this
does not hold for noisy data, as was shown in a study comparing both scenarios [26]. The
MATLAB implementation of the eLORETA algorithm (mkfilt_eloreta2.m) from which spa-
tial filters are obtained was developed by G. Nolte and is available in the MEG/EEG Toolbox
of Hamburg (METH; https://www.uke.de/english/departments-institutes/institutes/
neurophysiology-and-pathophysiology/research/research-groups/index.html, accessed
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on 22 December 2021). As the input, it takes the leadfield tensor (i.e., the head model file
N*M*P containing N channels, M voxels, and P dipole directions) as well as a regulariza-
tion parameter gamma (set to 0.01); as the output, an N*M*P tensor A of spatial filters
is returned.

2.2. Connectivity Models

The ANNs evaluated in this study were selected based on their suitability for time
series analysis (Table 1). While TCDF outputs attention scores, for which higher scores
are used to represent stronger connectivities, LSTM-NUE makes use of Granger Causality
scores equaling NNGC = errreduced−errfull, which are then binarized [18]. Conv2D uses
the R2-score between the real and predicted values of the current target (i.e., the time steps
to be predicted). While using TRGC as implemented by [1], only binary GC scores are
outputted. The configuration (i.e., the used parameters) of each ANN was determined
using a data-driven approach, such that for each ANN, the parameters returning the best
results were chosen. This parameters pre-testing was performed with different simulated
data sets (i.e., differing from the data sets that were used to report the final results).

Table 1. Set-up of the compared ANNs and TRGC.

Model Architecture Self-Causation
Connectivity

Measure

TCDF Depthwise Separable 1D Convolutional Network yes Attention score
LSTM-NUE Long Short-Term Memory Network no GC (0 or 1)

Conv2D 2D Convolutional Network yes R2-score
TRGC Time-Reversed Granger Causality no GC (0 or 1)

2.2.1. Temporal Causal Discovery Framework

The Temporal Causal Discovery Framework (TCDF) developed by [14] is based on the
concept of a one-dimensional Temporal Convolutional Network (TCN) and is available
on Github [27]. Input to the framework consists of an NxL data set consisting of N time
series of equal Length L. Within the framework, one depthwise-separable TCN is used
to obtain a prediction for a single source (target). The input of the network consists of
the history of all time series, including the target time series. The output is the history of
the target time series. An attention mechanism is added: each TCNj has its own trainable
attention vector Vj = [vX1j, vX2j, . . . , vij, . . . vNj], that learns which of the input time series
is correlated with the target by multiplying attention score vij with input time series Xi
in TCNj. When the training of the network starts, all attention scores are initialized as 1
and are, as such, adapted during training. The direction of connectivity and significance
is determined using a shuffling procedure. For significance determination, one of the
time series is shuffled while keeping the other one(s) intact when predicting the target.
The runs with shuffled time series did not involve any model retraining. Instead, in the
prediction step, the losses obtained when using the “shuffled” time series as predictors
were compared with the losses obtained when using the non-shuffled time series. Only if
the loss of a network increases significantly when a time series is shuffled that time series
is considered a cause of the target time series. A time series X1 is only considered to be
a significant contributor to another time series X2 if, in the first stage, its attention score
is larger than one. Only if, after shuffling the potentially contributing time series X1, the
difference between losses obtained by predicting future time steps with the unshuffled time
series and losses obtained by predicting using shuffled time series is large enough, using an
a priori determined threshold significance value, time series X1 is considered a significant
contributor to time series X2. TCDF was run with PyTorch (version 1.4.0, www.pytorch.org,
accessed on 17 December 2021).

Configuration. For TCDF, the chosen parameters were the number of hidden layers = 1,
kernel size = dilation coefficient = 4 (a time-dimensional kernel), learning rate = 0.01,
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optimizer = Adam, number of epochs = 1000, significance threshold= 0.9998, seed = 1000.
Kernel weights are initialized following a distribution with μ = 0, variance = 0.1.

2.2.2. LSTM-NUE—Long Short-Term Memory with Non-Uniform Embedding

Another connectivity measure is based on the RNN, in which directed cycling con-
nections are present, i.e., there are feedback connections from output to input, and these
connections create possibilities for memorization. A subtype of RNNs is the Long Short-
Term Memory network (LSTM). This type of network provides a resolution for vanishing
and exploding gradient problems in recurrent networks. It performs this by introducing
gates and memory cells which also makes it very flexible towards gap length. The im-
plementation in this study is an LSTM with Non-Uniform Embedding (NUE, a feature
selection procedure) by [15], which is also publicly available [28]. NUE is an iterative selec-
tion procedure adopted from [18] to detect the most informative time steps of the predicting
time series (phase one). In phase one, a vector V containing the most informative past time
steps to explain the present state of a target time series X1 is obtained by iteratively adding
time steps (of the time series’ own past, but also of the past of the other time series) to
the training set and obtaining a new model error as a time step is added. For instance, let
V = [VX1

n, VX2
n, VX3

n] represent the vector with the most relevant past time steps to explain
the present of the target time series. This selection of time steps goes on until the prediction
error becomes larger than or equal to a threshold or until the maximum amount of time
steps is reached. If for a certain time series X2, no time steps have been added in V, the
time series is not further considered as a potential contributor to target time series X1, and
it is not considered in the next phase (phase two). Phase one results in an estimation of the
error variance of the full model (i.e., the model containing all relevant past time steps from
different time series). In phase two, the model is fit only with this smaller set of time steps.
The error of the reduced model is finally obtained by not using the values of the time series
(e.g., X3) that is a potential contributor to the target time series X1. If the error (LossReduced)
of this reduced model is larger than the error of the full model (LossFull), time series X3 is
considered a significant contributor to time series X1 (“X3 Granger-predicts X1”).

In LSTM-NUE, no shuffling is used to determine connectivity. Instead, the significance
procedure consists of two phases. Determining significance is based on (1) the selection
of relevant time samples from all time series rendering a full model, after which the time
series whose time samples were not selected are already as potential causes of the target
time series. (2) The remaining candidates are then, as a test, subsequently excluded from
the model to obtain the reduced model (i.e., the model with only the target time series
as its own predictor). Hence, this exclusion phase is, to some extent, comparable with
the shuffling procedure used in TCDF, given that this procedure is in this way testing
the relevance of a certain time series in the prediction of another (by excluding it OR by
shuffling the values).

Configuration: for LSTM-NUE, the parameters are the number of hidden layers = 1,
the number of units in each layer = 30, batch size = 30, num_shift = 1, sequence_length = 20,
number of epochs = 100, theta = 0.09, learning rate = 0.001, weight decay = 1 × 10−7,
min_error = 1 × 10−7 (=a priori determined error to determine whether a certain time step
should be included in the final model), and train/validation split = 0.85/0.15. Default
kernel initializer = “glorot_uniform”, which draws samples from a uniform distribution, is
used to initialize the weights of the LSTM-layer.

2.2.3. Conv2D—Two-Dimensional Convolutional Network

Finally, we propose a two-dimensional Convolutional Network (Conv2D) as a way
to test whether a 2D kernel variation in TCDF has merit. The input consists of an NxL
data set, which is transformed into a four-dimensional tensor (time samples of training set,
window size, amount of predicting time series, 1). The source code is accessible via Github
(kul-EEG-sourceconnectivity, https://github.com/irisv440/kul-EEG-sourceconnectivity,
accessed on 21 September 2021).
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Some important differences with TCDF are the fact that a two-dimensional kernel
is used and that a cross-validation procedure, adapted for time series, is embedded in
the framework. While in TCDF, a one-dimensional kernel (with height = 1) slides over
the data along the time dimension (=width of the kernel, i.e., the amount of time steps
considered together), in Conv2D, a two-dimensional kernel is used in which the second
dimension represents the amount of time series that will be convolved together. The second
dimension has an upper bound, which is the total amount of time series within the input
data. We hypothesized that by adding a second dimension (feature dimension) to TCN,
we could capture the most important aspects of the other time series, leading to more
correct connectivity estimates. However, it was suggested (e.g., [29]) that convolving data
from several time series can also cause less accurate results (in our case, this means lower
Sensitivity and lower Precision) because too many time series are convolved together,
possibly erasing the impact of changes in individual time series. Similar to TCDF, the input
to the network consists of all time series, including the target time series. The output is a
single target time series.

A second difference is cross-validation (CV) for time series. Cross-validation is a
powerful method for detecting overfitting, but its implementation in time series models
is not trivial, given that no leakage from future to past may exist. This issue was solved
by using 6-fold cross-validation on a rolling basis based upon “TimeSeriesSplit” from the
model selection module of the sklearn-library version 0.24.1 (Scikit-learn, original version
released by [30]). With TimeSeriesSplit, we obtained the following train-test regime for the
folds where “—“represents the unused part of the data in the corresponding fold (Figure 5).

Figure 5. CV with length of first train-fold = length of first test-fold (= 1500/7).

In addition, given that connectivity may vary over longer time spans (as is also the
case in Ground Truth 1), working with only one division in the train/validation/test-set
(respecting past versus future) can cause false positives or false negatives since one may
be training on a portion of the time series where connectivity is very strong between, for
instance, X3 and X2 while validating and/or testing on a part where the same connectivity
is weak (or the other way around).

As a metric for connectivity strength, the R2-score between the real values and the
predicted values of the current target is used. The better a time series pair is successful
in predicting a target, the larger the similarity between the true values and the predicted
values will be, hence the stronger the connectivity between the time series and target.
When, for instance, two different pairs of time series X1 and X2, versus X1 and X3 are used
as predictors for X1, R2 again represents the similarity between predicted and true values of
the target X1. When the prediction of X1 becomes better when predicted by time series X1
and X2 together, instead of with X1 and X3, one could conclude that connectivity is stronger
between X1 and X2 than between X1 and X3. The R2 scores themselves are obtained from
the cross-validation folds, after which the average R2 score is taken over the folds and over
the number of used runs for one data set. The corresponding output is a scoring matrix
representing all combinations of time series used as predictors and possible target time
series. If the R2 score is >0 and the predicting time series are considered significant (see
“Connectivity Analysis using ANNs”), the obtained R2 score can be interpreted. However,
when including more than two predictors, this relationship is not so easily established
anymore, given that the R2-score still represents the connection between the target and
all predicting time series together. Similar to TCDF, the direction of connectivity and
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significance is determined using a shuffling procedure. Significance weights are obtained
by comparing training and test loss differences, after which a data-driven cutoff (here
0.70) is used to differentiate between contributing and non-contributing time series. More
concretely, training difference = (first training loss)–(final training loss), where the latter is
expected to be much lower than the first term, and Test difference = (first training loss)–(loss
of test-indices using shuffled train data) where the latter is expected to be high because of
the shuffled data; hence, one expects the test difference to be very small. Next, if the average
test difference was larger than the average_training_difference * significance (=0.9998), the
potential connection is considered not significant in the first place. Significance weights
are obtained by (test difference/training difference). If the weight is larger than the cutoff
(=0.70), the connection is considered not significant. The used significance level, as well as
the cutoff for significance weights, were experimentally determined, and the final choice
was based upon a data-driven approach (by experimenting with significance levels in the
range of {0.70, 1} and with cutoff-scores in the range of [0.40, 0.70]). For the current kind of
simulated data, these values worked well.

Configuration: for Conv2D, the parameters were as follows: number of hidden
layers = 1, number of filters = 24, kernel size = {4*2, 4*3} (width*height), dilation coeffi-
cient = 1, number of epochs = 12, window size = 5, learning rate = 0.005, optimizer = “Adam”,
significance = 0.9998, cut-off scores for significance weights = 0.70 and number of train/test
splits for CV = 6. Default kernel initializer = “glorot_uniform”, was used to initialize the
weights of Keras’ Conv2D-layer.

2.2.4. TRGC—Time-Reversed Granger Causality

As our baseline method, Time-Reversed Granger Causality (TRGC), as implemented
(by means of the Matlab function “tr_gc_test”, embedded in “simulation_source_connectivity”),
and evaluated by [1], was used. As stated before, the difference with “traditional” GC is
the type of significance procedure. Instead of the classical way to determine significance (a
likelihood ratio test), which cannot distinguish between actual versus spurious correlations
due to source mixing, it determines whether the “standard” GC scores for non-reversed and
reversed data have opposing directions and are both significant. In other words, direction-
flipping must occur when data are time-reversed. This is referred to as conjunction-based
TRGC [7]. A drawback of GC (and hence, TRGC) is that one needs to define the model
order, which is feasible when the ground truth is known, such as in simulations, but in
“real” EEG data, this quickly becomes a tricky problem. An advantage, on the other hand, is
the fact that with TRGC, one model for all sources is constructed, after which one threshold
is applied to all obtained GC scores.

Configuration. Function tr_gc_test takes as input an NxL matrix H’, the model order,
the number of time steps in the time series, alpha, the type of significance test (“conser-
vative”, requiring significant GC scores with original as well as reversed data; versus a
significance test based on difference scores between GC scores in normal and reversed
order) and finally, the type of VAR model estimation regression mode to calculate pairwise-
conditional time-domain Granger Causality scores. In this work, the model order of TRGC
was set to two, we opted for “conservative” significance testing, and ordinary least squares
(OLS) was used as Vector-Autoregression (VAR) estimator. We used an alpha level of
0.05, FDR corrected [31]. The corresponding p-value was taken as a threshold to binarize
connectivity scores.

2.3. Performance Evaluation

The main question is whether the connections in the ground truths could be detected
by the evaluated networks and by TRGC (“True Positives”, TP) without detecting too many
false connections (“False Positives”, FP), thus connections that are not present in the ground
truths. Measures based upon these are Precision, Sensitivity/Recall, and F1-score (Figure 6),
which we used for comparing TCDF, LSTM-NUE, Conv2D and TRGC.
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Figure 6. Main evaluation measures.

The results on connectivity strength are not directly compared between models as they
differ substantially. These strength estimates, based on the mean over five runs on the same
data set, are calculated and ranked. It must be emphasized that these strength estimates
are relative per model and target training as, for each target time series, the network is
trained differently. The latter implies that connection strengths obtained in the prediction
of a particular Target time series X1 cannot be readily compared with connection strengths
obtained in the prediction of another target time series X2. If F1 < 50%, only rankings are
presented. Self-connectivity is not taken into account to avoid an overly positive perception
of the results.

3. Results

3.1. Ground Truth 1
3.1.1. Connectivity Detection

In Figures 7 and 8, respectively, Sensitivity and Precision are shown per method.
Some remarks, specifically with regard to Conv2D, need to be made before interpreting
the results.

Figure 7. Mean Sensitivity for all methods (L = 1500). Sensitivity Ranking Far–Superficial:
TRGC > Conv2D (TS = 2) > LSTM-NUE > TCDF > Conv2D (TS = 3). Sensitivity Ranking Far–
Deep: TRGC > LSTM-NUE > Conv2D (TS = 2) > Conv2D (TS = 3) = TCDF. Abbreviation TS = amount
of time series included in the predictions.
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Figure 8. Mean Precision for all methods (L = 1500). Sensitivity Ranking Far–Superficial:
TRGC > Conv2D (TS = 2) > LSTM-NUE > TCDF > Conv2D (TS = 3). Sensitivity Ranking Far–
Deep: TRGC > LSTM-NUE > Conv2D (TS = 2) > Conv2D (TS = 3) = TCDF. Abbreviation TS = amount
of time series included in the predictions.

Given that the Conv2D-model based on three predicting time series resulted in a very
low Sensitivity (0.13 ± 0.18) and low Precision (0.40 ± 0.55), see Figures 7 and 8, it was
not considered relevant to explore the model with three predictors further in terms of
connectivity strength (for connectivity strength per ANN, see Sections 3.1.2–3.1.4). This
decision was supported by the results of a Scheirer–Ray–Hare Test with model and dipole
condition as factors and with follow-up Mann–Whitney U tests (Bonferroni-corrected).
Superior results were obtained with Conv2D models containing two predicting time series
versus three predicting time series. These results can be consulted in Appendix A (Table A1).

Hence, strength rankings are explored only with the Conv2D model with two pre-
dictors (Section 3.1.4). With regard to the model based on two predicting time series, the
results obtained by looking at each predictor pair (consisting of two time series) separately
revealed large differences between pairs in terms of Sensitivity and Precision. We chose to
take all detected connections into account while calculating our scores instead of averaging
over all predictor pairs, as it could lead to biased results. This is because if it is found that
X2 predicts X1 when it is predicted together with X1 but not detected when it is predicted
with X2 and X3, and the discovered connection between X2 and X1 is still included in
the performance scores, this increases Sensitivity but decreases Precision. The decrease in
Precision then occurs because if a false positive is found by one of the two predictor pairs,
it is still counted. Option 1 was chosen to put the focus more upon detection ability and
exploration. Thus, it must be kept in mind that a positive detection bias exists in all our
overall two-to-one performance scores of Conv2D.

While focusing on differences in Sensitivity, the following results were obtained for
the used ANNs and TRGC. A Scheirer–Ray–Hare Test with model and dipole condition
as factors revealed no statistically significant interaction (using alpha = 0.05) between
the effects of the type of connectivity method and dipole condition (p = 0.63), nor the
main effect of dipole condition itself (p = 0.63). However, a simple main effects analysis
showed that the type of connectivity method does have a statistically significant effect
on Sensitivity (H (4,40) = 38,159, p < 0.001). Follow-up two-sided Mann–Whitney U tests
(Bonferroni-corrected: alpha = 0.05, alpha adjusted = 0.005), carried out across dipole
conditions, show significant and marginally significant differences between the following
methods. Median scores (denoted as Mdn) are reported. In contrast to TCDF (Mdn = 0.33),
smaller contributions of one time series to another could be detected with LSTM-NUE
(Mdn = 0.67), p < 0.001. The difference between TCDF and Conv2D (Mdn = 0.67) with
two time series as predictors was only marginally significant after correcting for multiple
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comparisons, p = 0.006. TRGC (Mdn = 1), however, outperformed all ANN models in terms
of Sensitivity (p-values denoting differences with all other methods < 0.001). Finally, while
no significant difference was found between LSTM-NUE (Mdn = 0.67) and Conv2D (Mdn
= 0.67) with two time series as predictors (p = 0.239), LSTM-NUE performed significantly
better than Conv2D with three time series as predictors (Mdn = 0), p < 0.001). Rankings
are described below in Figure 7 to provide qualitative comparisons. Note that in Figure 7,
mean scores M for each dipole condition is still reported, given that the current results
were obtained with small sample sizes. Hence, differences between dipole conditions may
still appear once statistical power is increased (i.e., by using more data sets) and given that
differences between dipole conditions were, to some extent, expected.

With regard to Precision, the results of a Scheirer–Ray–Hare Test with method and
dipole condition as factors were not significant, albeit a marginally significant result for
method (H (4,40) = 8.79, p = 0.07) was obtained. Hence, no follow-up tests were carried out.

Thus, we rely upon rankings only for our qualitative description (in terms of mean
scores M, taking dipole condition into account) of the data. In the Far–Superficial dipole
condition, Conv2D with TS = 2 and LSTM-NUE obtain both a Precision of M = 0.75
(±0.15, 0.17, respectively), followed by TRGC (M = 0.58 ± 0.05) and TCDF (M = 0.50 ± 0).
Precision is lowest in Conv2D with TS = 3 (M = 0.40 ± 0.55). However, in the Far–Deep
dipole condition, TRGC obtains perfect Precision (M = 1 ± 0), followed by LSTM-NUE
(M = 0.88 ± 0.14) and Conv2D with TS = 2 (M = 0.63 ± 0.41). The qualitatively lower
Precision score of TRGC in the Far–Superficial condition turned out to be mainly due to two
consistently observed false-positive connections that were not detected in the Far–Deep
dipole condition.

When summarizing the results in terms of F1-scores, the following ranking was
obtained for the Far–Superficial condition: TRGC (M = 0.73 ± 0.04) = Conv2D with TS = 2
(M = 0.73 ± 0.09) > LSTM-NUE (M = 0.70 ± 0.07) > TCDF (M = 0.40 ± 0.0) > Conv2D with
TS = 3 (M = 0.20 ± 0.27).

For the Far–Deep condition, the F1-score ranking was as follows: 1 ± 0 (TRGC)
> 0.75 ± 0.17 (LSTM-NUE) > 0.47 ± 0.31 (Conv2D with TS = 2) > 0.20 ± 0.27 (Conv2D with
TS = 3) = 0.20 ± 0.27 (TCDF).

3.1.2. TCDF

With regard to TCDF (Figure 9), only two mean attention scores were significant, and
solely in the Far–Superficial dipole condition and for two different targets (X2 and X3), such
that a target-wise comparison cannot be made. More concretely, a connection X3 → X2 was
found (in accordance with the ground truth), as well as a connection X2 → X3 (unlike the
ground truth).

Figure 9. TCDF, Mean attention score rankings. Colors: “1”, green, denoting the highest attention
score in one TCN—one column). The columns represent the targets (T X1, T X2, T X3), the rows the
predictors (X1, X2, X3). Self-connectivity is excluded.
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3.1.3. LSTM-NUE

Next, when focusing on LSTM-NUE, as can be seen from the colors from Figure 10, for
target time series X3, the GC scores (in both dipole conditions) were higher than expected
according to the ground truth. Unexpected GC scores are surrounded by black rectangles
in the top panel. Column-wise strength rankings (rankings for one particular target) are
correct for two out of three targets (X1, X2) in both conditions, as can be seen by comparing
with column-wise Ground Truth 1 (Figure 10, bottom right panel). The overall ranking in
the Far–Deep condition was more in accordance with the overall ranking in Ground Truth
1 (Figure 10, bottom left panel) than the ranking found in the Far–Superficial condition
because connectivity strength was observed to be the weakest for the corresponding false
positives (as shown in yellow in the top panel).

Figure 10. LSTM-NUE, Neural-Network Granger Scores rankings (Top) versus Truth 1 (Bottom),
excluding self-connectivity. Color coding: dark green > light green > yellow > orange > red. The
columns represent the targets, the rows the time series used for prediction.

3.1.4. Conv2D

In Figure 11, R2-strength rankings for Conv2D with two time series are shown. Given
that for Conv2D, adding a third time series did not work out well, only rankings per
predictor pair could be obtained. When R2-strength is shown in the upper two panels of
Figure 11, it means that the current time series pair is a significant contributor. Significance
weights, which denote significant contributions of one time series to a target time series
(instead of R2 scores denoting a connection between a certain pair of predicting time series
and one target time series), are reported between brackets. They were obtained as described
in Section 2.2.3 and were considered significant if the cutoff of 0.70 was not exceeded. The
lower two panels show a ranking (with 1 being the most active connection and 4 the least
active connection).
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Figure 11. Conv2D, R2-strength score for time series pairs (Top) versus ranking of connections in the
Ground Truth 1 (Bottom, 1 being the strongest), including self-connectivity. Color coding: dark green
> light green > yellow > orange > red. The columns represent the targets, the rows the time series
pairs used for predicting the target time series.

It can be seen from Figure 11 that, in the prediction of Target X1, out of three direct
connections, only one is not significant (i.e., X2, X3 → X1, Top-row), but this is only the
case when Target X1 is not included as a predictor. Regarding an overall ranking (Ground
Truth 1, Bottom-Left), it can be seen that X3 has the strongest self-connectivity, while for
X1 and X2, self-connectivity is almost the same. This is observed in our results as well
(R2 = 0.36, 0.35 in both dipole conditions). Moreover, the obtained R2 strength scores are
not, or barely, dependent on the dipole condition. Next, while inspecting these results
column-wise (hence, target-wise), a stronger connection between predictors X1, X2 and
Target X1 than between predictors X1, X3 and target X1 were expected. However, these
connections are quite similar (R2 = 0.35 versus R2 = 0.34 in the Far–Superficial condition,
R2 = 0.36 versus R2 = 0.34 in the Far–Deep condition). While predicting target X2 using
X1, X3, a significant, correct contribution from X1 to X2 is found (significance weight
= 0.232, 0.120, Far–Superficial and Far–Deep condition, respectively), as well as a correct
contribution from X3 to X2 (significance weight = 0.001, 0.048, Far–Superficial and Far–Deep
condition, respectively). However, connectivity strength R2 is very low (R2 = 0.02 in both
dipole conditions) in comparison with the situation in which target X2 is included in the
predictor pair and in which case X3 is also considered a significant contributor (predictor
pair = X2, X3, R2 = 0.36,0.36, significance weights = 0.341,0.210 for X3, Far–Superficial
and Far–Deep condition, respectively). The ranking for Target X2 is correct, as was the
ranking for X1. Finally, we expected similar rankings for X2; X3 predicting X3 as for X1;
X3 predicting X3 since neither X1 nor X2 contribute to X3. This is indeed the case for both
conditions. As expected, significance weights for individual contributions of X1 and X2 to
X3 were not significant (significance weights >0.70 in both dipole conditions).
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3.1.5. Time Complexity

Finally, we assessed runtimes in seconds for one data set (including averaging over
five runs) w.r.t. the training of the ANNs. Runtimes with three time series as predictors
(TS = 3), Length L = 1500, dipole condition = Far–Superficial are shown in Figure 12, as
well as the runtime of Conv2D with two time series as predictors. The runtime of Conv2D
with only two time series as predictors was 1048 s. All runs were performed with an Acer
Aspire 7 A715-75G-751G, intel i7, 16 GB RAM.

Figure 12. Runtime for the training of all ANNs, with 3 time series (TS = 3), L = 1500. An extra
comparison showing the runtime of Conv2D with two time series as predictors (TS = 2) is shown
(but all datasets contain 3 time series). “Neurons” = the number of hidden layer neurons.

3.2. Ground Truth 2

With only one true connection and excluding self-connectivity, it was found that
none of the methods, except for LSTM-NUE and TRGC (LSTM-NUE, TRGC: Sensitivity
M = 1 ± 0 in both dipole conditions), were able to detect this connection in none of the runs
or datasets (Table 2).

Table 2. Scores of the ANNs in comparison with TRGC, using Ground Truth 2. Results are based
upon datasets where all 3 time series (TS) were included as predictors, with one exception: results
from Conv2D with two time series as predictors, indicated with *, were also included.

Far-Superficial Far-Deep

Sensitivity Precision F1 Sensitivity Precision F1

TRGC 1 ± 0.00 0.71 ± 0.29 0.79 ± 0.21 1 ± 0.00 0.70 ± 0.29 0.79 ± 0.21
TCDF 0 ± 0.0 0 ± 0.0 0 ± 0 0 ± 0.0 0 ± 0.0 0 ± 0

LSTM-NEU 1 ± 0.0 0.37 ± 0.13 0.53 ± 0.14 1 ± 0 0.43 ± 0.09 0.60 ± 0.09
CONV2D * (TS=2) 0 ± 0.0 0 ± 0.0 0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Conv2D (TS=3) 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0

The results of a Scheirer–Ray–Hare Test with method and dipole condition as factors
reveal, as expected, a main effect of connectivity method on Sensitivity (H (4,40) = 47.66,
p < 0.001) as well as Precision (H (4,40) = 48.10, p < 0.001). The interaction between
method and dipole condition, nor dipole condition itself were significant (Sensitivity:
H (4,40) = 0.05, p = 0.99, H (1,40) = 0.01, p = 0.91, interaction and dipole condition effect, re-
spectively; Precision: H (4,40) = 0.03, p = 0.99, H (1,40) = 0.00, p = 0.95, interaction and dipole
condition effect, respectively). Looking into the effects of different connectivity methods
using follow-up Mann–Whitney U tests (Bonferroni-corrected: alpha = 0.05, alpha adjusted
= 0.005), significant differences in Sensitivity and Precision between LSTM-NUE/TRGC
versus all other methods were found (p < 0.005). No differences in Sensitivity between
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TRGC (Mdn = 1) and LSTM-NUE (Mdn = 1) were found (p = 0.21), while Precision was
significantly higher for TRGC (Mdn = 0.67) than for LSTM-NUE (Mdn = 0.42), p < 0.001). It
is not surprising that comparisons of any other ANN method than LSTM-NUE with TRGC
were significant, given that these methods had a Sensitivity and Precision of zero. Even
though dipole condition did not turn out to exhibit a significant effect on Sensitivity nor
Precision in our data sets, this distinction remains theoretically important. We summarized
the qualitative differences below.

Sensitivity and Precision were in both dipole conditions 0 while using TCDF and using
two different configurations of Conv2D (once with two time series as predictors, once with
three time series as predictors). In contrast, Precision was M = 0.37 (±0.13) for LSTM-NUE
while TRGC obtained a precision of M = 0.71 (±0.29) in the Far–Superficial dipole condition.
In the Far–Deep condition, performance of TRGC remained almost the same (Sensitivity
M = 1 ± 0, Precision M = 0.70 ± 0.29) while it became slightly higher (in contrast to the
Far–Superficial condition) for LSTM-NUE (Sensitivity M = 1 ± 0, Precision M = 0.43 ± 0.09).
F1-scores were M = 0.79 ± 0.21 and M = 0.53 ± 0.14 for TRGC and LSTM-NUE, respectively,
in the Far–Superficial condition and M = 0.79 ± 0.21, M = 0.60 ± 0.09 in the Far–Deep
condition (while being zero for all the other ANNs).

4. Discussion

While considering Sensitivity and Precision, it was shown that, among the ANNs,
LSTM-NUE yielded superior results in terms of Sensitivity, resulting in statistically sig-
nificant differences with the other ANNs except for Conv2D with TS = 2. In terms of
Precision, however, no significant differences among the ANNs were found while using
Ground Truth 1. TRGC outperformed all ANNs in terms of Sensitivity but, statistically, no
differences in Precision were found given that the main effect of the connectivity method
was only marginally significant. The lack of a statistically significant effect of connectivity
method on Precision, as well as the lack of an effect of dipole condition, and the lack of an
interaction effect on both Sensitivity as well as Precision are quite counterintuitive. Indeed,
given (1) the patterns observed across both Ground Truths and (2) the results from [1],
which convincingly showed effects of different dipole conditions on connectivity patterns
as well as interaction effects of connectivity method and dipole condition, one could at least
expect an effect of dipole condition. For instance, in [1], it was shown that with an SNR of
0.9 and in a Far–Superficial dipole condition, false positives (as related to Precision) were
rather rare, while for other dipole conditions, the percentage of false positives increases
(hence decreasing Precision). A related (solely qualitative) observation is the variability
in the results of the ANNs (as became obvious through the standard deviations from the
mean as depicted in Figures 7 and 8) versus the stability of results produced by TRGC. In
particular, ANNS seems to exhibit an increased variability in performance in the Far–Deep
Condition (in contrast to the Far–Superficial condition), while almost no such variability is
observed for TRGC. A possible culprit could be the initial randomization of the weights
in ANNs, but how this instability could differ between architectures or between dipole
conditions is unclear and deserves attention in future studies. One of the most important
observations of Ground Truth 1 is the relatively poor Precision score of TRGC in the Far–
Superficial condition, albeit that a difference with the Far–Deep dipole condition could not
be statistically confirmed. More data may be needed to confirm the observed trends. The
above-mentioned contrasting results are further discussed below, together with possible
explanations with regard to the used connectivity methods.

Using Ground Truth 2, no differences in Sensitivity between TRGC and LSTM-NUE
were found given that both methods returned almost always a Sensitivity of one, while
Precision was significantly higher for TRGC than for LSTM-NUE. The other ANNs did
not detect any connection. The good performance of TRGC regarding Precision is not
surprising. In [1], it was already shown that TRGC outperformed Multivariate Granger
Causality (MVGC), especially when it comes to false positives (as reflected in a lower False
Positive Rate), which is logical given that the introduction of time-reversal could indeed
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allow for a better distinction between correlated time series (due to linear mixtures of EEG
signals) and true temporal precedence of one time series with regard to another. Although
the idea of TRGC is relatively new (as it was first proposed in 2013, by [8]) in comparison
to, for instance, bivariate GC and MVGC, due to its appealing theoretical properties as well
as its further validation by [7], it was quickly picked up in the field, given its relevance
for, among others, EEG source connectivity. Recent developments include, for instance,
variations in TRGC that allow for other than normal distributions [32].

In summary, it became clear that, among the ANNs, LSTM-NUE obtained better
Sensitivity scores and (although only statistically confirmed using Ground Truth 2) better
Precision scores. TRGC outperformed the ANNs in terms of Sensitivity, but in the case of
Ground Truth 1, questions arose surrounding its Precision in the Far–Superficial dipole
condition (although its Precision was significantly better in Ground Truth 2, without any
indication of possible differences between dipole conditions). While all connections were
discovered, two false positives were detected relatively consistently, indicating that even
with time-reversal there is, in certain circumstances, an over-detection of connections. The
lack of performance of TCDF and Conv2D in Ground Truth 2 cannot be due to the location
of the two fixed dipoles since they were located at the exact same location as in Ground
Truth 1. Hence, we suspect that the moving nature of the sending dipole explains (at least
partly) the lack of Sensitivity in TCDF and Conv2D. Taking the results from both Ground
Truths together, both LSTM-NUE and TRGC are clearly more sensitive, but they both still
tend towards over-detection.

With regard to the score strength rankings, not much can be said about TCDF given
that the mean attention scores were significant only for two time series in the Far–Superficial
dipole condition, from which one was a falsely detected connectivity (i.e., a false positive).
In contrast to TCDF, with LSTM-NUE, for two out of three targets, correct column-wise
rankings were obtained for Ground Truth 1. For Conv2D (with TS = 2), correct rankings for
predictor pair were found in terms of R2-scores, also for two out of three targets. When
looking closer to the contributions of individual time series, it was found that predicting,
for instance, X1, with itself and another time series works better than predicting it without
the past of X1, which is logical. The fact that adding more predictors (i.e., Conv2D with
TS = 3) did not work out is obviously the most problematic aspect of Conv2D. Once a third
predictor was added, performance dropped substantially, and it was hypothesized that
this could be due to the fact that it was convolving rather uncorrelated or only slightly
correlated time series together confuses the two-dimensional network to the extent that no
proper prediction can be made. The fact that channels are not kept separate such as in a
depthwise-separable architecture, may play an important role in this aspect. Finally, with
regard to runtimes (time needed to train a model), LSTM-NUE was together with Conv2D,
TS = 3 the most time-consuming method, which calls for a trade-off between accuracy
and Time Complexity. It is especially the non-uniform embedding strategy (NUE) that is
responsible for the high Time Complexity. However, in [15], it was shown that the current
LSTM-model could also produce reasonable results without implementation of the NUE
strategy, thereby lowering its Time Complexity drastically.

Moreover, in [15], it was shown that LSTM-NUE could cope with different types of
ground truths (linear, non-linear and non-linear with varying length lags), as confirmed
in our work. Contrary to [15], we, in addition, had Ground Truth 2 with a moving dipole
(i.e., the “Sender”) which worked relatively well for LSTM-NUE. Hence, the latter can
cope not only with time-varying parameters but also, to some extent, with changing dipole
locations. Both TCDF and Conv2D cope far less well with a moving sender, probably
(or at least partly) because of the occurrence of both closeness and deepness in the same
setting, which has an impact on how signals are transformed by source reconstruction.
TCDF and Conv2D are, in contrast to LSTM-NUE, not a part of the family of Recurrent
Neural Networks and therefore do not contain feedback loops. The LSTM is particularly
known for its excellent memory properties by virtue of its gates that help to remember
versus forget certain time samples. In general, the better memory properties of an LSTM
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in combination with the NUE approach probably play an important role in dealing with
variations over time. An LSTM may also be better in looking through (uncorrelated) noise
components because it remembers formerly seen time samples better and, subsequently,
should be better in detecting (even weak) patterns over time, also when occluded by
noise. This, in turn, may make it easier to deal with more challenging dipole locations
or with heavier data transformations. However, this same property could also make an
LSTM more sensitive to correlated noise from source mixing. TCDF, on the other hand,
has the advantage of a very low Time Complexity, at least partly due to its sparsity in
interconnection weights (given its depthwise-separable architecture), but it seems less able
to distinguish correlation from causation. This may be due to the lack of feedback loops,
an “active” memory feature that makes it difficult to distinguish true patterns from noise
over longer time intervals. In this study, TCDF was tuned as such that not too many false
positives were detected (given its problem of distinguishing correlation from causation),
and this more “conservative” configuration may have led to its low Sensitivity. Overall,
we can conclude that, among the ANN models, LSTM-NUE performed best in terms
of Sensitivity and Precision regardless of which ground truth was used even though no
shuffling or time-reversal was used for connectivity assessment. The contrasting results
of TRGC in terms of Precision between dipole conditions in Ground Truths 1 and 2 are
puzzling and clearly show an “oversensitivity” of TRGC under certain circumstances.
Still, TRGC and LSTM-NUE yielded acceptable-to-good results, albeit both suffer from
over-detection. An interesting new finding is the fact that an LSTM is, to some extent, able
to provide an answer to the question of whether connectivity between sources is present
or absent, at least for source-reconstructed, simulated EEG data. The fact that too many
faulty connections were detected (especially in Ground Truth 2) calls for improvements.
One possibility is to use LSTM-NUE as part of a masking approach, on top of which
another learner is stacked. This masking approach has already led to many advantages
in source localization [25], and it may also facilitate connectivity detection with ANNs,
especially when overly sensitive to it. In this sense, other ANNs, even with a lower Time
Complexity than that of LSTM-NUE, could possibly also be considered as potentially
directed connectivity estimators.

An obvious future step is testing whether ANNs can also be applied to real EEG data,
albeit that several possible caveats should be taken into account. First and foremost, as
shown by [1], under low noise conditions, dipole conditions may matter less, but differences
between dipole conditions could become more obvious (i.e., more disturbing) under higher
noise levels. Even long-established connectivity methods suffer from this. Since controlling
noise levels is hard, reasonably one could opt for EEG-data for which (1) the contributing
brain areas are rather superficially located, (2) the connectivity patterns are relatively
well known and preferably supported by both high-density EEG and fMRI-data so that
a performance evaluation becomes feasible since no ground truth is available for real
EEG-data. Testing ANNs and contrasting them with TRGC/other established methods
using vision-related or motor-related EEG-datasets makes thus more sense than testing
them with data with relatively unknown connectivity patterns. Regions of Interest (ROIs)
can be defined based upon previous knowledge about involved brain areas. As for source
localization, a reasonable choice is eLORETA. Data-driven approaches (as opposed to
ROI-selection), e.g., data-driven clustering [33], seem only reasonable in a later stage when
the value of the used ANN is proven on real EEG data.

5. Conclusions

Some types of neural networks, in particular LSTMs, may be considered for esti-
mating the directed connectivity of reconstructed EEG Sources. However, no method is
flawless, and we showed that even an established method such as TRGC can generate
faulty estimates. This calls for further developments. There is much potential for a hybrid
approach, in which a neural network could be used as a preprocessing step to chart the
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interesting directed connectivity patterns, after which a conventional method is applied for
estimating them.

Author Contributions: Conceptualization, M.M.V.H., A.F. and I.V.; methodology, I.V. and A.F.; formal
analysis, I.V.; resources (scripts), A.F. and I.V.; original draft preparation, I.V.; writing, review and
editing, A.F and M.M.V.H.; visualization, I.V.; supervision, A.F. and M.M.V.H.; project administration,
A.F. All authors have read and agreed to the published version of the manuscript.

Funding: I.V. performed this work as part of her Master in Artificial Intelligence thesis at KU Leuven.
A.F. is supported by a grant from the Belgian Fund for Scientific Research—Flanders (FWO 1157019N).
M.M.V.H. is supported by research grants received from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 857375, the special research fund of the KU
Leuven (C24/18/098), the Belgian Fund for Scientific Research—Flanders (G0A4118N, G0A4321N,
G0C1522N), and the Hercules Foundation (AKUL 043).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Table A1. Scheirer–Ray–Hare Test using Sensitivity as a criterion. Alpha level = 0.05. Significant
results shown in bold. Models: Conv2D, TS = 2, kernel size 4 × 2 versus 4 × 4, Conv2D, TS = 3,
kernel size 4 × 3 versus 4 × 4, with TS denoting the amount of time series. Model (H (3,32) = 16.04,
p = 0.001) and dipole condition (H (1,32) = 4.53, p = 0.03) have significant effects on Sensitivity. Post
hoc Mann–Whitney U tests (Bonferroni-corrected alpha level = 0.008) revealed that Sensitivity was
significantly higher for Conv2D, TS = 2 (Mdn = 0.67, 0.67), versus Conv2D, TS = 3 (Mdn = 0.00, 0.17),
p = 0.006, p = 0.007 for differing kernel sizes.

Predictor Sum of Squares df Mean Square H p-Value

Dipole condition 577.60 1 4.53 0.033
Conv2D model 2045.35 3 16.04 0.001
Interaction 350.15 3 2.75 0.432
Within 1999.40 32
Total 4972.50 39 127.5
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Abstract: The implications of combining structural and functional connectivity to quantify the most
active brain regions in seizure onset remain unclear. This study tested a new model that may facilitate
the incorporation of diffusion MRI (dMRI) in clinical practice. We obtained structural connectomes
from dMRI and functional connectomes from electroencephalography (EEG) to assess whether high
structure-function coupling corresponded with the seizure onset region. We mapped individual
electrodes to their nearest cortical region to allow for a one-to-one comparison between the structural
and functional connectomes. A seizure laterality score and expected onset zone were defined. The
patients with well-lateralised seizures revealed high structure-function coupling consistent with the
seizure onset zone. However, a lower seizure lateralisation score translated to reduced alignment
between the high structure-function coupling regions and the seizure onset zone. We illustrate that
dMRI, in combination with EEG, can improve the identification of the seizure onset zone. Our model
may be valuable in enhancing ultra-long-term monitoring by indicating optimal, individualised
electrode placement.

Keywords: focal epilepsy; diffusion imaging; electroencephalography; structure-function coupling;
seizure onset; structural connectivity; functional connectivity

1. Introduction

The assessment of patients with focal epilepsy using a combination of structural data
derived from diffusion MRI (dMRI) and functional data from electroencephalography (EEG)
is gaining increased appeal [1–3]. In the brain, structural connectivity refers to an anatomical
link between two or more brain regions. Connnectomes generated from diffusion MRI, can
represent the strength of structural connectivity between specific brain regions. Functional
connectivity is inferred from the spatio-temporal relationship between electrophysiological
signals from two or more structurally discrete regions [4]. Structural connectivity is believed
to give rise to functional and network behaviour [5]. In a mechanistic sense, the composition
of white matter can be expected to influence the flow of activity and connectivity between
neuronal populations. Therefore, if EEG functions as a tool to observe the flow of activity,
the connectivity measurements from EEG can be presumed to closely resemble connectivity
measurements from structural MRI. In epilepsy, structure-function coupling is proposed
to have a role in identifying seizure propagation patterns [6,7], seizure generalisation [1]
and predicting post-surgery seizure freedom [8,9]. Diffusion MRI derived tractography,
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in conjunction with EEG, can enable the quantification of structural connectivity between
different brain regions. However, in epilepsy, dMRI is held to be in the experimental
realm [2]. Therefore, though there is consensus on the significance of structural connectivity
information in patient diagnosis, the utility of dMRI as a routine clinical test has not been
realised. Additional research is needed to investigate the value of dMRI in combination
with routinely collected data such as EEG. Further, the feasibility of user-friendly tools for
deploying dMRI pipelines must be assessed.

Several works employ functional MRI (fMRI) to represent functional connectivity [10–12]
alongside structural connectivity from dMRI. However, given EEG is routinely collected
in epilepsy clinics, it may be a more accessible and practical alternative to fMRI, which
has inherent, poor temporal resolution relative to EEG. White matter connectivity and
information flow between specific brain regions has been linked to scalp EEG characteristics
in healthy populations [13,14]. Further, EEG has been used to produce an individualised
connectivity fingerprint that is robust across recordings [15], rendering its utility as a
patient-specific, analytical network measure that can address the heterogeneous nature of
focal epilepsy.

Discerning the seizure onset pattern and epileptogenic zone has been shown to im-
prove the prognosis of post-surgical outcomes [16], and EEG and dMRI can aid this goal.
A study on the role of scalp EEG in predicting post-surgical seizure outcomes showed
abnormal MRI was valuable in ambiguous cases containing bilateral interictal epileptiform
discharges [17], suggesting MRI may enhance prediction of seizure freedom. In another
study of seven patients being evaluated for epilepsy, lesional and non-lesional MRIs were
combined with high and low frequency bands from high density EEG (HDEEG) [18]. The
Authors showed that the absence of structural support was related to significantly reduced
functional connectivity in high frequency bands. Moreover, high frequency oscillations
observed on scalp EEG are increasingly recognised as a hallmark of lesional epilepsy [19].
These works highlight the advantages of combining dMRI with EEG to detect aberrations
that may typically only be partly revealed by one modality.

The majority of works that blend multimodal information from dMRI and EEG focus
on source localisation techniques [20–22], using a digitiser to map electrode coordinates to
the scalp which can be time-consuming. Others produced an automated, individualised
localisation tool to map electrodes from high density EEG (HDEEG) to the scalp only, with-
out extending the mapping to the cortex [23]. Many prior works favoured the combination
of stereo EEG with dMRI [6,9,24,25], or only explored normal (non-ictal) awake EEG data
with dMRI [26].

Several methods for electrical source localisation, which utilise a range of forward and
inverse solutions, have been proposed and evaluated [27–29]. Thus the current study is
distinguished from those prior works for the following reasons. We aimed to understand
whether a patient-specific, structure-function coupling pattern could be observed without
requiring manual digitisation of electrodes or applying one of the several forward and
inverse solutions. We sought to apply our existing model [30], which maps cortex regions
to individual electrodes, to a larger cohort. We specifically examined the seizure onset
period (regardless of wakefulness state). Lastly, we aimed to validate the feasibility of
our model as a clinically translatable method to leverage the potential of dMRI, with the
view of elevating it to the established state currently held by structural MRI (i.e., T1) [31].
The dMRI component of our tool was designed to be deployed on a clinician’s computer,
allowing straightforward data processing from new patients (with ethics approval).

The contribution of this work is twofold: a. We extend the application of our spatial
mapping model to a new patient cohort, highlighting consistent between-patient variance
in region to electrode mapping, and b. We add to the growing body of research showing
that connectivity data derived from structural MRI may augment scalp EEG observations
for certain patients; acting as an additional tool during the diagnosis stage.
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2. Materials and Methods

2.1. Participants and Data

Nine adults with focal epilepsy were recruited from the Comprehensive Epilepsy
Centre at the Royal Prince Alfred Hospital (RPAH, Sydney, Australia), and MRI was
performed at the Brain and Mind Centre (Sydney, Australia). Inclusion criteria were adults
diagnosed with focal epilepsy, aged 18–60, presenting without surgery, with a minimum of
two recorded seizures, and who were willing and able to comply with the study procedures
for the duration of their participation. Exclusion criteria were pregnant women and
individuals with intellectual disabilities. Ethical approval was obtained from the RPAH
Local Health District (RPAH-LHD) ethics committee (see Institutional Review Statement in
Section 5). The entire data processing and analysis consisted of several consecutive steps,
depicted in Figure 1.
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Figure 1. Schematic of data processing and analysis steps. To obtain the structural connectomes (“SC”,
Step 1, a), the dMRI was processed, and anatomically-constrained probabilistic tractography was
conducted as outlined in Section 2.3. Cortical regions of interest were based on the Desikan-Killiany
(DK) [32] atlas. To obtain the functional connectomes (“FC”), the first 5 s of a given seizure were
selected using one-second windows. Each one-second window was processed using Curry’s sensor
coherence algorithm (Step 1, b, ii), producing a 21 × 21 coherence matrix. The reference electrodes
were removed before statistical analysis, resulting in a 19 × 19 coherence matrix which was used as the
functional connectome. In Step 2, the ANTs non-linear registration tool was used to warp electrodes
in the MNI template space to the subject space, creating a subject-specific electrode warp (a, i–iii). To
produce a subject-specific, one-to-one map of each cortical region to its nearest electrode, we applied
our inverse square method (b, i). The inputs were each subject’s electrode warp and cortical region
labels from Step 1. The result was a structural connectome with an electrode name corresponding to
each of the 70 regions, i.e., F7/L.LOFG (b, ii). In Step 3 (a), the 70 × 70 structural connectome was
condensed to match the dimensions of the functional matrix (19 × 19). Specifically, the values of all
regions corresponding to a given electrode pair were summed, and the total value was used as the
connectivity value for that same electrode pair in the new condensed structural connectome. Lastly,
z-scores were computed for all connectivity values in the structural and functional connectomes
(b, i,ii) and the statistical analysis was conducted.

2.2. Image Acquisition

Image acquisition was described previously [33]. Briefly, all scans were acquired
on the same GE DiscoveryTM MR750 3T scanner (GE Medical Systems, Milwaukee, WI,
USA). The following sequences were acquired for each participant: Pre-contrast 3D high-
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resolution T1-weighted image (0.7 mm isotropic) using fast spoiled gradient echo (SPGR)
with magnetisation-prepared inversion recovery pulse (TE/TI/TR=2.8/450/7.1 ms, flip
angle = 12); and axial diffusion-weighted imaging (2 mm isotropic, TE/TR = 85/8325 ms)
with a uniform gradient loading (b = 1000 s/mm2) in 64 directions and 2 b0 s. An additional
b0 image with reversed phase-encoding was also acquired for distortion correction [34].

2.3. Image Processing to Obtain Structural Connectomes

The T1 images were processed using a modified version of Freesurfer’s recon-all
(v6.0) [35], alongside an in-house skull-stripping tool (Sydney Neuroimaging Analysis Cen-
tre). Each subject was inspected, and minor segmentation errors were manually corrected.
A 5 tissue-type (5TT) image [36] was generated using MRtrix3 [37]. The T1 image was
registered to the mean b0 image; the warp was used to register the 5TT image, and the
DK [32] parcellation image to the diffusion image.

Diffusion image processing was conducted using MRtrix3 [37]. The diffusion pre-
processing included motion and distortion correction [34,38], bias correction using ANTs [39].
The dhollander algorithm [40] was used to estimate the response functions of the white
matter, grey matter, and cerebral spinal fluid, from which constrained spherical deconvolu-
tion was used to estimate the fibre orientation distributions using MRtrix3Tissue [37]. The
intensity of the white matter fibre orientation distributions was normalised [37], and used
for anatomically constrained whole-brain tractography [41] (along with the registered 5TT
image). The tractography specifications were as follows: 15 million tracks were generated,
iFOD2 probabilistic fibre tracking [42], dynamic seeding [43], maximum length 300 mm,
backtrack selected and crop at grey-matter-white-matter interface selected. For quantitative
analysis, the corresponding weight for each streamline in the tractogram was derived
using SIFT2 [43]. The streamlines and corresponding SIFT2 weights were used to create a
weighted, undirected structural connectome (“SC”) using the registered parcellation image.
All image processing steps are shown in Figure 1 (Step 1, a).

2.4. EEG Acquisition

The EEG recordings were derived from ward recordings conducted during the patients’
stay at the RPAH. The EEG was recorded using Compumedics hardware and software.
The ward nurse applied the individual electrodes to the patient’s head in the standard
10/20 format using the gold standard measurement process. Once the routine clinical
recording was complete, the raw EEG files were obtained, and the seizure segments
annotated by the EEG technician and reviewed by a senior neurologist. All seizures were
then analysed in Curry 8 (“Curry”, Compumedics Neuroscan) to obtain the functional
connectomes. Curry is a neuroimaging software suite that allows the combination and
analysis of multimodal data and is optimised for evaluating epilepsy-related data.

2.5. EEG Processing to Obtain Functional Connectomes

Curry was used to pre-process the EEG and obtain the sensor-based coherence matrices
which represented the functional connectomes. First, we applied Curry’s automated artifact
reduction and filtering tool to obtain a clean signal. Next, Curry’s coherence calculation
process (shown in Figure 1, Step 1, b, ii) was used to generate coherence matrices for the
first five seconds of each seizure. Specifically, using one-second non-overlapping windows
starting from the annotated seizure onset time, the coherence matrices were computed from
the cross-spectral densities Gxy and auto-spectral densities Gxx and Gyy of the channels x
and y, using the equation

Cxy = (Gxy × Gxy)/(Gxx × Gyy). The resulting coherence matrices were 21 × 21;
row and column headers represented single electrodes. The reference electrodes and their
corresponding scores were then removed, resulting in 19 × 19 matrices, which were used
as the functional connectomes (“FC”, Figure 1, Step 1, b, iii). Therefore, each electrode pair’s
corresponding value was a composite of the normalised maximum similarity between
the waveforms and the time-shift (delay) when the maximum similarity occurred. The
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electrode pair value represented the highest percentage of coherence achieved by that
electrode pair in the one-second window after factoring in the signal time lag between the
two electrodes.

2.6. Mapping Cortical Regions to the Nearest Electrode

This section details the processes in Step 2 of Figure 1, where we used our previously
described method [30] to create a subject-specific electrode warp and map each subject’s
cortical regions from the DK atlas to the nearest electrode. First, using the ANTs nonlinear
registration tool, 21 electrodes in the standard MNI template space were warped to each
participant’s T1 image that had been registered to the diffusion image space (Figure 1 Step 2,
a, i–iii). Next, we applied our inverse square method, which incorporates the inverse square
equation shown in Figure 1 (Step 2, b, i) to produce a subject-specific, one-to-one mapping
of each cortical region to its nearest electrode. The inputs were each subject’s electrode
warp and the cortical structure labels from Step 1. The inverse square equation holds that
the light intensity of a source is inversely proportional to the square of the distance from the
source. Thus, the inverse square method enabled the consideration of MRI voxel intensity
in assessing the distance of each cortical region from each electrode’s centre. Voxel intensity
may represent the cortex’s topological arrangement, endorsing postulation of the EEG
signal strength from a given region relative to that region’s distance from the scalp. The
matrix in Figure 1, (Step 2, b, ii) depicts each region with one electrode name assigned—this
electrode was the closest to that region. Subcortical regions (such as the hippocampus) were
not assigned electrodes as their physical distance from the scalp and positioning below
other cortical regions deemed them inaccessible for accurate measurement; thus they were
removed from the analysis.

2.7. Mapping the Structural Connectome to the Functional Connectome

To enable the direct, one-to-one comparison of the values in the structural and func-
tional connectomes, the structural connectome was first condensed to match the size of the
functional connectomes (from 70 × 70 to 19 × 19). Only the upper triangle of the structural
connectome was used in the calculation. The output file shown in Figure 1 (Step 2, b, ii)
provided the electrode names and corresponding regions (and their values) for the new
structural matrix. To calculate the new value for a given electrode pair in the condensed
structural connectome, the values for all regions between that given electrode pair were
summed. An example is provided in Figure 1, (Step 3, a), where all values between elec-
trodes Fz (“Ex”) and Fp2 (“Ey”) are coloured in purple. The total sum of all values between
Ex and Ey was used as the new value for Fz-Fp2 (black square) in the condensed structural
connectome. Once new values were computed for all electrode pairs, the diagonal line
(self correlations) was removed from the structural and functional connectomes, and the
connectomes were converted to a 1D array for statistical analysis.

2.8. Statistical Analysis of Structure-Function Coupling

To test whether the laterality of the strong connections matched each patient’s diagno-
sis, we first split the structural and functional connectomes into left and right hemispheres
(Figure 1, Step 3, b) and removed cross-hemisphere electrode pairs. For example, if an
electrode pair contained two electrodes in the left hemisphere (i.e., FP1-F3) or one left hemi-
sphere and one central electrode (FP1-Fz), the electrode pair was kept. All electrode pairs
that crossed from one hemisphere to the other (i.e., F3-F4) were removed. To test whether
the highly connected electrode pairs from the structural and functional connectomes were
congruent, we first computed the z-scores for all electrode pairs from all connectomes
(Figure 1, Step 3, b, i). The z-score arrays were: a. 1 × 1D array per hemisphere for the
structural connectome and b. 5 × 1D arrays (for each 1 s time window) per seizure, per
hemisphere for the functional connectomes. Lastly, the structural and functional zscores
from each hemisphere were displayed in parallel format for analysis (Figure 1, Step 3, b, ii).
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To preserve only the most robust connections to represent high coherence between
two electrodes, a z-score threshold of 2 (i.e., two standard deviations from the mean) was
chosen for the structural connectome, and a threshold of 1.8 was chosen for the functional
connectomes. Next, the z-scores from both connectome types were compared per one-
second window from each seizure. If the same electrode pair from the structural and
functional connectomes contained a z-score between 1.8 and 2 (or greater than 2), that
electrode pair was classified as showing high structure-function coupling (termed “coupled
electrode pairs”).

The senior neurologist provided a “laterality” score for each patient based on whether
the most frequently observed seizure onset zone was consistently restricted to one hemi-
sphere. A laterality score of zero represented poorly lateralised seizures, whilst highly
lateralised seizures received a score of three. If overall, the patient had late-lateralising
seizures, they were classified as being non-lateralised at onset (i.e., a score of 0–1). Each
patient was also assigned an “expected onset zone”, predicated on the most frequently
observed onset zone observed in all of a patient’s recorded seizures, including seizures
that were poorly or non-lateralised. The neurologist reviewed the raw EEG to confirm
whether the electrode pair with high structure-function coupling was congruent with the
expected seizure onset zone. All z-scores and statistical analyses were produced in SPSS
v28 (Armonk, NY, USA: IBM Corp).

3. Results

3.1. Demographics

Nine patients (6F, mean age 38.8 ± 11.28) were included in this study after meeting
the inclusion criteria. The patient characteristics, including seizure onset zone, are shown
in Table 1. Three of the nine patients presented with highly lateralised seizures; the other
six had a mixture of highly lateralised and poorly lateralised seizures. All patients were
diagnosed with focal epilepsy; two had experienced frequent focal to bilateral tonic-clonic
(FBTC) seizures, whilst another three had infrequent FBTC seizures (experienced more
than one year prior to the EEG recording).

Table 1. Characteristics of patients.

Patient Sex Classification MRI Diagnosis Onset Age Age at MRI Duration Drug Res. Handedness

1 F Left fronto-temporal Normal 49 53 4 Y R
2 M Left fronto-temporal HS † 21 49 28 Y L
3 F Right frontal Normal 38 48 10 N R
4 F Right temporal Normal 16 29 13 Y U
5 M Left fronto-temporal Normal 16 31 15 Y R
6 F Left occipital Normal 12 47 35 Y R
7 F Left fronto-temporal Normal 35 48 13 N R
8 M Right fronto-temporal Normal 15 33 18 Y R
9 M Right temporal Normal ‡ 22 29 7 Y R

Key: L: left, R: right, U: unknown; † HS: hippocampal sclerosis; ‡ slight enlargement of right amygdala.

3.2. Electrode-Region Mapping

The regions that displayed the most variance in electrode mapping across all nine
patients are listed in Table 2 according to the Freesurfer region names. The majority of
the variance appeared to be in the temporal regions. Manual inspection of the warped
electrodes on each patient’s scalp, which were overlaid on the cortex regions, indicated that
individual scalp and cortex morphology contributed to the model’s determination of the
nearest electrode for a given region.
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Table 2. Between patient region variance in the region to electrode mapping.

Subject No. 1 2 3 4 5 6 7 8 9
Region Name

L. rostralanteriorcingulate FP1 FP1 FP1 FZ F3 FP1 FZ FP1 FP1
R. rostralanteriorcingulate FP2 FP2 FP2 FZ FP2 FP2 FZ F4 FP2
L. parsopercularis F3 F7 F7 F3 F7 F7 T3 F7 F3
R. parsopercularis F8 F8 F8 F8 F8 F8 F4 T4 F4
L. insula T3 F7 T3 F7 T3 T3 T3 T3 T3
R. insula T4 F8 F8 F8 F8 T4 C4 T4 T4
L. inferiortemporal T5 T5 T5 T5 T3 T5 T5 T3 T5
R. inferiortemporal T6 T4 T6 T6 T4 T6 T6 T4 T6
L. lateralorbitofrontal FP1 F7 F7 F7 F7 F7 F7 F7 F7
R. lateralorbitofrontal FP2 F8 F8 F8 F8 F8 F4 F8 FP2
L. cuneus O1 O1 O1 O1 O1 O1 PZ O1 O1
R. cuneus O2 O2 O2 PZ O2 O2 PZ O2 O2
L. transversetemporal T3 T3 T3 C3 T3 T3 T3 T3 T3
R. transversetemporal T4 T4 T4 C4 T4 T4 T4 T4 T4
L. caudalanteriorcingulate FZ FZ FZ FZ F3 FZ FZ F3 FZ
R. caudalanteriorcingulate FZ FZ FZ FZ FZ FZ FZ F4 FZ
L. isthmuscingulate PZ PZ PZ CZ PZ PZ PZ PZ PZ
R. isthmuscingulate PZ PZ PZ CZ PZ PZ PZ PZ PZ
R. bankssts T6 T6 T4 T6 T4 T6 T6 T6 T6
R. superiorfrontal FZ FZ FZ FZ FZ FZ FZ CZ FZ
R. caudalmiddlefrontal C4 C4 C4 F4 C4 C4 C4 C4 C4
R. temporalpole F8 F8 F8 F8 F8 F8 F8 T4 F8
L. supramarginal C3 P3 C3 C3 C3 C3 C3 C3 C3
L. superiorparietal P3 PZ PZ PZ PZ PZ PZ PZ PZ

Key: L: left, R: right, bankssts: banks of the superior temporal sulcus.

3.3. Structure-Function Coupling

The structure-function coupling observed in the nine patients revealed three distinct
groups with the following features. The first group (Patients 1–3, Figure 2a) had the highest
laterality scores (L = 3), with coupled electrode pairs that consistently overlapped with the
seizure onset zone. The second group (Patients 4–6, Figure 2b) had less well-lateralised
seizures (L = 2–3), and the coupled electrode pairs overlapped with the onset side but not
the exact zone. In Patient 4, only two out of three seizures were highly lateralised (L = 3)
while the third was not (L = 2), and the electrode pair (PZ-O2) that did not overlap with
the exact seizure onset zone was observed on the poorly lateralised seizure. Patient 4 also
had three single electrodes from highly connected MRI and EEG pairs that overlapped
inside the seizure onset zone (shown in heatmaps in Figure A1). Patients 5 and 6 were
less well lateralised, and highly coupled electrode pairs were present both within and
outside the seizure onset zone. In Patient 6, the electrode pair T3-C3 overlapped with the
expected onset zone of the one poorly lateralised seizure. The third group (Patients 7–9,
Figure 2c) were considered non-lateralised for most of their seizures. These patients
generally displayed highly coupled electrode pairs that were inconsistent with the expected
onset zone or had only a single overlapping MRI and EEG electrode rather than a pair
(Patient 7). Figure 2 contains a condensed interpretation of the detailed results for each
patient, shown in Appendix A. The overlapping electrode pairs with MRI z-scores (>2) and
EEG z-scores (>1.8) are displayed. The most common seizure onset zone for each patient is
also displayed.
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Figure 2. Highly connected electrode pairs in structural and functional connectome. Each “head”
shows a schematic of the electrode pairs for each of the nine patients (numbered 1–9 above each head).
The “L” value represents each patient’s overall seizure lateralisation score based on their available
recorded seizures. A score of zero represented poorly lateralised seizures, whilst highly lateralised
seizures received a score of three. The patients’ seizures stratified them into three categories: patients
1–3 had high laterality, patients 4–6 had some seizures that were well lateralised, while others were
not, and patients 7–9 had poor laterality in all seizures. The purple lines (and circled electrodes)
represent the electrode pairs that displayed strong connectivity (z-scores > 2) in the structural (MRI)
connectome. The orange lines (and circled electrodes) represent the electrode pairs that displayed
strong connectivity (z-scores > 2) in the functional (EEG) connectome. Dotted lines in either colour
represent a z-score of 1.8–2. The blue shading represents the most frequently observed seizure onset
zone for a given patient, as observed from their ward EEG recordings. If a seizure did not have
a specific onset region within the first 5 s, it was considered non-lateralised, even if it displayed
late-lateralisation. Purple and orange circled electrodes in the blue shaded areas represent high
structure-function coupling in the seizure onset zone.

4. Discussion

In this study, we obtained structural and functional connectomes from nine patients
to investigate whether our model could uncover the structure-function coupling during
seizure onset. We also examined the pattern and congruence of the structure-function
coupling with the expected seizure onset zone. The first key finding was that patients with
well-lateralised seizures displayed high structural-functional congruence consistent with
the expected seizure onset zone. The second key finding was that patients who were not
well-lateralised had varying coupled electrodes that were not consistently in the onset zone.
The results indicate that for well-lateralised patients, connectivity data derived from dMRI
can be a valuable tool to augment routine EEG observations. However, the dMRI should
be interpreted in the context of other routinely collected data from the patient.

Our findings offer some compelling evidence for the use of dMRI in clinical practice.
Firstly, in patients with high structure-function coupling in the expected onset zone, dMRI
may provide additional support to the EEG observations. A recent work used intracranial
EEG (iEEG) and dMRI to explore the relation between structure-function coupling and post-
surgery seizure freedom [9]. The Authors showed that patients who achieved post-surgery
seizure freedom had higher structure-function coupling pre-surgery. However, access to
iEEG may not be feasible in the initial diagnosis stage. Additionally, the diagnostic yield of
low-density scalp EEG (25 electrodes) has been suggested to be comparable to high-density
EEG (256 electrodes) [44]. Taken together, our findings suggest that our model may be used
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during the diagnosis stage to determine the suitability of surgery for newly-diagnosed
patients. Notably, we provide evidence that high structure-function coupling was present
for patients regardless of whether they had previously experienced an FBTC seizure. Our
finding suggests that a history of infrequent FBTC seizures (present in Patients 1 and 3)
does not preclude the patient from having well-lateralised structure-function coupling.

Secondly, in the patients with poorly lateralised seizures, the structure-function cou-
pling was more predominant in the ipsilateral hemisphere. However, the presence of
structure-function coupling in the contralateral hemisphere was unsurprising, given their
laterality score. In these patients, dMRI may provide additional information that can guide
the placement of additional electrodes in longer ward recordings. However, a more exten-
sive structure-function coupling model may be needed to understand whether the poor
laterality can be attributed to the equally high structural connectivity in both hemispheres
or some other biophysical phenomenon. Further, our model demonstrated a specific region
with high structure-function coupling for Patient 8, who was initially considered poorly
lateralised on EEG. Such cases highlight that dMRI may offer endorsement of a specific
onset zone to support an otherwise inconclusive EEG recording.

Interestingly, the presence of high structure-function coupling in an electrode pair
containing a middle electrode (FZ, CZ, PZ) was observed in several patients with a seizure
laterality score of 2 or lower. For example, patients 5, 7, 8 and 9 had at least one middle
electrode in the electrode pairs that showed high structure-function coupling. Their poor
seizure lateralisation could be due to the electrophysiological activity beneath the middle
electrode, which may drive the contralateral seizure propagation.

Given the scope of the current work, some methodological considerations may aid
the interpretation of the results. Firstly, the mapping method did not appear to impact
the results as well-lateralised patients had a similar number of variances in the electrode-
to-region mapping as the less well-lateralised patients, for whom the structural data
provided little additional information. However, laterality alone may not account for the
results from patients who displayed high structure-function coupling congruent with the
expected onset zone. Our selection of time window and bandwidth may have impacted
the coherence score. The one-second window was perhaps not brief enough to capture
the highly coherent initial EEG activity. We observed high coherence in the ipsilateral
hemisphere at the 0–100 millisecond (ms) scale for some patients. The lengthy time window
may have confounded this high coherence.

Further, the proposition that microscopic signal aberrations in EEG may not be ob-
served from a macroscopically normal EEG signal is worth considering [2]. The uncertainty
of empirical, visual evaluation of EEG to localise the seizure onset zone has been shown [45].
Thus, in the current work, the true onset zone for some individuals may not be observable
on the raw EEG, yet may have been captured in the processed EEG coherence data. How-
ever, such postulations must be verified using high-definition EEG or intracranial/stereo
EEG. Alternatively, since we combined microscopic MRI and EEG data, it is also possible
that our model captured the genuine seizure onset zone. Supposing the seizure began in
a different region, it could have fused in millisecond time with other active regions and
thus was visually revealed in a different region on the raw EEG. Such an explanation is
conceivable for individuals with FBTC or multi-onset seizures and is a topic for future
investigation.

Lastly, it is feasible that the structural topology has a diminished relationship with
the functional activity in some individuals. Numerous mechanisms mould the seizure
propagation pathways, and within-patient variance has been shown [46]. Lateralisation
may be inextricably linked to the seizure duration. However, based on our experimental
design (i.e., time window selection) and modest sample size, it was not plausible to
extrapolate any biophysical mechanisms that may be in force. The individuals in the third
group may have less well-defined circuits, or a different epileptic pattern, i.e., multi-onset or
deep structural connections or functional activity, that was not captured in the connectome
reconstruction or on the scalp EEG. These concepts are the subject of ongoing work to
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further elaborate on this feasibility study and better explain the individual differences in
the outcomes.

Although our methodology may explain some of the findings, potential limitations
were inevitable. The generalisation of the results is limited by the small sample size, en-
dorsing the need to extend this work to a larger cohort. The placement of the electrodes in
the electrode warp and automated mapping cannot be deemed identical to the original,
physical placement of the electrodes during the EEG recording. The electrode warp place-
ments represented the expected actual electrode placement during the recording. This work
highlights the possible variation inherent in demystifying the electrical signals captured on
scalp EEG. There is an intrinsic between-patient variance in cortex and scalp morphology
and thickness. The nature of the clinical procedure introduces further variance through the
measurement estimation of different technicians during the application and re-application
of electrodes.

The Curry sensor coherence algorithm is confined to broadband frequencies and does
not compute coherence from narrow-band frequencies. Further, the Curry algorithm does
not consider the spatial, topographical, morphological or biophysical implications of the
scalp signal; it is calculated purely on the raw EEG wave. Therefore, our inverse square
mapping method was constrained in accounting for the spatial and biophysical properties
of the scalp signal measurements. It is possible that the single neurologist’s assessment
of the congruency results may introduce bias. Future work will include evaluation of the
EEG data by several neurologists blinded to the methodology, and an inter-rater reliability
assessment (such as the Kappa statistic). Lastly, lack of control data restricts the distinction
between the structure-function coupling in seizures and normal coupling in resting state or
non-ictal periods.

Indeed, linking brain structure and function remains an imperfect science, confounded
by individual differences in structure-function coupling [47]. Therefore extending this
study to a larger cohort, with the addition of control data, is the subject of ongoing work
in our lab. The inclusion of pre-ictal and cross-hemisphere connectivity data will enable
further comparison and quantification of the active electrodes across varying brain states.
Additionally, using coherence matrices derived from open source software could provide
a point of comparison to Curry’s sensor coherence maps. Despite these restrictions, our
work provides evidence that dMRI is a promising additional tool to classify patients for
further investigation or surgical candidature. Our model may be practical in identifying the
most active locations for sub-scalp electrodes and the patients who could benefit from ultra
long-term monitoring. We show that all regions of high connectivity are not necessarily the
best place for sub-scalp electrodes. We present a feasible method to distinguish patients,
and patient-specific brain regions, that may be candidates for sub-scalp electrodes. With
further refinement, our method could be utilised in identifying the optimal position for
sub-scalp electrode placement, removing the need for more invasive EEG methods.

5. Conclusions

In conclusion, this study utilised a model to spatially map scalp electrodes to the
nearest brain region and compare the structural and functional connectivity in nine patients
with focal epilepsy. We showed that not all highly connected structural regions result
in highly connected scalp EEG in the same region. Our findings suggest that seizures
may follow strong connections intermittently and might only do so in well-lateralised
patients and not for every seizure. Less well-lateralised patients displayed some high
structure-function coupling in the ipsilateral hemisphere, but this was inconsistent. Our
findings contribute to the evidence supporting the use of dMRI in clinical practice, which
can guide patient-specific electrode placement and enhance the detection of the seizure
onset zone. Future work will include comparisons with open source software and the
addition of interictal and control data.

34



Appl. Sci. 2022, 12, 10487

Author Contributions: Conceptualisation, C.M., C.W. and A.N.; methodology, C.M., C.W. and A.N.;
clinical data acquisition, C.M. and A.N.; data curation, C.M. and A.D.; diffusion imaging pipeline,
implementation and analysis, C.M., A.D. and C.W.; statistical analysis, C.M. and C.W.; manuscript
writing, C.M.; manuscript revision and editing C.M., A.D., M.B., O.K., C.W. and A.N.; clinical
advisory and results interpretation, A.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no specific external funding.

Institutional Review Board Statement: All research and methods were performed in accordance
with the Declaration of Helsinki, and the relevant guidelines and regulations prescribed by the
RPAH-LHD and ethics committees. The study was approved by the Ethics Committee from the
RPAH Local Health District (RPAH-LHD). The protocol number and ethics approval ID for the MRI
data are X14-0347 and HREC/14/RPAH/467. The protocol number and ethics approval ID for the
EEG data are X19-0323 and 2019/ETH11868.

Informed Consent Statement: The requirement for informed consent was waived in the approved
ethics for the EEG data (protocol number and approval ID are X19-0323 and 2019/ETH11868)
since only de-identified EEG data was acquired. Written informed consent was obtained from all
participants who attended the Brain and Mind Centre for an MRI scan, as per the approved MRI
ethics (protocol number and approval ID are X14-0347 and HREC/14/RPAH/467).

Data Availability Statement: The datasets generated and/or analysed during the current study
are not publicly available because they are RPAH patients and can only be accessed by authorised
individuals named on the approved ethics. However, de-identified, processed data can be made
available upon request to the corresponding author, and subject to approval from the governing
ethics entities at the RPAH and The University of Sydney.

Acknowledgments: The Authors acknowledge all staff at the Comprehensive Epilepsy Centre at the
RPAH, particularly Maricar Senturias (RN/ACNC Epilepsy), who assisted with patient recruitment.
The Authors acknowledge the radiology staff at i-MED Radiology for their assistance in obtaining the
MRI data. The Authors acknowledge the research funding support from UCB Australia Pty Ltd. C.M.
acknowledges scholarship support from the Nerve Research Foundation, University of Sydney. A.D.
acknowledges funding from St. Vincent’s Hospital. O.K. acknowledges the partial support provided
by The University of Sydney through a SOAR Fellowship and Microsoft’s partial support through a
Microsoft AI for Accessibility grant. CW acknowledges research funding from the Nerve Research
Foundation, University of Sydney.

Conflicts of Interest: The Authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

35



Appl. Sci. 2022, 12, 10487

Appendix A

1 2 3

4 5 6

7 8 9

Figure A1. Heatmaps of z-scores from MRI and EEG connectomes. L: Left, R: Right. Patients are
numbered 1–9 above each “head” and their respective connectomes are shown below the “head” map
in the same grouping as Figure 2 in the main text. The “EEG 1s windows” depict the left and right
side of each EEG connectome, split into 1 s windows. The structural (MRI) connectomes are split into
left and right sides (“L MRI” and “R MRI”) and positioned alongside the matching EEG connectome
side (i.e., left MRI next to left EEG connectome). The left and right electrode pairs are listed next to
the respective side of the connectome.
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Abstract: The complex network nature of human brains has led an increasing number of researchers to
adopt a complex network to assess the cognitive load. The method of constructing complex networks
has a direct impact on assessment results. During the process of using the cross-permutation entropy
(CPE) method to construct complex networks for cognitive load assessment, it is found that the
CPE method has the shortcomings of ignoring the transition relationship between symbols and the
analysis results are vulnerable to parameter settings. In order to address this issue, a new method
based on the CPE principle is proposed by combining the advantages of the transition networks
and the bubble entropy. From an interaction perspective, this method suggested that the node-wise
out-link transition entropy of the cross-transition network between two time series is used as the
edge weight to build a complex network. The proposed method was tested on the unidirectional
coupled Henon model and the results demonstrated its suitability for the analysis of short time series
by decreasing the influence of the embedding dimension and improving the reliability under the
weak coupling conditions. The proposed method was further tested on the publicly available EEG
dataset and showed significant superiority compared with the conventional CPE method.

Keywords: cognitive load; coupling; bubble entropy; transition network

1. Introduction

Different levels of cognitive demand can accommodate the complexity and variability
of the everyday tasks and the environments, and can result in different cognitive loads [1–3].
Continuous high cognitive load will not only lead to inefficient work but also accidents
that might lead to life-threatening consequences. In addition, it also has negative effects
on physical and mental health, such as insomnia, decreased immunity, susceptibility to
infection, and migraines [4–8]. As a practical necessity, the evaluation of cognitive load or
mental load has become a hot topic of research. Therefore, it is of practical significance to
design and build a system capable of detecting cognitive load. The use of such a system will
not only make it possible to assess the impact of different tasks on the cognitive load, but
more importantly, a timely and accurate estimate of cognitive load will help to determine
the optimum level of mental load, in order to prevent accidents and make workers more
compatible with the work environment. Conventionally, the measurement of cognitive
load can be divided into subjective and objective measures [9]. Subjective measures are
collected via interviews or questionnaires. They are usually unreliable due to the subjective
opinions of the participants [10–12]. In contrast, objective measures that are mainly based
on task performances or derived from physiological recordings are less intrusive to the
task and independent of the participants’ opinion. With the development of technology,
neurophysiological activities from brain, heart, and eye movement can be recorded and
analyzed to reflect the mental state objectively in a noninvasive way [13]. Previous studies
have confirmed that signals such as near-infrared spectroscopy (NIRS), functional magnetic
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resonance imaging (fMRI), electrocorticography (ECoG), or electroencephalography (EEG)
are closely correlated with brain status and can provide a useful way to assess cognitive
load [14–18]. Among these physiological signals, EEG has been widely concerned by
researchers because of its high time resolution, noninvasiveness, convenience, security,
cheapness, and portability [19,20].

In general, the EEG signal is nonstationary and nonlinear. Linear analysis techniques
in the time–frequency domain can be used to detect rhythmic oscillations, but the contained
nonlinear information cannot be effectively extracted [21]. Therefore, many scholars have
attempted to extract various nonlinear parameters from EEG signals and combine them with
the machine learning technique in order to effectively capture the subtle information related
to the physiological states. Nilima Salankar et al. used the empirical mode decomposition
(EMD) and the variational mode decomposition (VMD) to decompose the EEG signals,
respectively, and then used the second-order difference plots for feature mining of the
decomposed intrinsic modes. The results showed that alcoholic (A) and nonalcoholic (NA)
subjects could be accurately classified when using short-duration EEG recordings [22].
Mohammad Shahbakhti et al. proposed extracting Katz and Higuchi’s fractal dimensions,
dispersion entropy, and bubble entropy from the sub-band of a single-channel frontal
EEG recording to construct the nonlinear feature set and then differentiate between the
arousal and the sleep stage I [23]. Jose Kunnel Paul et al. used seven nonlinear parameters,
including the sample entropy (SampEn), fractal dimension (FD), higher-order spectrum
(HOS), maximum Lyapunov index (LLE), Kolmogorov complexity (KC), Hurst index (HE),
and the band power of the EEG signal in sleep stage 2 and 3 as the features to classify
between patients with fibromyalgia and healthy controls. The accuracy, sensitivity, and
specificity of the classification results were 96.15%, 96.88%, and 95.65%, respectively [24].
The nonlinear parameters in the above-mentioned methods were taken from individual
EEG channels and involve no information on the interaction between different channels.
However, previous research has shown that the brain should be treated as a complex
network system based on the many features it shares with networks of other biological
and physical systems [25]. Complex network analysis is a powerful technique based on
the graph theory that typically uses a small number of valid and reliable measures to
capture the features of the brain network [26]. There is a growing interest in the cognitive
load assessment through the construction of complex networks, and various methods
have been proposed to convert time series into networks [27–30]. Complex networks
constructed using different network construction algorithms may have distinct, significantly
different properties [31]. A variety of methods have been proposed so far to define the
concept of connectivity between nonlinearly coupling components and investigate the
characteristics of the topological properties of networks. Among different methods, for
example, the mutual information (MI) (including its time-delayed version) [32,33], transfer
entropy (TE) [34], inner composition alignment (IOTA) [35] and cross-sample entropy
(CSE) [36], the TE is widely used in particular as a nonparametric measure that does
not rely on any assumption of some model and can capture the directional and dynamic
interaction between the different components of a time series [37,38]. However, in practice,
an unavoidable pitfall of TE is that robust estimation of the interactions requires long-term
data recordings. In order to meet the need for interaction estimation using finite data
samples, Shi et al. proposed the CPE by fusing inner composition alignment (IOTA) and
permutation entropy, and validated it in financial time series analysis [39], noting that CPE
was simple, stable, and efficient.

In the original CPE method, only the probability distribution of the symbols after
coarse graining of the affected time series is considered during the calculation of entropy,
ignoring the transition relationship between the symbols in the temporal domain. For
example, given the symbolized set A = [2 2 4 3 5 1 2] and B = [1 2 2 5 3 2 4 ], the probability
distributions of the elements in set A and set B are the same and, therefore, the original CPE
method would obtain the same entropy value. In addition, like other nonlinear measures,
the CPE method involves the manual selection of parameters to ensure the effectiveness of
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the results. In order to address these issues, a new method to construct the complex network
based on the cross-transition network was proposed in this study to assess cognitive load.
The novelty of the method lies in incorporating the advantages of transition network and
bubble entropy [40] into the CPE to estimate the coupling strength of two time series
from a cross-network perspective. The node-wise out-link transition entropy of two time
series cross-transition networks was proposed as the edge weights between two time
series to construct the complex network, and the network parameters were extracted as a
quantitative measurement of the cognitive load. Referring to the symbolization process of
the bubble entropy, the number of swaps required to sort the phase space reconstruction
vectors of the affected time series in the ascending order was used instead of the number
of intersections calculated by the OITA method in the original CPE. In order to verify
the effectiveness of the proposed method, the unidirectional coupled Honen model with
different coupling strengths was used, and the results were compared with those obtained
using the original CPE. The proposed method and the original CPE method were further
compared by constructing the complex network on the realistic EEG recordings from the
mental arithmetic task. The significance of the selected network indicator and the capability
of the proposed method to differentiate different levels of brain cognitive load were verified
using the nonparametric permutation test.

The contributions of this paper are as follows.
1. Based on the cross-transition network, a novel method is proposed that reflects the

information interaction between two time series in more detail.
2. The symbolization process with reference to the bubble entropy minimizes the effect

of parameter setting on the analysis results.
3. The topological characteristics of complex networks constructed using the node-

wise out-link transition entropy of cross-transition networks as the edge weights have the
potential to provide useful indicators for physiological complex networks.

This paper is organized as follows. In Section 2, the implementation process of
the proposed method in this study is described in detail. In Section 3, the CPE and the
proposed method are used to analyze the unidirectional coupled Honen model with its
parameters varied, respectively, and their performance is compared. Next, a realistic
EEG dataset recorded during the mental arithmetic task is analyzed by constructing the
complex networks using the two methods, respectively, in order to further demonstrate
the effectiveness of the proposed method. The discussion and conclusions are given in
Sections 4 and 5.

2. Materials and Methods

In this section, the CPE method is briefly introduced, and then the detailed implemen-
tation process of the proposed method is described.

2.1. CPE

Based on the permutation entropy and IOTA, Shi et al. proposed the CPE to analyze
the information interactions between financial time series [39]. The implementation process
is as follows:

1. For two time series with the same length {x(t)} and {y(t)}, t = [1, 2, . . . , N], their state
vectors Xt = [xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ ] and Yt = [yt, yt+τ , yt+2τ , . . . , yt+(d−1)τ ],
t ∈ [1, 2, . . . N − (d − 1)τ], are obtained through the phase space reconstruction
procedure using the delay parameter τ and the embedding dimension d.

2. Performing nondecreasing sort on state vector Xt, and obtaining its position index
πX . Rearranging the state vector Yt with the position index πX as the standard, and
the result is recorded as Gt = Yt(πx).

3. Based on the principle of IOTA, the monotonicity is quantified by counting the number
of intersection points of the horizontal lines which are drawn from each data point of
Gt and Gt itself. The intersections number of the kth state vector is calculated using
the following equation:
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kt =
d−2

∑
i=1

d−1

∑
j=i+1

Θ[(Gt(j + 1)− Gt(i))(Gt(i)− Gt(j))] (1)

where Θ[x] is the Heaviside function:

Θ[x] =
{

1, x > 0
0, x ≤ 0

(2)

4. According to this method, all state vectors of the time series are traversed, and the
number of the intersections of each state vector can be expressed as a unique integer
z, z ∈ [0, R], R = (d − 1)(d − 2)/2 is the maximum possible number of intersections.
For all the R + 1 possible values for the integer zi, i = 0, 1, . . . , R of intersection points
kt in each state vectors, its probability can be obtained by

p(zi) =
#{kt|kt = zi}
N − (d − 1)τ

(3)

where 1 ≤ t ≤ N − (d − 1)τ, 0 ≤ i ≤ R, # is the number of elements in the set. Then, after
obtaining the probability distribution set P = {p(zi), i = 1, . . . , R}, CPE is defined as:

Hx→y(d, τ) = −
R

∑
i=0

p(zi) log2 p(zi) (4)

According to the above definition, the greater the coupling strength between the two
time series, the smaller the CPE. For two random time series, the entropy value reaches the
theoretical maximum log2(R + 1).

2.2. Cross-Bubble Transition Network (CBTN)

In the original CPE, the process of counting the intersection number of each state
vector is essentially a symbolization of it. In the calculation of entropy, only the probability
distribution of symbols is considered and the transition behavior between adjacent symbols
is ignored. Therefore, the transition network is introduced, in which each symbol is
taken as a node and a directional weighted complex network is constructed based on
the temporal adjacency of the symbols, with the network weights being the number of
transitions between nodes. In addition, to limit the impact of parameter selection on
the analysis results, the symbolization process of the bubble entropy was referenced by
replacing the intersection number corresponding to each state vector with the number of
swaps necessary to sort the state vector in ascending order. The specific implementation
process of the cross-bubble transition entropy (Algorithm 1) is as follows:

1. For two equal length time series {x(t)} and {y(t)}, t = [1, 2, . . . , N], their state
vectors Xt = [xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ ] and Yt = [yt, yt+τ , yt+2τ , . . . , yt+(d−1)τ ],
t ∈ [1, 2, . . . , N − (d − 1)τ], are obtained through the phase space reconstruction
procedure using the delay parameter τ and the embedding dimension d. Here,
following the parameter choice of bubble entropy, τ = 1;

2. Performing ascending sort on the state vector Xt, and obtaining its position index πXt .
The state vector Yt was rearranged using the position index πXt as a criterion and the
result was recorded as Gt = Yt(πXt), t ∈ [1, 2, . . . , N − d + 1];

3. Sorting the elements in each state vector Gt = Yt(πXt), t ∈ [1, 2, . . . , N − d+ 1] in ascend-
ing order, and calculating the necessary number of swaps Si, Si ∈ [0, 1, . . . , d(d − 1)/2];
this is because the number of possible swaps in bubble sort for a d dimensional state
vector is from 0 to d(d − 1)/2;

4. Using Si, Si ∈ [0, 1, . . . , d(d − 1)/2] as network nodes, a directional weighted complex
network W was constructed according to the temporal adjacency relationship of Si
and the weight of the network W was the numbers of transition between nodes;
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5. In order to reflect the connection relationship between nodes as much as possible,
the node-wise out-link transition entropy (NOTE) of the adjacency matrix W was
proposed to be used as an indicator parameter. The NOTE was obtained as follows.

The Shannon entropy of each row of the adjacency matrix W was calculated to obtain
the local node out-link entropy SWi , which was used to measure the probability distribution
of the output strengths of each node.

SWi = −
D

∑
j=0;j �=i

wij log 2(wij) (5)

where D = d(d − 1)/2, wij was the ratio of the output strength from node i to node j to all

the output strengths of node i,
D
∑

j=0
wij = 1, and the normalized SWi was

HWi = SWi /Si,max (6)

where Si,max = log 2(D + 1) was the normalization factor and kept the same for all nodes.
The node-wise out-link transition entropy of the adjacency matrix W was

HNOTE =
D

∑
i=0

pi HWi (7)

where pi was the probability distribution of each node.
The pseudo-code of the proposed algorithm is illustrated as follows.

Algorithm 1. Cross-bubble transition entropy

CBTN (x(t), y(t), d, τ) // x(t), y(t) are time series. d is embedding dimensions.
τ is delay time.

1 performing phase space reconstruction on x(t), y(t) to get
Xt = [xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ ] and Yt = [yt, yt+τ , yt+2τ , . . . , yt+(d−1)τ ],

t ∈ [1, 2, . . . , N − (d − 1)τ]
2 for t = 1 to N − (d − 1)τ
3 performing ascending sort on Xt to get its position index πXt ,
4 Yt is rearranged according to πXt to get Gt = Yt(πXt ),
5 sorting Gt in ascending order by bubble method and get swaps number Si,
Si ∈ [0, 1, . . . , d(d − 1)/2]. //d(d − 1)/2 is the maximum swaps number
6 Using Si as network nodes, by temporal adjacency relationship of Si to construct a directed

weighted complex network W.
7 for i = 0 to D // D = d(d − 1)/2

8 SWi = − D
∑

j=0;j �=i
wij log 2(wij), //

D
∑

j=0
wij = 1

9 normalizing SWi to get HWi = SWi /Si,max, // Si,max = log 2(D + 1)
10 HNOTE = 0.
11 for i = 0 to D // D = d(d − 1)/2
12 HNOTE = HNOTE + pi HWi . // pi is the probability distribution of Si.
13 return HNOTE.

To demonstrate the performance of the NOTE to track the deterministic dynamical
variation in time series, the values with the NOTE and the original CPE were obtained
separately for the symbolized sets A = [2 2 4 3 5 1 2] and B = [1 2 2 5 3 2 4 ]. The probability
distributions of the elements in the sets A and B were the same. The probability of individual
elements sorted in an ascending order were [0.143, 0.428, 0.143, 0.143, 0.143]. The original
CPE method would yield an entropy value of 2.128 for both sets. The directional weighted
adjacency matrices constructed for the elements in sets A and B according to their temporal
adjacency relationship are shown in Figure 1a,b, respectively. The two adjacency matrices
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exhibited distinct differences. The NOTE value of these two adjacency matrices was
0.1846 and 0.2925, respectively, which shows the different dynamical variations contained
in the sets A and B.

Figure 1. The directional weighted adjacency matrix constructed from the temporal adjacency
relationship for symbol sets A and B. (a) The adjacency matrix for the symbolized set A; (b) The
adjacency matrix for the symbolized set B.

3. Analysis and Results

In this section, in order to verify whether the CBTN can characterize the information
interaction between two time series, it was first tested on the unidirectional coupled Honen
model and its performance was compared with the original CPE method. Next, the complex
network constructed by the CBTN was applied to the realistic EEG recordings during either
the resting state or the mental arithmetic task in order to evaluate the performance of the
proposed method in detecting the changes in the cognitive load.

3.1. Analysis of Coupled Dynamic Model

The validity of the proposed method was first tested on signals generated using two
Henon map unidirectional coupled subsystems with one as the driver subsystem 1 and the
other as the responder subsystem 2. The equations of the system are expressed as follows:⎧⎪⎪⎨⎪⎪⎩

x1t+1 = 1.4 − x12
t + 0.3 × y1t

y1t+1 = x1t
x2t+1 = 1.4 − (C × x1t + (1 − C)× x2t)× x2t + 0.3 × y2t
y2t+1 = x2t

(8)

The parameter C is a coupling parameter varying from 0 to 1. When C is 0, the two
subsystems are entirely independent and there is no definite dynamical behavior between
them. When C is 1, the two subsystems are completely synchronized and there is a definite
dynamical relationship between them. The values of x11, y11, x21 and y21 are initialized
randomly in the range from 0 to 1. Then, 50,000 points are calculated according to (8) and
the first 20,000 are discarded as the transients.

From the definition of CBTN, we can see that the unique parameter relevant to the
CBTN is the embedding dimension d. The parameter d defines the embedding spatial
dimension of a given time series. Another noteworthy issue is the appropriate signal length
in order to obtain reliable results. One fact is that the signal length is limited, and the other
is that the calculation process can only be performed in one window. The values of these
two parameters determine whether the results of the analysis can be described or not and
whether it is possible to extract the deep relationships hidden between the two time series.
Here, the determination process of these two parameters is explained by analyzing the
unidirectional coupled Honen model with the deterministic coupling relationship. It was
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selected because the theoretical value of each expected return can be calculated. Based
on this theoretical value, it can be evaluated whether the result obtained with a specific
parameter setting can converge reliably and stably to the expected value or not. In addition,
in order to highlight the impact of the CBTN on the analysis result, the CPE results for
the same objects were used as a comparison. When the CPE was used, the embedded
dimension was 5 and the delay time was 2.

The appropriate signal length was determined by investigating the effect of the width
of the analysis window on the results. For the time series x1 and x2 obtained using the
unidirectional coupled Henon model under a certain coupling strength, the surrogate
data x2Surrogate were first calculated by surrogating x2 using iAAFT (iterative amplitude-
adjusted Fourier transform with five iterations) to mimic the random coupling state. Next,
the sliding time window with a fixed moving step of 500 samples was chosen to segment
the paired time series x1 and x2 and x1 and x2Surrogate. The purpose of using the sliding
time window is to enhance the effect of data analysis. The width of the sliding window
width was increased from 200 to 5000 samples with a step of 200 samples. With each
window width, the coupling strength between x1 and x2Surrogate and between x1 and x2
was calculated using the CBTN for individual sliding windows, obtaining the Hx1−x2Surrogate

NOTE

and Hx1−x2
NOTE , respectively. The differences Hx1−x2Surrogate

NOTE − Hx1−x2
NOTE were first calculated for

individual windows and then averaged across windows as the measured difference. The
same procedure was repeated for 30 times with each window width and then averaged
across repetitions to obtain the average and standard deviation of the measured difference.
The coupling strength between x1 and x2 was set to 0.1, 0.3, and 0.5, respectively, and
the results are shown in Figure 2. Figure 2a shows the results of the CBTN method and
Figure 2b shows the results of the CPE method. It can be found that the two methods can
make a good distinction between different coupling strengths. The CPE method can reach
a stable state when the window width is less than 1000 samples, and the CBTN method can
reach a stable state when the window width is more than 2000 samples. It was speculated
that the CPE was appropriate for the analysis of short time series when it was proposed.
Therefore, the appropriate window width for the CBTN is 2000 samples. It should be noted
that the differences Hx1−x2Surrogate

CPE − Hx1−x2
CPE had a negative value with the CPE method

when the coupling strength was 0.1. This is inconsistent with the theory and indicates that
the CPE was not capable of differentiating the weak coupling state.

With the determined window width of 2000 samples, the impact of the embedding
dimension d on the estimation of the coupling strength was further investigated using the
same method as above. The dimension d varied from 3 to 15 with a step of 1. Figure 3
compares the results between the CBTN method and the CPE method. It can be seen that the
results of CBTN method tended to be stable with the increase in the embedding dimension d.
When the embedding dimension was greater than 10, the measured difference under three
coupling strength levels basically reached a stable state. In contrast, the measured difference
using the CPE method was greatly affected by the embedded dimension. Within the varying
range of the embedded dimension, the measured difference under three coupling strength
levels could reach a stable state. When the embedding dimension was greater than 11, the
measured difference under the stronger coupling strength (C = 0.3) was even smaller than
that under the weaker coupling strength (C = 0.1 and C = 0.2). These results demonstrated
that the CBTN method can be less affected by the embedding dimension d compared with
the CPE method. More specifically, the embedding dimension would have little influence
when it is greater than a certain value. Accordingly, for the unidirectional coupled Henon
model, the recommended embedding dimension d for the CBTN method was set to 10.
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Figure 2. The results of the unidirectional coupled Henon model using CBTN and CPE for coupling
analysis, respectively, at different coupling strengths C = 0.1, 0.3, 0.5 and when the sliding time
window width is varied in steps of 200 samples within [200, 5000]. The values of the ordinate are
Hx1−xsurrogate

2 − Hx1−x2 . xsurrogate
2 can be obtained by surrogating x2 using the iAAFT method. (a) The

results of coupling analysis using CBTN (30 repeated calculations); (b) The results of coupling analysis
using CPE, d = 5, τ = 2 (30 repeated calculations).

Figure 3. At different coupling strengths C = 0.1, 0.3, 0.5, the sliding time window width is fixed at
2000 samples, and the embedding dimension d is taken from 3 to 15; the results of unidirectional
coupled Henon model using CBTN and CPE for coupling analysis, respectively. The values of
ordinate are Hx1−xsurrogate

2 − Hx1−x2 . xsurrogate
2 can be obtained by surrogating x2 using the iAAFT

method. (a) The results of coupling analysis using CBTN (30 repeated calculations); (b) The results of
coupling analysis using CPE, τ = 2 (30 repeated calculations).

After the embedding dimension and the sliding window width were determined,
the CBTN was used to analyze the unidirectional coupled Honen model under different
coupling strengths C. Specifically, the coupling strength C increased from 0 to 0.9 with
a step of 0.05. For a given coupling strength, the data of x1, x2 and x2Surrogate within
individual sliding windows were analyzed using the CBTN and CPE methods, respectively,
to obtain the Hx1−x2

NOTE , Hx1−x2
CPE , Hx1−x2Surrogate

NOTE and Hx1−x2Surrogate

CPE . The procedure was also
repeated 30 times under each coupling strength, and the mean value and the standard
deviation across 30 repetitions were calculated. Figure 4 illustrates the average value
of Hx1−x2

NOTE , Hx1−x2
CPE , Hx1−x2Surrogate

NOTE and Hx1−x2Surrogate

CPE across all repetitions under different
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coupling strength levels. In the figure, the dashed boxes indicated by the arrows are partial
zooms of the analysis results. As can be seen from Figure 4, the greatest difference between
the analytical results of CBTN and CPE was mainly in the part where the coupling strength
was less than 0.2. In this part, the CBTN method gives correct analysis results, while
the CPE calculation results are greater than the values under the random coupling state,
which is inconsistent with the theory. The possible reason is the CPE method that is based
on the probability distribution statistics of symbols cannot distinguish the interactions
between time series under weak coupling conditions. In contrast, the proposed CBTN
method has good detection capability of interactions between time series with a weak
coupling strength.

Figure 4. Coupling analysis results for the CBTN-based unidirectional coupled Henon model when
the sliding time window is fixed at 2000 samples and the coupling strength C is varied in steps
of 0.05 in the range [0, 0.9]. The values of the ordinate are HNOTE. The blue curve is the NOTE
between x1 and x2 and the red curve is the NOTE between x1 and xsurrogate

2 . xsurrogate
2 can be obtained

by surrogating x2 using the iAAFT method (all values in the graph are the result of 30 repeated
calculations). (a) The results of coupling analysis using CBTN. (b) The results of coupling analysis
using CPE, d = 5, τ = 2.

3.2. Analysis of Realistic EEG in Mental Arithmetic Tasks

In order to demonstrate the performance of the proposed CBTN method on realistic ex-
perimental data, the EEG signals of mental arithmetic tasks-dataset were used to distinguish
the difference between the resting and the arithmetic states of the brain [41]. The dataset can
be downloaded freely from the website: https://physionet.org/content/eegmat/1.0.0/,
accessed on 23 January 2022. Electrodes were placed according to the international
10/20 scheme and the equipment used was the Neurocom monopolar EEG 23-channel sys-
tem (Ukraine, XAI-MEDICA). The placement of the silver/silver chloride electrodes on the
scalp was prefrontal (Fp1 and Fp2), frontal (F3, F4, Fz, F7, and F8), central (C3, C4, and Cz),
parietal (P3, P4, and Pz), occipital (O1 and O2), and temporal (T3, T4, T5, and T6), all refer-
enced to an interconnected ear reference electrode. The impedance between the electrodes
and the scalp was less than 5 kΩ, and the sampling rate for each channel was 500 Hz. The
acquired EEG signals were filtered using a high-pass filter with a cut-off frequency of 0.5 Hz,
a low-pass filter with a cut-off frequency of 45 Hz, and a power line notch filter (50 Hz). The
EEG data from 36 subjects (9 males and 27 females, aged 16–26 years) met the requirements
for analysis, after a visual inspection of the filtered signals by neuroelectrophysiologists to
remove data with poor signal quality. Subject 31 was not included because the length of
the recordings was different from that of other subjects. The experiments involved mental
arithmetic tasks and each experiment trial was divided into three phases: an adaptation
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period, a resting state and an arithmetic state. First, the subjects were acclimatized to the
experimental conditions for 3 min. Afterwards, the subjects relaxed for 3 min with their
eyes closed in the resting state. Finally, the subjects were asked to perform a succession of
subtractions in 4 min, each consisting of a four-digit (subtracted number) and two-digit
(subtracted number) succession. The two digits were given to the subject verbally and
the arithmetic task was not allowed to be performed verbally, but finger movements were
allowed. In order to minimize the effect of emotional fluctuations caused by the increased
cognitive load of the subjects during intensive cognitive activity on the results of the EEG
analysis, the last minute of the resting state and the first minute of the arithmetic state were
selected for analysis. Neuroimaging studies showed that the prefrontal and frontal regions
were significantly activated during the performance of arithmetic or cognitive tasks [42,43].
Therefore, EEG data collected from seven channels (FP1, FP2, F3, Fz, F4, F7, and F8) in
the prefrontal and frontal lobes were used in this study, and the NOTE between any two
channels was calculated using the CBTN method to construct an undirected weighted
network with the NOTE as the edge weight. Network parameters were extracted from
the constructed complex network as a quantitative evaluation indicator of cognitive load.
Since the NOTE value is inversely correlated with the coupling strength, in the subsequent
analysis, the NOTE values were reversely processed (1 minus the value of NOTE), so that
they would adhere to our intuition.

EEG signals were first detrended using the singular value decomposition (SVD)
method. Then, the detrended EEG signal was filtered using the harmonic wavelets in
the frequency range of 1 to 42 Hz. The obtained resting and arithmetic state EEG signals
from seven channels were segmented using a sliding time window with a width of 2000
samples and a moving step of 500 samples. Within each window, the NOTE was estimated
between any two of the seven EEG channels using the CBTN method. With the NOTE
value as the edge weight, the complex network was constructed and the average cluster-
ing coefficient and the global network efficiency of the complex network were calculated.
Following the same procedure, all sliding windows were analyzed in turn to obtain the
average aggregation coefficient sequence and the global network efficiency sequence of
the subject in a state. Since the distribution of the obtained sequences were unknown,
the nonparametric permutation test (1000 repeated arrangement sampling) was used to
assess the significance between the same sequences in the two states of the subject. The
significance level p was set to 0.05. As a comparison, the same operation was performed
on this subject using the CPE method with an embedding dimension of 5 and a delay
time of 8. The results of the significance analysis between the feature sequences for all the
35 subjects under the two method treatments are shown in Table 1. The values bolded in
black in Table 1 indicate statistical insignificance between the two states. As can be seen
from the results of the analysis in Table 1, the CBTN method is obviously superior to the
CPE method.

In order to confirm whether there were group differences in the EEG signals between
the resting and arithmetic states, the mean adjacency matrix of each subject was constructed
using the CBTN, and the network parameters of the mean adjacency matrix were extracted
for each subject. The same procedure was performed using the CPE as comparison. The
EEG data within each sliding window were analyzed using the CBTN to build a complex
network, and its adjacency matrix was obtained. All adjacency matrices from the same
subject under the same state were averaged. The clustering coefficient and the global
network efficiency of the average adjacency matrix were used as a feature for each subject.
In this way, the feature in the two states was obtained for individual subjects. The results
obtained for all subjects are shown in Figure 5. It can be seen that for most subjects, the
mean clustering coefficient of the arithmetic state was smaller than that of the resting state
and the global efficiency of the arithmetic state was greater than that of the resting state.
This means that the network in the prefrontal area was more efficient and had enhanced
information processing capacity during the arithmetic state. It also means an increased

48



Appl. Sci. 2022, 12, 11165

cognitive load during the arithmetic state. Figure 6 shows the analysis results of extracting
the features of the complex network constructed by the CPE method under two states.

Table 1. Results of nonparametric permutation tests for each subject’s feature sequences in the resting
and arithmetic states (1000 repeated arrangement sampling, significant level p = 0.05).

CBTN CPE

ACE GNE ACE GNE

Subject 0 0 0 0 0
Subject 1 0 0 0 0
Subject 2 0.004 0.001 0 0
Subject 3 0 0 0 0
Subject 4 0.973 0.540 0.665 0
Subject 5 0 0 0.518 0.342
Subject 6 0 0 0 0
Subject 7 0 0 0 0
Subject 8 0 0 0 0
Subject 9 0 0 0 0

Subject 10 0 0 0 0
Subject 11 0 0 0 0
Subject 12 0.005 0.018 0 0
Subject 13 0 0 0 0
Subject 14 0.646 0.832 0 0.018
Subject 15 0 0 0 0
Subject 16 0 0 0 0
Subject 17 0.125 0.158 0.398 0.035
Subject 18 0 0 0 0
Subject 19 0 0 0 0
Subject 20 0 0 0 0
Subject 21 0 0 0 0
Subject 22 0 0 0.001 0.021
Subject 23 0 0 0.186 0.680
Subject 24 0 0 0.005 0.004
Subject 25 0.011 0.007 0.483 0.603
Subject 26 0 0 0.049 0.08
Subject 27 0 0 0 0
Subject 28 0 0 0 0
Subject 29 0 0 0 0
Subject 30 0 0 0 0
Subject 32 0 0 0.591 0.895
Subject 33 0 0 0 0
Subject 34 0 0 0 0
Subject 35 0 0 0 0

ACE (average clustering coefficients), GNE (global network efficiency). Non significant results are shown in bold.

In order to verify whether there was significant difference between the two states at
the group level, the results was statistically analyzed using a paired sample t-test. The sig-
nificance level was set at p = 0.05, and statistical analysis was performed on IBM SPSS25.0.
The results of the statistical analysis showed that there was a significant difference in the
mean clustering coefficients (p = 0.0013) and in the global network efficiency (p = 0.0017)
between the two states using the CBTN method (Figure 5). The results of the statistical
analysis also showed that there was a significant difference in the mean clustering coeffi-
cients (p = 0.0056) and in the global network efficiency (p = 0.0061) between the two states
using the CPE method. Although both methods can distinguish between the two states,
the CBTN analysis was significantly better than the CPE analysis. This suggests that a
complex network based on the CBTN using electrodes in the prefrontal and frontal lobe
can distinguish well between the two cognitive states, demonstrating the validity of the
CBTN method in practical applications.
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Figure 5. The average clustering coefficient (a) and global network efficiency (b) of the average
adjacency matrix constructed by the CBTN method for each subject.

Figure 6. The average clustering coefficient (a) and global network efficiency (b) of the average
adjacency matrix constructed by the CPE method for each subject.

4. Discussion

The aim of this study is to construct a complex network using multichannel EEG
signals to enable the assessment of cognitive load. The method of constructing the network
directly affects the reliability of the assessment. In the process of using CPE suitable for
the analysis of short time series to construct complex networks, it was found that the
CPE method suffered from the lack of differentiation ability caused by considering only
the probability distribution of symbols and ignoring the transition relationship between
symbols in the temporal domain. In addition, as a nonlinear analysis method, the choice
of parameters in the CPE had a large impact on the analysis results. In order to alleviate
these issues, the CBTN is proposed to measure the coupling relationship between two
time series from the perspective of cross-transition networks. The innovation of the CBTN
is that it combines the advantages of the transition network and the bubble entropy on
the basis of the principle of CPE. The introduction of the transition network solved the
problem of ignoring the transition relationship between symbols in the CPE method. The
symbolization method with reference to bubble entropy made the analysis result less
affected by the embedding dimension. The effectiveness of the method was verified via
a comparison with the CPE method on the unidirectional coupled Henon model. Firstly,
the results show that the CBTN method could achieve satisfactory results when the signal
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length reached 2000 samples, although this was slightly larger than that needed in the
CPE method. This finding suggests that the CBTN is equally suitable for the analysis of
short time series. Secondly, in the experiment study, the result tended to be stable for any
coupling strength as long as the embedding dimension of the CBTN was greater than 10.
This result indicates that the CBTN method is less affected by the coupling strength. Last,
under weak coupling conditions, the CPE method failed to achieve the right results, while
the CBTN could still obtain reliable results, indicating that the CBTN was able to uncover
the weak coupling relationships between time series. These three properties ensure that
the complex network constructed by the CBTN method outperformed the CPE in its ability
to analyze cognitive load using EEG datasets. The results of the above analysis clearly
demonstrate that the proposed method shows several advantages.

1. This method involves few parameters in use, and the value setting of the parameters
has little influence on the analysis results.

2. The cross-transition network allows the method to be more sensitive to weak
changes in the information interaction between two time series and is more suitable for
analysis in weakly coupled conditions.

3. The normalization measures in the definition of node-wise out-link entropy mini-
mize the impact of intersubject variation on the analysis results.

4. The implementation of the algorithm only involves the ranking of numbers and
the probability distribution statistics of symbols, which is easy to be processed and imple-
mented by a computer.

Although the study showed promising results, the limitation of this work should
be considered. Firstly, the adjacency matrix of the cross-transition network was a static
representation of information interaction between two time series in a period of time. This
means that the method was explicitly time-dependent. The analysis of excessively long
time series may have caused a reduction in the variation in the adjacency matrix, making
identification less effective. This needs further study. Secondly, when using EEG datasets
for cognitive load assessment, the electrodes used for analysis were determined subjectively
only based on the findings of the neuroimaging, ignoring other aspects of the selection
factors. As pointed out in the literature [44], in practical application, the practicality of
electrode installation and the comfort of subjects should also be considered. Thirdly, the
phase space reconstruction of the time series only considered the influence of the embedded
dimension as a variable on the analysis results, and the time delay was set to 1 according to
the bubble entropy. In the next research work, the comprehensive impact on the analysis
results when these two parameters are variables will be studied in depth.

5. Conclusions

In this study, the advantages of the transition network and the bubble entropy were
integrated based on the CPE method, and a new method to measure the coupling strength
of two time series was proposed from the perspective of a cross-transition network. It
was further used to build complex networks using the multichannel EEG recordings
for cognitive load assessment. The results of the unidirectional coupled Honen model
showed that this proposed method was not only suitable for the analysis of coupling
strength between two short time series, but also had the advantages of being less affected
by nonlinear parameters and sensitive to a weak coupling relationship. In addition, the
proposed CBTN showed better performance in differentiating cognitive load than the CPE.
The new method can be used for state evaluation based on multichannel physiological
signals, such as brain state monitoring, quantitative evaluation of various types of mental
diseases, and motion decoding based on multichannel electromyography (EMG). It also
has an application potential in the financial research field.

51



Appl. Sci. 2022, 12, 11165

Author Contributions: Conceptualization, X.C. and G.X.; methodology, X.C.; software, X.C. and X.Z.;
validation, S.Z. and Z.T.; formal analysis, X.C.; investigation, X.C.; resources, S.Z.; data curation, X.C.;
writing—original draft preparation, X.C.; writing—review and editing, X.C. and G.X.; visualization,
X.Z.; supervision, G.X.; project administration, S.Z.; funding acquisition, S.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Scientific and Technological Innovation 2030, grant number:
2021ZD0204300 and the Xi’an City Innovation Capability Strengthening Basic Disciplines plan, grant
number: 21RGSF0018 and the Key Projects in Shaanxi Province, grant number: 2021GXLH-Z-008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation, to any qualified researcher.

Acknowledgments: We would like to thank all collaborators for their selfless help and guidance
in research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sweller, J. Cognitive load during problem solving: Effects on learning. Cogn. Sci. 1988, 12, 257–285. [CrossRef]
2. Schnotz, W.; Kürschner, C. A reconsideration of cognitive load theory. Educ. Psychol. Rev. 2007, 19, 469–508. [CrossRef]
3. Paas, F.; Tuovinen, J.E.; Tabbers, H.; Van Gerven, P.W. Cognitive load measurement as a means to advance cognitive load theory.

In Educational Psychologist; Routledge, Taylor & Francis: London, UK, 2003; pp. 63–71.
4. Useche, S.A.; Cendales, B.; Gómez, V. Measuring fatigue and its associations with job stress, health and traffic accidents in

professional drivers: The case of BRT operators. EC Neurol. 2017, 4, 103–118.
5. Soares, S.M.; Gelmini, S.; Brandao, S.S.; Silva, J. Workplace accidents in Brazil: Analysis of physical and psychosocial stress and

health-related factors. RAM Rev. Adm. Mackenzie 2018, 19. [CrossRef]
6. Burgess, D.J.; Phelan, S.; Workman, M.; Hagel, E.; Nelson, D.B.; Fu, S.S.; Widome, R.; van Ryn, M. The effect of cognitive load

and patient race on physicians’ decisions to prescribe opioids for chronic low back pain: A randomized trial. Pain Med. 2014,
15, 965–974. [CrossRef] [PubMed]

7. Hulbert, L.E.; Moisá, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [CrossRef]
8. Yang, B.; Wang, Y.; Cui, F.; Huang, T.; Sheng, P.; Shi, T.; Huang, C.; Lan, Y.; Huang, Y.-N. Association between insomnia and job

stress: A meta-analysis. Sleep Breath. 2018, 22, 1221–1231. [CrossRef]
9. Heard, J.; Harriott, C.E.; Adams, J.A. A survey of workload assessment algorithms. IEEE Trans. Hum.-Mach. Syst. 2018,

48, 434–451. [CrossRef]
10. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In

Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183.
11. Reid, G.B.; Nygren, T.E. The subjective workload assessment technique: A scaling procedure for measuring mental workload. In

Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 185–218.
12. Hart, S.G. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, Los Angeles, CA, USA, 16–20 October 2006; pp. 904–908.
13. Arico, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in operational environments: Insights,

recent advances, and future trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [CrossRef]
14. Sibi, S.; Ayaz, H.; Kuhns, D.P.; Sirkin, D.M.; Ju, W. Monitoring driver cognitive load using functional near infrared spectroscopy

in partially autonomous cars. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden,
19–22 June 2016; pp. 419–425.

15. Kadosh, R.C.; Kadosh, K.C.; Linden, D.E.; Gevers, W.; Berger, A.; Henik, A. The brain locus of interaction between number and
size: A combined functional magnetic resonance imaging and event-related potential study. J. Cogn. Neurosci. 2007, 19, 957–970.
[CrossRef]

16. Murugesan, S.; Bouchard, K.; Chang, E.; Dougherty, M.; Hamann, B.; Weber, G.H. Hierarchical spatio-temporal visual analysis
of cluster evolution in electrocorticography data. In Proceedings of the 7th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics, Seattle, WA, USA, 2–5 October 2016; pp. 630–639.

17. Antonenko, P.; Paas, F.; Grabner, R.; Van Gog, T. Using electroencephalography to measure cognitive load. Educ. Psychol. Rev.
2010, 22, 425–438. [CrossRef]

18. Örün, Ö.; Akbulut, Y. Effect of multitasking, physical environment and electroencephalography use on cognitive load and
retention. Comput. Hum. Behav. 2019, 92, 216–229. [CrossRef]

52



Appl. Sci. 2022, 12, 11165

19. Tor, H.T.; Ooi, C.P.; Lim-Ashworth, N.S.; Wei, J.K.E.; Jahmunah, V.; Oh, S.L.; Acharya, U.R.; Fung, D.S.S. Automated detection of
conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals.
Comput. Methods Programs Biomed. 2021, 200, 105941. [CrossRef] [PubMed]

20. Wiersma, M. Identifying workload levels with a low-cost EEG device using an arithmetic task. In Faculty of Science and Engineering;
Macquarie University: Sydney, Australia, 2016.

21. Acharya, U.R.; Chua, C.K.; Lim, T.-C.; Dorithy; Suri, J.S. Automatic identification of epileptic EEG signals using nonlinear
parameters. J. Mech. Med. Biol. 2009, 9, 539–553. [CrossRef]

22. Salankar, N.; Qaisar, S.M.; Paweł Pławiak, P.é.; Tadeusiewicz, R.; Hammad, M. EEG based alcoholism detection by oscillatory
modes decomposition second order difference plots and machine learning. Biocybern. Biomed. Eng. 2022, 42, 173–186. [CrossRef]

23. Shahbakhti, M.; Beiramvand, M.; Eigirdas, T.; Solé-Casals, J.; Wierzchon, M.; Broniec-Wójcik, A.; Augustyniak, P.; Marozas, V.
Discrimination of Wakefulness from Sleep Stage I Using Nonlinear Features of a Single Frontal EEG Channel. IEEE Sens. J. 2022,
22, 6975–6984. [CrossRef]

24. Paul, J.K.; Iype, T.; Dileep, R.; Hagiwara, Y.; Koh, J.W.; Acharya, U.R. Characterization of fibromyalgia using sleep EEG signals
with nonlinear dynamical features. Comput. Biol. Med. 2019, 111, 103331. [CrossRef]

25. Varela, F.; Lachaux, J.-P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev.
Neurosci. 2001, 2, 229–239. [CrossRef]

26. Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev.
Neurosci. 2009, 10, 186–198. [CrossRef]

27. Shang, J.; Zhang, W.; Xiong, J.; Liu, Q. Cognitive load recognition using multi-channel complex network method. In Proceedings
of the International Symposium on Neural Networks, Sapporo, Hakodate, Muroran, Japan, 21–26 June 2017; pp. 466–474.

28. Kakkos, I.; Dimitrakopoulos, G.N.; Gao, L.; Zhang, Y.; Qi, P.; Matsopoulos, G.K.; Thakor, N.; Bezerianos, A.; Sun, Y. Mental
workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments.
IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1704–1713. [CrossRef]

29. Shovon, M.; Islam, H.; Nandagopal, N.; Vijayalakshmi, R.; Du, J.T.; Cocks, B. Directed connectivity analysis of functional brain
networks during cognitive activity using transfer entropy. Neural Process. Lett. 2017, 45, 807–824. [CrossRef]

30. Suresh, K.; Ramasamy, V.; Daniel, R.; Chandra, S. Characterizing EEG Electrodes in Directed Functional Brain Networks Using
Normalized Transfer Entropy and PageRank. In Handbook of Artificial Intelligence in Healthcare; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 27–49.

31. Wang, J.; Wang, L.; Zang, Y.; Yang, H.; Tang, H.; Gong, Q.; Chen, Z.; Zhu, C.; He, Y. Parcellation-dependent small-world brain
functional networks: A resting-state fMRI study. Hum. Brain Mapp. 2009, 30, 1511–1523. [CrossRef] [PubMed]

32. Steuer, R.; Kurths, K., Jr.; Daub, C.O.; Weise, J.; Selbig, J. The mutual information: Detecting and evaluating dependencies between
variables. Bioinformatics 2002, 18, S231–S240. [CrossRef] [PubMed]

33. Vejmelka, M.; Paluš, M. Inferring the directionality of coupling with conditional mutual information. Phys. Rev. E 2008, 77, 026214.
[CrossRef]

34. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [CrossRef]
35. Hempel, S.; Koseska, A.; Kurths, K., Jr.; Nikoloski, Z. Inner composition alignment for inferring directed networks from short

time series. Phys. Rev. Lett. 2011, 107, 054101. [CrossRef]
36. Liu, L.-Z.; Qian, X.-Y.; Lu, H.-Y. Cross-sample entropy of foreign exchange time series. Phys. A Stat. Mech. Its Appl. 2010,

389, 4785–4792. [CrossRef]
37. Shu, Y.; Zhao, J. Data-driven causal inference based on a modified transfer entropy. Comput. Chem. Eng. 2013, 57, 173–180.

[CrossRef]
38. Kiwata, H. Relationship between Schreiber’s transfer entropy and Liang-Kleeman information flow from the perspective of

stochastic thermodynamics. Phys. Rev. E 2022, 105, 044130. [CrossRef]
39. Shi, W.; Shang, P.; Lin, A. The coupling analysis of stock market indices based on cross-permutation entropy. Nonlinear Dyn. 2015,

79, 2439–2447. [CrossRef]
40. Manis, G.; Aktaruzzaman, M.D.; Sassi, R. Bubble Entropy: An Entropy almost Free of Parameters. IEEE Trans. Bio-Med. Eng. 2017,

64, 2711–2718.
41. Zyma, I.; Tukaev, S.; Seleznov, I.; Kiyono, K.; Popov, A.; Chernykh, M.; Shpenkov, O. Electroencephalograms during mental

arithmetic task performance. Data 2019, 4, 14. [CrossRef]
42. Yu, J.; Pan, Y.; Ang, K.K.; Guan, C.; Leamy, D.J. Prefrontal cortical activation during arithmetic processing differentiated by

cultures: A preliminary fNIRS study. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4716–4719.

43. Menon, V.; Mackenzie, K.; Rivera, S.M.; Reiss, A.L. Prefrontal cortex involvement in processing incorrect arithmetic equations:
Evidence from event-related fMRI. Hum. Brain Mapp. 2002, 16, 119–130. [CrossRef] [PubMed]

44. Shahbakhti, M.; Beiramvand, M.; Rejer, I.; Augustyniak, P.; Broniec-Wojcik, A.; Wierzchon, M.; Marozas, V. Simultaneous eye
blink characterization and elimination from low-channel prefrontal EEG signals enhances driver drowsiness detection. IEEE J.
Biomed. Health Inform. 2021, 26, 1001–1012. [CrossRef]

53





applied  
sciences

Article

Effects of Sleep Deprivation on the Brain Electrical Activity
in Mice

Alexey N. Pavlov 1,*, Alexander I. Dubrovskii 2, Olga N. Pavlova 2 and Oxana V. Semyachkina-Glushkovskaya 3

Citation: Pavlov, A.N.; Dubrovskii,

A.I.; Pavlova, O.N.; Semyachkina-

Glushkovskaya, O.V. Effects of Sleep

Deprivation on the Brain Electrical

Activity in Mice. Appl. Sci. 2021, 11,

1182. https://doi.org/10.3390/

app11031182

Academic Editors: Leo K. Cheng, Keun-

Chang Kwak and Jing Jin

Received: 28 November 2020

Accepted: 25 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
2 Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;

paskalkamal@mail.ru (A.I.D.); pavlov_lesha@yahoo.com (O.N.P.)
3 Biology Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;

glushkovskaya@mail.ru
* Correspondence: pavlov.alexeyn@gmail.com

Abstract: Sleep plays a crucial role in maintaining brain health. Insufficient sleep leads to an enhanced
permeability of the blood–brain barrier and the development of diseases of small cerebral vessels.
In this study, we discuss the possibility of detecting changes in the electrical activity of the brain
associated with sleep deficit, using an extended detrended fluctuation analysis (EDFA). We apply
this approach to electroencephalograms (EEG) in mice to identify signs of changes that can be caused
by short-term sleep deprivation (SD). Although the SD effect is usually subject-dependent, analysis
of a group of animals shows the appearance of a pronounced decrease in EDFA scaling exponents,
describing power-law correlations and the impact of nonstationarity as a fairly typical response.
Using EDFA, we revealed an SD effect in 9 out of 10 mice (Mann–Whitney test, p < 0.05) that
outperforms the DFA results (7 out of 10 mice). This tool may be a promising method for quantifying
SD-induced pathological changes in the brain.

Keywords: detrended fluctuation analysis; long-range correlations; electroencephalogram; sleep
deprivation; nonstationarity

1. Introduction

Sleep plays a critical role in maintaining the health of the central nervous system
and resisting small vessel disease in the brain. Over the past decades, there has been
a better understanding of the effects of sleep on the body [1–4]. Sleep is important for
attention and learning and affects long-term memory, decision-making, etc. [5,6]. It is vital
to maintain good overall brain health, and prolonged periods of the absence of sleep can
have serious consequences. Good sleep reduces the risk of neurodegenerative disorders,
and insufficient sleep leads to sterile inflammation in the absence of infection [7–9] and
an enhanced permeability of the blood–brain barrier (BBB) [8,10]. Total sleep deprivation
(SD) of rats resulted in their death [11]. In humans, the longest wakefulness time (11 days)
is accompanied by hallucinations and various cognitive impairments [12]. Thus, it seems
clear that sleep plays an important role in restoring brain function. Sleep is a biomarker of
BBB permeability, and electroencephalography (EEG) is an important informative platform
for analyzing BBB leakage, especially in amyloid lesions of small vessels of the brain [13]. It
is interesting to note that the opening of the BBB and deep sleep are accompanied by similar
activation of toxins clearance from the brain [13]. Thus, nighttime EEG patterns also hide
information about lymphatic drainage and cleansing functions of the brain. Detecting such
information requires techniques that deal with nonstationary signal processing, and one
such tool is the detrended fluctuation analysis (DFA).

Since its appearance [14,15], DFA has attracted considerable attention in many areas
of research, where correlation features of experimental datasets are used to characterize the
complex dynamics of natural systems [16–22]. The traditional correlation function C(τ)
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has two main restrictions, the first of which is the decay of C(τ) with increasing time lag τ,
which is fast for broadband random processes. The latter limits the ability to compute the
scaling exponent describing long-range power-law correlations, because C(τ) approaches
zero and becomes comparable to computational errors for noisy datasets. The second
restriction arises for time-varying dynamics, when the value of C is determined by two
time moments t1, t2. Only for stationary processes there is a dependence on their difference
τ = t2 − t1, and the correlation function is described by one variable. Many natural
processes do not satisfy this requirement, and the traditional approach is used under
the assumption of quasistationarity for short segments of the dataset or after excluding
the trend due to data filtering. The origin of nonstationarity differs. It can be caused by
recording equipment failures or by transients between various system states. Otherwise, it
appears due to internal slow dynamics with time scales comparable to the duration of the
available datasets. In the latter case, we interpret part of the internal dynamics of a system
with time-varying components as a trend. The advantage of DFA is the inclusion of data
filtering (detrending) in the signal processing algorithm [14]. Moreover, this detrending is
carried out for each time scale separately, which is important for inhomogeneous datasets.
Another advantage is the transformation of the decreasing correlation function into a
growing dependence of the root mean square (RMS) fluctuations of the signal profile
around the local trend on the time scale, and the scaling exponent describing its power-
law features is easier to estimate, especially in the region of long-range correlations [15].
The DFA has some limitations that were discussed in earlier studies [23–26]. Despite the
detrending procedure, nonstationarity influences the results, and data preprocessing is still
important for analyzing complex systems using experimentally recorded signals [27].

In its original version [14,15], the DFA considers one basic type of nonstationarity,
namely, slow variations in the local mean value (trend). However, natural processes can
include other types of time-varying behavior, e.g., repeated regular or random switching
between system states, variations in energy, etc. The application of DFA can lead to
misinterpretation of scaling exponents for inhomogeneous datasets, where segments with
small and large RMS fluctuations can coexist, and their number affects the results. Several
attempts have been made to modify the conventional method, such as multifractal DFA,
which introduces a number of quantities instead of a single scaling exponent [28,29].
Recently, we proposed another modification that takes into account local RMS fluctuations
and estimates two scaling exponents describing the features of power-law correlations and
the impact of nonstationarity [30]. This approach, extended DFA (EDFA) [31,32], has been
applied to various types of physiological processes to improve the diagnostic capabilities
of the conventional method. The main idea of EDFA is to take into account the difference
between the maximum and minimum local RMS fluctuations of the signal profile (random
walk) around the trend depending on the time scale. Here, we perform some modification
of the EDFA to provide a more stable computation algorithm, and consider the standard
deviation of the local RMS fluctuations. Such improvement allows us to avoid or at least
reduce the effect of artifacts in experimental measurements, when localized artifacts or
short-term instabilities strongly influence the RMS fluctuations within the conventional
DFA and alter the quantitative measures of long-range correlations.

To illustrate the EDFA’s ability to characterize effects of SD on the brain electrical
activity, here we analyze EEGs acquired in awake mice in two different states—background
electrical brain activity and activity after SD [33–37], when the animals did not sleep for
a day. Unlike prolonged SD, the effects of short-term SD are less obvious. Here, we
study how one-day SD alters long-range power-law correlations in electrical activity in
the brain. The manuscript is organized as follows. In Section 2, we describe the subjects,
experimental procedures, and data measurements used in this work. We also provide a
brief description of DFA and its modified version, EDFA. The results of EEG studies in
mice during background activity and after sleep deprivation are presented in Section 3.
Section 4 summarizes the main findings of the study.
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2. Methods and Experiments

2.1. DFA

DFA is a variant of the correlation analysis of experimental datasets originally pro-
posed by Peng et al. [14,15]. It is based on RMS analysis of signal profile and includes the
following steps:

(1) Transition from signal x(i), i = 1, . . . , N to its profile y(k), k = 1, . . . , N

y(k) =
k

∑
i=1

[x(i)− 〈x〉], 〈x〉 =
N

∑
i=1

x(i). (1)

(2) Segmentation of the profile y(k) into parts of length n (n<N).
(3) Computation of the local trend yn(k) for each segment using a least-squares straight-

line fit.
(4) Estimation of the standard deviation,

F(n) =

√√√√ 1
N

N

∑
k=1

[y(k)− yn(k)]
2. (2)

(5) Implementation steps 2–4 over a wide range of n.
(6) Computation of the scaling exponent α,

F(n) ∼ nα. (3)

Power-law dependence (3) is observed for various random processes, but many real-
world datasets with an inhomogeneous structure often exhibit different local slopes of
lg F vs. lg n, and α may differ for short-range and long-range correlations. DFA is usually
applied to reveal the features of complex dynamics related to the region of long-range
correlations. Specific values of α, associated with α < 0.5, α = 0.5, and 0.5 < α < 1, describe,
respectively, anti-correlated behavior (alternation of large and small values of x(i)), lack of
correlations (e.g., white noise), and positive power-law correlations (large values of x(i)
tend to follow large values, and vice versa) [15]. Positive correlations, which may differ
from power-law behavior, are associated with α > 1.

2.2. EDFA

Signal properties can vary strongly between different parts of a dataset. This is
observed, e.g., for transients from one state to another, when well-pronounced variations
in the local mean value affect the scaling exponent. Considering datasets with and without
such transients can lead to distinct results of DFA. In a recent study [27], we illustrated the
effects of nonstationarity for several cases: low-frequency trend, intermittent dynamics,
and nonstationarity in energy. Besides the case when time-varying dynamics occurs
throughout the signal, the α exponent is also influenced by short-term failures of the
recording equipment or artifacts. Such data segments provide distinct local standard
deviations (2) compared to the averaged quantities. In order to characterize the differences
in nonstationarity across the entire signal, we have proposed the following modification of
the method, called EDFA [31,32]. Within this approach, a new measure

dF(n) = max[Floc(n)]− min[Floc(n)], Floc(n) =

√
1
n

n

∑
k=1

[y(k)− yn(k)]
2 (4)

is introduced, where Floc(n) are the local standard deviations of the profile from the trend,
which are estimated for each segment. The difference dF(n) contains information about the
impact of signal inhomogeneity. If the properties of the signal vary insignificantly, dF(n)
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takes values close to zero. Otherwise, a wide distribution of Floc(n) appears, and dF(n)
varies with n, exhibiting power-law behavior characterized by the scaling exponent β

dF(n) ∼ nβ. (5)

In this definition, β becomes highly sensitive to artifacts in experimental recordings.
The existence of a single artifact can lead to a large Floc(n) associated with max[Floc(n)],
and the latter reduces the stability of the EDFA method. In particular, the dF(n) dependence
can show strong fluctuations with n. A more stable algorithm is based on the statistical
analysis of Floc(n), and the use of the standard deviation σ(Floc(n)) as a measure of the
signal inhomogeneity. Thus, here we propose to consider the dependence

σ(Floc(n)) ∼ nβ. (6)

Figure 1 shows both dependences (5) and (6) in a lg–lg plot for the case of 1/ f -noise
used as a simple example of a homogeneous process with power-law correlations. This
figure confirms that the latter definition provides reduced variability in the estimated
values. Thus, standard error of the β estimates decreases from 0.0038 for the definiton (5)
to 0.0023 for the definiton (6).

For physiological datasets, differences are usually larger. Although the exponents β in
Equations (5) and (6) may differ, we use the same designation (β) to quantify the impact of
nonstationarity and a more stable algorithm based on σ(Floc(n)) for its evaluation. The β
exponent can take as positive, as negative values [30]. Both α and β exponents describe
different signal properties and are independent quantities.
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Figure 1. Dependences described by Equations (5) and (6) in the lg–lg plot for 1/ f -noise. The β-
exponent is estimated with the standard errors 0.0038 and 0.0023, respectively.

2.3. Subjects and Experiments

Experiments were carried out on ten C57BL/6 male mice (20–25 g) in accordance with
the Guide for the Care and Use of Laboratory Animals (8th ed., The National Academies
Press, Washington, 2011). The protocols were approved by the Local Bioethics Commission
of the Saratov State University. The mice were kept in a light/dark environment with
the lights on from 8:00 to 20:00 and fed ad libitum with standard rodent food and water.
The ambient temperature and humidity were maintained at 24.5 ± 0.5 ◦C and 40–60%,
respectively.

A two-channel cortical EEG (Pinnacle Technology, Taiwan) was recorded (Figure 2)
using two silver electrodes (tip diameter 2–3 μm) located at a depth of 150 μm in coordinates
(L: 2.5 mm and D: 2 mm) from Bregma on either sides of the midline under inhalation
anesthesia with 2% isoflurane at 1 L/min N2O/O2—70:30. The head plate was mounted
and small burr holes were drilled. Thereafter, wire EEG leads were inserted into burr
holes on one side of the midline between the skull and the underlying dura mater. EEG
leads were fixed with dental acrylic. Ibuprofen (15 mg/kg) for relief of postoperative pain
was provided in water supply for two to three days before surgery and for three or more
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days after surgery. Before starting the experiment, the mice were given 10 days to recover
from surgery.

Figure 2. Experiment design: (a) implantation of a two–channel cortical EEG, (b) SD by presenting new objects to the mouse,
and (c) EEG recording in an awake mouse. Insert shows experimental EEG signals—voltages (μV) vs. time (seconds).

As standard sleep staging rules for mice are not currently available, we referred
to the visual assessment criteria from the studies [1,38]. Sleep deprivation was carried
out according to the method described in [39], with adaptation to the vivarium regime.
The mice were deprived of sleep from 8:00 pm to 8:00 am and were immediately used for
the experiment. Sleep deprivation was maintained by bringing new objects and sounds
into the experiment room [40]. The mice were constantly monitored to make sure they
were actually studying objects.

Signals were measured in awake and sleeping mice (day 1, 10-h recording), and after
SD (day 2, 4-h recording). This study compares two states: (1) awake mice, background
EEG activity, and (2) awake mice after SD. All recordings were done with a sampling rate
of 2 kHz. At the stage of preprocessing, twelve 5-min segments with a quite homogeneous
structure and less distorted by artifacts were selected for each EEG channel. Every 5-min
segment was analyzed with EDFA to evaluate σ(Floc(n)) and the β exponent. The results
for each mouse state were averaged over all selected segments and both channels.

3. Results and Discussion

According to earlier studies [31,32], the slopes of the dependences (3) and (5) on the
lg–lg plot vary with the segment length, which characterizes the range of power-law corre-
lations. Often, significant differences between the properties of long-range and short-range
correlations are observed in many types of physiological signals, which was demonstrated
in pioneering works [14,15]. Knowledge of the features of power-law dependences (3)
and (5) is important for establishing informative markers that quantify changes caused by
transitions between different physiological states. In the case of the rat EEG, noticeable
changes in correlation properties during sleep were found in the region of slow-wave
dynamics associated with the lg n >3.3 range, which refers to frequencies below 1 Hz.
To specify this range for the current study, we performed a preliminary visual analysis
of the EDFA results. By analogy with the works in [31,32], transitions between distinct
physiological states (dynamics before or after SD) can be observed in the area of long-range
correlations, but changes between slopes, quantitatively determined by the exponents α
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and β, are usually subject-dependent and may also vary throughout a single recording
for the same animal. In some cases, the range lg n >3.3 is appropriate to illustrate the
effect of sleep deprivation. In other cases, lower frequencies associated with larger values
of lg n seem preferable. Thus, Figure 3 shows two examples of the dependence lg F vs.
lg n for individual 5-min EEG segments measured in awake mice before and after SD.
They illustrate the most pronounced differences between the states for lg n >3.9. As lg n
decreases, the distinctions in slopes are still observed, but they become weaker. Insert show
the results of statistical analysis performed to select an appropriate range of scales (the
values of lg n related to changes in the slopes of lg F vs. lg n).

3.2 3.5 3.8 4.1 4.4 4.7
lg n

3.1

3.3

3.5

3.7

3.9

lg
 F

before SD
after SD

3.0

3.5

4.0

4.5
lg

 n

Figure 3. Examples of the dependence (3) in the lg–lg plot for 5-min EEG segments acquired in
an awake mice before and after SD. Insert shows the results of statistical analysis over different
EEG segments.

For the β-exponent, the effect can be more pronounced, as this exponent can change
its sign upon transition to another physiological state. This is illustrated in Figure 4 for
the same measurements as in Figure 3. Again, the range lg n >3.9 is better suited for
quantifying the distinctions caused by SD. Analogous visual analysis performed on other
animals or data segments allowed us to capture this range of scales for further statistical
analysis of the groups.
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Figure 4. Examples of the dependence (6) in the lg–lg plot for 5-min EEG segments acquired in
an awake mice before and after SD. Insert shows the results of statistical analysis over different
EEG segments.

When conducting statistical analysis, several important points should be mentioned.
First, there is a significant variability in the measures α, β within each state, due to the
individual peculiarities of animals. The latter complicates comparison of the states based on
absolute values of the scaling exponents, and accounting for differences between exponents
α1, β1 related to state 1 (awake mice before SD) and α2, β2 associated with state 2 (awake
mice after SD) seems to be a more promising approach. Thus, we introduce two measures

Δα = α1 − α2, Δβ = β1 − β2 (7)
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for a quantitative description of SD effects.
Another circumstance is the significant variability in scaling exponents between

different parts of each recording. On the one hand, we can take longer datasets (e.g.,
several hours), estimate the corresponding values of α and β, and then compare these
quantities for the two states under consideration. However, this way is accompanied
by time-varying dynamics and several types of nonstationary behavior that can change
the expected values of the scaling exponents. On the other hand, we can select fairly
homogeneous (more stationary) segments, analyze them with EDFA, and then average
the results for each animal and each condition. Our preliminary analysis of the simulated
datasets [27] showed that this way gives more stable and reliable estimations, and we use
it here for EEG processing.

The established distinctions caused by SD for the entire group of animals are given in
Figure 5, where different symbols indicate distinct responses, and in Table 1. For six out of
10 mice, a pronounced effect of SD is observed, characterized by a decrease in the α and β
exponents, i.e., positive values of Δα and Δβ (Figure 5, circles). Several animals (three out of
10 mice) demonstrated relatively subtle signs of SD-induced changes (Figure 5, triangles),
although these changes are significant according to the Mann–Whitney test (p < 0.05).
In this study, only one day of sleep deprivation was used. Longer SD periods are expected
to elicit stronger responses; however, our goal was to examine the effects of short-term SD
when sleep deprivation is not associated with neurodegenerative disorders. According to
Figure 5, one mouse showed a different reaction (square), but this behavior can be treated
atypical compared to other animals. Our results indicate that short-term effects of SD can
be detected in EEG recordings, although the strength of the response is subject-dependent.
Moreover, accounting for the β exponent of the proposed EDFA can surpass the α exponent
of the standard DFA—the Δβ range is about twice as large as the Δα range (0.12 ± 0.04
versus 0.05 ± 0.02). Consequently, the changes in the features of nonstationarity caused
by SD are more pronounced than the changes in the properties of long-range correlations
associated with them.

−0.1 0.0 0.1 0.2
Δα

−0.1

0.0

0.1

0.2

0.3

0.4

Δ
β

Figure 5. Individual responses of mice from the entire group to one-day SD quantified with the
differences between the scaling exponents (7) before and after SD (Δα and Δβ). Maroon circles
show pronounced effects of SD, blue triangles indicate relatively subtle signs of SD-induced changes,
and an orange square marks atypical response.

Thus, in this study we show that EDFA sensitively reflects the changes induced by
SD. The sleep is a natural factor of activation of the lymphatic clearing and drainage
functions of the brain [1,13]. The SD causes significant suppression of the clearance of
toxins from the brain [1]. There are animal data suggesting that sleep deficit leads to sterile
inflammation [7–9], an increase in the BBB permeability [8,10], and long SD is accompanied
by hallucination and various cognitive deficiencies [12]. We hypothesized that sleep is a
biomarker of the BBB permeability and EEG is an important informative platform for the
analysis of BBB leakage and the cerebral lymphatic functions [20]. We show that EDFA
may be applied to study changes in the electrical brain activity after SD.
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Table 1. Characterization of SD effects with measures (7). The results are given as mean values ± SE.
Asterisks indicate statistically significant changes according to the Mann–Whitney test (p < 0.05).
EDFA shows significant changes for 9 out of 10 animals (Δβ), while DFA provides significant
distinctions for 7 out of 10 mice (Δα). The last column indicates that changes in Δβ are stronger in 8
mice (|Δβ|>|Δα|).

Experiment DFA (Δα) EDFA (Δβ) |Δβ|/|Δα|
1 0.14 ± 0.02 ∗ 0.34 ± 0.03 ∗ 2.4
2 0.06 ± 0.02 ∗ 0.22 ± 0.02 ∗ 3.7
3 −0.01 ± 0.01 0.01 ± 0.01 1.0
4 0.06 ± 0.02 ∗ 0.14 ± 0.02 ∗ 2.3
5 0.11 ± 0.02 ∗ 0.21 ± 0.02 ∗ 1.9
6 0.02 ± 0.01 0.05 ± 0.01 ∗ 2.5
7 −0.03 ± 0.01 −0.04 ± 0.01 ∗ 1.3
8 0.09 ± 0.02 ∗ 0.13 ± 0.02 ∗ 1.4
9 −0.08 ± 0.02∗ −0.06 ± 0.02 ∗ 0.8

10 0.16 ± 0.03 ∗ 0.25 ± 0.04 ∗ 1.6

4. Conclusions

The scaling features of long-range power-law correlations are important markers of
the complex dynamics of many real-world systems that can be used to diagnose the state
of a system based on experimentally measured datasets. We have discussed a modified
approach to the fluctuation analysis of inhomogeneous processes, in which the nonstation-
arity varies over the entire signal. This approach, EDFA, computes two scaling exponents
that quantify power-law correlations and nonstationarity features. To provide a more
stable computational procedure and reduce the impact of localized artifacts, we consider
the standard deviation of the local RMS fluctuations of the signal profile around the trend,
rather than the difference of extreme values. The benefits of the latter procedure are
illustrated using simulated datasets.

We then applied this approach to EEG signals in mice to reveal signs of changes in
electrical activity of the brain that could be caused by a day’s sleep deprivation. These
signs can be fairly subtle, in contrast to the effects of prolonged SD, taking into account
the significant variability of characteristics during long-term EEG recordings. Using a
group of 10 mice, we found quite strong reductions in α and β scaling exponents in six
animals, with only one mouse showing a pronounced opposite effect. In these animals,
the β exponent provided stronger responses than the α exponent of the conventional DFA.
Thus, the proposed modified version of the method can be a useful prognostic tool for the
evaluation of SD-mediated suppression of the clearance of toxins from the brain that is in
accordance with the work [1]. Important open questions that could be further analyzed are
the role of SD duration and the factor of age.
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Abstract: The analysis of neurophysiological data using the two most widely used open-source
MATLAB toolboxes, FieldTrip and Brainstorm, validates our hypothesis about the correlation between
event-related coherence in the visual cortex and neuronal noise. The analyzed data were obtained
from magnetoencephalography (MEG) experiments based on visual perception of flickering stimuli,
in which fifteen subjects effectively participated. Before coherence and brain noise calculations, MEG
data were first transformed from recorded channel data to brain source waveforms by solving the
inverse problem. The inverse solution was obtained for a 2D cortical shape in Brainstorm and a 3D
volume in FieldTrip. We found that stronger brain entrainment to the visual stimuli concurred with
higher brain noise in both studies.

Keywords: MEG; FieldTrip; Brainstorm; source reconstruction; flickering; cognitive neuroscience;
visual perception

1. Introduction

The human brain is a complex network consisting of approximately 86 billion neu-
rons [1] subdivided into oscillatory clusters that fire co-dependently/independently to
manifest our consciousness as we know it. These clusters correspond to regions of the
brain specialized in processing certain types of information and are connected to other
specialized regions in complex networks.

Brain connectivity is studied in three forms: functional, structural, and effective [2–5].
Structural connectivity identifies anatomical neural networks that show possible pathways
for neural communication [6,7]. Functional connectivity finds active brain regions that
have a correlated frequency, phase, and/or amplitude [8]. Effective connectivity utilizes
the functional connectivity information and additionally determines the direction of the
dynamic information flow [9,10]. Effective and functional connectivity can be measured
in the frequency domain (e.g., coherence [11]) and in the time domain (e.g., Granger
causality [5] or artificial neuronal network-based functional connectivity [12]).

Inter-neuronal communication is realized by one of 50+ neurotransmitters that can be
either excitatory (e.g., dopamine) or inhibitory (e.g., gamma-Aminobutyric acid (GABA)) [13].
Voltage-gated ion channels on the cell membranes of neurons generate action potentials and
periodic membrane potential activity that synchronizes neighboring neurons [14,15]. These
neighboring neurons may, in turn, affect other remotely located neurons, creating a network
of connectivity. Coherence-based neuronal communications are driven by the dynamics of
neurotransmitters such as amino acid glutamate and GABA.

Only when the synchronous neuronal population is large enough, the produced elec-
trical activity and the concomitant magnetic activity is strong enough to be detected outside
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the skull using methods such as electroencephalography (EEG) and magnetoencephalogra-
phy (MEG), respectively [16]. MEG measures the ionic currents inside the neuron (primary
currents), whereas EEG measures the return or volume currents outside the neuron (sec-
ondary currents).

Coherence is commonly used to quantify neuronal synchronicity between spatially
separated EEG electrodes or MEG coils [17]. It is essentially an estimate of the consistency of
the relative amplitude and phase between two signals within a given frequency band. There
is a linear mathematical method resulting in a symmetric matrix, lacking any directional
information. Identical signals produce a coherence magnitude of 1, whereas the coherence
magnitude approaches 0 as the dissimilarity between the considered signals increases.

In the last two decades, significant progress has been achieved in the development
of new computational algorithms that enable connectivity calculations directly between
the different regions of the brain (source space) [5] instead of electrodes or coils (channel
space). The source space analysis provides better anatomical localization [18] and enables
inter-subject or group analysis as the brain activity now can be projected onto a more
standardized space.

In 2004, Hoechstetter et al. [19] introduced a new method to study source coherence
in the brain. Discrete multiple source models were created using brain electrical source
analysis, and the source activity was transformed into time–frequency space. Finally,
magnitude-squared coherence was evaluated to reveal coupled brain sources. The appli-
cation of inverse solutions to estimate brain activity in the source space from the channel
space removes current leakage among adjacent channels. This averts localization errors
that are fundamental to coherence analysis in the channel space [19].

Coherence has henceforth been used in many brain connectivity studies on patients
and healthy subjects, including but not limited to studies on working memory [20], brain
lesions [21], hemiparesis [22], resting-state networks [23], schizophrenia [24–26], favorable
responses to panic medications [27], and motor imagery [28,29].

Owing to the diversity of human brains, we observe various forms of coherent neu-
ronal activity over different subjects in response to the same flickering stimulus. For
example, the presentation of flickering visual stimuli instils coherent responses in the
visual cortex at the flicker frequency and its harmonics with varying coherent neuronal
network sizes among the subjects [30,31].

Another signal processing technique used to measure synchronization in EEG and
MEG is phase synchronization, a measure of how stable the phase difference is over the
considered time duration. Phase synchronization requires considered signals to be phase-
locked with zero or any finite phase difference, regardless of their respective amplitudes.
This is in contrast to the coherence measurement in which phase and amplitude are
intertwined for its estimation [32].

Noise, as known [33], can cause desynchronization in a neuronal network. Each par-
ticipating neuron and interconnecting synapses add to the inherent brain noise when a
stimulus is presented to the subject. Therefore, one could argue that a larger neuronal
network would carry a higher brain noise and, consequently, lower average coherence.
On the other hand, larger active neuronal oscillations in response to the stimulus are likely
to have stronger average coherent activity and would also entail higher brain noise. Thus,
the relation between the observed coherence and the level of inherent brain noise remains
unclear and is the central problem explored in this paper (for comprehensive theoretical
descriptions, see [34,35]).

Recently, an approach to estimate inherent brain noise based on phase synchronization
was proposed [30]. The method is based on the experiments with flickering images and
simultaneous recording of magnetoencephalographic (MEG) data. This paper utilizes the
same methodology to measure brain noise using the same experimental paradigm and
reveal its correlation with the induced coherence or source power in the visual cortex. We
deal with the two most popular open-source MATLAB toolboxes for MEG data analysis,
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namely FieldTrip [36] and Brainstorm [37], to perform two independent analyses that are
more suitable to each software.

2. Materials and Methods

We carried out MEG experiments based on the flickering paradigm with 17 condition-
ally healthy subjects (age: 17–64 years; 10 males) with normal or corrected-to-normal visual
acuity. Two subjects were later discarded. Frequency tags at the stimulus frequency and its
harmonics were absent in subject “sub08”, perhaps due to a lack of focus on the experiment.
Meanwhile, for subject “sub11”, the ECG activity was not recorded during the experiment
due to a technical error, and therefore the signal-to-noise ratio of the subsequently cleaned
data was too low to allow correct data analysis. All subjects provided written informed
consent before the experiment commencement. The experiments were performed as per the
Declaration of Helsinki and approved by the Ethics Committee of the Technical University
of Madrid.

2.1. MEG Acquisition

MEG recordings were performed with an Elekta-Neuromag system with 306 channels
that was housed in a magnetically shielded room at the Centro de Tecnología Biomédica,
Universidad Politécnica de Madrid. The head position was continuously tracked with head
position indicator (HPI) coils and co-registered in the device and head coordinate system
with three fiducial points (nasion, left, and right preauricular points) and around 300 scalp
surface points digitized by a Polhemus Fastrak system. A vertical electrooculogram
(EOG) and electrocardiogram (ECG) were placed to capture eye blinks and cardiac activity,
respectively. The data were sampled at 1000 Hz.

The experiments for all 17 subjects lasted 4 days. Along with MEG recordings of
the subjects, the MEG data were also collected daily in an empty room. All data were
passed through an online anti-alias bandpass (0.1–330)-Hz filter. MaxFilter software was
used for the temporal signal-space separation (tSSS) to reduce magnetic interference and
perform head movement compensation. A 56-ms delay between event triggers and the
actual stimulus was measured separately using a photodiode.

2.2. Flickering Stimulation

A grey square image with varying greyness levels on a grey background (brightness:
127 in 8-bit format) was projected onto a translucent screen positioned 150 cm away from
the subjects with a 60-Hz frame rate. The pixels’ brightness was modulated by a harmonic
signal with frequency fm = 6.67 Hz (60/9) and a 50% amplitude, i.e., between black (0) and
grey (127). This particular frequency was chosen because it produces the most pronounced
spectral response in the visual cortex [30].

2.3. Experimental Protocol

The participants were informed about the experimental protocol beforehand in ad-
dition to the corresponding textual directives on the screen throughout the experiment.
The experiment started with the presentation of a static (non-flickering) square image with
a red dot at the center, on which the participant had to concentrate their gaze for 120 s.
The recorded brain activity was used as a reference signal or background. After a short
rest, the square image started flickering and was presented 2–5 times (depending on the
subject) for 120 s, interrupted by a 30-s resting period between each presentation. The
flickering stimulus was presented at least 3 times to all subjects except for subject “sub10”.
The starting times of the background and flickering recordings were marked with event
triggers using a parallel-port setup.
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2.4. Analysis Pipelines in FieldTrip and Brainstorm

Next, we will discuss the common steps of the MEG data analysis and related imple-
mentation details in both FieldTrip and Brainstorm software. We will focus on the analysis
of our experimental data, which, of course, does not cover the full functionality of the
two toolboxes.

2.4.1. Reading and Segmenting Data

We start our analysis by reading the MEG data stored in the FIFF format and segment-
ing them into trials according to experimental conditions. It is common to segment the
data after decoding trigger sequences in a raw data file. However, in this work, we make
use of additional functions to import events from mat-files in both analyses because there
are slight differences in the experimental protocol for some subjects, and this approach
is more time-efficient than if-else conditions specifying the subjective exceptions in the
batch-processing scripts.

After extracting 120-s epochs for both experimental conditions, including the back-
ground activity trial called “B-trial” and event-related trials called “F-trials”, we split every
120-s trial into 4-s (for FieldTrip; see explanation below) or 3-s (for Brainstorm) sub-trials.

2.4.2. Artifact Removal and Loading Data

Accurate brain source analysis requires the correct integration of MEG data with
structural magnetic resonance imaging (MRI) scans. Both software programs align all data
by defining a subject coordinate system using three fiducial points, namely the nasion and
left- and right-auricular points. Moreover, we complemented the alignment based on only
three points by an automatic refinement procedure utilizing additional points on the scalp,
marked using a 3D digitizer (Polhemus in the considered experiment).

In FieldTrip, we used the “Colin27” head averaged template MRI [38] and adjusted it to
the subject’s head shape recorded by the Polhemus device. In Brainstorm, default anatomy
was warped to fit the scalp shape of every subject with a 2% fit tolerance using digitized
head points from the Polhemus device. After an automatic refinement of head points, the
50-Hz electrical power grid frequency and its harmonics were filtered using notch filters.
The 56-ms trigger delay was corrected in the recordings. The recorded electrooculogram
(EOG) and electrocardiogram (ECG) signals were used to automatically detect instances of
eye blinks and cardiac activity in order to apply signal-space projection (SSP) methods to
alleviate the respective artifacts.

Well-defined artifacts such as eye blinks, cardiac activity, muscle contractions, and
MEG SQUID jumps were detected semi-automatically using FieldTrip/Brainstorm func-
tions or manual screening. Once artifacts were identified, depending on the artifact
intensity, we either discarded trials that contained an artifact or applied linear projection to
remove them.

2.4.3. Source Reconstruction

The first step in localizing sources is the construction of a forward model and lead field
matrix. The forward model allows one to calculate an estimate of the field measured by
the MEG sensors for a given current distribution in the brain and is typically constructed
for each subject. The lead fields or the solution to the forward problem are evaluated
using various algorithms, such as a single sphere [39], overlapping spheres [40], a spherical
harmonics approximation of realistic geometries [41], and boundary element methods [42].

The forward solution was computed in Brainstorm analysis using the overlapping
spheres method, which is the default. The number of cortical sources was kept at 15,000 as
recommended [37]. On the other hand, in FieldTrip, we applied a semi-realistic head model
developed by Nolte [41] called a single-shell model, which is based on the correction of the
lead field for a spherical volume conductor by a superposition of basic functions, gradients
of harmonic functions constructed from spherical harmonics. We thus discretized the head
volume with a grid with a 0.7-cm resolution and obtained a source space consisting of

68



Appl. Sci. 2021, 11, 375

9025 voxels. The lead field matrix was calculated using each grid point [41]. Thus, in
Brainstorm, a cortical surface model was used, and in FieldTrip, a volumetric one.

The next step is calculating the inverse solution to estimate the location and strength
of neuronal activity, which can be computed via multiple options, including dipole fitting
based on nonlinear optimization [43], minimum variance beamformers in time and fre-
quency domains [44–46], and linear estimation of distributed source models [47,48]. In both
software analyses, we used standardized low-resolution brain electromagnetic tomography
(sLORETA) [49].

The sLORETA family of solutions was validated against numerous imaging
modalities [50–52] and simulations [53,54]. sLORETA uses standardized current density im-
ages to calculate intra-cerebral generators. Although the image was blurred, sLORETA was
found [55] to have the exact zero-error localization when reconstructing single sources in all
noise-free simulations, i.e., the maximum of the current density power estimate coincided
with the exact dipole location [48]. Meanwhile, in all simulations with noise, sLORETA
had the lowest localization errors when compared with the minimum norm solution.

Note that when working with multiple sensor types to form a joint source model,
the empirical noise covariance is used to compute the weights of each sensor in the
overall model. For this purpose, noise covariance matrices are typically computed from
empty-room recordings that capture instrumental and environmental noise in the absence
of subjects.

2.4.4. Event-Related Coherence

Stimulus-induced coherence in the brain was used to estimate activated brain network
size and characterize its activation strength. The taken approach was different for each
software program. The previous study with the same stimulus [30] found frequency tags
at the flickering frequency (6.67 Hz) and its harmonics. The study also revealed that the
frequency tags were more pronounced at the second harmonic (13.33 Hz) than at the first
harmonic. Therefore, we need to find an index characterizing the spectral power of brain
response at the second harmonic. Since the analysis methods and obtained source models
are significantly different, we would require appropriate and independent indices for both
software programs to estimate event-related coherence (ERC).

In FieldTrip, we first applied a fourth-order Butterworth 13–14 Hz band-pass filter.
The band-pass frequency was determined by the frequency of interest, which in our case
was equal to 13.33 Hz (the second harmonic of the flicker frequency). Then, we redefined
the 3-s length of every trial within the [0.5, 3.5]-s interval to reduce edge effects due to
filtering. Moreover, in this step, we calculated the covariance matrix, necessary when using
the sLORETA method. After performing reconstruction of the sources separately for all 3-s
B- and F-sub-trials using the sLORETA method, we obtained the power distribution of the
activity of the brain sources on the 3D grid with 9025 voxels for every sub-trial.

In the next step, we averaged the resulting source power distributions and obtained a
distribution each for B- and F-condition (PB and PF). Such an approach made it possible to
reduce the influence of instrumental and brain noise on the results of source reconstruction
and, thus, increase the prominence of the event-related pattern of neural activity, compared
to source reconstruction based on a single original 120-s trial. After that, we calculated the
normalized difference of the source power distributions for F- and B-conditions (so-called
baseline correction): D = (PF − PB)/PB. This procedure was needed to isolate the event-
related pattern of source activity. The above steps were repeated for three 120-s F-trials
(all subjects had at least three F-trials except “sub10”), and the average of the obtained
three differences D was calculated. Finally, the distribution of the averaged difference was
interpolated on the used MRI image.

In Brainstorm, we started by calculating magnitude-squared coherence between the
time series of each of the 15,000 brain sources and the reference sinusoidal signal at
frequency 2 fm (13.33 Hz), i.e., the second harmonic of the flicker frequency, for both the
F-trials (CF) and the B-trial (CB). To evaluate the event-related coherence in the brain, we
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calculated differences between the coherence values of the F-trials and B-trials for cortical
sources lying in visual areas V1 and V2 as per the Brodmann atlas, ERC = CF

vis − CB
vis, and

averaged it for each subject.

2.5. Brain Noise Estimation

The proposed brain noise estimation method is based on phase synchronization,
which implies a measurement of a phase difference between the brain’s response in the
visual cortex and the reference signal at the second harmonic frequency (2 fm = 13.33 Hz).
First, to obtain the visual response, we averaged the source activity waveforms from the
V1 and V2 subregions of the Brodmann atlas for each of the F-trials of a subject. We then
bandpass-filtered this average visual response in the 13–14 Hz frequency band. To estimate
brain noise, we calculated the phase difference time series between visual response time
series and the second harmonic of the flicker sinusoidal signal, as [30,56]:

Φ = (tV
n − tm

n )2 fm, (1)

where tV
n and tm

n are the times of nth maxima of the visual response time series and the
second harmonic of the flicker signal, respectively. Intermittent frequency-locking was
observed, superposed with random fluctuations due to phase noise [33]. We also obtained
unimodal probability distributions of these phase differences Φ to characterize the phase-
noise-induced random fluctuations in phase. Kurtosis, a measure of the sharpness of a
unimodal distribution, would be lower for a broader and noisier phase fluctuation distri-
bution, and vice versa. Therefore, from the probability distribution of these random phase
fluctuations, we estimated brain noise as the inverse distribution’s kurtosis. This method
was comprehensively described in the previous paper [30].

3. Results

Based on the obtained normalized distributions of the source power, we calculated for
each subject the average power of source activity in the visual cortex, Davg, in FieldTrip.
It should be noted that we determined the visual cortex using the automated anatomical
labeling (AAL) brain atlas [57] in FieldTrip. The average spectral power Davg in the visual
cortex was plotted in Figure 1 against estimated brain noise to phase synchronization
(in units of inverse kurtosis) for every subject.

Figure 1. The average power of source activity in the brain volume corresponding to visual cortex
versus brain noise for all subjects (numbers denote the subjects). The line is a linear approximation
fit (p = 0.039, R2 = 0.309).

One can see a linear correlation (with p-value equal to 0.039 and an R2-value of 0.309)
of Davg and noise level, although the scatter is significant: Dmin

avg = 0.04, Dmax
avg = 1.34;

Noisemin = 0.22, Noisemax = 0.39.
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Figure 2 shows typical distributions of normalized source power D predominantly
activated within the visual cortex for subjects with low (subject 2) and high (subject 6) brain
noise. Subject 6 is characterized by more pronounced high-amplitude activity spanning a
larger volume in the visual cortex than subject 2.

0 60 120

0

60

120

30

90

30 90

0

60

120

30

90

0 60 12030 90

0 60 12030 90

0

60

120

30

90

0

60

120

30

90

0

60

120

30

90

0

60

120

30

90

0 60 12030 90

0 60 12030 90

0 60 12030 90

�1.5 �1.0 �0.5 0 0.5 1.0 1.5

�2 �1 0 1 2

�1.5

�1.0

�0.5

0

0.5

1.0

1.5

�2.0

�1.5

�1.0

�0.5

0

0.5

1.0

1.5

2.0

a b

c d

Figure 2. Distributions of normalized source power D within the visual cortex plotted superimposed
on anatomical MRI in orthogonal cut view (a,c) and slice mode (b,d) for subject 2 (a,b) and subject 6
(c,d). The blue crosses in (a,c) define the cutting planes. The arrows in (b,d) indicate the direction of
movement along the slices.

We will show now the results of the alternate analysis pipeline in Brainstorm. The val-
ues of average event-related coherence over visual areas V1 and V2 were compared with
the same estimated brain noise as used in Figure 1 for all subjects. A linear relation was
established with a p-value of 0.048 and an R2-value of 0.267, as seen in Figure 3. The distri-
butions of average event-related coherence over the cortex for typical subjects with low
and high noise levels are shown in Figure 4 as per the cortical analysis in Brainstorm.

The methodology to calculate the normalized difference of power on a 3D volume
in FieldTrip was adapted to fit the 2D source model generated in Brainstorm to have
a closer comparison. Figure 5 shows the corresponding linear regression model with a
p-value of 0.209 and an R2-value of 0.118 (Dmin

avg = 0.08, Dmax
avg = 2.18; Noisemin = 0.22,

Noisemax = 0.39). Although the model fails to capture any significant relation, the relative
positions of the subjects in the power–noise state-space of Figure 5 are quite similar to those
which we observe in Figure 1.
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Figure 3. Average event-related coherence in the visual cortex versus estimated brain noise to phase
synchronization. The straight line is a linear regression fit of the data (p = 0.048, R2 = 0.267).

Figure 4. Typical cortical distributions of event-related coherence for (A) Subject 2 (low noise) and
(B) Subject 6 (high noise). The brain activation is more intensive in the latter case.

Figure 5. The average power of source activity in the visual cortex versus brain noise for all subjects
(numbers denote the subjects). The line is a linear approximation fit (p = 0.209, R2 = 0.118).

4. Discussion

We found a linear relation, with a positive slope between the average power of source
activity in the visual cortex and brain noise. The results show that the subjects with more
powerful visual cortex activity demonstrate more substantial brain noise. This relationship
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can be explained as follows. The higher the power of the reconstructed sources, the more
neurons are involved in realizing cognitive activity. In a larger network of neurons, the
number of synapses would also be higher, and both the synapses and the neurons would
feed the phase-destabilizing noise into the system [30].

The two independent methods essentially lead to the calculation of the difference in
spectral activity inside the subject’s brain, corresponding to the second harmonic of the
stimulus frequency when the subject is observing a flickering image, as opposed to when
the subject is gazing at a stationary stimulus. Averaging them over the respective regions
of interest led to very similar trends between average event-related coherence or frequency-
filtered signal power and brain noise using either software program (Figures 1 and 3). One
can see in Figures 2 and 4 that the subject with higher brain noise (“sub06”) has a more
extensive and intensely activated neuronal network, coherent with the stimulus, as distinct
from the subject with lower brain noise (“sub02”).

As we have already mentioned above, we set out to adapt the prescribed analysis
pipelines of both FieldTrip and Brainstorm to our study. The two software programs gave
congruent results following their independent analysis strategies. However, it should not
be a surprise that if we try mixing the two analysis pipelines midway, the results will likely
deteriorate. Figure 5 shows the result of such mindless mixing of the two methods. Even
though the order of subjects’ frequency-filtered signal powers remained conserved from
Figure 1, the linear relation was lost.

Since we calculate brain noise from the phase fluctuation time series and the corre-
sponding probability distribution, which in turn depends upon the signal-to-noise ratio
(SNR) of the source waveforms in the visual cortex to be properly calculated, it can turn
into a circular problem where, for very high brain noises, the SNR would be too low to
correctly determine the phase fluctuations, which would make the calculation of brain noise
impossible. This was the case with subjects “sub8” and “sub11”. For these subjects, we did
not see any frequency tags in the power spectrum during the flickering cube presentation
(signal) and also in the power spectrum for the stationary cube presentation (noise). Thus,
they had to be removed from the study. The subjects who showed frequency tags in the
power spectrum also had clear bandpass-filtered waveforms in the 13–14 Hz frequency
band used to calculate phase difference fluctuations.

We have to emphasize that all codes of our analysis and MEG data used for this study
were made publicly available during the review period. The developed methods, along
with the prescribed codes on the software documentations adapted to a generic MEG study
starting with only a FIFF file, will be accessible to newcomers in the field.

5. Conclusions

Visual flickering experiments were carried out successfully with fifteen healthy sub-
jects, and their brain responses were recorded using MEG. The two most popular open-
source software programs, FieldTrip and Brainstorm, were used to analyze brain source
activity. We calculated the event-related coherence of the brain response with the flickering
visual signal. Using a recently proposed brain noise estimation method, we computed the
relation between the coherent brain network in the visual cortex and corresponding brain
noise. The results obtained by the two software programs demonstrated fair agreement.
The analyses performed by both MATLAB toolboxes evidenced that more extensive brain
activity is accompanied by more substantial brain noise.
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Abstract: Neural oscillations are present in the brain at different spatial and temporal scales, and
they are linked to several cognitive functions. Furthermore, the information carried by their phases
is fundamental for the coordination of anatomically distributed processing in the brain. The concept
of phase transfer entropy refers to an information theory-based measure of directed connectivity
among neural oscillations that allows studying such distributed processes. Phase TE is commonly
obtained from probability estimations carried out over data from multiple trials, which bars its
use as a characterization strategy in brain–computer interfaces. In this work, we propose a novel
methodology to estimate TE between single pairs of instantaneous phase time series. Our approach
combines a kernel-based TE estimator defined in terms of Renyi’s α entropy, which sidesteps the need
for probability distribution computation with phase time series obtained by complex filtering the
neural signals. Besides, a kernel-alignment-based relevance analysis is added to highlight relevant
features from effective connectivity-based representation supporting further classification stages in
EEG-based brain–computer interface systems. Our proposal is tested on simulated coupled data and
two publicly available databases containing EEG signals recorded under motor imagery and visual
working memory paradigms. Attained results demonstrate how the introduced effective connectivity
succeeds in detecting the interactions present in the data for the former, with statistically significant
results around the frequencies of interest. It also reflects differences in coupling strength, is robust to
realistic noise and signal mixing levels, and captures bidirectional interactions of localized frequency
content. Obtained results for the motor imagery and working memory databases show that our
approach, combined with the relevance analysis strategy, codes discriminant spatial and frequency-
dependent patterns for the different conditions in each experimental paradigm, with classification
performances that do well in comparison with those of alternative methods of similar nature.

Keywords: transfer entropy; kernel methods; Renyi’s entropy; connectivity analysis; phase interactions

1. Introduction

Neural oscillations are observed in the mammalian brain at different temporal and
spatial scales [1]. Oscillations in specific frequency bands are present in distinct neural
networks, and their interactions have been linked to fundamental cognitive processes such
as attention and memory [2,3] and to information processing at large [4]. Three properties
characterize such oscillations: amplitude, frequency, and phase, the latter referring to the
position of a signal within an oscillation cycle [5]. Oscillation amplitudes are related to
neural synchrony expansion in a local assembly, while the relationships between the phases
of neural oscillations, such as phase synchronization, are involved in the coordination of
anatomically distributed processing [6]. Moreover, from a functional perspective, phase
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synchronization and amplitude correlations are independent phenomena [7], hence the in-
terest in studying phase-based interactions independently from other spectral relationships.
Additionally, phase relationships are linked to neural synchronization and information
flow within networks of connected neural assemblies [8]. Therefore, a measure that aims
to capture phase-based interactions among signals from distributed brain regions should
ideally include a description of the direction of interaction. A fitting framework for such
measure is that of brain effective connectivity [9].

Effective brain connectivity, also known as directed functional connectivity, measures
the influence that a neural assembly has over another one, establishing a direction for their
interaction by estimating statistical causation from their signals [10]. Directed interactions
between oscillations of similar frequency can be captured through measures such as
Geweke-Granger causality statistics, partially directed coherence, and directed transfer
function [9,11]. However, since these metrics depend on both amplitude and phase signal
components, they do not identify phase-specific information flow [8]. The phase slope
index (PSI), introduced in [12], measures the direction of coupling between oscillations
from the slope of their phases; still, it only captures linear phase relationships [13]. In this
context arises the concept of phase transfer entropy, a phase-specific nonlinear directed
connectivity measure introduced in [8]. Transfer entropy (TE) is an information-theoretic
quantity, based on Wiener’s definition of causality, that estimates the directed interaction,
or information flow, between two dynamical systems [14,15]. In [8], the authors first extract
instantaneous phase time series by complex filtering the signals of interest in a particular
frequency, since a signal’s phase is only physically meaningful when its spectrum is narrow-
banded [16]. Such filtering-based approach has also been explored to obtain phase-specific
versions of other information-theoretic metrics such as permutation entropy and time-
delayed mutual information [7,16]. Then, the authors compute TE from the obtained phase
time series. Nonetheless, since conventional TE estimators are not well suited for periodical
variables, in [8] phase TE estimates are obtained through a binning approach performed
over multiple trials simultaneously, in a procedure termed trial collapsing.

Phase TE has found multiple applications in neuroscience, such as gaining insight
into reduced levels of consciousness by evaluating brain connectivity [17], analyzing
resting-state networks [18], and assessing brain connectivity changes in children diagnosed
with attention deficit hyperactivity disorder following neurofeedback training [19]. It
has even been used to detect fluctuations in financial markets data [20]. Nonetheless,
phase TE, estimated as in [8], cannot be employed as a characterization strategy for brain–
computer interfaces (BCI) since they require features extracted on an independent trial
basis, i.e., each trial must be associated with a set of features. Effective connectivity
measures, such as phase TE, can be used to assess the induced physiological variations in
the brain occurring during BCI tasks [21]. Discriminative information may be hidden in
the dynamical interactions among spatially separated brain regions that characterization
methods commonly employed in BCI are not able detect [22]. This information could be
relevant to address issues such as the inefficiency problem in some BCI systems [23]. In
that context, authors in [6] applied a binning strategy to estimate single-trial phase TE
to set up classification systems for visual attention. Nonetheless, binning estimators for
single trial-based estimation of information-theoretic measures exhibit systematic bias [8].
Furthermore, spectrally resolved TE estimation methods that can obtain single-trial TE
estimates have been recently proposed in the literature [24,25]. Yet, phase TE is conceptually
different from them [25], as they are not phase-specific metrics.

Here, we propose a novel methodology to estimate TE between single pairs of in-
stantaneous phase time series. Our approach combines the kernel-based TE estimator we
introduced in [10], with phase time series obtained by convolving neural signals with a
Morlet Wavelet. The kernel-based TE estimator expresses TE as a linear combination of
Renyi’s entropy measures of order α [26,27] and then approximates them through func-
tionals defined on positive definite and infinitely divisible kernel matrices [28]. Its most
important property is that it sidesteps the need to obtain the probability distributions
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underlying the data. Instead, the estimator computes TE directly from kernel matrices that,
in turn, capture the similarity relations among data. It is robust to varying noise levels
and data sizes and to the presence of multiple interaction delays in a network [10]. In this
work, we hypothesize that the above-described estimator could overcome the hurdles other
single-trial TE estimators face when obtaining TE values from instantaneous phase time
series since it would not have to explicitly obtain probability distributions from circular
variables [8]. Additionally, since our primary motivation to introduce a robust phase TE
estimation methodology is the use of such measures in the context of BCI applications, we
also explore a relevance analysis strategy based on centered kernel alignment (CKA) [29].
The CKA-based analysis allows us to identify the set of pairwise channel connectivities
relevant to discriminate between specific conditions, favoring the neurophysiological in-
terpretation of our results and providing an option to avoid carrying out all to all channel
connectivity estimations in practical BCI systems based on phase TE.

We employ simulated and real-world EEG data to test the introduced effective connec-
tivity measure. The simulated data are obtained from neural mass models, mathematical
models of neural mechanisms that generate time series with oscillatory behavior similar to
electrophysiological signals. Obtained results for such data show that the proposed kernel-
based phase TE estimation method successfully detects the direction of interaction imposed
by the model. Indeed, it detects statistically significant connections in the frequency bands
of interest, even for weak couplings and narrowband bidirectional interactions. It also
displays robustness to realistic levels of noise and signal mixing. Regarding the EEG
data, we consider two databases containing signals recorded under two different cognitive
paradigms, consisting of motor imagery tasks and a change detection task designed to
study working memory. Attained classification results demonstrate that our approach
is competitive compared to real-valued and phase-based directed connectivity measures.
Thus, this proposal extends the approach described in [10] by introducing a measure that
captures directed interactions between the phases of oscillations at specific frequencies.
Unlike alternative approaches in the literature, it can be obtained from single trial data,
which allows it to be used as a characterization strategy in BCI applications. In addition,
the results obtained for the EEG data show that our approach, coupled with the CKA-
based relevance analysis, largely outperforms the real-valued kernel-based transfer entropy
in [10] as characterization strategy for cognitive tasks such as working memory.

The remainder of the paper is organized as follows: in Section 2 we formally introduce
the concept of phase TE and our kernel-based approach for single-trial phase TE estima-
tion. We also describe the proposed CKA-based relevance analysis. Section 3 details the
experiments we carried out using simulated and real EEG data in order to evaluate the
performance of our proposal. In Section 4 we present and discuss our results, and finally,
Section 5 contains our conclusions.

2. Methods

2.1. Phase Transfer Entropy

Transfer entropy (TE) is a Wiener-causal measure of directed interactions between two
dynamical systems [14,15]. Given two time series x = {xt}T

t=1 and y = {yt}T
t=1, with t ∈ N

a discrete time index, T ∈ N, the TE from x to y estimates whether the ability to predict the
future of y improves by considering the past of both x and y, as compared to the case when
only the past of y is considered. Formally, TE can be defined as:

TE(x → y) = ∑
yt ,y

dy
t−1,xdx

t−u

p
(

yt, y
dy
t−1, xdx

t−u

)
log

⎛⎝ p
(

yt|ydy
t−1, xdx

t−u

)
p
(

yt|ydy
t−1

)
⎞⎠, (1)

where xdx
t , y

dy
t ∈ RD×d are time embedded versions of x and y, D = T − (τ(d − 1)) with

d, τ ∈ N the embedding dimension and delay, respectively; u ∈ N represents the interaction
delay between the driving and the driven systems, and p(·) indicates a probability density
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function [30] (Henceforth, the summation symbol is to be interpreted in an extended way,
that is to say, as a summation or an integral depending on whether the variable is discrete
or continuous). Regarding the time embeddings, we have that xd

t = (x(t), x(t − τ), x(t −
2τ), . . . , x(t − (d − 1)τ)) [31,32]. Furthermore, using the definition of Shannon entropy,
HS(X) = −∑x p(x)log(p(x)), where X is a discrete random variable (x ∈ X), we can also
express Equation (1) as:

TE(x → y) = HS

(
y

dy
t−1, xdx

t−u

)
− HS

(
yt, y

dy
t−1, xdx

t−u

)
+ HS

(
yt, y

dy
t−1

)
− HS

(
y

dy
t−1

)
. (2)

where HS(·, ·), and HS(·) stand for joint and marginal entropies.
In phase TE, the time series x and y are replaced by instantaneous phase time series

θx( f ) ∈ [−π, π]Tt=1 and θy( f ) ∈ [−π, π]Tt=1, obtained from sx = ςxeiθx( f ) ∈ CT and
sy = ςyeiθy( f ) ∈ CT , which contain the complex-filtered values of x and y at frequency f ,
respectively, and with ςx, ςy ∈ RT the amplitude envelopes of the filtered time series [8].
Thus, we have that

TEθ(x → y, f ) = HS

(
θ

y,dy
t−1 , θx,dx

t−u

)
− HS

(
θ

y
t , θ

y,dy
t−1 , θx,dx

t−u

)
+ HS

(
θ

y
t , θ

y,dy
t−1

)
− HS

(
θ

y,dy
t−1

)
, (3)

where θx,dx
t and θ

y,dy
t are time embedded versions of θx and θy. Note that for the sake of

notation simplicity we have dropped the explicit dependency of the phase time series on f .

2.2. Kernel-Based Renyi’s Phase Transfer Entropy

In [10] we propose a TE estimator based on kernel matrices that approximate Renyi’s
entropy measures of order α. This data-driven approach has the advantage of sidestepping
the need for probability distribution estimation in TE computation. First, we show that TE
can be expressed as

TEα(x → y) = Hα

(
y

dy
t−1, xdx

t−u

)
− Hα

(
yt, y

dy
t−1, xdx

t−u

)
+ Hα

(
yt, y

dy
t−1

)
− Hα

(
y

dy
t−1

)
. (4)

where Hα(X) stands for Renyi’s α entropy, a generalization of Shannon’s entropy [26,27],
defined as

Hα(X) =
1

1 − α
log

(
∑
x

p(x)αdx

)
, (5)

with α �= 1 and α ≥ 0. In the limiting case where α → 1, it tends to Shannon’s entropy.
Then, using the kernel-based formulation for Renyi’s α entropy introduced in [28],

Hα(A) =
1

1 − α
log(tr(Aα)), (6)

where A ∈ Rn×n is a Gram matrix with elements aij = κ(xi, xj), κ(·, ·) ∈ R stands for a
positive definite and infinitely divisible kernel function, n for the number of realizations of
X, and tr(·) for the matrix trace; along with the accompanying formulation for the Renyi’s
α entropy of joint probability distributions,

Hα(A, B) = Hα

(
A ◦ B

tr(A ◦ B)

)
=

1
1 − α

log
(

tr
((

A ◦ B

tr(A ◦ B)

)α))
, (7)

where B ∈ Rn×n is a second Gram matrix and the operator ◦ stands for the Hadamard
product, we estimate the TEα from x to y as:

TEκα(x → y) = Hα

(
K

y
dy
t−1

, Kxdx
t−u

)
− Hα

(
Kyt , K

y
dy
t−1

, Kxdx
t−u

)
+ Hα

(
Kyt , K

y
dy
t−1

)
− Hα

(
K

y
dy
t−1

)
, (8)
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where the kernel matrices Kyt , K
y

dy
t−1

, Kxdx
t−u

∈ R(D−u)×(D−u) hold elements kij = κ(ai, aj).

For Kyt , ai, aj ∈ R are the values of the time series y at times i and j. While for K
y

dy
t−1

,

the vectors ai, aj ∈ Rd contain the time embedded version of y, y
dy
t , at times i and j,

adjusted according to the time indexing of TE. The same logic holds true for Kxdx
t−u

.
In this study, we hypothesize that the above-described TE estimator, having previ-

ously displayed robustness to common issues that affect connectivity analyses [10], could
overcome many of the problems associated with single-trial phase TE estimation [8]. Hence,
we propose a kernel-based Renyi’s phase TE estimator defined as:

TEθ
κα(x → y, f ) = Hα

(
K

θ
y,dy
t−1

, K
θx,dx

t−u

)
− Hα

(
Kθt , K

θ
y,dy
t−1

, K
θx,dx

t−u

)
+ Hα

(
Kθt , K

θ
y,dy
t−1

)
− Hα

(
K

θ
y,dy
t−1

)
, (9)

where the kernel matrices Kθt , K
θ

y,dy
t−1

, K
θx,dx

t−u
∈ R(D−u)×(D−u) hold elements analogous to

those of matrices Kyt , K
y

dy
t−1

, and Kxdx
t−u

in Equation (8), while replacing the time series x

and y for their instantaneous phase time series θx and θy at frequency f , respectively.

2.3. Phase-Based Effective Connectivity Estimation Approaches Considered in This Study
2.3.1. Phase Transfer Entropy

We obtain phase TE values through three different estimators that allow comput-
ing TE from individual signal pairs. First, the proposed kernel-based Renyi’s phase TE
estimator (TEθ

κα), defined in Equation (9). Second, the Kraskov-Stögbauer-Grassberger
TE estimator (TEθ

KSG), a method that relies on a local approximation of the probability
distributions needed to estimate the entropies in TE from the distances of every data point
to its neighbors [33,34]. Thirdly, an approach termed symbolic TE (TEθ

Sym) that relies on
a symbolization scheme based on ordinal patterns. The symbolization scheme allows
estimating the probabilities involved in the computation of TE directly from the symbols’
relative frequencies [35].

In all cases, θx and θy are obtained by convolving the real-valued time series with a
Morlet wavelet, defined as

h(t, f ) = exp(−t2/2ξ2
t )exp(i2π f t), (10)

where f stands for the filter frequency, ξt = m/2π f is the time domain standard deviation
of the wavelet, and m defines the compromise between time and frequency resolution [8].

2.3.2. Phase Slope Index

The phase slope index (PSI) is an effective brain connectivity measure that assesses
the direction of coupling between two oscillatory signals of similar frequencies [13]. Given
two time series x = {xi}l

t=1 and y = {yi}l
t=1, the PSI is defined as the slope of the phase of

the cross-spectra between x and y:

PSI(x → y) = �
(

∑
f∈F

C∗
xy( f )Cxy( f + d f )

)
, (11)

where Cxy( f ) = Sxy/
√

Sxy, Sxy is the complex coherence, Sxy ∈ C is the cross-spectrum
between x and y, Sxx, Syy ∈ C are the auto-spectrums of x and y, d f ∈ R+ is the frequency
resolution, F stands for the set of frequencies over which the slope is summed, and �
indicates selecting only the imaginary part of the sum [12]. If the PSI, as defined in
Equation (11), is positive, then there is directed interaction from x to y in F. Conversely,
if the PSI is negative, the directed interaction goes from y to x. Note that by definition the
PSI is an antisymmetric measure: PSI(x → y) = −PSI(y → x).
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2.3.3. Granger Causality

We also characterize the simulated and EEG data using Granger causality (GC). Like
TE, GC is derived from Wiener’s definition of causality, and the two measures, in their
original forms, are equivalent for Gaussian variables [36]. Briefly, for two stationary time
series x = {xt}T

i=1 and y = {yi}T
t=1, the Granger causality from x to y is defined as:

GC(x → y) = log
(

var{e}
var{e′}

)
, (12)

where e, e′ ∈ RT−o are vectors holding the residual or prediction errors of two autore-
gressive models, and var{·} stands for the variance operator. The errors in e come from
an autoregressive process of order o that predicts y from its past values alone. On the
other hand, the errors in e′ come from a bivariate autoregressive process of order o that
predicts y from the past values of y and x [11]. If the past of x improves the prediction
of y then var{e} � var{e′} and GC(x → y) � 0, if it does not, then var{e} ≈ var{e′}
and GC(x → y) → 0. In addition, in analogy to the concept of phase TE, we define
GCθ(x → y, f ) = GC(θx → θy), where θx and θy are instantaneous phase time series
obtained by filtering x and y at frequency f , as a measure within the framework of GC that
captures phase-based interactions.

2.4. Kernel-Based Relevance Analysis

When characterizing EEG data through effective brain connectivity measures for
BCI-related applications, two common and related issues can arise. First, all to all channel
connectivity analyses result in a large number of features, many of which may not pro-
vide useful information to discriminate between the conditions of the BCI paradigm of
interest [10]. This can add noise and complexity to any subsequent analysis stage. Second,
estimating such a large number of pairwise channel connectivities can be computationally
expensive, especially for measures such as TE and single-trial TEθ [8], which can hinder
their inclusion in practical BCI systems. Both problems could be addressed by identifying
the set of pairwise channel connectivities that are relevant to discriminate between specific
conditions, which would also lead to a clearer neurophysiological interpretation of the
obtained results [6,10]. To that end, we explore a relevance analysis strategy based on
centered kernel alignment (CKA). CKA allows quantifying the similarity between two
sample spaces by comparing two characterizing kernel functions [29]. First, assume we
have a feature matrix Φ ∈ RN×P, and a corresponding vector of labels l ∈ ZN , with N the
number of observations and P the number of features. For the case of connectivity-based
EEG analysis, each element in Φ holds a connectivity value for a pair of channels, with each
row of Φ containing multiple connectivity values (features) estimated for a single trial
or observation. The corresponding element in l holds a label identifying the condition
associated to that trial. Next, we define two kernel matrices KΦ ∈ RN×N and Kl ∈ RN×N .
The first matrix holds elements kΦ

ij = κΦ(φi, φj) with φi, φj ∈ RP row vectors belonging
to Φ, and

κΦ(φi, φj; σ) = exp

(
−d2(φi, φj)

2σ2

)
(13)

a radial basis function (RBF) kernel [37], where d2(·, ·) is a distance operator and σ ∈ R+ is
the kernel’s bandwidth. The second matrix has elements kl

ij = κl(li, lj) with li, lj ∈ l, and

κl(li, lj) = δ(li − lj), (14)

a dirac kernel, where δ(·) stands for the Dirac delta. Then, the CKA can be estimated as:

ρ̂(K̄Φ, K̄l) =
〈K̄Φ, K̄l〉F

(〈K̄Φ, K̄Φ〉F〈K̄l , K̄l〉F)1/2 , (15)
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where K̄ ∈ RN×N is the centered version of K, obtained as K̄ = ĨK Ĩ, where Ĩ = I − 1�1/N
is the empirical centering matrix, I ∈ RN×N is the identity matrix, 1 ∈ RN is an all-ones
vector, and 〈K̄, K̄〉F =

√
tr(K̄K̄T) denotes the matrix-based Frobenius norm. Now, for κΦ

we select as distance operator the the Mahalanobis distance

d2
A(φi, φj) =

(
φi − φj

)
ΓΓ�(

φi − φj
)� (16)

where Γ ∈ RP×Q, Q ≤ P, is a linear projection matrix, and ΓΓ� is the corresponding
inverse covariance matrix. Afterward, the projection matrix Γ is obtained by solving the
following optimization problem:

Γ̂ = arg max
Γ

log(ρ̂(K̄Φ, K̄l ; Γ)), (17)

where the logarithm function is used for mathematical convenience. Γ̂ can be estimated
through standard stochastic gradient descent, as detailed in [38], through the update rule

Γr+1 = Γr − μr
Γ∇Γr (ρ̂(KΦ, Kl)), (18)

where μ ∈ R+ is the step size of the learning rule, and r indicates a time step. Finally,
we quantify the contribution of each feature to the projection matrix Γ̂, which maximizes
the alignment between the feature and label spaces, by building a relevance vector index
� ∈ RP, whose elements are defined as:

�p =
Q

∑
q=1

|γpq|; ∀p ∈ P, γ ∈ Γ. (19)

� can then be used to rank the features in Φ according to their discrimination capability.
A high �p value indicates that the p-th feature in Φ, in our case a connection between a
specific pair of channels, is relevant when it comes to distinguishing between the conditions
contained in the label vector l.

3. Experiments

In order to test the performance of our single-trial phase TE estimator we carry out
experiments on simulated data from neural mass models, and on real EEG data, obtained
under motor imagery and visual working memory paradigms. We then compare our results
with those obtained with the alternative approaches for phase-based effective connectivity
estimation detailed in Section 2.3.

3.1. Neural Mass Models

Neural mass models (NMM) are biologically plausible mathematical descriptions
of neural mechanisms [39]. They represent the electrical activity of neural populations
at a macroscopic level through a set of stochastic differential equations [40]. NMMs
allow generating mildly nonlinear time series with properties that resemble the oscillatory
dynamics of electrophysiological signals, such as EEG, and how they change as a result
of coupling between different cortical areas. Therefore, NMMs are useful to study the
behavior of brain connectivity measures that aim to capture such interactions [8,24,40,41].
Figure 1A shows a schematic representation of an NMM with two interacting cortical areas
from which two signals, x and y (see Figure 1B), can be obtained. The parameters C12 and
C21 are known as coupling coefficients, and they determine the strength of the coupling
from Area 1 to Area 2, and from Area 2 to Area 1, respectively. The parameter ν represents
the interaction lag between the two areas, while p1 and p2 are external inputs coming from
other cortical regions.
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Figure 1. (A) Schematic representation of a neural mass model. (B) 1 s long unidirectionally coupled
time series generated by the model. (C) Average power spectrums peaking in the α and lower β

frequency bands.

In this work, we use NMMs to generate interacting time series with known oscil-
latory properties in order to test the performance of the proposed phase TE estimator.
In particular, we test our proposal in terms of its ability to detect directed interactions for
different levels of coupling strength, under the presence of noise and signal mixing, and for
bidirectional narrowband couplings. We proceed as follows: first, we set the model param-
eters describing Areas 1 and 2 as in [40], so as to generate signals with power spectrums
peaking in the α (8 Hz–12 Hz) and lower β bands (12–20 Hz), as depicted in Figure 1C.
Then, in order to generate unidirectionally coupled signals, with interactions from x to
y, we set the parameter C21 to 0 for all simulations. Also, the parameter ν is set to 20 ms,
and the extrinsic inputs p1 and p2 are modeled as Gaussian noise [40]. Afterward, we
generate 50 pairs (trials) of 3 s long signals, using a simulation time step of 1 ms, equivalent
to a sampling frequency of 1000 Hz, for each condition in the three scenarios detailed
in Sections 3.1.1–3.1.3. Next, we select a 2 s long segment from the signals, from 0.5 s to
2.5 s, and downsample them to 250 Hz. Then, we compute connectivity estimates for the
simulated data in the frequency range between 2 Hz and 60 Hz, in steps of 2 Hz. After that,
we obtain net connectivity values, defined as

Δλ(x, y, f ) = λ(x → y, f )− λ(y → x, f ), (20)

where λ stands for any of the phase-based effective connectivity measures studied, ex-
cept for the PSI, in which case all subsequent analyses are performed directly on the PSI
values. Lastly, for each condition in the three scenarios and at each frequency evaluated,
we perform permutation tests based on randomized surrogate trials [34,42] to determine
which net couplings or directed connections are statistically significant. The permutation
test employed uses the trial structure of the data to generate surrogate datasets for the null
hypothesis (absence of directed interactions). It does so by shuffling the data from different
trials. The significance level for the tests was set to 3.3 × 10−4 after applying the Bonferroni
correction to an initial alpha level of 0.01 in order to account for 30 independent tests, one
for each evaluated frequency per condition.
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3.1.1. Coupling Strength

In order to test the ability of our phase TE estimation method to detect phase-based
directed interactions of varying intensity, we modify the coupling strength between the
simulated signals, x and y, by varying the parameter C12 in the range {0, 0.2, 0.5, 0.8}, with 0
indicating the absence of coupling and 0.8 a strong interaction between the two signals.

3.1.2. Noise and Signal Mixing

To asses the robustness of our proposal to realistic levels of noise and signal mixing,
we do the following: we generate a noise time series η, with the same power spectrum of
x, through the methodology proposed in [8]. Then, we add x and η to generate a noisy
version of x, xη = x + 10− SNR

20 η, where SNR is the signal to noise ratio. Likewise for y.
Then, we mix xη and yη to simulate one of the effects of volume conduction, by doing
xw

η =
(
1 − w

2
)
xη +

(w
2
)
yη, and yw

η =
(
1 − w

2
)
yη +

(w
2
)
xη, with w the mixing strength. We

set the parameters SNR and w to 3 and 0.25 respectively, based on the results obtained
in [8] for realistic values of noise and mixing for EEG signals. The coupling coefficient C12
is held constant at a value of 0.5 to simulate couplings of medium strength.

3.1.3. Narrowband Bidirectional Interactions

In this experiment, we aim to evaluate how our proposal deals with bidirectional
interactions of localized frequency content. Particularly, we want to assess its performance
for signals x and y containing a directed interaction from x to y at 10 Hz and an interaction
in the opposite direction, from y to x, at 40 Hz. To generate such signals, first, we modify
the model parameters of Area 2 so that it produces a signal y with a power spectrum
peaking in the γ band [39]. The power spectrum of x remains as before. The coupling
coefficient C12 is again held constant at a value of 0.5. The change in the parameters of
Area 2 leads to strong directed interactions from x to y around 10 Hz and 40 Hz. Then, we
use a Morlet wavelet (Equation (10)) to filter both x and y at those frequencies (10 Hz and
40 Hz). The obtained real-valued narrowband time series are then combined as follows:
x∗ = x10 Hz + y40 Hz and y∗ = y10 Hz + x40 Hz. Next, x∗ and y∗ are added to broadband
noise generated following the same approach described in Section 3.1.2, with an SNR of 6.

3.2. EEG Data

In order to test the performance of our phase TE estimator in the context of BCI,
we obtain effective connectivity features from EEG signals recorded under two different
cognitive paradigms: the first one consisting of motor imagery (MI) tasks and the second
one of a change detection task designed to study working memory (WM). Our aims are
to set up classification systems that allow discriminating between the conditions in each
paradigm, using as inputs relevant directed interactions among EEG signals and then
evaluate their performance in relation to the connectivity measures used to train them.
To those ends, we employ two publicly available databases: the BCI Competition IV
database 2a (http://www.bbci.de/competition/iv/index.html, accessed on 2 June 2021)
and a database from brain activity during visual working memory (https://data.mendeley.
com/datasets/j2v7btchdy/2, accessed on 2 June 2021).

3.2.1. Motor Imagery

Motor imagery (MI) is the process of mentally rehearsing a motor action, such as
moving a limb, without actually executing it [43]. The BCI Competition IV database 2a [44]
comprises EEG data from 9 healthy subjects recorded during an MI paradigm consisting of
four different MI tasks, namely, imagining the movement of the left hand, the right hand,
both feet, or the tongue. Each trial of the paradigm starts with a fixation cross displayed
on a computer screen, along with a beep. At second 2, a visual cue appears on the screen
for a period of 1.25 s (an arrow pointing left, right, down, or up, corresponding to one of
the four MI tasks). The cue prompts the subject to perform the indicated MI task until
the cross vanishes from the screen at second 6. A representation of the paradigm’s time
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course is shown in Figure 2A. Each subject performed 144 trials per MI task. The EEG data
are acquired at a sampling rate of 250 Hz, from 22 Ag/AgCl electrodes (C = 22) placed
according to the international 10/20 system, as depicted in Figure 2B. Next, the data are
bandpass-filtered between 0.5 Hz and 100 Hz. A 50 Hz Notch filter is also applied. For each
subject, the database contains a training dataset and a testing dataset, obtained following
the same experimental paradigm [44]. In this study, we consider a bi-class classification
problem involving the left and right hand MI tasks, so we drop the trials associated with
the feet and the tongue. Afterward, we also drop the trials marked for rejection in the
database itself [44]. Then, for all trials we select a 2 s long time window stretching from
second 3 to second 5 (M = 500 samples), as schematized in Figure 2A. Finally, we compute
the surface Laplacian of each remaining trial through the spherical spline method for source
current density estimation, in order to reduce the deleterious effects of volume conduction
on connectivity analyses [21,45,46].

Figure 2. (A) Schematic representation of the MI protocol. (B) EEG channel montage used for the
acquisition of the MI database.

3.2.2. Working Memory

The concept of working memory (WM) refers to a cognitive system of limited capacity
that allows for temporary storage and manipulation of information [47]. The database from
brain activity during visual working memory, presented in [48], contains EEG data recorded
from twenty-three subjects, with normal or corrected-to-normal vision, and without color-
vision deficiency, while performing multiple trials of a change detection task [49]. The task
consists of remembering the colors of a set of squares, termed memory array, and then
comparing them with the colors of a second set of squares located in the same positions,
termed test array. A trial of the task begins with an arrow indicating either the left or the
right side of the screen. Then, a memory array appears on the screen for 0.1 s. For every
trial, memory arrays are displayed on both hemifields, but the subject must remember
only those appearing on the side indicated by the arrow cue. Next, after a retention period
lasting 0.9 s, a test array appears. The subject then reports if the colors of all the items in
the memory and test arrays match. The task has three levels according to the number of
elements in the memory array: low memory load (one square), medium memory load (two
squares), and high memory load (four squares). A representation of the above-described
experimental paradigm is depicted in Figure 3A. The color of one of the squares in the test
array differs from its counterpart in the memory array in 50% of the trials. Each subject
performed a total of 96 trials, with 32 trials for each memory load level. The EEG data are
acquired at a sampling rate of 2048 Hz, using 64 electrodes (Biosemi ActiveTwo) arranged
according to the international 10/20 extended system, as depicted in Figure 2B. Besides the
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EEG data, the database provides recordings from four EOG channels and two externals
electrodes located on the left and right mastoids.

Figure 3. (A) Schematic representation of the WM protocol. (B) EEG channel montage used for the
acquisition of the WM database.

In this study, we perform the following preprocessing steps before any further data
analysis. First, we re-reference the data to the average of the mastoid channels. Next, we
bandpass-filter the data between 0.01 Hz and 20 Hz using a Butterworth filter of order 2.
Afterward, we extract the trial information from the continuous EEG data using a 1.4 s
squared window. Each trial segment starts 0.2 s before the presentation of the memory
array. Then, we perform a visual inspection of the data and discard two subjects (subjects
number 11 and 17) because of the presence of strong artifacts in a very large number of trials.
Subjects number 22 and 23 are reassigned as subjects 17 and 11, respectively. After that,
we remove ocular artifacts from the EEG data by performing independent component
analysis (ICA) on it and then eliminating the components that more closely resemble the
information provided by the EOG data [48]. Then, we discard all incorrect trials, i.e., trials
for which the subjects incorrectly matched the memory and test arrays. Next, we select
32 out of the 64 channels in the EEG data (C = 32), as shown in Figure 3B. Then, we
downsample the data to 1024 Hz, and segment, for each trial, the time window starting
0.3 s after the onset of the memory array and ending just before the presentation of the
test array (see Figure 3A). The 0.7 s long segments (M = 717) cover most of the retention
interval, the period when the subjects should maintain the stimulus information in their
working memories, while leaving out any purely sensory responses elicited immediately
after the presentation of the stimulus. Finally, with the aim of reducing the presence of
spurious connections associated with volume conduction effects, we compute the surface
Laplacian of each trial.

3.2.3. Classification Setup
Feature Extraction

Let Ψ = {Xn ∈ RC×M}N
n=1 be an EEG set holding N trials from either an MI or a WM

dataset, recorded from a single subject, where C stands for the number of channels and
M corresponds to the number of samples. In addition, let {ln}N

n=1 be a set whose n-th
element is the label associated with trial Xn. For the MI database ln can take the values
of 1 and 2, corresponding to right hand and left hand motor imagination, respectively.
Similarly, for the WM database, ln can take the values of 1, 2, and 3 corresponding to low,
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medium, and high memory loads. In both cases, our goal is to estimate the class label from
relevant effective connectivity features extracted from Xn. Because of the results obtained
for the simulated data (see Section 4.1 for details), here we consider features from only
three approaches for phase-based effective connectivity estimation, namely, TEθ

κα, GCθ ,
and PSI. Additionally, we also characterize the data through the real-valued versions of
TEκα and GC.

For the real-valued effective connectivity measures considered, we do the following:
let λ(xc → xc′) be a measure of effective connectivity between channels xc, xc′ ∈ RM.
By computing λ(xc → xc′) for each pairwise combination of channels in Xn we obtain a
connectivity matrix Λ ∈ RC×C. In the case when c = c′, we set λ(xc → xc′) = 0. Then, we
normalize Λ to the range [0, 1]. After performing the above procedure for the N trials, we
get set of connectivity matrices {Λn ∈ RC×C}N

n=1. Then, we apply vector concatenation
to Λn to yield a vector φn ∈ R1×(C×C). Next, we stack the N vectors φn, corresponding to
each trial, to obtain a matrix Φ ∈ RN×(C×C) holding all directed interactions, estimated
through λ, for the EEG set Ψ. A graphical representation of the above-described steps,
as well as of our overall classification setup, is depicted in Figure 4.

Figure 4. Schematic representation of our overall classification setup.

For the phase-based effective connectivity measures of interest, we proceed in a
similar fashion: let λθ(xc → xc′ , f ) be a measure of phase-based effective connectivity
between channels xc, xc′ at frequency f . By computing λθ(xc → xc′ , f ) for each pairwise
combination of channels in Xn we obtain a connectivity matrix Λ( f ) ∈ RC×C (when c = c′,
we set λθ(xc → xc′ , f ) = 0). For the MI database, we vary the values of f in the range from
8 Hz to 18 Hz, in 2 Hz steps, since activity in that frequency range has been associated
with MI tasks [43]. Then we define two bandwidths of interest Δ f ∈ {α ∈ [8 − 12],
βl ∈ [14 − 18]} Hz. Afterward, we average the matrices Λ( f ) within each bandwidth,
normalize the resulting matrices to the range [0, 1], and stack them together, so that for each
trial we have a connectivity matrix Λ′ ∈ RC×C×2. Therefore, for the N trials, we get set of
connectivity matrices {Λ′

n ∈ RC×C×2}N
n=1. Then, we apply vector concatenation to Λ′

n to
yield a vector φn ∈ R1×(C×C×2). After that, we stack the N vectors φn in order to obtain a
single matrix Φ ∈ RN×(C×C×2) characterizing Ψ for the MI data. For the WM we follow the
same steps, only that in this case we vary the values of f in the range from 4 Hz to 18 Hz,
in 2 Hz steps, since oscillatory activity at those frequencies has been shown to play a role in
the interactions between different brain regions during WM [50,51]. Next, we define three
bandwidths of interest Δ f ∈ {θ ∈ [4 − 6], α ∈ [8 − 12], βl ∈ [14 − 18]} Hz, which leads to a
connectivity matrix Λ′ ∈ RC×C×3 for each trial and ultimately to a matrix Φ ∈ RN×(C×C×3)

characterizing Ψ for the WM data. Note that since the PSI is an antisymmetric connectivity
measure, we only use the upper triangular part of the connectivity matrix associated with
each trial to build Φ.

Feature Selection and Classification

After characterizing the EEG data, either through real-valued or phase-based effective
connectivity measures, we set up a subject-dependent classification system for the MI and
WM databases.

For the MI data, we do the following: Since the MI database has training and testing
datasets, we divide our classification system into a training-validation stage and a testing
stage. For the training-validation stage, we first specify a cross-validation scheme of
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10 iterations. For each iteration, 70% of the trials of the training dataset are randomly
assigned to a training set and the remaining 30% to a validation set. Then, we use CKA
(see Section 2.4) over the connectivity features obtained from the training set to generate
a relevance vector � ∈ [0, 1]P, where P equals the number of features in Φ. P varies
according to the connectivity measure used to characterize the data. Then, we use � to
rank Φ. Next, we select a varying percentage of the ranked features, from 5% to 100%
in 5% steps, and input them to the classification algorithm. The features associated with
the highest values of � are input first, and as the percentage of features increases those
associated with lower values of � are progressively included. In this work, we use a support
vector classifier (SVC) with an RBF kernel [52]. All classification parameters, including the
percentage of discriminant features, are tuned at this stage through a grid search. We select
the parameters according to the classification accuracy, aiming to improve the system’s
performance. Then, for the testing stage, we train an SVC using the connectivity features
from all trials in the training dataset as well as the parameters found in the previous stage.
Lastly, we quantify the performance of the trained system in terms of the classification
accuracy, obtained after predicting the MI task class labels of the testing dataset from its
connectivity features.

The classification system we set up for the WM data closely resembles the one pre-
viously detailed for the MI data, with three changes. First, the WM database consists
of one set of data for each subject, instead of two, so there is only a training-validation
stage. Second, given the reduced number of trials available for each memory load level,
each of the 10 iterations of the cross-validation scheme follows an 80–20% split for the
training and validation sets (instead of a 70–30% split). Third, since the results provided
by CKA are not stable for the low number of trials available from each subject (27.7 trials
per class, on average), we opted to add an auxiliary cross-validation step, with the same
characteristics as the one described above, and use it to estimate a single relevance vector
�̄, obtained as the average of the relevance vectors of each data split. Then, we use �̄ to
perform feature selection in every iteration of the main cross-validation scheme.

3.3. Parameter Selection

We used in-house Python implementations of the algorithms for all the connectivity
measures studied (The TEθ

κα implementation is available at https://github.com/ide270
4/Kernel_Phase_Transfer_Entropy, accessed on 13 July 2021), except for TEθ

KSG. In that
case, we used the implementation provided by the open access toolbox TRENTOOL, a TE
estimation and analysis toolbox for Matlab [34].

Regarding the selection of parameters involved in the different effective connectiv-
ity estimation methods, we proceeded as follows: For the TE methods, we estimated all
parameters from the real-valued time series, i.e., before extracting the phase time series.
The embedding delay τ was set to 1 autocorrelation time (ACT), as proposed in [31].
The embedding dimension d was selected from the range d = {1, 2, . . . , 10} using Cao’s
criterion [34,53]. Note that for any signal pair, the embedding parameters selected are those
of the driven or target time series, i.e., to estimate TE(x → y) we use for both time series the
embedding parameters found for y. The interaction delay u was set as the value generating
the largest TE from ranges that varied depending on the experiment: u = {1, 2, . . . , 10}
for the NMMs, u = {1, 4, . . . , 25} for the MI data, and u = {50, 60, . . . , 250} for the
WM data. Note that the meaning of u in terms of the time delay of the directed interac-
tion between the driving and driven systems is associated with the sampling frequency,
e.g., u = {1, 2, . . . , 10} for data sampled at 250 Hz translates to a time range between 4 ms
and 40 ms. For TEθ

κα we select a value of α = 2, which is neutral to weighting, a convenient
choice when there is no previous knowledge about the values of the α parameter better
suited for a particular application [10,28]. In addition, as kernel function, we employ an
RBF kernel with Euclidean distance (see Equation (13)). The bandwidth σ was set in each
case as the median distance of the data [54]. For TEθ

KSG the Theiler correction window
and the number of neighbors were left at their default values in TRENTOOL, 4 and 1 ACT,
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respectively [34]. For the GC methods the order of the autoregressive models o was selected
from the range o = {1, 3, . . . , 9} using Akaike information criterion [55,56]. Furthermore,
in order to estimate the PSI we employed a sliding window 5 frequency bins long (3 bins
long for the WM data), centered on the frequency of interest. Finally, for all the connectivity
methods involving the extraction of phase time series through Morlet wavelets, we varied
the parameter m (see Equation (10)) from 3 to 10 in a logarithmic scale, according to the
selected frequency of the filter.

4. Results and Discussion

4.1. Neural Mass Models Results

The experiments described in Section 3.1 are intended to assess whether the phase-
based connectivity measures considered in this study correctly detect the direction of
interaction between two time series of known oscillatory properties. Figure 5 presents
the results obtained from such experiments. Namely, column A shows the connectivity
values obtained for different levels of coupling strength, column B compares the con-
nectivities estimated for ideal signals with those of signals contaminated with noise and
mixing, and column C displays the results obtained for bidirectional narrowband couplings.
The rows in Figure 5 correspond to each of the phase-based connectivity measures stud-
ied. The first row contains average PSI values computed on the frequency range between
2 Hz and 60 Hz, while rows two to five display average net connectivity values for TEθ

κα,
TEθ

KSG, TEθ
Sym, and GCθ , respectively. Circled values indicate statistically significant con-

nectivities at a particular frequency, according to a permutation test based on randomized
surrogate trials. The test identifies connectivity values that are, on average, significantly
different from those expected for that connectivity measure applied to non-interacting
signals. For the three experiments involving simulated data from NMMs, we use the PSI as
a comparison standard, since it is a robust and well-stablished measure of linear directed
interactions defined in terms of phase relations [12,13]. Therefore, it is suited to analyze
the coupled, mildly nonlinear time series generated by NMMs.

Regarding the first experiment, which modifies the coupling strength between the
simulated signals, the obtained results (Figure 5, column A) show that all the measures
studied satisfactorily detect the coupling direction of the simulated data. Note that since
we set the NMMs to generate unidirectional interactions from x to y, and because of the
way we defined Δλ, then all net connectivity values for the simulated coupled signals
should be positive. The same is true for the PSI(x → y). On the other hand, only the PSI,
TEθ

κα, and GCθ fulfill the criteria for an overall description of the phase-based interactions
present in the data. First, we observe higher net connectivity values at higher coupling
strengths, that is to say, stronger interactions lead to larger connectivity estimates. Second,
for each coupling strength, there are higher net connectivity values around the frequencies
corresponding to the main oscillatory components of the time series generated by the
NMMs, in this case, oscillations in the range between 8 Hz and 20 Hz. Thirdly, there
are statistically significant results for all the coupling strengths explored, except for non-
interacting time series (C12 = 0). TEθ

KSG does not capture statistically significant interactions
for a coupling coefficient value of 0.2, indicating a lower sensitivity to weak couplings.
While TEθ

Sym exhibits a very distorted connectivity profile when compared with the PSI. In
addition, it has much larger standard deviations for all the coupling strengths considered.

The second experiment assesses the robustness of our proposal to realistic levels
of noise and signal mixing, two sources of signal degradation that can lead to spurious
connectivity results. In electrophysiological signals, such as EEG, signal mixing arises
as a result of field spread, while noise is the result of technical and physiological arti-
facts [9,57,58]. The results in Figure 5, column B, show that PSI, TEθ

κα, and GCθ capture
statistically significant interactions in the frequencies of interest for both the ideal (no noise
or signal mixing) and realistic conditions. The smaller connectivity values for the data
contaminated with noise and signal mixing, as compared with the ideal signals, are mostly
explained by the reduction in asymmetry between the driving and driven signals caused by
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mixing [8]. On the contrary, we observe that neither TEθ
Sym nor TEθ

KSG produce statistically
significant results under the realistic scenario, indicating that those estimators are less
robust to signal degradation.

Figure 5. Obtained results for the experiments performed using simulated data from NMMs. Column (A) shows the
average connectivity values obtained for different levels of coupling strength. Column (B) presents the average connectivity
values estimated for ideal signals and for signals contaminated with noise and signal mixing. Column (C) displays the
average connectivity values obtained for bidirectional narrowband couplings. The rows correspond to each of the net
phase-based effective connectivity estimation approaches considered for the aforementioned experiments. Circled values
indicate statistically significant results at a Bonferroni-corrected alpha level of 3.3 × 10−4, according to a permutation test
based on randomized surrogate trials.
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Finally, the third experiment aims to evaluate how our proposal deals with bidirec-
tional interactions of localized frequency content. Because of our experimental setup,
the obtained results should exhibit a positive deflection around 10 Hz in order to capture
the directed interaction from x to y and a negative deflection around 40 Hz to represent
the directed interaction from y to x. Figure 5, column C, shows that both PSI and TEθ

κα

successfully detect the change in the direction of interaction in localized frequency bands,
with statistically significant connectivity values around the frequencies of interest. How-
ever, under this scenario, TEθ

κα is less frequency specific for high-frequency interactions
than PSI, with statistically significant connections present for a large range of frequency
values around 40 Hz. This is probably due to the filtering step involved in the estimation of
TEθ

κα, while PSI is directly defined on the data spectra. Additionally, TEθ
KSG and TEθ

Sym fail

to produce any significant results, while GCθ shows a statistically significant, non-existing
coupling from y to x for frequencies under 10 Hz. Note that, ultimately, the permutation
test indicates whether the connectivity values obtained are unlikely to be the result of
chance and not whether they correctly capture the directed interactions present in the data.
In this case, the statistically significant results mean that GCθ consistently found a directed
interaction from y to x in the range mentioned before.

The results discussed above indicate that the proposed phase TE estimator is able
to detect directed interactions between time series resembling electrophysiological data
for different levels of coupling strength, under the presence of noise and signal mixing
and for bidirectional narrowband couplings. Furthermore, they show that it is competitive
with well-established approaches for phase-based net connectivity estimation, such as
PSI, in the case of weakly nonlinear signals. Lastly, our results also show that commonly
used single-trial TE estimators, such TEKSG and TESym, are ill-suited to measure directed
interactions between instantaneous phase time series.

4.2. EEG Data Results

Table 1 presents the average accuracies achieved by the proposed classification sys-
tems for both the MI and WM databases, for each effective connectivity method studied.
For the MI database, in the training-validation stage, the classifier based on TEθ

κα features
exhibited the highest average performance, closely followed by the one based on GCθ .
In the testing stage, we observe the same overall accuracy ranking, although a smaller drop
in the classification accuracy occurs for TEθ

κα than for GCθ , which points to a better general-
ization capacity by the system trained using features extracted through phase TE. For the
WM database, the classifier trained from TEθ

κα features also displays the highest average
accuracy. However, in this case, there is a large gap in performance between the TEθ

κα-based
classification system and the closest results from an alternative approach. Furthermore,
the results in Table 1 show a consistent improvement in performance between the classifiers
that use real-valued TE estimates and those that are trained from phase TE values. They
also show relatively low accuracies for the classifiers trained using PSI features. We believe
the latter can be explained by two factors. First, by definition, the PSI is unable to explicitly
detect bidirectional interactions. It measures connectivity in terms of lead/lag relations,
which leads to ambiguity regarding the meaning of PSI values close to zero, since they can
be the result of either the lack of interaction or evenly balanced bidirectional connections.
If the relevant information to discriminate among the conditions of a cognitive paradigm
is related to the bidirectionality of interactions, such as those present in WM [50,51], then
the PSI might not be an adequate characterization strategy. Secondly, the PSI, like GC, is a
linear measure; its performance degrades for strongly nonlinear phase relationships.

In the sections below, we detail and further discuss the results obtained for each database.
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Table 1. MI and WM classification results in terms of the classification accuracy for all the effective
connectivity measures considered.

Motor Imagery (acc %) Working Memory (acc %)

Cross-Validation Testing Cross-Validation

GC [11] 64.3 ± 11.7 57.1 ± 11.0 53.0 ± 7.4
TEκα[10] 65.5 ± 11.4 62.8 ± 11.7 67.5 ± 4.2

PSI [12,51] 62.4 ± 7.8 58.8 ± 8.3 75.2 ± 5.2
GCθ 67.0 ± 11.9 63.5 ± 14.4 74.5 ± 4.4
TEθ

κα 70.4 ± 12.5 69.0 ± 14.8 93.0 ± 5.9

4.2.1. Motor Imagery Results

Figure 6 depicts the average classification accuracy for all subjects in MI database as a
function of the number of selected features during the training-validation stage, for TEκα

and TEθ
κα. These results show there is a small improvement in the ability to discriminate

between the MI tasks when using features extracted through phase TE, as compared with
real-valued TE. In addition, they reveal that the CKA-based feature selection strategy
successfully identified the most relevant connections for MI task classification. That is to
say, the classification system has a stable performance even for a very reduced number of
connectivity features. This is fundamental for any practical BCI application that intends
to use phase TE as a characterization strategy, since estimating single-trial phase TE is
computationally expensive [8]. Therefore, it is important to reduce as much as possible
the number of channel pair connectivity features required to achieve peak classification
performance. Additionally, it is important to highlight that while classification accuracies in
Figure 6, and in Table 1, are in the same range of those obtained through other connectivity-
based characterization approaches [10,23], they are far below those obtained from methods
such as common spatial patterns [59–61]. A possible explanation is that bivariate TE
might be more robust at describing long-range interactions rather than local ones [41],
like those arising from MI-related activity, centered on the sensorimotor area. In addition,
the differences with the results in [10], where we used TEκα to characterize the same
database, lay mostly in the fact that in this study we select and analyze one 2 s long
time window covering the period right after the end of the visual cue, while in [10] we
report results from multiple overlapping windows covering the entirety of the task. Lastly,
the large standard deviations from the average accuracies in Figure 6 point to disparate
performances for different subjects.

Figure 6. Average classification accuracies, and their standard deviations, for all subjects in the MI
database as a function of the number features selected to train the classifiers.

93



Appl. Sci. 2021, 11, 6689

Figure 7A shows the highest average classification accuracy per subject for TEθ
κα,

GCθ and PSI, during the training-validation stage. The subjects are ordered from highest
to lowest performance. The analogous information for the testing stage is presented in
Figure 7. In both stages, the TEθ

κα-based classifier performs slightly better than those based
on alternative connectivity estimation strategies in most subjects. In addition, as inferred
from Figure 6, there are large variations in performance for the different subjects in the
database, consistent across the two classification stages. This behavior has been reported
elsewhere [10,59–62].

Figure 7. (A) Highest average classification accuracy for each subject in the MI database during
the training-validation stage. (B) Accuracies obtained for each subject during the testing stage.
The subjects are ordered from highest to lowest performance according to the accuracies obtained for
the TEθ

κα-based classifier in the training-validation stage.

In order to gain insight into the observed performance differences, in the case of
TEθ

κα, we exploited the second advantage provided by the CKA-based relevance analysis.
The relevance vector index � not only allows us to perform feature selection but also
provides a one-to-one relevance mapping to each connectivity feature. That is to say, we
can reconstruct normalized relevance connectivity matrices by properly reshaping �, so
as to visualize the connectivity pairs and frequency ranges that are discriminant for the
task of interest. In that line, we followed the approach proposed in [23] to interpret the
relevance information by clustering the subjects according to common relevance patterns.

First, for each subject and frequency band of interest, we obtained a relevance vector
�n,Δ f ∈ RC whose elements were associated with each node (EEG channel) in the data by
computing the relevance of the total information flow of every node. Such magnitude was
defined as the sum of the relevance values �, obtained from all data in the training dataset,
corresponding to all directed interactions targeting and originating from a particular node.
Then, we concatenated the vectors �n,Δ f ∈ RC for all frequency bands to obtain a single
relevance vector �n ∈ R2C. Next, we reduced the dimension of the relevance vectors
�n of each subject through t-Distributed Stochastic Neighbor Embedding (t-SNE), which
preserves the spatial relationships existing in the initial higher-dimensional space [63].
Figure 8A shows the obtained two-dimensional representation of the relevance vectors for
each subject in the MI database, colored according to their respective classification accuracy.
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Note that the distribution of the subjects in the plot is related to their classification accura-
cies. This indicates that shared relevance patterns are related to the obtained classification
results, meaning that subjects with similar �n had close performances. Then, we grouped
the subjects into two clusters using the k-means algorithm. The number of clusters was
selected by visual inspection of the t-SNE results. Figure 8B displays the two groups,
termed G. I and G. II. The TEθ

κα-based classifier has average accuracies of 0.59 ± 0.05 and
0.80 ± 0.09 for the subjects in G. I and G. II, respectively.

Figure 8. (A) Two-dimensional representation of the relevance vectors for each subject in the MI
database obtained after applying t-SNE on �n. (B) Groups identified by k-means. For the TEθ

κα-based
classifier the subjects grouped in G. I have an average accuracy of 0.59 ± 0.05, while those in G. II
have an average accuracy of 0.80 ± 0.09.

Finally, Figure 9 shows the average nodal relevance, as defined by �n, and the most
relevant connectivities for each group, discriminated by frequency band. For G. I we
observe high node relevance mostly in the α band in right fronto-central, left-central,
and centro-parietal regions. The most relevant connections in the α band tend to originate
or target fronto-central nodes, while the ones in the βl band favor parietal and centro-
parietal areas. For G. II, the node relevance is concentrated around the right centro-parietal
region, particularly channel CP4, for both frequency bands. The most relevant connections
in the α band involve short-range interactions mainly between centro-parietal and central
regions. The most relevant connections in the βl band, which display higher values than
those of α, originate from CP3 and CP4 and target central and fronto-central nodes. Since
the G. II includes all the subjects with good classification performances, we can conclude
that the information that allows to satisfactorily classify the left and right hand MI tasks
from TEθ

κα features corresponds mostly to the incoming and outgoing information flow
coded in the phases of the oscillatory activity in the centro-parietal region. These results
are in line, in terms of spatial location, with those we found in [10], and with physiological
interpretations that argue that MI activates motor representations in the parietal areal and
the premotor cortex [64].
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Figure 9. Topoplots of the average node (channel) relevance for each group of clustered subjects and
frequency band of interest in the MI database (see Figure 8). The arrows represent the most relevant
connectivities for each group. For visualization purposes, only 3% of the connections, those with the
highest average relevance values per group, are depicted.

4.2.2. Working Memory Results

Figure 10 presents the average classification accuracy for all subjects in the WM
database as a function of the number of selected features, for TEκα and TEθ

κα. The results
show that the classifier trained from phase TE features markedly outperforms the one
trained using real-valued TE estimates, as long as the appropriate percentage of features is
selected. This difference might be attributed to the hypothesized phase-based nature of
directed interactions during WM tasks [35,50], which would be better captured by phase
TE. Furthermore, both accuracy curves highlight the importance of feature selection, since
they show a steep performance degradation as more features are used to train the classifiers.
In this case, the CKA-based relevance analysis not only allows reducing the number of
features needed to successfully classify the three cognitive load levels present in the WM
data but also prevents the classifiers from being confounded by connections that do not
hold relevant information to discriminate between the target conditions.

Figure 10. Average classification accuracies, and their standard deviations, for all subjects in the WM
database as a function of the number features selected to train the classifiers.

Figure 11 depicts the highest average classification accuracy per subject for TEθ
κα, GCθ

and PSI. The subjects are ordered from highest to lowest performance. Unlike the results
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obtained for the MI database, we do not observe an underperforming group of subjects, es-
pecially after considering the fact that for the WM database the classifiers must discriminate
among three classes instead of two. On the other hand, in this case, the TEθ

κα-based classifier
largely outperforms those based on alternative connectivity estimation strategies in most
subjects. Here, we must point out that the auxiliary cross-validation step introduced for
feature selection, aiming to obtain stable CKA results for the reduced number of available
trials, leads to data leakage. This is because, ultimately, it requires all the available data
to estimate �̄, which renders it a nonviable approach for practical BCI implementations
and can inflate performance evaluations, such as the accuracy results previously discussed.
However, since the same strategy was implemented for all classification systems and
connectivity measures considered for the WM database, comparisons among them remain
valid, and the relative differences in performance are still informative.

Figure 11. Highest average classification accuracy for each subject in the WM database. The subjects are ordered from
highest to lowest performance according to the accuracies obtained for the TEθ

κα-based classifier.

In order to elucidate the pairwise connectivities, and their corresponding frequency
bands, that allow the TEθ

κα-based classification system to successfully discriminate among
different memory loads, we proceeded as described in Section 4.2.1 and from �̄ obtained
a node relevance vector �̄n ∈ R3C. Then, we applied t-SNE on �̄n. Figure 12A shows
the obtained two-dimensional representation of the relevance vectors for each subject in
the WM database. Unlike the results observed before for the MI database, there is not
a clear association between the subject distribution on the plot and their classification
accuracies. Nonetheless, Figure 12A shows the presence of well-defined groups sharing
similar relevance patterns. As before, we grouped the subjects into clusters using the
k-means algorithm. The number of clusters was selected as three by visual inspection
of the t-SNE results. Figure 12B displays the three groups, termed G. I, G. II, and G. III.
The TEθ

κα-based classifier has average accuracies of 0.94 ± 0.04, 0.92 ± 0.08, and 0.93 ± 0.08
for the subjects in G. I, G. II, and G. III, respectively.

Lastly, Figure 13 shows the average nodal relevance, as defined by �n, and the most
relevant connectivities for each group, discriminated by frequency band. For G. I we
observe widespread high node relevance in both the α and βl bands and low node relevance
in the θ band. Most relevant connections are present in the βl band with many connections
originating in the parieto-occipital region and targeting frontal and centro-frontal areas.
For G. II and G. III node relevance is more evenly distributed across the three frequency
bands considered. Spatially, it is more prominent around some pre-frontal, frontal, centro-
parietal, and parietal nodes. In terms of the most relevant connections, we observe long-
range contralateral interactions involving mostly the regions previously listed, as well as
some connections to and from temporal areas. Therefore, we argue that the information
flow between frontal, parietal, and temporal regions, coded in the phases of oscillatory
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activity in the θ, α, and βl bands, is what allowed us to discriminate among different
memory loads from TEθ

κα features. These results agree with several studies that identify
fronto-parietal and fronto-temporal neural circuits operating in frequency ranges spanning
from θ to β as key during the activation of working memory [35,50,51].

Figure 12. (A) Two-dimensional representation of the relevance vectors for each subject in the WM
database obtained after applying t-SNE on �n. (B) Groups identified by k-means. For the TEθ

κα-based
classifier the subjects grouped in G. I, have an average accuracy of 0.94 ± 0.04, while those in G. II
and G.III have average accuracies of 0.92 ± 0.08 and 0.93 ± 0.08, respectively.

Figure 13. Topoplots of the average node (channel) relevance for each group of clustered subjects
and frequency band of interest in the WM database (see Figure 12). The arrows represent the most
relevant connectivities for each group. For visualization purposes, only the 1% of the connections,
those with the highest average relevance values per group, are depicted.

4.3. Limitations

In this study, we employed Morlet wavelets as filters for instantaneous phase extrac-
tion prior to phase TE estimation, as proposed in [8]. However, as discussed by the authors
in [8], the choice of filter can influence the behavior of phase TE. This is an aspect we have
yet to explore for our proposal. In the same line, in [42] the authors showed, using the
Kraskov-Stögbauer-Grassberger TE estimator on real-valued filtered signals, that filtering
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and downsampling are deleterious for TE, since they can lead to altered time delays and
hide certain causal interactions. Furthermore, from a conceptual perspective, while filtering
dampens spectral power, it does not always remove the information contained in specific
frequencies [25]. This would hinder the isolation of frequency specific interactions in TE
estimates from real-valued filtered data, the most common approach to obtain spectrally
resolved TE values. Whether those effects are also present in the case of phase TE is yet to
be analyzed; however, as pointed out in [25], phase TE is conceptually different from spec-
trally resolved TE. Additionally, the results obtained with our phase TE estimator for the
NMM data closely follow those obtained with the PSI, a measure that does not rely on data
filtering, which points to a certain degree of robustness to the negative effects that might be
associated with phase extraction through complex filtering. A related issue is the possible
effects on our proposal of the preprocessing pipelines employed on the EEG data, which
involve spectral and spatial filtering. Regarding the former, we have not studied its effects
in this work; while for the latter, surface Laplacian positively impacted the discrimination
capability of the connectivity features obtained from the different measures considered.

In addition, we are yet to examine the effects of the parameter α in Renyi’s entropy
on the proposed phase TE estimator. In [10], we showed that the choice of α indeed
modified the performance of the TEκα. The same must hold true for TEθ

κα. Additionally, we
selected the autocorrelation time and Cao’s criterion to obtain the embedding parameters
for all the TE estimation methods. More complex approaches such as time-delayed mutual
information and Ragwitz criterion may yield better results [34]. However, since our
motivation was to propose a single-trial phase TE estimator suited as characterization
method for BCI applications, the choice of simple parameter estimation methods is justified.
As a matter of fact, a practical implementation of a phase TE-based BCI system would
likely require further simplifications regarding parameter estimation, in order to facilitate
the computation of phase TE in real time. Furthermore, our proposed phase TE estimator
inherits the limitations of TEκα [10]. Namely, it is ill suited to analyze long time series
(several thousands of data points) because of the increase in computational cost, especially
for non-integer values of the parameter α. In addition, it assumes stationary or weakly
non-stationary data. Finally, since the definition of causality underlying TE is observational,
the proposed phase TE estimator is blind to unobserved common causes, including those
resulting from different driving delays.

5. Conclusions

In this work, we proposed a single-trial phase TE estimator. Our method combines
a kernel-based TE estimation approach, which defines effectivity connectivity as a linear
combination of Renyi’s entropy measures of order α, with instantaneous phase time series
extracted from the data under analysis. We tested the performance of our proposal on
synthetic data generated through NMMs and on two EEG databases obtained under MI
and WM paradigms. We compared it with commonly used single-trial TE estimators,
applied to phase time series, and the PSI and GC. Our results show that the proposed
phase TE estimator successfully detects the direction of interaction between individual
pairs of signals, capturing the differences in coupling strength and displaying statistically
significant results around the frequencies corresponding to the main oscillatory compo-
nents present in the data. It also succeeds in detecting bidirectional interactions of localized
frequency content and is robust to realistic noise and signal mixing levels. Moreover, our
method, coupled with a CKA-based relevance analysis, revealed discriminant spatial and
frequency-dependent patterns for both the MI and WM databases, leading to improved
classification performance compared with approaches based on real-valued TE estima-
tion. In all our experiments, the proposed single-trial kernel-based phase TE estimator is
competitive with the comparison methods previously listed in terms of the performance
assessment metrics employed.

As future work, we will look into developing a cross-spectral representation for
our phase TE estimator to study directed interactions between oscillations of different
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frequencies [65]. We will also explore the effects of the choice of filter on the proposed
estimator as well as those of the parameters involved in time embedding and in our
kernel-based TE estimation approach.
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Abstract: We tested whether changes in prestimulus neural activity predict behavioral performance
(decision time and errors) during a prolonged visual task. The task was to classify ambiguous stimuli—
Necker cubes; manipulating the degree of ambiguity from low ambiguity (LA) to high ambiguity
(HA) changed the task difficulty. First, we assumed that the observer’s state changes over time, which
leads to a change in the prestimulus brain activity. Second, we supposed that the prestimulus state
produces a different effect on behavioral performance depending on the task demands. Monitoring
behavioral responses, we revealed that the observer’s decision time decreased for both LA and HA
stimuli during the task performance. The number of perceptual errors lowered for HA, but not for
LA stimuli. EEG analysis revealed an increase in the prestimulus 9–11 Hz EEG power with task
time. Finally, we found associations between the behavioral and neural estimates. The prestimulus
EEG power negatively correlated with the decision time for LA stimuli and the erroneous responses
rate for HA stimuli. The obtained results confirm that monitoring prestimulus EEG power enables
predicting perceptual performance on the behavioral level. The observed different time-on-task
effects on the LA and HA stimuli processing may shed light on the features of ambiguous perception.

Keywords: ambiguous stimuli; Necker cubes; classification task; EEG analysis; wavelet analysis;
decision time; perceptual errors; time-on-task effect

1. Introduction

Sensory processing is a fundamental brain function that allows us to more easily
interact with each other and with our environment. In everyday life, we collect sensory data
and process it for interpretation and decision making [1]. The accuracy and timeliness of
our decisions depend on the speed and correctness of sensory processing. The effectiveness
of sensory processing, in turn, is determined by a number of exogenous and endogenous
factors [2]. In particular, the exogenous component reflects the quality of the sensory
input. Thus, when faced with unambiguous information, we can easily interpret it. On the
contrary, when information becomes ambiguous, interpreting it takes more effort.

In turn, the endogenous component depends on the state of the person; on their
attention, fatigue, and subjective experience [3]. In many experimental studies where
ambiguous stimuli were used, endogenous effects were found to be especially pronounced
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when the sensory information quality was low [4]. Therefore, the observer must concentrate
to gather more information to make the right decision, relying on personal experience to
extrapolate limited information or unresolve its ambiguity.

The conditions under which the observer receives and processes information are
important as well. For example, high-speed driving on a rainy night requires the very
fast processing of low-quality information. Performing monotonous tasks with increased
responsibility (e.g., flight or power plant operators) also requires maintaining high per-
formance and emergence preparedness. In these stressful conditions, the influence of
exogenous and endogenous factors on the likelihood of perceptual errors should be consid-
ered. Therefore, knowing and monitoring these factors can help predict perceptual errors
and reduce their probability. Furthermore, human condition monitoring (endogenous
factor) is a task for passive brain–computer interfaces (BCIs) [5]. Unlike the traditional
active BCI, which issues control commands through mental intent, passive BCIs continu-
ously monitor the brain state during extended periods of cognitive activity and signal if it
deviates from the normal state [6].

To control the quality of received information and its processing, the BCI must track
both exogenous and endogenous components. Thus, the BCI must meet the task require-
ments (exogenous factor) along with the neural activity (endogenous factor). Moreover,
objective assessments of the task requirements may depend on the amount of information,
its ambiguity, and multimodality. Subjective estimates can be derived from the observer’s
reaction, such as response time, eye movements, and other behavioral indicators [7]. To
take into account all these processes, it is necessary to move from a passive to a reactive
BCI. The latter uses stimuli and analyzes the brain state through time intervals assigned
to them [8]. Following this concept, a reactive BCI should analyze the brain state while
performing a task. This will provide information on the influence of endogenous and
exogenous factors on the speed and quality of information processing.

The further development of BCIs aims not only at the detection, but also the prediction
of the human states. These BCIs will give rise to the artificial intelligence systems that assist
or alarm when detecting a high probability of critical errors. Developing such systems
requires finding the associations between the current state of the BCI operator and their
performance in solving ongoing tasks. A bulk of literature associates changes in the human
condition with their behavioral performance in ongoing tasks. In particular, attention, a
fundamental aspect of the observer’s state, modulates prestimulus alpha- and beta-band
power [9–11], influencing the accuracy of perceptual decisions. Thus, either medium
or low alpha- and high beta-band power during the prestimulus period is beneficial for
sensory perception [11,12]. According to [13], the power and the prestimulus EEG phase
coupling in the alpha- and beta-bands affect visual perception performance. Namely,
better performance is associated with low phase coupling in the alpha-band and high
phase coupling in the beta-band. Recent work [14] revealed that EEG power in the beta-
2 frequency band at rest negatively correlated with the response times in the ongoing
attentional task. While most works reported correlations between the neural correlates
averaged across the trials, or between event-related potentials, in recent work [15], the
authors used EEG power in different bands to predict individual performance in single
trials contributing to the BCI problem.

Complementing the existing literature, we examined how the prestimulus EEG power
predicts behavioral performance depending on the task demands. We considered a long-
lasting monotonous experiment in which the participant perceived ambiguous stimuli and
reported on each stimulus interpretation with the joystick buttons. The visual stimulus was
an ambiguous Necker cube. The inner edges contrast defines one of two possible cube’s
orientations, left or right, and determines stimulus ambiguity. When ambiguity is low,
cubes morphology is different for the left and right orientations. Therefore, subjects easily
report the correct one. For the high ambiguity, stimulus morphology becomes similar for
different orientations; therefore, subjects spent more effect to find the differences. In the
recent works, we observed that subjects responded faster to the Necker cubes presented
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at the end of the experiment [16]. We also found that the brain utilized different neural
mechanisms when processing stimuli with low and high ambiguity [2,4,17]. Based on
these results, we hypothesized that during a long experiment with the Necker cubes, the
observer’s state changed, causing changes in behavioral performance. We expected to find
the neural correlates of these changes in the prestimulus state and use them to predict
the performance of the ongoing stimulus. We also supposed that changes in the human
condition had a different effect depending on the stimulus ambiguity.

To test this hypothesis, we tracked the behavioral characteristics (decision times and
errors) and simultaneously detected the EEG signals during a long monotonous task,
including the Necker cubes interpretations. Behavioral monitoring revealed that decision
time decreased with time on task, despite the ambiguity. For high ambiguity, we also
observed a reduction of perceptual errors. EEG analysis showed growing prestimulus
9–11 Hz EEG power in the right temporal region. This EEG power negatively correlated
with the decision time to the stimuli, with low ambiguity and the erroneous responses rate
to stimuli with high ambiguity. The obtained results confirm that monitoring prestimulus
EEG power enables predicting perceptual performance on the behavioral level.

2. Materials and Methods

2.1. Participants

Twenty healthy volunteers (nine females, 26–35 y.o.) with normal or corrected-to-
normal vision participated in the experiments after providing written informed consent.
Participants took part in similar experiments not earlier than six months before. All
experiments were carried out in accordance with the requirements of the Declaration of
Helsinki and approved by the local Research Ethics Committee of the Innopolis University.

2.2. Visual Stimuli

We used an experimental paradigm with an ambiguous bistable visual stimulus in
the form of the Necker cube, which allows two possible interpretations [4,16,18,19]. The
non-perceptually impaired volunteer interpreted this two-dimensional (2D) image as a
three-dimensional (3D) object which is oriented either left or right. The balance between
the brightness of three inner lines (1,2,3) located in the left bottom corner and three inner
lines (4,5,6) in the right upper corner determines the ambiguity and orientation of the 3D
cube (Figure 1A). The contrast parameter a ∈ [0, 1] is the normalized brightness of the
inner lines (1,2,3) in the grayscale palette. In turn, the normalized brightness of the other
inner lines (4,5,6) is defined as 1 − a. Thus, the limiting cases a = 0 and a = 1 correspond
to unambiguous 2D projections of the cube oriented to the left or to the right, respectively,
whereas a = 0.5 implies a completely ambiguous spatial orientation of the 3D cube.

In the experiment, we used a set of the Necker cube images with a = {0.15, 0.25, 0.4, 0.45,
0.55, 0.6, 0.75, 0.85} (Figure 1B), which we divided by subsets of cubes oriented to the left
a = {0.15, 0.25, 0.4, 0.45} and to the right a = {0.55, 0.6, 0.75, 0.85}. At this set, stimuli
with low ambiguity (LA) a = {0.15, 0.25, 0.75, 0.85}, are easily interpreted, whereas the
interpretation of stimuli with high ambiguity (HA) a = {0.40, 0.45, 0.55, 0.60} requires more
effort [4]. We also assume that HA processing engages more top-down control [20].
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Figure 1. Experimental paradigm: (A) An example of the Necker cube image with the labeled
inner edges. (B) Visual stimuli (Necker cubes) with different values of the contrast parameter a,
which determines orientation and ambiguity. (C) Experimental protocol including 150-s resting state
recordings and presentation of 400 stimuli alternating with the pauses. Colored horizontal stripes
indicate 575-s time intervals. These intervals equally divide the stimuli presentation session. Each
interval includes 100 stimuli. (D) Detailed illustration of a single stimulus presentation and abstract
image. The cube presentation starts at the presentation time PT and lasts τi ∈ [1, 1.5] s. The decision
time (DT) is determined by the interval between PT and button pressing. The pause time γi varies
from 3 to 5 s. The time interval of interest (TOI1) is the 1.5-s pre-stimulus segment time-locked to
the PT.

2.3. Experimental Protocol

Necker cubes (22.55 × 22.55 cm) were shown on a white background using a 24′′
monitor (52.1 × 29.3 cm) with a 1920 × 1080 pixels resolution and a 60 Hz refresh rate. The
distance between the participant and the monitor was 0.79—0.8 m, and the visual angle
was ∼0.39 rad.

The duration of the entire experiment was about 40 min for each participant, and
included EEG recordings of the eyes-open resting state (≈150 s) before and after the main
part of the experiment. Cubes with predefined a values (selected from the set in Figure 1B)
were randomly presented 400 times during the experimental session. Each cube with a
particular ambiguity appeared about 50 times.

Each i-th stimulus presentation lasted for time interval τi, which ranged from τmin = 1 s
to τmax = 1.5 s. The pauses between subsequent presentations of the Necker cube images,
γi, ranged from γmin = 3 s to γmax = 5 s (Figure 1D) and contained an abstract image
demo. The abstract image was the white noise picture (Figure 1D).

2.4. Behavioral Estimates

The participants were instructed to press either the left or right key in response to the
left or right stimulus orientation, respectively. For each stimulus, we registered presentation
time (PT)—the time between the beginning of the experiment and the moment when the
current stimulus appeared on the screen. The behavioral response to each stimulus was
assessed by measuring the decision time (DT), which corresponded to the time passed
from the stimulus presentation to the button pressing (Figure 1C). We also monitored the
correctness using error rate (ER) by comparing the actual stimulus orientation with the
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subject’s response. The actual orientation of the Necker cube was defined by the contrast
of the inner edges. Thus, a = {0.15, 0.25, 0.4, 0.45} defined the left-oriented cubes, while
a = {0.55, 0.6, 0.75, 0.85} stood for the right-oriented ones. To define the correctness, we
checked whether the subject pressed the left button for a = {0.15, 0.25, 0.4, 0.45}, or the
right button for a = {0.55, 0.6, 0.75, 0.85}. Otherwise, their response was considered as
incorrect. We excluded two subjects with ER > 20%, as they exceeded the 90th percentile
of ER distribution in the group.

2.5. EEG Recording

For registration of EEG signals, a monopolar method and a classical extended 10–10
electrode scheme were used. We recorded signals from 31 channels using an electrode cap,
with two reference electrodes on the earlobes (A1 and A2) and a ground electrode N above
the forehead. Ag/AgCl cup adhesive electrodes placed on the “Tien–20” paste (Weaver
and Company, Aurora, CO, USA) were used for signal acquisition. Immediately before the
experiments, a special abrasive “NuPrep” gel (Weaver and Company, Aurora CO, USA)
was applied to the electrode attachment areas to increase skin conductivity. We maintained
the impedance values in the range of 2–5 kΩ. For registration, amplification, and analog-
to-digital conversion of the EEG signals, we used a multichannel electroencephalograph
“Encephalan-EEG-19/26” (Medicom MTD company, Taganrog, Russian Federation) with
a two-button input device (keypad). This device holds the registration certificate from
the Federal Service for Supervision in Health Care No. FCP 2007/00124 of 07.11.2014 and
European Certificate CE 538571 from the British Standards Institute (BSI).

The raw EEG signals were filtered by a fourth-order Butterworth (1–100)-Hz band-
pass filter and a 50-Hz notch filter with built-in acquisition hardware and software. In
addition, we performed an independent component analysis (ICA) to remove eye blink-
ing and heartbeat artifacts. To determine components with artifacts, we examined their
scalp map projections, waveforms, and spectra. The components containing eye-blinking
artifacts usually had leading positions in the component array due to high amplitude.
They demonstrated a smoothly decreasing spectrum, and their scalp map showed a strong
far-frontal projection. Finally, eye-blinking artifacts had the typical waveform; therefore,
those segments of EEG signals were marked by the experienced neurophysiologist, and
used for determining the corresponding independent components.

We then segmented the EEG signals into 4-s trials, where each trial was associated
with a single presentation of the Necker cube, and included a 2-s interval before and 2-s
interval after the moment of the stimulus demonstration. After the EEG pre-processing
procedure, we excluded some trials due to the remaining large-amplitude artifacts. To
exclude trials containing large amplitude artifacts, we used the z-value threshold z < 1.
The rejection procedure was performed using FieldTrip toolbox in Matlab [21].

After all preprocessing procedures, we had 52 ± 11 SD trials for the interval 1,
47 ± 11 SD trials for the interval 2, 47 ± 11 SD trials for the interval 3, and 55 ± 11 SD
trials for the interval 4. We calculated the wavelet power for each trial in the (4–40)-Hz
frequency range using the Morlet wavelet, and the number of cycles n was defined as
n = f , where f is the signal frequency. Finally, we computed the event-related spectral
perturbation (ERSP) by normalizing the wavelet power estimates W to the wavelet power
of 40-s resting-state EEG as ERSP = (W − Wrest)/Wrest. All processing procedures were
performed offline.

Our goal was to study how the participant’s state changed in the course of the experi-
ment, regardless of the type of stimulus. Therefore, we measured brain activity before the
start of the stimulus presentation (1.5-s prestimulus interval, TOI1 in Figure 1D).

2.6. Source Localization

We applied low-resolution precision electromagnetic brain tomography (eLORETA)
to solve the inverse problem and localize the sources of neuronal activity according to EEG
data at each of the predetermined points (voxels) in the brain volume [22–24].
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LORETA is low-resolution brain electromagnetic tomography. This method solves
the inverse problem: converting EEG measurements into information about the distribu-
tion of neural sources power into a brain volume. This method belongs to the class of
nonparametric methods [25], which are based on the assumption that a separate current
dipole (a source) is assigned to each of tens of thousands of elements of the tessellation of
the cerebral cortex, while the orientation of the dipole is determined by the local normal
to the surface. In this case, the inverse problem is linear, since the only unknowns are
the amplitudes of the dipoles. Exact low-resolution brain electromagnetic tomography
(eLORETA) is 3D, regularized, and minimum norm-weighted inverse solution with theo-
retically accurate zero error localization, even in the presence of structured biological or
measurement noise [22,25]. The “Colin27” brain MRI averaged template [26] was used to
develop a three-layer (brain, skull, and scalp) head model based on a boundary element
method (BEM) [27,28]. The sources space inside the brain consisted of 11,865 voxels. The
location of the EEG electrodes corresponded to the template head shape.

We analyzed the source characteristics in the predefined time-frequency domain
of interest, selected on the basis of sensor-level analysis. To do this, we reassigned the
EEG signals to the total average, subtracted the mean, and filtered with a fourth-order
Butterworth [ fL, fH ]-Hz band-pass filter, where fL and fH define the frequency domain of
interest. Then, we performed time-lock averaging across the TOI1 trials and computed the
covariance matrix. The inverse solution yielded estimates of the source power in each voxel,
averaged over the selected TOI window. Finally, we normalized the obtained estimates of
the power P of each source to the power of 40-s EEG resting state EEG as (P − Prest)/Prest.
We used the automated anatomical labeling (AAL) brain atlas [29] to map the location of
sources to the anatomical brain regions.

2.7. Experimental Conditions

Since the observer’s state, as a rule, is not at a constant level, but fluctuates at different
time scales, in the short term, this causes a difference in the subject’s behavior when
presenting stimuli, even if their ambiguity does not change. Meanwhile, in the long
term, cognitive fatigue occurs, and the training effect takes place. In this work, we have
eliminated short-term fluctuations and focused on the long-term changes in the person’s
condition over a 40-min task. To exclude the influence of short-scale fluctuations, we
divided the entire experiment into four consecutive intervals of 10-min duration each (see
Figure 1B). For each interval, we averaged ERSP and source power (SP) over all trials.
To assess the behavioral characteristics, we used the median DT and the error rate (ER),
reflecting the percentage of erroneous responses at each interval.

2.8. Statistical Testing

We tested how DT and ER changed at 1–4 intervals using additional controls of
stimulus orientation and ambiguity. We performed repeated measures ANOVA with 1–4
intervals, ambiguity (HA and LA), and orientation (Left and Right) as within-subject factors.
In general, ANOVA requires the homogeneity assumption: the population variances of
the dependent variable must be equal for all groups. At the same time, this assumption
may be ignored if the sample size is equal for each group. In this study, we used a within-
subject design with repeated measures. Therefore, the sample size for each condition
was equal, and we did not control for variance homogeneity. If the tested samples did
not obey the normality condition, we applied Greenhouse–Geisser correction to ANOVA
results. For significant main effects, we performed a post hoc analysis using parametric
or nonparametric tests, depending on sample normality, which was determined using
the Shapiro–Wilk test. All test types are specified in the Result section and in the figures
captions. A statistical analysis was performed in IBM SPSS Statistics.

Statistical analyses of brain activity were carried out based on the subject-level wavelet
power, averaged over trials and over TOI1. Contrasts between the four intervals were
tested for statistical significance using a permutation test combined with the cluster-based
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correction for multiple comparisons. Specifically, the F-tests compared four wavelet power
sets for all pairs (channel, frequency). Items that passed the threshold corresponding to
a p-value of 0.001 (one-tailed) were labeled along with their adjacent items and collected
in separate negative and positive clusters. The minimum required number of neighbors
was set to 2. The F-values in each cluster were summarized and corrected. The maximum
amount was entered into the permutation structure as a test statistic. A cluster was
considered significant if its p-value was below 0.01. The number of permutations was 2000.

A similar procedure was followed on the source level results. We performed a
cluster-corrected statistical intra-subject permutation test on the test-averaged and TOI1-
averaged source power distributions to determine significant differences between four
intervals [30,31]. The threshold for paired comparisons with F-test was p = 0.005. The
p-threshold for the cluster was 0.025. The number of permutations was 2000. Finally, we
calculated, for each subject, the average power of the source activity in the region of the
identified cluster for each of the four intervals.

All described operations were performed in Matlab using the Fieldtrip toolbox [21,32].

3. Results

3.1. Results of the Behavioral Data Analysis

Contrasting subjects’ DTs on four intervals, we observed significant changes among
intervals, the effect of stimulus ambiguity, and the combined effect of ambiguity and
orientation (see Table 1). Nevertheless, the experiment demonstrated that DT varies over
the course of the experiment in the same way for all stimuli. We also found a significant
effect of ambiguity on ER. At the same time, we observed a significant interaction effect
of interval and ambiguity (see Table 2). These results suggest that ER differs for HA and
LA stimuli regardless of their orientation. Moreover, ER changed differently during the
experiment depending on the ambiguity.

Table 1. Median decision time to the current stimulus, DT [s] (ANOVA Summary).

Factors dF1 dF2 F p

Interval 2.285 38.853 5.805 0.005 *
Ambiguity 1 17 79.524 <0.0001 *
Orientation 1 17 1.093 0.310
Interval × Ambiguity 3 51 1.206 0.317
Interval × Orientation 3 51 1.290 0.288
Ambiguity × Orientation 1 17 6.385 0.022 *
Interval × Ambiguity × Orientation 3 51 0.544 0.655

Here, ‘*’ indicates the level of significance p < 0.05.

Table 2. Percentage of erroneous responses to the current stimulus, ER [%] (ANOVA Summary).

Factors dF1 dF2 F p

Interval 1.995 33.910 2.988 0.064
Ambiguity 1 17 13.128 0.002 *
Orientation 1 17 2.671 0.121
Interval × Ambiguity 3 51 5.918 0.002 *
Interval × Orientation 1.975 33.58 1.454 0.248
Ambiguity × Orientation 1 17 0.922 0.350
Interval × Ambiguity × Orientation 1.63 27.715 1.892 0.175

Here, ‘*’ indicates the level of significance p < 0.05.

The post hoc analysis revealed that subjects responded faster to LA stimuli than HA
ones: Z = −3.724, p < 0.0001, Wilcoxon test (Figure 2A). For HA stimuli, DT was similar
for the left- and right-oriented stimuli: t(17) = 0.383, p = 0.706, t-test (Figure 2B). For
LA stimuli, subjects responded faster to the left-oriented stimuli: Z = −2.591, p = 0.01,
Wilcoxon test (Figure 2C). Analysis of pairwise differences displayed that 12 subjects
demonstrated effects in the same direction as the group. Finally, DT decreased with the
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interval: χ2(3) = 12.218, p = 0.007, Friedman test (Figure 2D). The post hoc Wilcoxon test
revealed higher ER for HA stimuli when compared to LA stimuli: Z = −3.29, p = 0.001
(Figure 2E). For HA stimuli, ER decreased during the course of the experiment: χ2(3) = 7.545,
p = 0.056, Friedman test (Figure 2F). Finally, there was no correlation between age and DT
to HA stimuli: r(20) = −0.24, p = 0.3 and LA stimuli: r(20) = −0.31, p = 0.17. DT was
similar for males and females for both HA stimuli: t(18) = 0.79, p = 0.436 and LA stimuli:
t(18) = 0.96, p = 0.348.
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Figure 2. Results of the behavioral data analysis: (A) Median decision time, DT to HA and LA
stimuli (∗p < 0.0001 via Wilcoxon test, uncorrected). (B) Median DT to the left- and right-oriented
HA stimuli (p = 0.706 via t-test, uncorrected). (C) Median DT to the left- and right-oriented LA
stimuli (∗p = 0.01 via Wilcoxon test, uncorrected). (D) Median DT (group mean ± 95% CI) on four
intervals (∗p = 0.007 via Friedman test, uncorrected). (E) Percentage of erroneous responses (ER) to
the HA and LA stimuli (∗p = 0.001 via Wilcoxon test, uncorrected). (F) ER (group means ± 95% CI)
on all intervals separately for HA (p = 0.056 via Friedman test, uncorrected) and LA (p = 0.772 via
Friedman test, uncorrected) stimuli.

3.2. Results of the EEG Data Analysis on the Sensor Level

Comparing the prestimulus ERSP on four intervals, we found one cluster with
p = 0.0015 (corrected using the permutation statistics) in the 9–11 Hz frequency band,
including parietal and temporal sensors (P8, TP8, T8, FC4, FT8) in the right hemisphere
(Figure 3A). The ERSP averaged over the EEG sensors in this cluster grew with the in-
terval number from 0.18 ± 0.11 SE at interval 1 to 0.49 ± 0.15 SE at interval 4 (Figure 3B).
We also compared the ERSP between males and females and between two age groups
(“<26 y.o.” vs. “>26 y.o.”, where 26 was the median age) via the independent-samples t-test
with cluster-based correction for multiple comparisons. In both cases, the difference was
insignificant.

110



Appl. Sci. 2021, 11, 11544

10

20

30

40
*
*

*

*

50

F-val

 1  2  3  4

interval

0

0.2

0.4

0.6

0.8

A B

ri
g

h
t-

te
m

p
o

ra
l 
E

R
S

P
 [
a

.u
.]

p
corr

=.0015

9-11Hz F-map

Figure 3. Results of the EEG data analysis on the sensor level: A scalp topogram illustrates F-value
and EEG channels cluster, demonstrating the significant change of ERSP between four intervals
(∗p = 0.0015 via F-test and cluster-based correction for multiple comparisons) (A). Changing ERSP
in this cluster (group mean ± 95% CI) with the time with the interval number (B).

3.3. Results of the EEG Data Analysis in the Source Space

Setting the bandwidth of interest to 10 ± 2 Hz, we contrasted the source power (SP)
between the four intervals. The statistical analysis revealed one cluster in the source
space with p = 0.02 (corrected using the permutation statistics). This cluster included
voxels in the right middle temporal gyrus (Temporal Mid R), right superior temporal gyrus
(Temporal Sup R), right inferior temporal gyrus (Temporal Inf R), Rolandic operculum
(Rolandic Oper R), fusiform gyrus (Fusiform R), and a part of the cerebellum (Cerebellum
Crus1 R) (Figure 4A). The maximal F-value was achieved in the right middle temporal
gyrus, while the minimum F-value belonged to the cerebellum. The averaged SP in this
cluster grew from interval 1 (−0.22 ± 0.12 SD) to interval 4 (1.21 ± 0.49 SD) (Figure 4B).
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Figure 4. Results of the EEG data analysis in the source space: (A) Source plot shows F-value,
reflecting the significant change of the source power (SP) between four intervals on the prestimulus
interval t ∈ [−1.5, 0] s, for f ∈ 8− 12 Hz (p = 0.02 via F-test, permutation-based correction). Legends
contain p-values, CTF coordinates of the voxel with maximal F-value, and names of anatomical zones
according to Automated Anatomical Labeling (AAL); (B) Normalized source power, NSP (group
mean ± 95% CI) in this cluster on four intervals.

3.4. Results of the Correlation Analysis

Using repeated measures correlation analysis, we found that SP was negatively corre-
lated with DT to LA stimuli (Figure 5A) and ER for HA stimuli (Figure 5D). At the same
time, there was no correlation between SP and DT to HA stimuli (Figure 5B), or between
SP and ER for LA stimuli (Figure 5C).
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Figure 5. Results of the correlation analysis: Regression plots illustrate the relationship between SP
and DT to LA stimuli (A); SP and DT to HA stimuli (B), SP and ER for LA stimuli (C); SP and ER for
Ha stimuli (D). The colored dots correspond to each participant’s data; the lines have the same slope
estimated for these participants via correlation analysis with repeated measures.

4. Discussion

A group of volunteers was tasked to classify Necker cubes of different ambiguity
within 40 min. The subjects reported the orientation (left or right) of each presented cube,
while the stimulus morphology ranged from low ambiguity (LA) to high ambiguity (HA).
By observing behavioral responses, we found that decision time decreased with the time
on task for both HA and LA stimuli (Figure 2D). At the same time, the subjects improved
the correctness of the interpretation of the HA stimuli, but not the LA stimuli (Figure 2F).
Analysis of the EEG spectral power on the sensor level and in the source space revealed an
increase in the prestimulus power at 9–11 Hz with the time on the task (Figures 3B and 4B).
Finally, we found that the prestimulus EEG power negatively correlated with the decision
time to LA stimuli (Figure 5A) and the number of erroneous responses to HA (Figure 5D)
stimuli.

First, we hypothesized that the prestimulus EEG power reflects changes in a person’s
condition. The condition, in turn, affected the performance of processing the ongoing
visual stimulus [11,16]. Thus, our results showed that the high pre-stimulus 9–11 Hz EEG
power predicted faster decision times and greater accuracy. It is worth noting that we
compared EEG power and behavioral estimates between time segments, each of which
lasted 10 min. Therefore, we have associated the described effects with slow changes in
the observer’s state. Taken together, we proposed a possible application of our findings in
passive brain-computer interfaces to monitor the human’s condition and predict decision
speed and errors.

Along with possible practical applications, our result can help to reveal specific
features of ambiguous perception. To start a discussion on this aspect, we will look at the
limitations of our experimental design. It consists of two confounding variables, mental
fatigue, and learning; both can be time-dependent. Thus, the revealed EEG changes
practically do not reflect one of these factors. At the same time, we suppose that fatigue
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and learning affect the observer state regardless of the stimulus ambiguity. In contrast, our
results show a different time-on-task effect on processing HA and LA stimuli. For instance,
we revealed a reduction in error rate for HA stimuli only. In addition, the prestimulus EEG
power negatively correlates with the decision time to LA stimuli, not to HA stimuli, and
negatively correlates with the error rate for HA, but not for LA stimuli. Another limitation
is the small sample size. Thus, there is a risk that the individual characteristics of the
participants, e.g., gender and age, will affect their perception of ambiguous stimuli. For our
group, we observed no gender and age effects on the decision time and the ERSP, due to
the almost uniform distribution of these factors between participants. At the same time, we
expect that another group of younger or older subjects may demonstrate different effects
on the behavioral and neural activity levels.

The decision time (DT) may decrease due to neural adaptation (NA), which occurs
when the same visual stimulus is repeatedly presented within a short interval and causes
a decrease in neural response to repetitive versus non-repeated stimulus [33]. The NA is
thought to arise from at least two types of neural activity. One explanation is that only
the part belonging to the neuronal ensemble is sensitive to stimulus recognition. Thus,
the neurons that are not critical for stimulus recognition decrease their responses when
the stimulus reappears, while on the contrary, neuronal populations carrying essential
information continue to give a robust response. As a result, the mean firing rate decreases
due to stimulus repetition [34]. An alternative explanation is that stimulus repetition
reduces response in the time domain [33]. According to this theory, a neural network
that processes sensory information responds faster to a repetitive stimulus than to a new
stimulus, i.e., a stable response. The network connections involved in the response creation
were reinforced by the previous presentation of the same stimulus [35]. The NA affects
the neuronal response in the occipital [36], parietal [37], and frontal [38] cortex areas in
single-unit data, and on the sensory level. As known from the literature, NA, as a rule,
reduces the stimulus-related EEG/ECoG response to stimuli. Here, we did not consider
the post-stimulus EEG power and did not report such signs of NA. At the same time, an
increase in the prestimulus EEG power may reflect the preactivation of sensory neurons.
We suppose that in this preparatory state the neural ensemble exhibits less activation in
response to the stimulus. Further research should verify this hypothesis by examining the
post-stimulus activity as a function of the time-on-task.

Another potential explanation is the vital role of alpha-band oscillations for visual
perception. Our results showed that an increase in the 9–11-Hz band power correlates
with enhancing processing performance. In contrast, many studies have reported negative
effects of alpha power on processing performance. For example, the authors of Ref. [12]
reported that moderate to low alpha signal strength in the prestimulus period is beneficial
for sensory perception. In contrast, a recent review [39] emphasizes that high alpha power
facilitates perception by suppressing irrelevant input and generating predictors in the
visual cortex. The latter was confirmed by observing an increase in the prestimulus alpha
power when participants could predict the identity of the forthcoming stimulus [40].

Finally, the role of alpha-band oscillations depends largely on their incident brain
region. For instance, the authors of Ref. [41] provided evidence that right temporal alpha
oscillations play a crucial role in inhibiting habitual thinking modes, thereby developing
creative cognition. Another work showed that observing a Necker cube can improve
subsequent creative problem-solving [42]. In line with these works, we supposed that
increasing 9–11 Hz power in the right temporal region reflects a developing ability to
inhibit obvious associations. According to Ref. [42], the latter may be a biomarker of neural
processes facilitating creative problem-solving.

We hypothesize that NA affects the bottom-up processing, while the other two rep-
resent the top-down processing components [43,44]. Assuming that NA facilitates the
bottom-up processing, we provide a possible explanation for the negative correlation be-
tween the prestimulus EEG power and the decision time to LA stimuli. The morphology of
inner edges unambiguously determines the orientation of the LA stimulus. Consequently,
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during the LA stimulus processing, the bottom-up component prevails [45]. If so, neurons
in sensory areas receive the information needed to make the right decision. Repeated
stimulation pre-activates these sensory neurons, which leads to a decrease in decision time
to LA stimuli. In contrast, the HA stimuli processing may require top-down mechanisms,
because the morphology remains similar for the cube being either left or right-oriented [20].
To explain the lack of correlation between the prestimulus EEG power and decision time
to HA stimuli, we also assume that during HA processing, the top-down component
predominates for most of the time interval, while the bottom-up one may be limited to an
earlier and shorter time window [16]. Thus, by facilitating the bottom-up processing, NA
has little or no effect on the overall decision time for HA stimuli.

Summing up, we can say that the increasing prestimulus EEG power can reflect NA
in sensory neural networks encoding the Necker cube morphology, which explains the
negative correlation between the EEG power and the decision time to LA stimuli. At
the same time, decision time to HA stimuli also decreases with time on task, but barely
correlates with the prestimulus EEG power. This behavioral effect is probably the result
of neural processes acting after the stimulus onset and relies on the integrative dynamics,
rather than the EEG power modulation in a particular area. In our future studies, we
will address this issue by considering the functional connectivity evolution during the
experiment.

By examining the error rate, we found that the observer responded more correctly to
LA stimuli. The number of erroneous responses is less than 2%, and remains unchanged
during the experiment. In contrast, the number of incorrect responses to HA stimuli
decreased with time on task and negatively correlated with the prestimulus 9–11 Hz EEG
power. This effect may be a result of the top-down mechanisms, e.g., predicting the identity
of the forthcoming stimulus or creative thinking. As discussed above, these processes also
accompany increasing alpha-band power and relate to ambiguous stimuli processing.

5. Conclusions

During the Necker cube classification, participants decrease their decision time with
the time on task, regardless of the stimulus ambiguity. At the same time, they improve
the correctness of interpretation only for the highly ambiguous stimuli. EEG analysis has
revealed growing prestimulus alpha-band power with the time on task. We have found
that the prestimulus EEG power negatively correlates with the decision time for the stimuli,
with low ambiguity and the number of erroneous responses to highly ambiguous stimuli.

We suppose that repetitive stimuli presentation affects top-down and bottom-up
processing mechanisms. Thus, it may cause the neuronal adaptation of the sensory neurons
facilitating bottom-up processing. For the low ambiguity, the bottom-up component
dominates; therefore, decision time correlates with the prestimulus EEG power. Increasing
alpha-band EEG power may also reflect modulation of top-down components, e.g., the
ability to suppress irrelevant information and form the predictors of ongoing stimulus.
For the high ambiguity, the top-down processes dominate; therefore, the correctness rate
correlates with the prestimulus EEG power.

Finally, our results may add to uncovering the associations between the current human
condition and their performance in solving ongoing tasks. It is essential for BCIs to aim not
only at the detection, but also the prediction of the human states. These BCIs will give rise
to the artificial intelligence systems that assist or alarm when detecting a high probability
of critical errors.
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Featured Application: Brain–computer interfaces as assistive technology to restore communica-

tion capabilities for disabled patients.

Abstract: The usability of EEG-based visual brain–computer interfaces (BCIs) based on event-related
potentials (ERPs) benefits from reducing the calibration time before BCI operation. Linear decoding
models, such as the spatiotemporal beamformer model, yield state-of-the-art accuracy. Although
the training time of this model is generally low, it can require a substantial amount of training data
to reach functional performance. Hence, BCI calibration sessions should be sufficiently long to provide
enough training data. This work introduces two regularized estimators for the beamformer weights.
The first estimator uses cross-validated L2-regularization. The second estimator exploits prior
information about the structure of the EEG by assuming Kronecker–Toeplitz-structured covariance.
The performances of these estimators are validated and compared with the original spatiotemporal
beamformer and a Riemannian-geometry-based decoder using a BCI dataset with P300-paradigm
recordings for 21 subjects. Our results show that the introduced estimators are well-conditioned
in the presence of limited training data and improve ERP classification accuracy for unseen data.
Additionally, we show that structured regularization results in lower training times and memory
usage, and a more interpretable classification model.

Keywords: brain–computer interface; event-related potential; beamforming; regularization

1. Introduction

Brain–computer interfaces (BCIs) establish a direct communication pathway between
the brain and an external device [1]. Severely disabled patients with impaired or ab-
sent communication capabilities can benefit from BCIs to restore normal functioning [2,3].
BCIs can be implemented in multiple ways, using non-invasive recording techniques such
as electroencephalography (EEG) [4], magnetoencephalography (MEG) [5], functional near-
infrared spectroscopy (fNIRS) [6], and optically pumped magnetometers (OPM MEG) [7],
or semi-invasive and invasive methods such as electrocorticography (ECoG) [8] or mi-
croelectrode arrays [9], which require surgery to implant a recording device. Although
invasive BCIs yield the highest information transfer rate [10], non-invasive BCIs are prefer-
able for short-term use since they are not susceptible to the risks that come with surgery.
Among the non-invasive options, EEG is the most cost-effective and practical as it is not
limited to the same controlled settings as MEG and OPM MEG.

In addition to the recording method, BCIs differ in the communication paradigms
used for communication [4]. A popular class of BCI paradigms relies on the evocation
of event-related potentials (ERPs) in the brain in response to visual, auditory, or tactile
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stimulation, given their low decoding cost and generally short calibration time before
usage [11,12]. In this study we focused on the visual P300 oddball ERP in response to a rare
but attended visual stimulus. The decoder detects whether this ERP is present to determine
which stimulus the user attended. The P300 paradigm has been used extensively in BCI
development and is easy to set up [13–16].

There are multiple state-of-the-art P300 classification methods, such as support vector
machines (SVMs) [17], deep learning models [18,19], and Riemannian geometry classi-
fiers [15]. Although these models often return a high classification accuracy, there is a need
for lightweight models, as lightweight models lead to fast off-line analyses and can be
transferred to consumer-grade hardware. When moving towards plug-and-play solutions,
BCI calibration sessions should be short and model training times should be low. The spa-
tiotemporal beamformer [20,21] belongs to this class of ERP-decoding models as it achieves
state-of-the-art performance and is fast to train. Earlier work has shown that it is possible
to apply the spatiotemporal beamformer to multiple time-locked visual BCI paradigms,
including the P300 oddball paradigm, steady-state visually evoked potentials (SSVEPs),
code-modulated visually evoked potentials (cVEPs) [22], and motion-onset visually evoked
potentials (mVEPs) [23].

This work shows that the original spatiotemporal beamformer [21] can fall short in its
performance when BCI calibration data are restricted. We also show that the spatiotem-
poral beamformer does not scale well for higher spatial and temporal resolution cases.
As a response to these issues, we introduce a regularization method that exploits prior
knowledge about the spatiotemporal nature of the EEG signal to improve the accuracy
for settings with low data availability and to speed up the classifier training time, thereby
considerably reducing memory usage. Similar structured regularization approaches have
been applied to other linear ERP classifiers [24,25] and have shown significant increases
in performance. Additionally, we show that regularization results in an interpretable classi-
fication model, which can aid in analyzing and developing spatiotemporal beamformer-
based classifiers.

2. Materials and Methods

2.1. Notation

We represent matrices with cursive capital letters, vectors with bold lowercase letters,
and scalars with cursive lowercase letters. The epoched EEG data with n epochs, c channels,
and s samples are represented in epoch format as {Xi ∈ Rc×s}n

i=1 or in flattened vector
format by concatenating all channels for each epoch. Flattening results in {xi ∈ Rcs}n

i=1
such that xi = vec(Xi). The real covariance matrix of the epochs in vector format is denoted
by C, and estimators thereof as Ĉ.

2.2. Spatiotemporal Beamforming

LCMV-beamforming was initially introduced to EEG analysis as a filter for source
localization [26] to enhance the signal-to-noise ratio (SNR). Van Vliet et al. [20] first applied
the spatiotemporal LCMV-beamformer as a method for the analysis of ERPs. The extension
of this method to the combined spatiotemporal domain [20] and the data-driven approaches
proposed by Treder et al. [27] and Wittevrongel et al. [21] allow for its application to
classification problems.

For the following analyses, we assume that all EEG channels are normalized with zero
mean and unit variance without loss of generality. Solving Equation (1) under the linear
constraint given by Equation (2) returns the filter weights w defining the spatiotemporal
LCMV-beamformer.

arg min
w

wᵀCwᵀ (1)

aᵀw = 1 (2)

These weights minimize the variance of the output of the filter while enhancing
the signal characterized by the constraint. a = vec(A) is the data-driven activation pattern,
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a template of the signal of interest maximizing the difference between two classes of epochs,
determined as follows:

a =
1

|class 1| ∑
class 1

xi − 1
|class 2| ∑

class 2
xi (3)

The method of Lagrange multipliers then gives the closed-form solution to the mini-
mization problem posed by Equations (1) and (2) as:

w =
C−1aᵀ

aC−1aᵀ
(4)

The beamformer can be applied to epochs (unseen or not) as:

yi = wxi (5)

resulting in a scalar output yi per epoch. The linear constraint in Equation (2) ensures
that the beamformer maps epochs containing a target response to a score close to one and,
conversely, epochs not containing a target response to a score close to zero.

2.3. Covariance Matrix Regularization

Although the spatiotemporal beamformer, in theory, achieves optimal separation
between target and non-target classes, in analogy to linear discriminant analysis [27], it
does not always perform well on unseen data. The main challenge is to find a good
estimator for the inverse covariance matrix C−1 since the real underlying covariance matrix
generating the data is, in principle, unknown.

2.3.1. Empirical Covariance Estimation

Earlier spatiotemporal beamformer studies [21,22,28,29] use the empirical covariance
and inverse covariance, calculated as follows:

Ĉemp =
1

n − 1

n

∑
i=1

xix
ᵀ
i (6)

Ĉ−1emp = Ĉ+
emp (7)

The Moore–Penrose pseudoinverse + ensures that a solution exists when Ĉemp is
singular. Figure 1a,b show examples of the empirical estimators of the covariance and
the inverse covariance matrices, respectively. The empirical estimator suffers from perfor-
mance and stability issues if the number of epochs n used for estimation is not much larger
than the number of features cs [30,31].

2.3.2. Shrunk Covariance Estimation

The shrinkage covariance estimator creates a better-conditioned inversion matrix
problem and generally performs better when applied to unseen data. The estimators
for the covariance and inverse covariance are given by:

Ĉα = (1 − α)Ĉemp + α
Tr(Ĉemp)

cs
I (8)

Ĉ−1
α = Ĉ+

α (9)

with 0 < α < 1. Analogous to L2 regularization of the beamforming problem, shrinkage
reduces the ratio between the smallest and largest eigenvalues of the covariance matrix by
strengthening the diagonal. Figure 1c,d show examples of the shrunk estimator of the co-
variance and the inverse covariance matrices, respectively.
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Figure 1. Different estimators of the covariance and inverse covariance of 100 epochs of data
from Subject 01 for channels Fz, Cz, Pz, and Oz and time samples between 0.1 s and 0.6 s.
Regularized estimators of the inverse covariance exhibit less extreme values and have a sparser
structure. (A,B) Empirical covariance and inverse covariance matrices. (C,D) Shrunk covariance and
inverse covariance matrices with α = 0.14 as determined by the closed-form leave-one-out cross-
validation (LOOCV) method. (E,F) Kronecker–Toeplitz-structured covariance and inverse covariance
matrices. (G,H) Spatial Kronecker factor of the Kronecker–Toeplitz-structured shrunk estimator and
its inverse. (I,J) Temporal Kronecker factor of the Kronecker–Toeplitz-structured shrunk estimator
and its inverse.

Earlier work [23] applied shrinkage regularization to ERP decoding with the spatiotem-
poral beamformer and showed competitive performance compared to other state-of-the-art
decoding techniques such as stepwise LDA or SVM. The abovementioned researchers
chose the shrinkage coefficient α as a fixed hyperparameter. However, its optimal value
depends on the number of training epochs, the covariance matrix’s dimensionality, and
the independence and variance of the data, which can vary across evaluation settings
and per session. The optimal value for α can be found with a line search using cross-
validation method, but this can be a costly procedure. Methods exist to estimate an optimal
shrinkage value directly from the data. Most notable among these are the Ledoit–Wolf
procedure [32], the Rao–Blackwell Ledoit–Wolf method [33], and the oracle approximating
shrinkage method [33]. A more recent estimation method [34] emulates a leave-one-out
cross-validation (LOOCV) scheme expressed by the data-driven closed-form estimate:

α = 1 −
n

n−1 Tr(Ĉ2
emp)− 2

cs
[
Tr(Ĉemp)

]2
+ 1

cs Tr(Ĉ2
emp)− 1

n(n−1) ∑n
i=1 ||xi||42

n2−2n
(n−1)2 Tr(Ĉ2

emp)− 2
cs
[
Tr(Ĉemp)

]2
+ 1

cs Tr(Ĉ2
emp) +

1
n(n−1)2 ∑n

i=1 ||xi||42
(10)

Herein, we opt for the LOOCV shrinkage estimator because it avoids some of the as-
sumptions made by [32,33] and because it generalizes to structured covariance estimations,
as described in Section 2.3.3.

2.3.3. Spatiotemporal Beamforming with Kronecker–Toeplitz-Structured Covariance

Exploiting prior knowledge about the spatiotemporal structure of the EEG signal leads
to a more regularized estimator of the covariance. When viewing the example of empirical
spatiotemporal EEG covariance in Figure 1a, it becomes clear that this matrix consists
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of a block pattern of repeated, similar matrices. Due to the multi-channel nature of the sig-
nal, we assume that the covariance of spatiotemporal EEG epochs is a Kronecker product
of two smaller matrices [35–37], as expressed by:

Ĉstruct = Ŝ ⊗ T̂ (11)

with ⊗ denoting the Kronecker product operator. Ŝ ∈ Rc×c and T̂ ∈ Rs×s correspond
to estimators of the spatial and temporal covariance of the data, respectively. Furthermore,
because the temporal covariance of the EEG-signal is stationary (i.e., it is only dependent
on interval length between covarying time samples) [38], it is assumed to have a Toeplitz-
matrix structure:

t̂i,j = t̂i+1,j+1 (12)

Property 1 then leads to Equation (13) to estimate the inverse covariance.

Property 1. (U ⊗ V)+ = U+ ⊗ V+ for any non-singular matrices U and V [39].

Ĉ−1struct = Ŝ+ ⊗ T̂+ (13)

Finally, based on Property 2, Equation (4) can be reformulated more efficiently
as Equation (14).

Property 2. (U ⊗ V) · vec(W) = vec(VWUᵀ) for any matrices U ∈ Rp×p, V ∈ Rq×q, and
W ∈ Rp×q [40].

ŵstruct =
Ŝ+ATT̂+

a · vec(Ŝ+ATT̂+)
(14)

Using Equation (14) removes the need to calculate the full, high-dimensional Kronecker
product Ŝ+ ⊗ T̂+. Figure 1e,f show examples of the structured covariance and inverse
covariance estimators, respectively, consisting of a spatial Kronecker factor (Figure 1g,h)
and a temporal component (Figure 1i,j).

The Kronecker approach has shown significant performance yields in different linear
spatiotemporal EEG and MEG applications [24,37,41–43]. Van Vliet and Salmelin [25]
applied a Kronecker-structured covariance estimator to ERP classification with linear
models in a post hoc fashion. Our work goes further by embedding the Kronecker struc-
ture in the spatiotemporal beamformer training process, using a data-adaptive shrinkage
method, and regularizing the covariance further by imposing a Toeplitz structure on the
temporal covariance.

2.3.4. Kronecker–Toeplitz-Structured Covariance Estimation

The question remains how to estimate Ŝ and T̂. Although the flip-flop and non-iterative
flip-flop algorithms [44–46] can estimate Kronecker or Kronecker–Toeplitz-structured co-
variances, new results show that a fixed point iteration is more efficient [47,48]. After
each iteration, the spatial and temporal covariance matrices are scaled to unit variance
to ensure that the fixed-point iteration converges. Finally, shrinkage can also be intro-
duced in the fixed-point iteration to improve stability and achieve more robust regulariza-
tion [42,48–50].

The spatial and temporal covariance matrices are shrunk at every fixed-point iteration
with shrinkage factors βk and γk before matrix inversion in the next iteration. Combined,
this leads to the iterative estimation algorithm described by the following equations:

S̃k+1 =
1
n

n

∑
i=1

Xᵀ
i T̂+

k Xi (15a)
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T̃k+1 =
1
n

n

∑
i=1

XiŜ+
k Xᵀ

i (15b)

S̃(β)
k+1 = (1 − βk+1)S̃k+1 + βk+1

Tr(S̃k+1)

c
I (16a)

T̃(γ)
k+1 = (1 − γk+1)T̃k+1 + γk+1

Tr(T̃k+1)

s
I (16b)

Ŝk+1 =
c

Tr
[
S̃(β)

k+1

] S̃(β)
k+1 (17a)

T̂k+1 =
s

Tr
[

T̃(γ)
k+1

] T̃(γ)
k+1 (17b)

Ŝ0 and T̂0 can be initialized to any positive definite matrix. We choose to use the identity
matrices Ic×c and Is×s. After each iteration, all diagonals of R̂k+1 are set to their mean
values to ensure that R̂k+1 and T̂k+1 are Toeplitz-structured.

Xie et al. [51] show that the LOOCV estimates for the optimal values of βk+1 and γk+1
also yield a closed-form solution for the Kronecker fixed-point-iteration algorithm:

βk+1 = 1 −
n

n−1 Tr(S̃2
k+1)− 2

c
[
Tr(S̃k+1)

]2
+ 1

c Tr(S̃2
k+1)− 1

n(n−1) ∑n
i=1

[
Tr(XiT̂+

k Xᵀ
i )

2]
n2−2n
(n−1)2 Tr(S̃2

k+1)− 2
c
[
Tr(S̃k+1)

]2
+ 1

c Tr(S̃2
k+1) +

1
n(n−1)2 ∑n

i=1
[
Tr(XiT̂+

k Xᵀ
i )

2
] (18a)

γk+1 = 1 −
n

n−1 Tr(T̃2
k+1)− 2

s
[
Tr(T̃k+1)

]2
+ 1

s Tr(T̃2
k+1)− 1

n(n−1) ∑n
i=1

[
Tr(Xᵀ

i Ŝ+
k Xi)

2]
n2−2n
(n−1)2 Tr(T̃2

k+1)− 2
s
[
Tr(T̃k+1)

]2
+ 1

s Tr(T̃2
k+1) +

1
n(n−1)2 ∑n

i=1
[
Tr(Xᵀ

i Ŝ+
k Xi)2

] (18b)

The shrinkage parameters 0 < βk+1 < 1 and 0 < γk+1 < 1 should be re-determined
after each iteration. The oracle approximation shrinkage method can also be used to deter-
mine βk+1 and γk+1 [51,52] but performs worse for spatiotemporal EEG data since not all
assumptions are met.

2.4. Dataset

We use the dataset from [21], containing P300 oddball EEG recordings of 21 healthy
subjects since it is a high-quality dataset with a high number (32) of electrodes and con-
currently recorded EOG responses for ocular artifact rejection. Nine targets were arranged
on a monitor in front of the subject during an experimental session. The subject was
asked to pay attention to a cued target for a block of stimulations. Within each block, the
stimulations were organized in in 15 separate subsequent trials. A trial was defined as
9 stimulations in which each target is flashed precisely once per trial. Each target was cued
four times, resulting in a dataset consisting of 36 blocks (4860 stimulations) per subject.
Each stimulation corresponded to a single epoch in the preprocessed dataset. See [21] for a
complete description of the dataset and the recording procedure.

2.5. Software and Preprocessing

Data processing and classifier analysis were performed in Python using Scikit-Learn
(version 1.0.1) [53] and SciPy (version 1.7.1) [54]. The preprocessing pipeline was imple-
mented using the MNE-Python toolbox (version 0.24.0) [55]. The dataset was converted
to BIDS-EEG format [56] and managed and loaded with MNE-BIDS (version 0.9) [57].
The Riemannian classifier from Section 2.6.3 was implemented using pyRiemann
(version 0.2.7). Statistical tests were performed in R (version 4.1.2).

The EEG recorded at 2048 Hz was re-referenced off-line to the average of the mastoids.
The reference electrodes were dropped from the analysis. Data were subsequently filtered
between 0.5Hz and 16Hz using forward-backward filtering with a fourth-order Butterworth
IIR filter. The EEG signal was corrected for ocular artifacts using independent component

122



Appl. Sci. 2022, 12, 2918

analysis (ICA) by rejecting components that correlated with the bipolar EOG channels
vEOG and hEOG, according to adaptive Z-score thresholding. Finally, epochs were cut
from 0.1 s to 0.6 s after stimulus onset. No baseline correction was performed since this
affects the temporal covariance of the data, violating the Toeplitz structure assumption [38].

2.6. Classification
2.6.1. Cross-Validation Scheme per Subject

We use a variation of grouped k-fold cross-validation per subject to evaluate the classi-
fiers. We applied four-fold cross-validation by splitting the blocks of each subject into four
continuous folds. Unlike regular cross-validation, we only used a single fold to train the
classifiers while using the other three folds for validation. This scheme resulted in a training
set of 9 blocks of 135 epochs each. We chose this approach since we are primarily interested
in the performance of the classifiers in the case of low data availability. The classification
task was to determine the cued target for each block. The fraction of correctly predicted
cues provided the accuracy of a classifier. Data from all trials were used in the training
stage, whereas classifier validation was performed multiple times per fold, each time using
an increasing amount of trials (i.e., using the first trial, using the first two trials, etc., until
all 15 trials have been used). For each of the 9 stimulated targets, the averages over the cor-
responding epochs across the utilized trials were used to predict the cued target in that
block. The target with the maximum classifier score was then chosen as the predicted cued
target. Before training the classifiers, a Z-score normalization transformation was devel-
oped on the training data to scale all EEG channels to unit variance. This transformation
was then applied to the validation data.

2.6.2. Spatiotemporal Beamformer Classifier

Before calculating the spatiotemporal beamformer (STBF), the signal was downsam-
pled to 32 Hz or twice the low-pass frequency 16 Hz, resulting in 17 time samples between
0.1 s and 0.6 s. According to the Nyquist theorem, more samples would not contain more in-
formation; hence, the minimum temporal resolution was chosen to reduce the dimensional-
ity of the covariance. The activation pattern is the difference between the averages of epochs
in response to cued targets and the averages of those in response to non-cued targets. We
constructed three variations of the spatiotemporal beamformer: STBF with empirical co-
variance estimation (STBF-EMP) as in Section 2.3.1, STBF with LOOCV-shrunk covariance
estimation (STBF-SHRUNK) as in Section 2.3.2, and STBF with Kronecker–Toeplitz-structured
covariance estimation (STBF-STRUCT) with LOOCV shrinkage for the Kronecker factors as
in Section 2.3.4.

2.6.3. Riemannian Geometry Classifier

We opted for a Riemannian geometry-based classifier to compare our results. The
Riemannian model (xDAWN+RG) uses the xDAWN spatial filter combined with Riemannian
geometry in tangent space as implemented by Barachant et al. [58]. This classifier uses four
xDAWN spatial filters and each epoch’s empirical spatial covariance matrix. The target
with the maximum score is the prediction of the cued target. xDAWN+RG was trained and
validated without downsampling using epochs at the original sample rate of 2048 Hz.

3. Results

3.1. Minimum Required Fixed-Point Iterations

The fixed point iteration algorithm described in Equations (15a)–(16b) is used to
estimate the Kronecker–Toeplitz-structured covariance for the STBF-STRUCT classifier. Fixed-
point iteration is an iterative procedure starting from (in our case) non-informed initial
guesses for the spatial and temporal covariance matrices. As a stopping criterion, one
could impose a threshold on the difference in outcome of successive steps, e.g., based
on the covariance norm or the classifier accuracy. However, few iterations or even just
one [59] suffice to achieve satisfactory performance in practice.
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Figure 2 confirms these results for the STBF-STRUCT classifier. Using more than
one fixed-point iteration does not significantly improve the accuracy across the amounts
of training data and the number of trials used for evaluation. Hence, only one iteration is
used for the STBF-STRUCT classifier, leading to a drastic speed-up of the training process.

Figure 2. Average cross-validated STBF-STRUCT accuracy using one trial per block for validation over
all 21 subjects relative to the number of iterations used to estimate the Kronecker–Toeplitz-structured
shrunk covariance. Error bars represent the first and third quartiles. The accuracy does not improve
when using more than one iteration. (A) Results for 1, 2, and 5 trials using only the first block
in each training fold for training. (B) Results for 1, 2, and 5 trials using all nine training blocks in the
training folds.

3.2. Classifier Accuracy for Limited Training Data

It is of interest to keep the calibration time before BCI operation as short as possible.
We mimic this problem by training the classifier with as few training epochs as possible.
We evaluate the performance of all classifiers for different levels of available training data
and apply the cross-validation procedure nine times (the number of blocks in the training
fold) for all subjects, keeping the corresponding number of blocks in the training folds and
dropping the rest. Figures 3 and A1 show each classifier’s accuracy relative to the data
availability. We statistically compare the two newly proposed classifiers, STBF-STRUCT and
STBF-SHRUNK, for different levels of training data availability using a one-sided paired
Wilcoxon rank-sum test with Holm correction for the multiple pairwise comparisons
between classifiers. We performed this analysis three times: by only using the first trial
of a block, by averaging epochs across the first two trials of a block, and across the first five
trials of a block. Results validated on one trial are reported in Table 1, two-trial results in
Table 2, and five-trial results in Table 3.

Table 1. p-values calculated via the one-sided paired Wilcoxon rank-sum test with Holm correction
using one testing trial for different classifiers and levels of data availability. p-values < 0.05 are
considered significant and marked bold.

1 Trial
Nb. of Training Blocks

1 2 3 4 5 6 7 8 9

STBF-STRUCT > STBF-SHRUNK 0.005 0.030 0.015 0.543 0.284 0.159 – – 0.952
STBF-STRUCT > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-STRUCT > xDAWN+RG 0.086 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-SHRUNK > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
STBF-SHRUNK > xDAWN+RG – 0.499 0.071 <0.001 <0.001 <0.001 <0.001 0.001 0.001
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Table 2. p-values as in Table 1, averaging over two testing trials.

2 Trials
Nb. of Training Blocks

1 2 3 4 5 6 7 8 9

STBF-STRUCT > STBF-SHRUNK 0.014 0.006 0.040 0.040 0.004 0.846 0.888 – –
STBF-STRUCT > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-STRUCT > xDAWN+RG 0.103 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-SHRUNK > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
STBF-SHRUNK > xDAWN+RG – – 0.163 0.001 0.001 <0.001 <0.001 <0.001 <0.001

Table 3. p-values as in Table 1, averaging over five testing trials.

5 Trials
Nb. of Training Blocks

1 2 3 4 5 6 7 8 9

STBF-STRUCT > STBF-SHRUNK 0.005 0.030 0.015 0.543 0.284 0.159 – – 0.952
STBF-STRUCT > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-STRUCT > xDAWN+RG 0.086 0.002 <0.001 <0.001 <0.001 0.004 0.006 <0.001 <0.001

STBF-SHRUNK > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
STBF-SHRUNK > xDAWN+RG – 0.499 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.001

Figure 3. Accuracy of the different classifiers for all 21 subjects relative to the number of blocks
available for training. One block consists of 135 epochs and corresponds to 27 seconds of stimulation.
Accuracies are shown for the evaluation settings averaging over 1, 2, and 3 trials of testing stimuli.
Figure A1 contains results for all numbers of trials. Although STBF-EMP is unstable when few
training data are available, regularization of the covariance matrix (STBF-SHRUNK and STBF-STRUCT)
drastically improves performance.

The tables show that STBF-STRUCT has a significant advantage over STBF-SHRUNK

when the number of training blocks is low. This effect is present for 1-, 2-, and 5-trial
evaluations. This advantage decreases (the p-value increases) when adding more training
blocks. Both STBF-STRUCT and STBF-SHRUNK perform significantly better than STBF-EMP

for all evaluated settings. Compared to xDAWN+RG, STBF-STRUCT also has significantly
higher accuracy in almost all evaluated settings, except when using only one training block.
STBF-SHRUNK does not outperform xDAWN+RG when training data are scarce but gains
a significant advantage when using more training data.

3.3. Classifier Training Time

In order to evaluate the training time of the investigated classifiers, the cross-validation
scheme was run four times for each subject, each time with an increasing number of EEG
channels retained in the analysis, to explore the scalability of each classifier for analyses
with higher spatial resolutions. The temporal resolutions were not varied, but we expect
that increasing the temporal resolution has a similar effect on training time, since the
training times for the STBF-based classifiers are primarily dependent on the number of
parameters in their respective covariance matrix estimators, as evidenced by the complexity
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calculations in Section 4.2. Figure 4 shows the measured training times. These results were
obtained using a laptop with an Intel® Core™ i7-8750H CPU (Intel Corporation, Santa
Clara, CA, USA) and 16 GB of RAM.

Figure 4. Median fold training time for different classifiers at different spatial resolution levels
evaluated over all training folds for all subjects. Error bars represent standard deviation. The training
time of STBF-SHRUNK increased more steeply with resolution compared to STBF-STRUCT. All STBF

classifiers were able to be trained significantly faster than xDAWN+RG.

Figure 4 shows that the training time of STBF-STRUCT increased less steeply than that
of STBF-SHRUNK and STBF-EMP. The training time of all three STBF-based classifiers was
much lower than that of xDAWN+RG, which appears nearly constant when using 4, 8, 16, or
32 channels.

4. Discussion

4.1. Classification Accuracy

As evidenced by Figure 3 and Tables 1–3, the regularized classifiers STBF-SHRUNK and
STBF-STRUCT significantly improve the classification accuracy compared to the original
STBF-EMP for all the numbers of training blocks indicated. We believe there are three
reasons for this. First and foremost, the empirical covariance matrix in STBF-EMP becomes
ill-conditioned when the number of available training epochs is smaller than the num-
ber of features (n < cs), rendering its inversion with the Moore–Penrose pseudoinverse
unstable. This is the case for STBF-EMP when n = cs = 32 × 17 = 544, after which the
accuracy of STBF-EMP starts to increase. This effect is visible in Figure 3, where the accuracy
starts increasing when using more than four training blocks, amounting to 540 epochs.
The noticeable dip in accuracy when using around 540 epochs can be explained by nu-
merical effects in the pseudoinverse for very small eigenvalues [60–63]. Regularization
of the covariance matrix with shrinkage ensures that the covariance matrix is non-singular
and better conditioned so that it can stably be inverted. Second, covariance regularization
introduces a trade-off between the variance and bias of the model [32]. Better perfor-
mance on unseen data can be achieved when some model variance is traded for extra
bias. Regularization reduces the extreme values present, as shown in Figure 1, resulting
in a classifier with better generalization. Third, the true spatiotemporal covariance ma-
trix may vary throughout BCI sessions, e.g., due to movement of the EEG-cap, changing
impedances of electrodes, subject fatigue, the introduction of new spatiotemporal noise
sources, and other possible confounds. A regularized covariance matrix should better
account for changes in true covariance. Note that the LOOCV method in principle assumes
that the covariances of the training data and unseen data are the same. Because the covari-
ance might have changed for unseen data, the shrinkage estimate obtained with LOOCV is
probably still an underestimation of the optimal—but unknown—shrinkage coefficient that
would yield the best classification accuracy for the unseen data.
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Another observation is the significantly better accuracy score of STBF-STRUCT over
STBF-SHRUNK when the amount of available training data is small. This property is an
attractive advantage in a BCI setting since it is desirable to keep the calibration (training)
phase as short as possible without losing accuracy. The accuracy advantage of the struc-
tured estimator is a consequence of the Kronecker–Toeplitz covariance structure, which is
informative for the underlying process generating the epochs, if it is assumed that the EEG
signal is a linear combination of stationary activity generated by random dipoles in the
brain with added noise [24,35,41]. Hence, STBF-STRUCT can utilize this prior information
to better estimate the inverse covariance. The increase in accuracy for small training set
sizes can also be explained by the smaller number of parameters necessary to estimate
the inverse covariance (see Section 4.2), increasing the stability of matrix inversions.

When compared to the state-of-the-art xDAWN+RG classifier, we conclude that STBF-
STRUCT reaches similar accuracy when using only one block of training data. The authors
suspect this is due to both classifiers having insufficient training information to reach
satisfactory classification accuracy. When more data are available, STBF-STRUCT reaches
significantly better accuracies. Combined with the benefits laid out in Sections 4.2 and 4.3,
this makes it an attractive option for ERP classification. STBF-SHRUNK does not show
decisive accuracy improvements over xDAWN+RG using a few training blocks, but this
improves as the training data increases.

4.2. Time and Memory Complexity

As mentioned above, inverting the full cs × cs dimensional covariance matrix to con-
struct STBF-EMP and STBF-SHRUNK can be costly and unstable, in particular in high-
resolution settings with many EEG channels or time samples. Constructing the full co-
variance and inverse covariance matrices also requires a considerable amount of memory.
The structured covariance estimator of STBF-STRUCT has two advantages here.

First, because of Properties 1 and 2 there is no need to calculate the full cs× cs symmet-
ric covariance and inverse covariance matrices for STBF-STRUCT or keep them in memory;
they can instead be replaced by two smaller symmetric matrices of dimensions c × c and
s × s, respectively. Furthermore, since the temporal component of the Kronecker product
is Toeplitz-structured, it only requires s parameters to estimate. Although the inverse co-
variance of STBF-EMP and STBF-SHRUNK is defined by cs(cs+1)

2 = 32×17(32×17+1)
2 = 122.128

parameters accounting for the symmetric nature of covariance, the structured estimator
only requires c(c+1)

2 + s = 32(32+1)
2 + 17 = 545 unique parameters. This reduction in pa-

rameters to estimate reduces memory usage and contributes to the regularization effect
for low-data-availability settings. The inverse covariances of STBF-EMP and STBF-STRUCT,
represented as 32 × 17 × 32 × 17 symmetric matrices of single-precision real floating point
numbers for weight calculation, use 9.03 MiB of memory. The 32 × 32 and 17 × 17 matrices
of STBF-STRUCT only require 5.12 KiB.

Second, structured estimation has better time complexity. Covariance estimation
and inversion occupy the largest part of the STBF training time. For STBF-EMP and STBF-
SHRUNK, the time complexity of this process is O(nc2s2 + c3s3). Thanks to Property 1,
the complexity can be reduced to O(nc2s2 + c3 + s3) for the structured estimator of STBF-
STRUCT. The results presented in Figure 4 confirm these calculations. It can be observed
that the training time of STBF-STRUCT stays low compared to STBF-EMP and STBF-SHRUNK

when dimensionality increases.
The results shown in Figure 4 also confirm that the STBF-based estimators are very fast

to train compared to the state-of-the-art estimator xDAWN+RG, which confirms the results
in [21]. Since the training times of all STBF-based classifiers are already of the order of tenths
of seconds, the question arises as to whether the improvements achieved using the struc-
tured estimator would be relevant in practice. However, the authors believe that these
results could significantly impact some use-cases of the spatiotemporal beamformer, such as
high-spatial- or temporal-resolution ERP analyses. One example is single-trial ERP analysis
with a high temporal resolution to extract ERP time features. Such higher-resolution analy-
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ses can later be incorporated into an ERP classification framework. In addition, the speed
provided by structured estimation yields a faster off-line evaluation of the STBF ERP classi-
fier, in which multiple cross-validation folds, subjects, and hyperparameter settings often
need to be explored, which can quickly increase runtime. Improvements in computation
speed and memory usage can remove the need for dedicated computation hardware and
enable group analyses to be run on a personal computer.

4.3. Interpreting the Weights

The weight matrix of the STBF determines how each spatiotemporal feature of a given
epoch should contribute to enhancing the SNR of the discriminating signal in the clas-
sification task. Alternatively, the activation pattern can be regarded as a forward EEG
model of the activity, generating the discriminating signal and the weights as a backward
model [60,64]. Regularization enables a researcher to interpret better the distribution
of the weight over space and time after reshaping the weight vector w to its spatiotemporal
matrix equivalent, W, such that vec(W) = w. Figure 5 compares the weights calculated in
STBF-EMP and STBF-SHRUNK with the weights from STBF-STRUCT.

Figure 5. Spatiotemporal beamformer weights calculated using four blocks of data (of 1215 epochs)
from Subject 01 from 0.2 s before until 1.0 s after stimulus onset. Regularized weights show an
interpretable sparse pattern, whereas the empirical weights appear noisier. (A) Spatiotemporal
activation pattern with spatial and temporal global field power. (B) STBF-STRUCT weights with spatial
and temporal averages of absolute values. (C) STBF-SHRUNK weights. The shrinkage factor α = 0.05
was determined with the closed-form LOOCV method. (D) STBF-EMP weights.

Since the linear filter’s noise suppression and signal amplification functions are deeply
entangled, it is not necessarily true that features with a high filter weight directly correlate
to features containing discriminatory information [64]. However, it is still possible to inter-
pret the weights in terms of which features contribute most to the classification process, be
it through noise suppression, signal amplification, or—most likely—a combination of both.
The weights obtained by STBF-EMP seem to be randomly distributed over space and time;
the regularized estimator used by STBF-SHRUNK and STBF-STRUCT reveal a more inter-
pretable weight distribution. The STBF-SHRUNK weights show a sparse spatial distribution,
whereas the STBF-STRUCT weights show a sparse distribution in both space and in time.

As expected, Figure 5b and d exhibit weight around the central and parietal regions,
where the P300 ERP component is present. Especially the spatial weights of STBF-SHRUNK

in Figure 5d correspond to the spatial activation pattern in Figure 5a. This is not surprising,
since shrinkage transforms the covariance matrix closer to the identity matrix and assuming
identity covariance in Figure 4 yields weights identical to the activation pattern (up to a
scaling factor). Additionally, Figure 5b shows that weights in the baseline interval and after
0.6 s, which should contain no response information, are close to zero for the structured
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estimator. Meanwhile, these weights are high in the occipital region between 0.1 s and
0.2 s, containing early visual components with relatively low SNR. This high weight
for the early visual components confirms the results from Treder and Blankertz [65] that
state that, in addition to the P300, the early N1 and P2 ERP components are also modulated
by oddball attention and contain discriminatory information between attended and non-
attended stimuli.

Using an interpretable classification model has many advantages. For instance, one
can use the weight matrix to determine relevant time samples and EEG channels for per-
subject feature selection to refine the model further. The number of channels is also an
important cost factor in practical BCI applications. Determining which channels do not
contribute to the classification accuracy helps to reduce the number of required electrodes.
Spatially clustered weights indicate that some electrodes are not used by the classifier and
can be discarded accordingly with no substantial accuracy reduction. As another example,
information about the timing and spatial distribution of the discriminatory information
in the response can be extracted from the weights and linked to neurophysiological hypotheses.

5. Conclusions

Although it is possible to regularize the spatiotemporal LCMV beamformer classifier
for ERP detection through other methods, such as by employing feature selection, by adding
regularizing penalties to the cost function beamforming problem, or by crafting a cleaner
activation pattern, our work focused on estimation methods for spatiotemporal covariance.
We introduced a covariance estimator using adaptive shrinkage and an estimator exploiting
prior knowledge about the spatiotemporal nature of the EEG signal. We compared these
estimators with the original spatiotemporal beamformer and a state-of-the-art method
in an off-line P300 detection task. Our results show that the structured estimator performs
better when training data are sparsely available and that results can be computed faster and
with substantially less memory usage. Since these algorithms are not paradigm-specific,
the conclusions can be generalized to other ERP-based BCI settings.

Future work should focus on introducing more robust regularization strategies using
prior knowledge, such as shrinking the spatial covariance to a population mean or a previ-
ously known matrix based on sensor geometry or characterizing the temporal covariance as
a wavelet or autoregressive model. More accurate results could be obtained by expressing
the covariance as the sum of multiple Kronecker products to account for spatial variation
in temporal covariance. It could also be interesting to explore the impact of covariance
regularization on transfer learning of the STBF between subjects to alleviate calibration
entirely. Finally, it could be insightful to evaluate the proposed algorithms in a real-world
on-line BCI setting.

Author Contributions: Conceptualization, A.V.D.K.; methodology, A.V.D.K., A.L., B.W. and M.M.V.H.;
software, A.V.D.K., validation, A.V.D.K.; formal analysis, A.V.D.K. and B.W.; investigation, A.V.D.K.
and B.W.; resources, M.M.V.H. and B.W.; data curation, A.V.D.K.; writing—original draft preparation,
A.V.D.K.; writing—review and editing, A.V.D.K., A.L., B.W. and M.M.V.H.; visualization, A.V.D.K.;
supervision, M.M.V.H.; project administration, A.V.D.K. and M.M.V.H.; funding acquisition, M.M.V.H.
All authors have read and agreed to the published version of the manuscript.

Funding: A.V.D.K. is supported by the special research fund of the KU Leuven (GPUDL/20/031).
A.L. is supported by the Belgian Fund for Scientific Research—Flanders (1SC3419N). M.M.V.H.
is supported by research grants received from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 857375, the special research fund of the KU
Leuven (C24/18/098), the Belgian Fund for Scientific Research—Flanders (G0A4118N, G0A4321N,
G0C1522N), and the Hercules Foundation (AKUL 043).

Institutional Review Board Statement: The study was conducted according to the guidelines
of the Declaration of Helsinki, and approved by the Ethics Committee of KU Leuven’s university
hospital (UZ Leuven) (S62547 approved 11 June 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

129



Appl. Sci. 2022, 12, 2918

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article. Source code is available at https://github.com/kul-compneuro/stbf-erp
(accessed 7 March 2022).

Acknowledgments: The authors acknowledge François Cabestaing and Hakim Si-Mohammed
for their valuable input in the development of this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or the interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Appendix A

Figure A1. Accuracy of the different classifiers for all 21 subjects relative to the number of blocks
available for training. One block consists of 135 epochs and corresponds to 27 s of stimulation.
Accuracies are shown for the evaluation settings, averaging over different numbers of trials, ranging
from 1 to 15.
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Abstract: A semi-automatic wheelchair allows disabled people to possibly control in an indoor
environment with obstacles and targets. The paper proposes an EEG-based control system for the
wheelchair based on a grid map designed to allow disabled people to reach any preset destination. In
particular, the grid map is constructed by dividing it into grid cells that may contain free spaces or
obstacles. The map with the grid cells is simulated to find the optimal paths to the target positions us-
ing a Deep Q-Networks (DQNs) model with the Parametric Rectified Linear Unit (PReLU) activation
function, in which a novel algorithm for finding the optimal path planning by converting wheelchair
actions is applied using the output parameters of the DQNs. For the wheelchair movement in
one real indoor environment corresponding to the virtual 2D grid map, the initial position of the
wheelchair will be determined based on natural landmarks and a graphical user interface designed
for on-screen display can support disabled people in selecting the desired destination from a list of
predefined locations using Electroencephalogram (EEG) signals by blinking eyes. Therefore, one user
can easily and safely control the wheelchair using an EEG system to reach the desired target when
the wheelchair position and destination are determined in the indoor environment. As a result, a
grid map was developed and experiments for the semi-automatic wheelchair control were performed
in real indoor environments to illustrate the effectiveness of the proposed method. In addition, the
system is a platform to develop different types of controls depending on the types of user disabilities
and different environmental maps built.

Keywords: EEG; BCI; graphical user interface; wheelchair navigation; grid map; natural landmark;
optimal paths; deep Q-networks

1. Introduction

In recent years, many methods have been introduced to develop types of smart
wheelchairs for people with different disabilities such as assistive technology [1], user
physical interface [2], or semi-control (sharing control between user and machine) [3]. One
of the most important problems in a smart wheelchair is to provide independent mobility
for the elderly or severely disabled people, who cannot control an electric wheelchair
using a joystick. Therefore, restoring their activity skills can significantly improve their
life quality. The development of a typical smart wheelchair highly depends on the ability
and disability of the user. It means that a patient with impaired activity often lacks muscle
control and then it is difficult to control the movement of the arms and legs in the worst
case. To support the mobility of patients, signals for control can be generated from actions
such as voice, thoughts, eyes, and tongue [4–6]. In order to obtain good signals, users must
control their emotions well and also highly concentrate for accuracy. This is difficult for
users with severe disability, although it may be a good option. For people with severe
disability, the best solution could use multiple signals from sensors installed on the user’s
body parts and the surrounding environment and the signals are analyzed before giving
the desired commands for wheelchair control [7]. Using this solution could improve the
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difficulty of people with severe disability in the wheelchair control compared to solutions
using one input.

EEG signals related to the human brain, which have challenging problems, have
attracted many researchers. In particular, recent research on cognitive and motor control to
improve the Brain–Computer Interface (BCI) for enhancing the health of elderly people has
been shown [8]. According to this study, the BCI system can be useful for elderly people in
training their motor/cognitive abilities to prevent the effects of aging. Therefore, it can help
them to more easily control household appliances and to communicate information in daily
activities. In [9], the authors represented the physical principles of BCI and the fundamental
new methods for acquiring and analyzing EEG signals for controls related to brain activities.
In particular, the BCI system was classified into three main categories including active,
reactive, and passive. Regarding an active BCI, the neuro interface user controls a complex
external device such as a wheelchair through a series of functional components of the
control system and sees the results of this control on a screen. Reactive BCI inherits many
features of active BCI, with a significant change to implement a control system based on the
classification of brain responses to stimuli such as visuals, sounds, and touch. Passive BCIs
are designed to monitor current brain activity and thereby provide important information
about the operator’s mental state, user intent, and situational interpretation. The Brain-
Controlled Wheelchair (BCW) is a typical BCI application, which can help people with a
physical disability to communicate with the outside environment. In [10], the BCW was
exploited from many aspects, including the type of EEG signal acquisition, the command
set for the control system, and the control method. Moreover, the authors summarized the
recent development of the BCW and it can be mainly expressed in three aspects: from the
wet electrode to the dry electrode; from single-mode to multi-mode; from synchronous
control to asynchronous control. Therefore, it indicates that new functions have been
employed in the BCW to increase its stability and robustness.

Mapping and navigation for wheelchairs or self-propelled robots have attracted many
researchers in recent decades. The wheelchairs or self-propelled robots need to be provided
maps for movement in detail so that they can be located in moving spaces. Moreover, their
current coordinates were used as a basis for collecting new information during the moving
process [11]. Mapping algorithms were gradually developed as Simultaneous Localization
and Mapping (SLAM) algorithms and were applied to draw 3D maps [12], in which the
computational problem of constructing or updating a map of an unknown environment
is represented, with simultaneously keeping track of an agent’s location within it. An
image processing method was employed to identify fixed artificial landmarks built in
moving space [13]. Thus, these fixed artificial landmarks were applied for determining
the current location of a wheelchair on a map built in advance during its movement.
Alcantarilla et al. proposed a powerful and fast method of positioning a wheelchair based
on computer vision, in which image features were extracted and then combined with map
components to provide a current position of self-propelled robots [14,15]. In fact, mapping
for mobile robots in the environment is a major challenge due to the data obtained from
the environment and the algorithm applied on them [16–18]. Landmark information for
mobile robots plays an important role, in which types of landmarks [19–22] such as doors,
stairs, walls, ceilings, and floors were selected and features were extracted for identification.
Therefore, to detect the landmarks with their features, one could be based on color, texture,
brightness, and obstacle size.

In recent years, the Reinforcement Learning (RL) method has achieved great success
in many tasks including games [23] and simulation control agents [24]. Applications of
the RL method in robot manufacturing are mostly limited in operation methods [25], in
which the workspace could be fully observed and very stable. With mobile robots, complex
environments can expand the sample space, while the RL method often takes action samples
from a separate space for simpler processing of problems [26]. In [27], the RL method
was applied for autonomous navigation based on the input of image information and
has achieved significant success. The authors of this research analyzed agent behavior in
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static mazes with complex geometries, starting positions, and random orientations, while
target positions could vary. The results showed that this RL method could allow the agent
to navigate in large and intuitive environments, in which there were starting and target
positions which were changed frequently, but the maze layout was always static. In [28],
Yuke Zhu et al. tried to find the sequence of actions with minimum distance to move
an agent from its current position to the target specified by the RGB image. This means
that they have to collect a large number of different images to process before training the
navigation model.

Finding a path on a static grid map is a well-known issue and well researched in AI
communities, in which planners and robots with lots of methods and algorithms have been
proposed to date [29,30]. Most of these algorithms are based on heuristic searching in the
state space created by grid cells. In general, one prominent issue is that Neural Networks
(NNs) work well with all types of tasks with data collected from sensors or images and then
they are used as an input of the NN. The cells contain only two types of cells, including
movable and non-movable, and they look like a perfect input for Modern Artificial Neural
Network (MANN) architectures, such as a Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) [31–34]. In [23], the DQN algorithm was applied due to
solving many challenges related to autonomous control [35]. In particular, this algorithm
combines the Q-Learning algorithm with neural networks, in which DQNs solve problems
with high-dimensional observation spaces using neural networks to estimate Q-values for
corresponding actions. Mostly, deep RL training including DQNs and their variants is
performed in a virtual environment, because the process of training using a trial and error
method can lead to damage to real robots in typical tasks. The big difference between the
structural simulation environment and the very complex real-world environment is the
main challenge to directly transfer a trained model into a real robot.

In this article, an RL method applied to obtain results of the optimal path planning
in a virtual 2D grid map is presented. In particular, in the first stage, the virtual 2D grid
map is built based on a real environment, including free spaces, obstacles, landmarks, and
targets. This virtual 2D grid map will be connected to the input of a DQN and the DQN’s
output is the Q-value of four actions (Right, Left, Up, Down) and the action with the largest
Q-value will be selected so that the wheelchair can reach the desired target from any start
point in the real environment. Therefore, in the second one, when the wheelchair moves
in this real environment, it can use the scenery fully simulated as a Motion Planner (MP)
through the virtual 2D grid map. Moreover, the wheelchair needs to determine its current
position in both real and virtual environments with natural landmarks for movement.
With the start and target positions determined, the MP will suggest the optimal path with
control commands and a Wheelchair’s Action Converter (WAC) will convert these control
commands into actual control commands so that the wheelchair can complete its schedule.
Finally, we evaluate the performance of the proposed model by performing a series of
tests in simulation and in real environments. The results showed that the RL network
architecture applied in this research to path-finding tasks is a potential issue in mobile
vehicles in real environments based on landmarks, obstacles, and start and target points.

This article consists of four sections: Section 2 presents the structure of the system, the
method for selecting destinations using EEG signals, and applying the RL algorithm for
determining the optimal path of the wheelchair to the selected destination. In Section 3,
the description of the basic specifications applied for wheelchair movement is given and
the experiments related to the basic functions of the system and the experimental results
using the proposed method are discussed. Finally, Section 4 presents the conclusions about
this research.
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2. Materials and Methods

2.1. System Architecture

In this research, one system architecture for an optimal path planning is proposed for
wheelchair navigation to reach the desired targets. This system architecture includes two
stages for the electric wheelchair in an indoor environment as described in Figure 1. In the
first stage, the 2D grid maps with cells simulated based on one real indoor environment
with different targets will provide information of cell states and targets’ coordinates which
are the inputs of DQNs. After being trained, the DQN model will have optimal parameters
that can estimate the Q-values of all possible actions for that state. Therefore, the DQNs
will have 4 outputs corresponding to 4 actions (Up, Down, Left, Right). Therefore, each 2D
grid map is just built for one of the targets in one real indoor environment, so each DQN
model is obtained for one MP.

Figure 1. Representation of the system architecture for finding the optimal path of the wheelchair
based on the 2D grid map.

The second stage is that the wheelchair will be controlled to reach the desired target in
one real indoor environment. At the start time, the wheelchair will determine its start state
itself based on natural landmarks and the desired target position in the real environment
is known. When receiving the initial state of the wheelchair on the grid map, the DQN
model will estimate the Q-values of 4 outputs corresponding to 4 actions (Up, Down, Left,
Right). Therefore, the action with the highest Q-value will be selected. With this action, a
new state on the grid map will be updated and then this new state will be the input to the
DQN model and it will also select a corresponding action. This process will repeat and
end when the state is the target. After navigating the optimal path to be able to reach the
desired target, the MP with a sequence of actions (Right, Left, Up, Down) and the WAC
will allow the wheelchair to move following this optimal path to reach that desired target.

In addition, as shown in Figure 1, the user needs to select a destination on the grid
map using EEG signals. In the semi-automatic wheelchair system, the construction and the
selection of destinations in a grid map for severely disabled people are a very important
task. For people with severe disabilities not able to use normal controls, such as pressing a
button, controlling a joystick, or touching a control screen, the EEG signal for controlling the
semi-automatic wheelchair is a useful option. Using the EEG signal for directly controlling
the semi-automatic wheelchair may cause stress due to concentrating for a long time, so
the user can choose the desired destination through a screen interface with commands
suitably designed for his/her actual environment [36]. The commands on the interface
screen are assigned based on the type of the EEG signal from the user’s face behaviors.
Figure 2 describes the process of collecting, processing, and analyzing EEG signals for
performing control commands related to the user interface. EEG signals are collected from
an Emotiv EPOC system with 14 channels (14 electrodes) [37]. In particular, the EEG signals
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are collected from the electrodes located in the prefrontal cortex considered to be the most
reliable signals. Therefore, the EEG signals are transferred to the signal pre-processing
block for filtering and scaling before being sent to the feature extraction block. For the
control of the wheelchair, the EEG signals after pre-processing are sent to the classification
block for classifying input signals to produce control commands [36–38]. It means that the
user can use the control commands for selecting one of destinations on the environmental
map to reach.

Figure 2. Brain–computer interface process flow.

The user interface is always designed to be simple and easy for disabled people,
particularly, all commands can be operated using the BCI only as described in Figure 3.
On the interface, the user will see a vertical menu with the symbols of destination names.
The names in this menu are the pre-defined destinations such as living room, kitchen,
and bedroom. To control the commands to reach the destinations, the act of closing the
right eye of user is the command for selecting the desired destination. In particular, the
user needs to close the right eye for 2 s to be able to move the cursor on the screen to
the desired destination and then close the left eye to confirm the desired destination
as shown in Figure 4. If the user wants to cancel the selected commands or cancel the
selected destination, the user needs to perform the distortion of the mouth to the right. All
operations selected for controlling the user interface with the designed destinations were
tested on many users and the real results using the designed EEG commands produced the
highest accuracy.

Figure 3. User interface for selecting the desired destination.

Figure 4. User interface selected the desired destination “Bed Room” using the EEG command.
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2.2. Deep Q-Networks for Optimal Path Planning

In this study, DQNs were applied to find optimal paths as Q-tables based on virtual 2D
grid maps through simulation, in which each target uses a virtual grid map and also many
optimal paths are found for the wheelchair to reach that target from any start position of the
wheelchair. In the DQNs, we could set variables related to the operation of the wheelchair
and one real environment, particularly, the wheelchair is called Agent on a virtual 2D grid
map (Environment), consisting of obstacles and free spaces. With the positions of start
and target, Agent’s task is to reach the target cell. In addition, the Agent interacts with
Environment based on Actions (Left, Right, Up, Down). After each Action, Environment
returns to Agent and State St = (xt, yt) is the wheelchair position at time t, with the (x, y)
grid coordinate, and the reward points (Reward, R) correspond to that State. In addition,
Agent has a limited State, St є S, with an m × n pre-defined size of S, and Agent is often
placed in the middle of the grid cells for the possibility of moving in all four directions.

In this algorithm, State consists of three types of obstacle So, free space Sf, and target
Sg. At each moment t, Agent is the State St and needs to select an Action from a fixed set of
possible Actions. Therefore, the decision to select which Action for movement operation
is only dependent on the current State, not the Action history, due to being irrelevant. In
addition, the result of Action at time at will cause the conversion from the current State St
at time t to the new State St+1 at the time (t + 1) and then immediate Reward collected after
each Action R(st, at) є [–1, 1] is calculated using the following rule:

R(st, at) =

⎧⎨⎩
R f i f at = st → s f
Rg i f at = st → sg
Ro i f at = st → so

. (1)

Each movement of the wheelchair from one cell to an adjacent cell will lose Rf points
and this will prevent it from wandering around and possibly reaching the desired target
with the shortest path. In this algorithm, the maximum Reward is Rg points for movement
of the wheelchair to hit the target. While the wheelchair tries to enter an obstacle cell,
Ro points will be subtracted. It means that this is a serious punishment (penalty), so the
wheelchair will learn how to completely avoid the punishment and so the effort to move
to an obstacle cell is invalid and cannot be performed. The same rule for an attempt to
move outside the map boundary with a punishment of Rb points applies. The case is
that the wheelchair will lose Rp points for any movement to the cell that has been passed.
Moreover, to avoid infinite loops during the training process using the DQNs, the total
Reward is bigger than the negative threshold (thr × m × n) and then the wheelchair can
move normally. Inversely, the movement of the wheelchair can be lost and many errors can
be made, so the training needs to be carried out again until the total Reward is enough.

In this DQN, the main learning model is a Feedforward Neural Network (FWNN)
with backpropagation training algorithm, in which the environmental States are the input
of the network and bring Rewards back for each Action vector. The goal of Agent is to
move following the map by a Policy to obtain a maximum Reward from the Environment.
Therefore, Policy π at State st produces an Action at so that the total Reward Q Agent
receives is the largest and is calculated by the following equation:

π(st) = arg max Q(st, ai)
i=0,1,...,n

, (2)

Q(st, at) = R(st, at) + γ.max Q(st+1, ai)
i=0,...,n

, (3)

in which Q(st, ai) are Actions, ai (i = 0, 1, . . . , (n−1)), n denotes the number of Actions
and satisfies the following equation of Bellman [35], st+1 is the next State, γ denotes the
discount coefficient which makes sure that Agent is far from the target and it is smaller
than the Q-value.
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For approximating Q(st, at), the FWNN has the input as a State and its output is the
vector Q, in which the Q-value corresponds to n Actions. In addition, Qi approximates the
value of Q(st, ati) for each Action ati. When the network is fully and accurately trained, it
will be used in the optimal path planning model for selecting Policy π as follows:

π(st) = aj, (4)

j = arg max(Qi)
i=0,...,n

, (5)

in which the value j is determined based on the maximum Q.
The purpose of the neural network model is to learn how to exactly estimate the

Q-value for Actions, so the objective/goal function applied here is to calculate the error Loss
between the actual and predicted values Q and it is described by the following equation:

Loss =
(

R(st, at) + γ max
at+1

Q(st+1, at+1)− Q(st, at)

)2
. (6)

In addition, the FWNN model has the input of the current State and the outputs of
the values Q. However, if the input of the FWNN is continually pushed into each State, it
is very easily overfitted because the States are often the same and linear. For eliminating
the overfitting problem in the FWNN model, a technique, called experience replay [23], is
applied. In particular, instead of each State, the network is updated once, and the State
is saved into memory and then sampled as small batches connected to the input of the
FWNN for training. Therefore, it may provide diversification of the FWNN input and also
avoid the overfitting problem. In this case, the training model will forget old samples not
good enough for the training process and then they will be deleted from memory.

The FWNN model used in the training system has two hidden layers with the number
of nodes equal to that of cells in the virtual 2D grid map built in the indoor environment.
In addition, the size of the input layer is similar to the hidden one due to States of the
virtual map used as the input. The output layer has the number of neurons equal to Actions
(four Actions used in this paper) due to predicting the Q-value to estimate each Action.
Finally, the FWNN model will choose the largest Q-value to perform an Action for the next
State. In this research, the Parametric Rectified Linear Unit (PReLU) activation function,
the optimization method of RMSProp, and the loss function of Mean Squared Error (MSE)
are applied in the model for optimal path planning.

f (yi) = f (yi) = max(0, yi) + aimin(0, yi) (7)

in which yi is any input on the ith layer and ai is the negative slope which is a learnable
parameter.

2.3. Wheelchair Navigation in Real Environment

In the optimal path planning, a simulated 2D grid map plays one very important
role due to showing optimal paths for navigating the electric wheelchair to targets. In
particular, one 2D grid map is simulated based on a lot of information related to one real
environment. It means that the wheelchair, when moving in one real environment, may
use parameters and State values for wheelchair navigation. Therefore, the simulated 2D
grid map is divided into a lot of cells, including free spaces and occupancies. Each cell
is calculated to be an actual area in the real environment with free spaces and obstacles
and it can be one free space or one occupancy (obstacle). Therefore, we assume that the
wheelchair can be driven through these free space areas to reach the desired target.

Figure 5 describes the 2D grid maps with occupancies and cells, including m × n cells
in the indoor environment, in which the wheelchair can move through to reach targets.
In particular, the real environment with objects (blue) is measured and divided into cells
with the size of the wheelchair for creating the map as shown in Figure 5a. Therefore, the
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map with the divided cells is converted into a 2D grid map with calculation for filling cells
related to obstacles (yellow). Therefore, the 2D grid map in Figure 5b is simulated to create
the virtual 2D grid map as described in Figure 5c. The cells in the virtual 2D grid map are
assigned 1 s to represent the occupied workspace (obstacles) and 0 s for the free workspace.
Therefore, this virtual 2D grid map is considered as a binary map with black and white
cells and the original coordinate of the virtual map is in the top left corner with the first
location (0,0). It is obvious that this virtual map lets us know all cell locations which are
used to find optimal paths using the algorithm of DQNs.

(a) (b) (c)

Figure 5. The occupancy 2D grid map of the real environment. (a) Environmental grid map with real
obstacles and cells; (b) occupied cells related to the real obstacles; (c) virtual 2D grid map with black
occupancy cells.

In this model, the wheelchair is located on a map through landmarks including the
location and direction of the wheelchair on the map. The update of the position of the
wheelchair is carried out when starting the movement for the first time. In this method,
only the wheelchair location is connected to the input of the MP block for determining the
optimal path and then it shows specific Actions with that State of the wheelchair.

One of the most important parts in the wheelchair control system is the wheelchair
location in a real indoor environment for navigation. In a real indoor environment, natural
landmarks will be automatically collected for creating one database for locating the motion
wheelchair. In particular, the Features from Accelerated Segment Test (FAST) method is
used to extract features of images captured from the camera system. Therefore, objects in
the image that have the largest density of feature points are chosen to be natural landmarks
and then the Speeded-Up Robust Features (SURF) algorithm is applied to identify these
landmarks [39]. In this research, when the wheelchair is in the real environment as described
in Figure 6, its initial location is determined based on three landmarks captured from a
camera system installed on the wheelchair. Assume that the wheelchair moves in the flat
space OXY with the unknown coordinates W(x, y) and landmarks related to the coordinates
in the real indoor environment. Therefore, obstacles selected as landmarks have distinctive
characteristics which are different from other landmarks with their coordinates A(xA, yA),
B(xB, yB), and C(xC, yC) [40]. The wheelchair position can be determined if the coordinates
of the landmarks and the corresponding distances from the wheelchair to the landmarks
are known. Based on the wheelchair location determined as above, the wheelchair position
on the real grid map with the square cell size (a × a) is Sw

( x
a , y

a
)
.

The starting point SW(1,0) ε Sf and the target Ti(3,2) ε T are obtained based on the
pre-trained map with this target, in which Sf is a set of free cells and T is a set of known
targets. Therefore, the MP gives one optimal path which is a set of Actions including
Right, Right, Down, Down as shown in Figure 6. It means that the wheelchair impossibly
moves based on these Actions due to the wheelchair model in this research not being an
omnidirectional control model. In Figure 7a, the two-input converting block is Action a,
determined from the MP output, and the initial direction d of the wheelchair includes the
four directions (Up, Down, Left, Right) as described in Figure 7b. Thus, the output of the
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converting block aw is an Action that is suitable with the wheelchair orientation/direction
in the real environment.

Figure 6. Coordinates of the wheelchair, landmarks, and target in simulated 2D grid map.

(a) (b)

Figure 7. The representation of converting actual control commands from the simulation. (a) Con-
verter with the simulated inputs and the actual outputs; (b) representation of four control directions.

The training process for finding the optimal path will produce a series of Actions with
different States, in which these Actions will produce many optimal paths dependent on the
initial position of the wheelchair. Therefore, after each Action a, the wheelchair direction
d will change into a new direction d′. For the movement of the wheelchair, we propose a
novel algorithm based on the WAC as described in Figure 7. In particular, the wheelchair
Actions aw and the new direction d′ = a during its movement in real environment need to
be determined and this algorithm is expressed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

aw =

⎧⎪⎪⎨⎪⎪⎩
Forward i f a = Up
Backward i f a = Down
Le f t − Forward i f a = Le f t
Right − Forward i f a = Right

d = Up

, (8a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aw =

⎧⎪⎪⎨⎪⎪⎩
Forward i f a = Down
Backward i f a = Up
Le f t − Forward i f a = Right
Right and Forward i f a = Le f t

d = Down

, (8b)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aw =

⎧⎪⎪⎨⎪⎪⎩
Forward i f a = Le f t
Backward i f a = Right
Le f t − Forward i f a = Down
Right − Forward i f a = Up

d = Le f t

, (8c)
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aw =

⎧⎪⎪⎨⎪⎪⎩
Forward i f a = Right
Backward i f a = Le f t
Le f t − Forward i f a = Up
Right − Forward i f a = Down

d = Right

, (8d)

in which a and d are the parameters which are determined based on Action and direction
in MP. In Equations (8a)–(8d), the wheelchair Actions aw are defined as follows:

• aw = Forward: The wheelchair will go straight;
• aw = Backward: The wheelchair will go back;
• aw = Left-Forward: The wheelchair will rotate left and then go straight;
• aw = Right-Forward: The wheelchair will rotate right and then go straight;
• aw = Stop if a = no Action: The wheelchair will stop.

3. Results and Discussion

3.1. Simulation of Path Training for the Wheelchair Based on 2D Grid Map

We constructed two grid maps depicting the indoor environment as shown in Figure 8,
where the white cells are the spaces, the black cells are the obstacles, and the red cells are
the targets. During training and testing the proposed structure, the PC configuration with
the Windows operating system was Intel (R) Core (TM) i5-6300U, 2.4 GHz, 16 GB RAM.
During each training, the starting position is randomly selected in the map and guaranteed
not to overlap with the obstacle cell. Table 1 describes the parameters which are trained in
the case as described in Figure 8.

(a) (b)

Figure 8. Training environment simulated using the proposed model. (a) An 8 × 11 grid map;
(b) 11 × 33 grid map.

Table 1. Training Parameters.

Parameter Value

Learning rate 0.00001
Discount factor γ 0.8

Exploration 0.1
Mini-batch size 32

Replay memory size 100
Reward when moving outside the map Rb −0.8

Reward of free space Rf −0.4
Reward of obstacle Ro −0.75

Reward of goal Rg 1

To evaluate the effectiveness of the DQN method, we performed the experiment with
different steps and different environments, and the stable results of the DQN method
are shown in Figures 9 and 10 for each environment. In particular, we worked out the
experiment of the proposed model using DQNs with two activations of PReLU and ReLU
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for comparing the performance between them, where the horizontal axis is the number
of episodes and the vertical axis is the Win rate. The Win rate is calculated based on the
number of Wins per the total number of selected positions to start a game in an episode.
From Figure 9, we can see that the Win rate can increase or decrease or stay the same after
each episode.

(a)

(b)

Figure 9. The comparison of Win rates when training the DQN model with two activation types in
the case of the 8 × 11 grid map. (a) The DQN model with PReLU activation; (b) the DQN model with
ReLU activation.

According to the results in Figure 9 with a small environment, the two models of
DQNs-PReLU and DQNs-PReLU have the same Win rate growth path and also reach the
maximum Win rate threshold of 1 after about 600 episodes. Figure 10 shows the Win rate
growth of the large environment with the two selected models. With the results of the model
of DQNs-PReLU in Figure 10a, when the episode is over 7000, the Win rate starts sharply
increasing and then reaches the maximum threshold at episode 15,000. Therefore, the Win
rate reaches saturation and this shows that the model meets the training requirements and
then ends. In contrast, according to the results shown in Figure 10b using the model of
DQNs-ReLU, the Win rate starts sharply increasing when the episode is over 25,000 and
reaches the maximum threshold when the episode is 240,000. After that, the Win rate
reaches saturation and this means that the model meets the requirements of training and
then ends. Thus, it can be seen that in a large environment, the model of DQNs-PReLU
more quickly reaches the maximum score than DQNs-ReLU.

In addition, the obtained results are comparable in terms of training time and the
number of episodes of the DQN model with the two types of activations as shown in Table 2.
In particular, in the small environment with 8 × 11, the difference in training time is not too
large, 36.3 s compared to 42.3 s for two ReLU and PReLU activations, respectively. With the
episode number of the two models of DQNs-ReLU and DQNs-PReLU used for training,
this environment is not much different, with episode numbers of 601 and 607, respectively.
However, with the larger environment of 11 × 33, there is a big difference in training time
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and the number of episodes between the two models. In particular, the training time of
the DQNs-ReLU model is nearly 4 times larger than that of the DQNs-PReLU model. In
addition, the average number of episodes per training time using the DQNs-ReLU model
is 15 times that of the DQNs-PReLU. This means that the DQNs-PReLU model gives better
performance than DQNs-ReLU using this environment.

(a)

(b)

Figure 10. The comparison of Win rates when training the DQN model with two activation types in
the case of the 11 × 33 grid map. (a) The DQN model with PReLU activation; (b) the DQN model
with ReLU activation.

Table 2. The Relative Performance of Proposed DQN Models.

Environment Model
Average No.
of Episodes

Average
Training Time

Small (8 × 11)
DQNs with ReLU activation 601.0 36.3 s

DQNs with PReLU activation 657.0 42.3 s

Large (11 × 33) DQNs with ReLU activation 244,879 6.05 h
DQNs with PReLU activation 16,015 35.24 min

Table 3 describes the comparison of episode and time using the DQN model with two
activations and previous models in training the two environments (small and large). In all
experiments of randomly trained models, we performed training of each case 10 times to
take the average training time and the average number of episodes. It is obvious that the
Traditional Q-Learning model shows a table to record the value of each pair (State, Action),
in which the State with the highest value indicates the most desirable Action. Therefore,
these values are constantly refined during training and this is a quick way to learn a Policy.
The second model, called the SARSA model, uses a setup similar to the previous model,
but takes fewer risks during learning. During the training process, depending on the small
or large environment, the training time and the number of episodes will be different.
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Table 3. The Relative Performance of Previous Models.

Environment Model
Average No.
of Episodes

Average
Training Time

Small (8 × 11)
Traditional Q-Learning [41] 60.0 198.4 s

SARSA [42] 75.0 223.9 s

Large (11 × 33) Traditional Q-Learning [41] 235.0 1.45 h
SARSA [42] 275.0 57.23 min

In particular, with a small environment, the training time and the number of episodes
are less than those with a large environment as shown in Tables 2 and 3. Furthermore, in
Table 3, the models have a small number of episodes and a lot of time because Traditional
Q-Learning works based on finding the maximum reward for each step and the larger the
number of States, the larger the Q-table, so the calculation will take a lot of time. Meanwhile,
in Table 2, the DQN has a lot of episodes but it takes less computation time because the
DQN chooses some random and risky decisions to quickly obtain a high reward and it will
accept to lose a certain amount of episodes.

With the statistical results in Tables 2 and 3, although the number of episodes in
the training process is much larger than that of the Q-table-based models in Table 3, the
DQNs-PReLU model in Table 2 takes a longer training time in two training cases for both
small and large environments. In particular, for the small environment, the model of DQNs-
PReLU has about 10 times more episodes than the models of Traditional Q-Learning and
SARSA, but its training time is almost 5 times less than that of the Traditional Q-Learning
and SARSA. In addition, with a large environment, DQNs-PReLU has a large number of
about 16,015 episodes, nearly 60 times more than that using the Traditional Q-Learning,
and nearly 70 times more than that using the SARSA model. However, the training time
is significantly reduced with about 35.24 min compared to that of two models in Table 3,
1.45 h and 57.23 min, respectively. As an extra feature after learning, it saves the model to
disk so this can be loaded later for the next game. Therefore, a neural network needs to be
used in a real-world situation where training is separated from actual use.

3.2. Wheelchair Movement to Reach Map-Based Desired Target

The experiment was performed in an environment of 126.72 m2 which was divided
into square grids of one map with a size of 8 × 11, in which each square has a size of
1.2 m × 1.2 m as shown in Figure 11. The wheelchair was installed to be able to move at the
speed of 3 km/h for matching the processing speed of the system. An electrical wheelchair
was installed with an RGB-D camera system and other equipment as shown in Figure 12.
Information about the surrounding environment obtained from the camera system was
processed by a computer and then transferred to the motor system of the wheelchair for
motion control. In addition, in this research, we performed two experiments, including a
self-control user and an automatic control user. In the self-control user model, the user can
self-control commands such as going forward, backward, and turning right and left during
the wheelchair movement. Meanwhile, the automatic control user mode means that the
user can choose one of the targets by using EEG signals which are assigned to the targets to
reach [36] and our proposed algorithm in the wheelchair control system is applied so that
the wheelchair can automatically reach the chosen target.

Figure 13 shows the green real path of the wheelchair, which was controlled by the user
during reaching the target. In particular, the discontinuous green path is the desired path in
the real environment that the wheelchair needs to follow to reach the target, while the red
path of the wheelchair is the path controlled by self-control mode using EEG signals [38]
to go straight, turn left and right during reaching the destination. With the experiment
using the self-control, the wheelchair moved according to the red path and then turned to
the undesired direction shown by the red path and blue dash-dot ellipse. It means that in
this case, the wheelchair could very easily have an obstacle collision. In addition, with the
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mode of the self-control, the movement of the wheelchair is unstable and discontinuous as
shown in Figure 13. In particular, the wheelchair went straight, then stopped, turned right,
and then was continuously interrupted during the movement time. It is obvious that the
user was trying hard to control it to turn right or left and go straight.

(a) (b)

(c) (d)

Figure 11. The experimental environment. (a) The 1st view of the real environment; (b) the 2nd view
of the real environment; (c) the 3rd view of the real environment; (d) the 2D grid map.

Figure 12. The wheelchair navigation system installed with devices.
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Figure 13. The real path of the wheelchair movement and the reference path.

For improving the wheelchair control using the self-control mode, we used the pro-
posed model with the semi-automatic control. With this mode, the user just needs to choose
one typical target by using EEG commands and then the wheelchair will automatically
move to reach the desired target with high stability and smoothness. In particular, using the
environmental map in Figure 11a–c, the actual paths of the wheelchair after moving to reach
the target were as shown in Figure 14b. Therefore, the moving process was re-calculated
and the path positions of the wheelchair with the axes of X and Y were re-drawn for the
purpose of the comparison with the simulation paths (blue arrows) as shown in Figure 14a.
The starting point of the wheelchair is random and the wheelchair automatically deter-
mines its position on the map by identifying landmarks in the environment. In particular,
in this case, the wheelchair determined it position on the grid map at the coordinate A(5,0)
and the direction of the wheelchair d is Up. In the semi-automatic wheelchair, people with
disabilities can control the wheelchair using EEG signals to select one of the commands on
the interface screen with one sign corresponding to the target C(0,5). With the starting point
A(5,0) and the target point C(0.5) selected, the RL model will produce a sequence of control
commands for the path and then these commands are converted to control commands in
the real environment for the wheelchair using Equations (8a)–(8d) as shown in Table 4.

(a) (b)

Figure 14. Representation of the simulation route using the semi-automatic control and the
wheelchair’s real path (a) The blue arrow route simulated using DQNs; (b) the wheelchair movement
path in the real environment using DQNs and the reference path.
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Table 4. Wheelchair Control Commands Converted from Simulation Commands.

State of
Wheelchair

Current Direction
D

Action of Model
A

New Direction
d′

Action of
Wheelchair aw

(5,0) to (4,0) Up Up Up Forward
(4,0) to (3,0) Up Up Up Forward
(3,0) to (2,0) Up Up Up Forward
(2,0) to (1,0) Up Up Up Forward
(1,0) to (1,1) Up Right Right Right–Forward
(1,1) to (1,2) Right Right Right Forward
(1,2) to (1,3) Right Right Right Forward
(1,3) to (1,4) Right Right Right Forward
(1,4) to (1,5) Right Right Right Forward
(1,5) to (0,5) Right Up Up Left–Forward

In addition, in this experiment, the actual path of the wheelchair with the proposed
method of DQNs (blue path) is compared with the standard path (green dashed path), as
shown in Figure 14b, for evaluating the wheelchair movement path and the simulated path.
The results showed that the wheelchair could move to reach the desired target with the
average error of ±0.2 m in the X axis and ±0.2 m in the Y axis.

The purpose of these experiments is to compare the results of the semi-automatic
control using the RL method with the self-control by the user using the EEG signals. In
particular, Figure 15a shows three graphs which represent the wheelchair movements, in
which the blue path is that of the proposed mode and the red path is that of the self-control
mode. From Figure 15a, it can be seen that the wheelchair’s path when controlled by
the semi-automatic control method is closer to the reference path than when using the
self-control method. In addition, the wheelchair path using the semi-automatic control
is smoother and more continuous than the path using the self-control. To clarify the two
control methods, we recorded the wheelchair control commands during the movement to
reach the destination.

(a) (b)

Figure 15. The comparison of the stable movements of the wheelchair in two control methods (semi-
automatic control and self-control). (a) The real paths of the two control methods and the reference
path; (b) the control sequences of the two control methods.

In Figure 15b, the control commands are shown on the vertical axis with the values of
−2, 0, 1, 2 corresponding to the commands to turn left, stop, go straight, and turn right.
Therefore, it could be seen that the wheelchair moved with high stability in the case of the
semi-automatic control with different movement environments compared to the mode of
the self-control user. In addition, the result showed that the automatic control user mode
spends less time on wheelchair movement with the average of about 80 s compared to that
of the self-control user with the average time of about 95 s.
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In another case, Figure 16d shows the simulation paths (blue arrows) of the wheelchair
based on the environmental map in Figure 16a–c when the wheelchair moves from O(0,0)
to C(0,5). From Figure 16e, it can be seen that the wheelchair’s path controlled by the semi-
automatic control method is shorter and smoother compared to the self-control method.
Further, the semi-automatic control method has an average error of 0.1 m in the X axis and
0.3 m in the Y axis compared with ±0.5 m in the X axis and ±0.5 m in the Y axis of the
self-control method. With Figure 16f, it can be seen that the wheelchair moved with high
stability in the case of the semi-automatic control with different movement environments
compared to the mode of the self-control user.

(a) (b)

(c) (d)

(e) (f)

Figure 16. The comparison of the stable movements of the wheelchair in two control methods (semi-
automatic control and self-control). (a) The 1st view of the real environment; (b) the 2nd view of the
real environment; (c) the 3rd view of the real environment; (d) the blue arrow route simulated using
DQNs; (e) the real paths of the two control methods and the reference path; (f) the control sequences
of the two control methods.
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4. Conclusions

The paper presents a semi-control method of an electric wheelchair combined with
an RGB-D camera system, a graphical user interface, and real environmental maps with
natural landmarks, in which optimal path planning for the wheelchair navigation was
determined. In particular, 2D grid maps were used for training to create the shortest paths
to the targets, in which the virtual-real RL method using DQNs carried out the training
process effectively. After training, disabled people may select the desired target on the
interface-user map using EEG signals to reach it. Therefore, the semi-control wheelchair
located itself based on natural landmarks during movement following the optimal path
from the motion planner in the real indoor environment. With the proposed method for
the optimal path based on DQNs, the semi-control wheelchair could operate well to reach
the desired target with small errors compared to the simulation trajectory, as well as to
the trajectory of the self-control user using an EEG system. It is obvious that, with our
proposed optimal path trajectory and the semi-automatic control method, the semi-control
wheelchair movement is more stable, safe, and takes less time for moving. As a result of
the proposed method, this wheelchair control system can be developed to apply to more
complex environments with obstacles in the future.
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Abstract: Collecting data allows researchers to store and analyze important information about
activities, events, and situations. Gathering this information can also help us make decisions, control
processes, and analyze what happens and when it happens. In fact, a scientific investigation is the
way scientists use the scientific method to collect the data and evidence that they plan to analyze.
Neuroscience and other related activities are set to collect their own big datasets, but to exploit their
full potential, we need ways to standardize, integrate, and synthesize diverse types of data. Although
the use of low-cost ElectroEncephaloGraphy (EEG) devices has increased, such as those whose
price is below 300 USD, their role in neuroscience research activities has not been well supported;
there are weaknesses in collecting the data and information. The primary objective of this paper
was to describe a tool for data management and visualization, called MuseStudio, for low-cost
devices; specifically, our tool is related to the Muse brain-sensing headband, a personal meditation
assistant with additional possibilities. MuseStudio was developed in Python following the best
practices in data analysis and is fully compatible with the Brain Imaging Data Structure (BIDS), which
specifies how brain data must be managed. Our open-source tool can import and export data from
Muse devices and allows viewing real-time brain data, and the BIDS exporting capabilities can be
successfully validated following the available guidelines. Moreover, these and other functional and
nonfunctional features were validated by involving five experts as validators through the DESMET
method, and a latency analysis was also performed and discussed. The results of these validation
activities were successful at collecting and managing electroencephalogram data.

Keywords: brain data; low-cost devices; EEG; BIDS; neuroscience; library

1. Introduction

Data are crucial elements of all systems that surround us today. Data collection is the
process of gathering and measuring information on variables of interest, in an established
systematic fashion that enables one to answer stated research questions, test hypotheses,
and evaluate outcomes. The data collection component of research is common to all fields of
study including physical and social sciences, humanities, business, etc. While methods vary
by discipline, the emphasis on ensuring accurate and honest collection remains the same.

Indeed, storing valuable data is beneficial as this enables comparisons between dif-
ferent situations of the same subject, the same situation between different subjects, and a
combination of both. As a result, proper treatment provides evidence in the scope of
several environments, such as: patient monitoring with automatic health checks; sleep
tracking with state detection; student performance analysis and prediction; obtaining a
birds-eye view of how people travel, given the difficulties imposed by COVID-19; many
other possibilities ruled by the quality of the data acquired.

In particular, the demand for ElectroEncephaloGraphy (EEG) and the devices that
allow gathering brain activity has been increasing in the last few years. That interest is
expected to keep growing in the future [1]. Medicine, marketing, interaction, and signal
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processing are some disciplines that require these kinds of products, especially those that
feature dry sensors, knowing that some of them are relatively inexpensive.

Regardless of the field of study or preference for defining data (quantitative, qual-
itative), accurate data collection is essential to maintain the integrity of research. Both
the selection of appropriate data collection instruments (existing, modified, or newly de-
veloped) and clearly delineated instructions for their correct use reduce the likelihood of
errors occurring.

One of the main contributions is the compatibility with the Brain Imaging Data
Structure (BIDS) [2] standard, which facilitates research activities related to the use of EEG
devices. This standard allows researchers to organize and share the data associated with
studies carried out in their laboratories. However, some EEG devices available on the
market are not compatible with the BIDS. This issue makes managing recordings, sessions,
and users a very difficult and inconvenient task. The majority of low-cost EEG devices
have this limitation, and even though they are compatible with proprietary software for
brain activity, the features included are limited and not very flexible [3].

In this context, we used a low-cost EEG device, known as Interaxon Muse 2 [4] (Muse
and Muse S devices are also compatible). The manufacturer offered an SDK with computer
support in the past (which was never compatible with Muse 2 and Muse S). However, it
was deprecated, and currently, there is no viable alternative to use the devices in a research
or professional environment. This only enables their connection to the original smartphone
app, which is limited to guided meditation, and not intended for experiments.

To overcome the imposed limitations, we developed a Python library, called MuseStu-
dio [5], that allows managing brain activity data from users with several sessions, including
other helpful characteristics. The main research question that guided the development of
this paper is the following: What (internal and external) features should a low-cost EEG
library have to manage users’ information while performing different activities? Among
the solutions that MuseStudio provides, importing and exporting data stand as key dif-
ferentiators using Muse. To ensure compatibility with current and future research, we
focused on compliance with the best practices in data analysis and sharing [2]. Additionally,
the recommendations from the OHBM COBIDAS MEEG committee [6] entirely apply to
the introduced library in this paper.

There are multiple scenarios in which MuseStudio is helpful: sharing brain activity
data recordings with colleagues thanks to the BIDS standard support; bulk importing other
recordings in BIDS format, including raw recordings; converting to MNE format for further
noise reduction, signal transformation, and analysis; viewing the experiments taking place
in real time with several devices connected at the same time. For instance, a experiment
can be performed with multiple Muse 2 devices, connected to a single computer running
MuseStudio. Once the recording is finished, it can be converted for feature extraction and
exported to share it with peers or attached to a research article for its publication, as it
can be imported by anyone interested. Moreover, there is a big community around Muse
devices due to its convenience and precision.

The article provides the related work, first. Then, the set of features included in the
software with their specific purpose is presented. Afterwards, different examples of use
are shown, outlining the results and the aspects of the visualization screen. Lastly, some
insights about the necessity of this proposal are given, together with the discussion and the
conclusion sections.

2. Background

An electroencephalogram is a data-intensive test that allows detecting abnormalities
in brain waves, or the electrical activity of the brain [7]. During the procedure, electrodes
consisting of small metal discs with thin wires are pasted onto the scalp. This technology
has a wide variety of uses, especially in the emotion recognition domain, as the results of
these articles showed [8,9].
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Due to the previously annotated increasing demand of EEG devices, the number
of available devices is on the rise, and they have many different characteristics [3,10,11].
Moreover, these devices are not only present in the research environment [12–17], but also
in the entertainment one [18–20]. A recent article [21] analyzed the number of electrodes
included in devices depending on their design. The authors concluded that the availability
of more or less electrodes depends on the final application in which the device will be
used. However, in these scenarios, the number of sensors is not the only key factor: data
collection and software for supporting them are other relevant factors for success.

In our case, we focused on low-cost EEG devices [10,22,23]. The price requirement
results in the number of electrodes being reduced, and then, the device has less capabilities
depending on the field in which it is deployed [21]. Considering that there are still plenty of
applications that can be explored and relate to meditation, relaxation, concentration, stress,
and anxiety, many therapeutic and entertainment activities can be approached. In this
research, Muse 2 was chosen among other viable alternatives. It features a sampling rate of
256 Hz for EEG concurrent signals, four dry capturing electrodes, plus frontal reference
channels, an accelerometer, a gyroscope, a PhotoPlethysmoGraphy (PPG) sensor, a built-in
battery, and Bluetooth. Following the 10-20 standard system, the device locates its sensors
at AF7, AF8, TP9, and TP10.

Muse has been validated as a device for conducting Event-Related Potential (ERP)
research [24]. This device has been compared with other wearable sensors resulting in
high performance in the fields of ease of integration and applied usability [25]. In addition,
many other studies have used Muse for several purposes, including brain wave activity
detection during training [26], enjoyment evaluation [27], accelerometer measurement of
head movement during surgery [28], and concentration and stress measurement during
surgery [29].

In addition to the inherent hardware limitations of the devices, the software restric-
tions in terms of applications, software development kits, and application programming
interfaces should be considered as well [3]. The great majority of software provided by
manufacturers cannot manage activities, record sessions, and provide remote real-time
visualization while participants are being evaluated. These issues are important limitations
in supporting scientific activities. The community of users and researchers of, for instance,
Muse products cannot perform data management for several sessions and different users
and, later, analyze these data. The traditional manner of making evaluations with Muse is
shown in Figure 1. To overcome some of these issues, MuseStudio allows storing data in a
structured manner and sharing them.

Figure 1. Traditional usage of Muse in experiments.
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Specifically, Muse does not include brain data management software, nor real-time
visualization, nor recording, so one cannot make use of its potential features. Our solution
provides a Python library that allows working with those functionalities, even with several
devices and places at the same time.

2.1. Connection with Muse Devices

In order to connect Muse with a computer using Bluetooth, there exist two applications
that use Lab Streaming Layer (LSL) to transmit data. While MUSE-LSL [30] connects to
one Muse, BlueMuse (https://github.com/kowalej/BlueMuse, accessed on 17 November
2020) can stream data from multiple Muse devices at the same time. However, note that the
multidevice capabilities rely on the capacity of the receiving Bluetooth adapter. The data
can be further recorded in files with LabRecorder (https://github.com/labstreaminglayer/
App-LabRecorder, accessed on 30 November 2020), which can store data from several
Muse devices in a single eXtensible Data Format (XDF) file.

As an alternative, there is a hardware-based framework [31] that measures EEG data
obtained from 10 or more people using the Muse headband and allows acquiring EEG
data at up to a 1 kHz frequency from up to 20 people simultaneously. However, in this
hardware proposal, EEG data management cannot be provided, and it is only a graphical
visualization tool.

The developed library requires some specific Python packages to work with the data,
which are outlined in the repository. Additionally, it is compatible with other software
applications that extend its functionality. The library has two main starting points: record-
ings already stored and live visualization of EEG data. The former requires files in XDF
(https://github.com/sccn/xdf, accessed on 5 November 2020), which is a container specif-
ically designed to include multichannel time series data with associated meta information.
It can handle multiple types of data, including EEG. The latter adds compatibility with
LSL (https://github.com/sccn/labstreaminglayer, accessed on 5 November 2020), which
allows sending and receiving data in research experiments through the network. In ad-
dition, it features time synchronization and real-time data access in a structured manner.
LSL can send several channels at the same time through the same stream, which ensures
synchronization even at the channel level. As described previously, Muse has different
kinds of data, including EEG, PPG, accelerometer, and gyroscope data. Those sensors
do not function at the same sampling frequency, so they must be separated into different
streams because of this incompatibility. The sampling frequencies are: 256 Hz for EEG,
64 Hz for PPG, 50 Hz for the accelerometer, and 50 Hz for the gyroscope. For this reason,
the channels of the same type are sent in the form of a container with the captured data
for a particular sample, but different types are sent over distinct containers. Four streams
or containers are expected for a standard experiment with three channels in each of them,
except for EEG, which contains four due to the four channels available. In general, equally
sampled data are always sent in the same package.

2.2. Raw Data Import

MuseStudio facilitates the data import process from raw XDF files. Those can contain
EEG, PPG, accelerometer, and gyroscope recordings from multiple Muses at the same time.
That adds processing complexity because the captured data are not properly organized at
recording time. The separation of recordings into different containers causes the reception
of disordered data at the stream-type level. For instance, EEG and PPG may not be received
in such an order, but it is ensured that channels inside those streams are correctly ordered
and ready to use afterwards. For this reason, the library seeks the metadata of every
channel to rearrange them into different sets of recordings, which can be further used
accordingly. Figure 2 shows an example of a file containing the recording of two Muses
(Step 1), which were used in a experiment simultaneously. The library then converts the
file into four independent lists with the same length as the number of devices used (Step 2).
Those lists already contain the information of the device used in each recording.
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Figure 2. Example of XDF file conversion into separate lists.

Additionally, there is compatibility for importing all the XDF files located inside a
particular folder. In such a case, the output remains the same, being four lists with a
length that is equivalent to the sum of all the recordings inside all the files. Moreover,
the library provides flexibility to researchers using Muse and Python because the data
import approach only returns the lists without any other manipulation, so they can start
working with native data.

2.3. Convert Data

Apart from being able to work with lists, there are two packages that are relevant
exponents in their respective fields:

• MNE-Python [32] (or simply MNE) is an open-source package that allows the prepro-
cessing, visualization, and analysis of human neurophysiological data;

• Pandas [33] provides high-level real-world data analysis and is becoming the most
powerful and flexible open-source manipulation tool.

For researchers, being able to work with those packages is critical. This is especially
relevant with MNE, because it is the most viable alternative when operating with EEG
data. However, the package does not provide any kind of support for Muse, nor its native
file formats. As a result, we provided a native implementation in MuseStudio that brings
full interoperability for both packages.

Converting data into MNE format requires some considerations. In general, the con-
version includes information about the sensor coordinates, the physiological coordinates
of the study participants, the powerline frequency (which depends on the region, 50 Hz
or 60 Hz), the data in volts, the channels’ names, the associated annotations, and the type
of data. In this case, only EEG data were considered because MNE does not work with
PPG, accelerometer, and gyroscope data. The result of the transformation is an array of
RawArray objects with the same order as the list obtained in the previous stage. Those
objects can be iterated to perform the analysis in any research study.

The outcome of the conversion to Pandas is a list with several data frames that can
be used for analysis using data science techniques. A single data frame has the following
columns: timestamp, AF7, AF8, TP9, TP10, X_acc, Y_acc, Z_acc, X_gyr, Y_gyr, Z_gyr, 1_ppg,
2_ppg, 3_ppg. These correspond to all the streams provided by Muse. The differences
between the sampling frequencies of the streams result in blank fields in rows.

2.4. BIDS Format Import and Export

MuseStudio, in order to support the data management of brain activity with Muse
products, must consider data structural mechanisms. These mechanisms are inspired by
the standard Brain Imaging Data Structure (BIDS) [2]. The addition of the BIDS support
allows sharing Muse recordings with other researchers, even if they do not have the set of
tools required to work with the device. The library, with the support of MNE-BIDS [34],
manages all the necessary information to save the configuration data that the BIDS requires
according to its specification. With that aim, two structures were defined, setup and
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participants, which are available in Appendix A. These are lists of dictionaries, so that
every recording has a corresponding dictionary with its particular details.

The setup structure includes this information: the name of the subject; the session
and run numbers; the acquisition parameters; the task performed; the processing label;
the name of the recording; the coordinate space; the split of the continuous recording; the
file name suffix and extension; the root path of the files. In the following examples, all the
fields were simplified to None, but they should be modified accordingly.

The BIDS also requires a participants’ file with the details of every member of the
research study. The structure presented contains the information about the name of the sub-
ject (which must coincide with those in the setup), the age, the sex, the dominant hand, and
root directory path. This file is an explicit recommendation of the BIDS specification [35],
which suggests its addition in the root path of the main recordings directory.

The purpose of this configuration is to simplify how recordings are exported and
imported. In addition, it allows knowing the characteristics of the experiments and the
participants rapidly. When sharing one or more recordings, a researcher would only
share the BIDS-formatted directory and the two updated lists described above. Using the
designed method, no ambiguity is possible. Lastly, the creation of two structures, which are
related thanks to the “subject” field (that is unique), avoids the repetition of information.
A participant can have several recordings, but it is still the same participant. Therefore,
his/her details must be added to the participants’ structure only once, while the setup
structure can hold several recordings.

2.5. Real-Time Remote View

Performing neural experiments usually requires real-time visualization of the brain
signals captured. With time-based graphs, it is possible to detect how good the data
received from the electrodes are, due to the fact that they may not have full contact with
the skin and produce extra noise. Muse, with four electrodes, is especially vulnerable to
this issue because one bad sensor can invalidate a full recording. The current available
solution [30] only shows real-time visualization for one device at a time. Moreover, it only
works on the same computer to which Muse is connected. This problem narrows down
the flexibility when researchers want to perform experiments with multiple devices at
once. The MuseStudio library provides access to real-time graphs no matter the number of
devices attached. Additionally, it shows when the contact of the sensors with the skin is
good for each of them independently.

Globalization has broken many barriers, and healthcare is one of them. Telemedicine [36]
is increasingly being adopted for receiving medical treatment at a distance. In fact, patients
who receive palliative care by telemedicine are very satisfied with the results. For this
reason, we want everyone to be able to access neuroevaluations anywhere in the world
without need to travel long distances to reach experts.

Instead of creating a local instance of a program, we created a web server with an IP
address and a port that users can access through a web browser. This allows many users to
be connected to the same endpoint, even if they are located outside the local area network.
However, as a prerequisite, the server port must be connected to the Internet for external
access. The implementation can be used straight away without authentication, and it is
modular, so it can be integrated with other Python environments without adaptation, such
as a website with a log-in required. The web browser must have JavaScript enabled to
show the graphs. Finally, the complete set of options added is: sensor selection, update
interval (from 200 ms to 5 s), play/pause, zoom in/out, and expand graphs.

3. Method

This section identifies and describes the internal characteristics of the MuseStudio
library [5] available at https://github.com/miguelascifo/MuseStudio, accessed on 26
February 2021, which can be installed through the Python pip package manager (https:
//pypi.org/project/musestudio/, accessed on 3 March 2021) as well. The main internal
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requirements derived from the functionality of MuseStudio are presented in this section,
including raw data importation and real-time data visualization. Raw data importation
involves two activities: data conversion and data organization with the BIDS. All these
activities are described below.

3.1. Data Conversion

MuseStudio can import from XDF files to work with Python arrays. There are two
methods created for importing recordings, and both return the same data. The method
read_raw_xdf handles one file, and read_raw_xdf_dir handles a directory with several XDF
files. The following code shows an example of the latter:

stream_eeg, stream_acc, stream_ppg, stream_gyr, filenames = read_raw_xdf_dir("/path/to/directory")

where stream_eeg, stream_acc, stream_ppg, stream_gyr, and filenames are lists containing the
data for EEG, the accelerometer, PPG, the gyroscope, and the file names of all
recordings, respectively.

Once the data are imported using the methods exposed by the library, they can be
converted into the MNE RawArray and Pandas data frame. One key difference between
them is that MNE provides a powerful set of tools for EEG streams, but does not support
the rest. For that reason, all data can be manipulated through data frames. Again, one
method is necessary for the conversion:

raw = to_mne_eeg(eegstream = stream_eeg, line_freq = 50, filenames = filenames, nasion = [0,0,0],

lpa = [0,0,0], rpa = [0,0,0])

where eegstream is the list of EEG data previously imported, line_freq the powerline fre-
quency of the region (50 for Europe), and filenames the list of file names imported. The three
following lists correspond to the nasion fiducial point (nasion), the left periauricular fidu-
cial point (lpa), and the right periauricular fiducial point (rpa). Those indicate a precise
reference for the EEG sensors’ position on the head [37].

The conversion to the Pandas data frame gives the flexibility to import only the streams
in which the researcher is interested. This example of usage includes all the streams at once:

df = to_df(mne_eeg = raw, eegstream = stream_eeg, accstream = stream_acc, ppgstream = stream_ppg,

gyrstream = stream_gyr)

the parameters being those variables that were already described. The resulting data frame
contains blank spaces (Pandas NotaNumber data types) between rows in the last three
columns. That happens because the sampling rates are different, as explained previously.

3.2. Working with the BIDS Specification

The BIDS specification establishes the directory structure to standardize how re-
searchers store and share EEG recordings. The huge advantages make using it useful for
working in a collaborative environment. To simplify the process, we created the setup
structure. In order to export recordings, the BIDS file name paths are necessary, which
is the information of the type BIDSPath object. Afterwards, the paths of the recordings
included in setup are returned. Then, the first step is to execute the appropriate method
provided for such a task:

bids_paths = create_bids_path(setup = setup)

After that, there is another method that uses those paths together with other parame-
ters to finally export the recordings in the BIDS format. This example uses the participants
structure to specify the characteristics of the subjects and the list of BIDSPath objects:

export_bids(raweeg = raw, bids_paths = bids, participants = participants, overwrite = False,

verbose = False)
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With that process, the recordings are exported to the directory indicated in the “root”
field inside setup. In contrast, importing from the BIDS requires executing one method with
a single parameter, which is setup. It returns the list of RawArray objects and the list of
BIDSPath objects for the recordings in setup:

raw, bids_paths = import_bids(setup = setup)

With the solution proposed, anyone can import directly into MNE to start working
with Muse as if it were any other more advanced device, provided that other researchers
have exported the recordings previously.

3.3. Signal Visualization

Performing experiments with EEG can be very complex due to the difficulty of creating
high-quality recordings. One of the main issues, apart from the design of the experiment
itself, is measuring how well the data were captured. Electrodes inside devices are very
sensitive to electromagnetic noise, so ensuring good skin contact is critical to avoid incon-
sistent results across recordings. For this reason, the library includes the necessary features
to enable researchers to watch the signals of several devices in real time.

Sometimes, experiments are not run by medical experts, which is especially the case
for low-cost devices. Therefore, we ensured that anyone can have access to the data while
participants are being evaluated. The web server is started from the machine to which the
devices are connected and returns to the console the internal IP address, together with the
associated port. The process was simplified as two methods:

start_streaming(search_streams(), debug=True)

There are two different ways of visualizing the signals, compressed and expanded.
In Figure 3, the overall compressed view of the website is shown with two devices at the
same time. The latter is shown in Figure 4. Additionally, there are controls for the update
interval (from 200 ms to 5 s), the channels to watch, the zoom level, and the possibility
to play and pause the live view. For anyone without deep knowledge about performing
experiments, we included a marker to know if a particular electrode had good skin contact.
This helps to keep noise sufficiently low to retain a high probability of success. Lastly,
the library automatically detects how many Muses are connected to the computer and
adapts the interface to show those.

In Figure 5, we show our solution for experiments with multiple devices connected at
the same time, while watching the streams. Additionally, the data file structure exported
using the BIDS format is presented.
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Figure 3. Overview of the interface.

Figure 4. Expanded view of the signals.
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Figure 5. Solution designed for experiments.

4. Validation

The main validation activities of MuseStudio are described in this section. The relevant
external features of MuseStudio were evaluated by using qualitative and quantitative
methods. For the evaluation of the functional and nonfunctional features of a library for
supporting brain data management, such as MuseStudio, a well-known evaluation method
from the software engineering field was use. Performance and latency are other important
elements when brain data are collected and visualized.

First, over the years, many software engineering methodology evaluation frameworks
have been published. DESMET [38] is a methodology for evaluating software engineering
methods/tools by Barbara Kitchenham. DESMET can be used to compare a generic method
or a method that is a specific approach within a generic method or tool. This methodology
has been used in other articles for evaluation purposes [39]. According to DESMET, there
are two types of evaluations:

1. The evaluation of the measureable effects of using a method or tool;
2. The evaluation of the appropriateness of the method or tool, i.e., how usable or useful

the method is.

DESMET refers to the measureable effects of using a method as quantitative or ob-
jective, while method appropriateness is referred to as qualitative, feature analysis, or
subjective. Method appropriateness is accessed usually in terms of features provided by
the method/tool or the training requirements. Another important consideration is how to
organize the evaluation process. According to DESMET, for a qualitative evaluation, it can
be organized as a survey, a case study, or a formal experiment. In qualitative screening,
it can be organized as a feature screening mode, a survey, a formal experiment, or a case
study. DESMET qualitative feature screening mode can be performed by a single person for
a number of methods where the evaluator not only determines the features to be accessed
and their rating scale, but also performs the assessment. In qualitative screening mode, the
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evaluations are usually based on the literature describing the software method, rather than
actually using the method.

Secondly, a latency study in MuseStudio was also conducted, and the data gathered
are shown.

4.1. Analyzing the Main Features of MuseStudio

Using as the input a demonstration of MuseStudio, the evaluation of this library was
carried out using DESMET [38]. This is a set of techniques applicable to evaluating both
software engineering methods and tools. We used the method based on a qualitative case
study, which describes a feature-based evaluation. Following the guidelines specified for
this technique, an initial list of features that a library or tool for EEG data management
should provide was defined (see Table 1). These features were established by two experts
(full professors) in cognitive neuropsychology from the University of Castilla-La Mancha
(UCLM). As can be observed, some of the features are directly related to the availability
of the BIDS.

DESMET was deployed by involving five experts. First, two experts were asked
about the main requirements a library for low-cost EEG devices should provide. Second,
another three experts were involved to validate MuseStudio by considering the previously
proposed requirements. All the experts were professionals with knowledge and skills
related to EEG devices, neuroscience, and psychology.

Once Table 1 has been filled in by the experts, DESMET determines the importance
degree that should be assigned to each identified feature. Specifically, the importance de-
grees are Mandatory (M), Highly Desirable (HD), Desirable (D), and Nice to have (N). This
importance was also established by the consulted experts.

By using these importance degrees, Table 2 was filled in. As can be noticed, the most
important functional and nonfunctional requirements to be supported are signal visualiza-
tion, import and export data management, and scalability.
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Table 1. List of features for MuseStudio’s evaluation.

Feature Description

Signal visualization The tool should be able to provide graphic visualization of the associated signals to
each sensor of the headband and differentiate among them.

Session management (import) The tool has to store or import the associated data of each session and use and dif-
ferentiate among them.

Session management (export) The tool has to allow sharing stored data, that is the tool should be able to export
the stored data of each session and user.

User control The tool has to provide user control during a session. For instance, the graphical
visualization of EEG signals should be stopped and restarted.

Scenario identification The tool should be able to identify rare scenarios, for instance a poorly worn head-
band.

Easy of data reviewing The stored data of each session should be easy to review and manage.

Consistency The stored data of each session and user should be jointly managed.

Real time (same time) The tool must allow following a session in real time, including minimal latency to
improve the performance.

At a distance (different place) The tool must allow following a session at a distance, so that the user/headband can
be in different places and the data visualization can be performed in different places.

Scalability The tool must allow using several headbands simultaneously with different users.
Guided user interface The tool must provide a user-friendly interface to operate easily with its features.

Table 2. Relevance of features (Mandatory (M), Highly Desirable (HD), Desirable (D), and Nice to
have (N)).

Feature Importance

Signal visualization M
Session management (import) M
Session management (export) M
User control HD
Scenario identification HD
Easy for data reviewing D
Consistency D
Real time (same time) HD
At a distance (different place) HD
Scalability M
Guided user interface HD

Afterwards, according to DESMET, a scale to evaluate each of the described features
should be provided. The scale proposed by DESMET (see Table 3) was applied to evaluate
each feature according to the following factors: Conformance Acceptability Threshold
(CAT) and Conformance score obtained (CSO) for MuseStudio. In particular, three experts
(associate professors) from the University of Castilla-La Mancha with experience in the
fields emotion recognition, health psychology, and signal processing/computer science
agreed about the values of CSOi.
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Table 3. Judgment scale to assess tool support for a feature.

Generic Scale Point Definition of Scale Point
Scale Point
Mapping

Makes things worse Causes confusion. The way the feature is represented makes its modeling
difficult and/or encourages its incorrect use.

−1

No support Fails to recognize it. The approach is not able to model a certain feature. 0

Little support The feature is supported indirectly, for example using another
model/approach in a nonstandard combination.

1

Some support The feature is explicitly in the feature list of the model. However, it does not
cater to some aspects of the feature use.

2

Strong support The feature is explicitly in the feature list of the model. All aspects of the
feature are covered, but its use depends on the expertise of the user.

3

Very strong support The feature is explicitly in the feature list of the model. All aspects of the
feature are covered, and the approach provides a guide to assist the user.

4

Full support The feature appears explicitly in the feature list of the model. All its aspects
are covered, and the approach provides a methodology to assist the user.

5

Once each feature was evaluated, the difference between the CAT and CSO factors
was computed as shown in the column Difference (Dif) in Table 4.

Therefore, in order to interpret the values shown in Table 4, the following equations
should be considered:

Impi = Level of relevance of each feature (i)

CATi = Level of support of each feature (i)

CSOi = Quantitative evaluation of each feature (i) by specialists in several fields

Di fi = CSOi − CATi (1)

Scorei = Impi ∗ Di fi (2)

Total =
f eatures

∑
i=1

Scorei (3)

We should highlight that a variation of the DESMET method was created. The Im-
portance (Imp) of each feature was weighed using a scale from 1 to 4 (Nice to have—1,
Desirable—2, Highly Desirable—3, Mandatory—4). The importance was used to com-
pute the final score of each feature or requirement by multiplying the importance by the
difference. This computation is shown in the column Score (Sco) in Table 4. This score
is useful for comparing different alternatives, but in our case, the score was only for the
MuseStudio’s valorization. Lastly, the final score of each technique (Total) was obtained by
adding the scores of all the features.

The MuseStudio library achieved a positive total score (15 points). Moreover, it
was especially evaluated positively for the “at a distance” feature, since MuseStudio
provides full support for exporting the brain activity data. It was also highlighted that
the MuseStudio tool has consistency and easily represents the requirements’ importance,
giving no support to determining which requirements are more important than the others.
In any case, MuseStudio provides facilities for data gathering and collection in conformance
with the BIDS proposal. Brain data from Muse devices are organized and structured with
MuseStudio, and these data can be visualized, imported, exported, and analyzed.
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Table 4. Results of MuseStudio’s evaluation.

Feature Imp CAT CSO Dif Score

Signal visualization 4 5 5 0 0
Session management (import) 4 5 5 0 0
Session management (export) 4 4 5 1 4
User control 3 3 4 1 3
Scenario identification 3 3 3 0 0
Easy for data reviewing 2 2 4 2 4
Consistency 2 2 4 2 4
Real time (same time) 3 3 4 1 3
At a distance (different place) 3 3 5 2 6
Scalability 4 4 4 0 0
Guided user interface 3 3 0 −3 −9

Total 15

In addition, as DESMET suggests, we performed a comparison of the percentage
of each feature satisfied by MuseStudio. Figure 6 illustrates the results relative to the
considered features. The outcomes of the validation are graphically shown in Figure 6. All
previously established requirements were fully achieved. However, additional effort could
be made on the user interface feature. At this moment, the information of the sessions and
participants must be established directly by modifying this information in different files.
Forms may be designed to ease these tasks.

Understanding the score requires knowing how DESMET works. First, the level of
importance of a feature was determined by experts without trying the library (between −1
and 5). Thereafter, other experts determined how well implemented a particular feature
was (between −1 and 5 again).

The current implementation of MuseStudio satisfies the requirements or features
related to visualization, import data, scenario identification, and scalability. Other features
of MuseStudio, such as data reviewing and data consistency, are more than satisfied, and
the rest are also oversatisfied. At this time, the identified weakness of MuseStudio is that
its users need to have certain knowledge about Python, because it does not have a guided
user interface yet.

Figure 6. Results depending on each feature.
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4.2. Latency Test

Some experiments with MuseStudio may require real-time data visualization, which is
an included feature in the library. However, researchers may have special requirements in
terms of the latency between the time an event occurs in the brain of a participant and the
moment it is visible on screen. For this reason, we performed a latency test with all the
different update intervals selectable. Those intervals were: 200 ms, 500 ms, 750 ms, 1 s,
1.5 s, 2 s, 3 s, and 5 s.

The design of the experiment measured the latency with real events, having a subject
wearing Muse and a computer with the device connected. In particular, the device is able
to capture eye blinks clearly, so this was the event that was going to be recorded repeatedly
with the slow-motion camera of a Samsung Galaxy S20+ (Sony IMX555 main camera sensor)
at a resolution of 1920 × 1080 and 240 frames per second. Then, the procedure consisted of
a slow-motion camera pointing at the screen showing the real-time graphs and the subject
performing the experiment, simultaneously. Afterwards, the subject was instructed to blink
his/her eyes exactly when the graph updated. We are aware that there might be a slight
variability regarding the time at which the subject blinks, so the experiment was repeated
ten times with all the intervals, and then, we calculated the arithmetic mean between
the values. Figure 7 shows a summary of the recording stage of the experiment. When
that phase was finished, we loaded the video into an editor to count the frames between
the blinks and the instant of those shown on screen. Once the frames were collected, we
converted them into seconds knowing that 240 frames is equivalent to 1 s.

For the sake of reproducibility, Muse was connected to a computer with these speci-
fications: Intel Core i7-9750H (base frequency 2.60 GHz and turbo frequency 4.50 GHz),
16 GB of RAM, and SSD (although no brain data were stored). The screen had an input
lag of 5ms, which was discounted to each measurement. The connection with another
computer to the server was not contemplated because that would add the latency of the
network. Time synchronization was ensured by the LSL protocol [40], which achieves sub-
millisecond accuracy on a local network without further action on practically all consumer
PC hardware. The results are presented in Figure 8 through a bar plot that includes the
variability of the measurements for each interval. It is observable that update intervals
equal to or greater than one second showed the events with the correct timing and the
expected latency. However, less than one-second values did not show a latency equivalent
to the interval. This happened due to a combination of two different sources of delay: the
time it takes for the device to send data and the time needed for the computer to attach
the new values, create a visual representation, and update the interface. The difference in
latency between those values was around 1ms, which did not correspond to the interval
chosen. Nevertheless, we maintained those options because higher-performing CPUs are
able to reduce the latency tested.

Figure 7. Design of the setup for the latency test.
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Figure 8. Results of the latency test.

5. Discussion

The objective of the study covered the creation of an open-source software product
that allows working with brain activity data and facilitates the management of activities
designed for performing experiments. In particular, Muse was chosen as the low-cost
device to allow researchers to focus on their research.

The library MuseStudio provides a set of tools for management activities, including
the import, conversion, export, and visualization of brain data. Thus, the solution adapts
to real-time usage and recorded experiments. Moreover, those steps can be performed far
from the place where the trial is being conducted, due to the tools provided.

The internal features of MuseStudio are the following: open-source cross-platform
library; developed for Python 3 [41]; complies with the best practices in data analysis [2] and
the recommendations from the OHBM COBIDAS MEEG committee [6]; allows visualizing
real-time data from multiple devices concurrently without being in the same place; imports
data from unlimited raw recordings and multiple devices in a structured manner; exports
using the standard for EEG data; converts to MNE- and Pandas-compatible data formats.
These internal features drove the MuseStudio development activities. Moreover, other
external features were identified by two external experts in neuroscience.

Making the library open-source allows its usage and modification without worries,
so other researchers and people interested in this field can use low-cost and minimally
invasive devices in their experiments. In addition, the community can help by introducing
new features and adapt the library to their particular necessities. It has been developed for
all three major operating systems (Windows, Linux, and macOS) to ensure compatibility.
As a prerequisite to use the library, having prior knowledge of Python is required. Python
has converted into the preferred programming language for data science [41].

MuseStudio complies and follows the recommendations provided by the BIDS stan-
dard for neuroscience [42] to manage data recordings adequately. Therefore, it can import
and export the data associated with multiple subjects and sessions using multiple devices.
These data are not limited to the tasks that Muse natively supports, such as meditation.
Instead, it supports any other validated activity. Following the BIDS [43] standard allows
sharing data between partners and replicating experiments easily through the import and
export functionalities.

The external features of MuseStudio were validated by three external experts in
neuroscience. They validated the presence of these features and their relevance. All these
features, initially established by using the DESMET method, were identified and properly
evaluated in the current version of MuseStudio.

In MuseStudio, there are no limitations softwarewise, except for the lack of a guided
user interface. This software shortcoming was previously identified and discussed. It
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can be overcome by designing and integrating user interface forms to provide session
and participant descriptors and identifiers. Hardwarewise, the number of Muse devices
simultaneously connected to a single computer is limited by the bandwidth and throughput
of the Bluetooth module, which is different across machines. The library supports pausing
the visualization at some point to explore a certain moment in time, and if the connection
is lost, it automatically continues after reconnection. Additionally, the latency was tested
with real-world usage in a controlled environment to maximize the delay between an event
and its visualization on screen. The results showed exact timing from a 1 s update interval
and times that varied depending on the interval if it was lower than 1 s. Nonetheless, those
can be further reduced using a computer with better specifications.

In summary, MuseStudio shows that low-cost devices related to neuroscience, such as
Muse, can have a complete set of tools to manage brain data. It offers features that increase
flexibility, reliability, and the ease of data management.

6. Conclusions and Further Work

An electroencephalogram is an electrophysiological monitoring method that records
the electrical activity of the brain. It is a noninvasive technique through electrodes placed
on the scalp, and therefore, it is suitable for use in a wide variety of situations, not just
the laboratory ones. Moreover, this method is data intensive, and in order to successfully
manage these data, effective data visualization and collection are important. Software
applications are needed for brain data management.

The article had special interest in affordable and low-cost EEG devices. A particular
one is Muse from Interaxon, which although limited by the number of electrodes, is widely
used for meditation and relaxation activities [14,15,17], being useful in the contexts of
stress and anxiety. In this paper, we wanted to identify internal and external features for
EEG data management and low-cost EEG devices; this collection of features should be
the answer to our research question. These requirements were proposed and identified
in the Method and Validation sections of this paper. In the internal dimension, several
requirements were proposed, data import and conversion, the BIDS management of data,
and real-time data visualization, and all these features were considered in the MuseStudio
implementation. Later, using DESMET, external requirements were proposed and used
in a validation activity. These external features were related to session data management
(data importation and exportation), data visualization (signal visualization, consistency,
scenario identification, easy for data reviewing), and ease of operation (scalability, same
time, and different place).

Nevertheless, the software associated (manufacturer developed) with this device has
many limitations, due to the lack of support for data collection and management. In this
article, we overcame this deficiency with the creation of a library to manage brain activity
data using Muse (different versions of Muse, Muse 2 and Muse S). MuseStudio provides
a set of tools that facilitate storing, importing, exporting, visualizing, and sharing data.
This article described the main features and strengths of the library, as well as a validation
of those features, including to what extent they were achieved. In terms of hardware
limitations, they were set by the particular low-cost device, Muse in this case. Depending
on the specifications, some domains may be out of scope, not providing valuable insights.

Initially, several experts from the Psychology Department of the University of Castilla-
La Mancha helped to determine which were the functional and nonfunctional features that
a library related to brain data should include. Thanks to this collaboration, a set of features
was identified by these experts to determine what tasks a software brain data management
software tool should be able to perform. These features were used in order to validate
MuseStudio by other experts, but additionally, these features can be used to compare
MuseStudio with other alternatives in the future. In our functional and nonfunctional
validation, other experts identified the presence or absence of those features using surveys,
heuristic evaluation techniques, and analyzing MuseStudio in particular.
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The library implemented is already a relevant contribution because it covers the initial
necessities established. This library has been shared with the community through an open-
source license [5]. Since its inception, MuseStudio has not been intended for the general
public, but rather for researchers who are already familiar with the use and interpretation
of brain signals. However, we can address other evaluations in the future as the library
grows and improves. For instance, it could be useful as soon as a graphical interface is
included, which is the main nonfunctional limitation. This feature would encourage the
use of the library.

The library can be further improved by adding authentication and additional security
capabilities. At this moment, for instance, the authentication of users and sessions must be
performed by analysts, and these identification activities are not supported by the current
version of MuseStudio. In this sense, users that need remote access should be able to
establish secure connections between peers.
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The following abbreviations are used in this manuscript:

EEG ElectroEncephaloGraphy
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BIDS Brain Imaging Data Structure
LSL Lab Streaming Layer
XDF eXtensible Data Format
ERP Event-Related Potential

Appendix A. Structures Defined for BIDS

setup = [

{

"subject": None,

"session": None,

"task": None,

"acquisition": None,

"run": None,

"processing": None,

"recording": None,

"space": None,

"split": None,

"root": None,

"suffix": None,

"extension": None

}
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]

participants = [

{

"subject": None,

"age": None,

"sex": None,

"hand": None,

"root": None

}

]
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