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Abstract—A method to calculate the spectrum of the Lyapunov exponents for a periodic semiconductor
nanostructure (superlattice) described in the framework of a semiclassical approach is proposed. The analysis
of the stability of a stationary state in such a system is performed for autonomous dynamics and in the pres-
ence of a tilted magnetic field. The method of the Lyapunov exponents is used to study the effect of the tilted
magnetic field on the stability of the stationary state and the characteristics of subterahertz oscillation
regimes.
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INTRODUCTION
Semiconductor superlattices represent nanostruc-

tures consisting of thin (several nanometers) periodic
layers of semiconductor materials with different band
gaps and almost equal periods of the crystalline lattice
[1–3]. A periodic modulation of the conduction band
in such systems gives rise to energy minibands in which
the electron transport is accompanied by various non-
linear effects [4] that are interesting for both funda-
mental physics and practical applications.

From the practical point of view, semiconductor
superlattices are promising systems for the generation
[5] and amplification [6] of terahertz signals. It is
known that dc voltage applied to semiconductor
superlattice causes the development of instability and
the formation of domains of charges (a region with an
increased concentration of electrons) that drift along
the system and induce oscillations of current that
flows in the system [7, 8].

With regard to the application of superlattices for
the generation of sub-THz and THz radiation, it is of
interest to study the stability of the stationary state of
the semiconductor nanostructure. In addition, it is
expedient to develop methods for analysis and classifi-
cation of oscillation regimes in such a system.

Normally, modern analysis of the stability of sta-
tionary states of semiconductor nanostructures
employs the NL criterion [9], which has been pro-
posed in [10] for the Gunn diode. However, such an
algorithm can be used in the approximation of the uni-
form distribution of the electric field in the structure.
In several systems with nonuniform electric field, the
algorithm leads to significant errors in the calculation

of the applied voltage that is needed for the develop-
ment of instability. In addition, the criterion cannot be
used for the analysis of semiconductor superlattices in
the presence of external effects (modulation of the
applied voltage, magnetic field, and resonant sys-
tems). However, the analysis of such effects is import-
ant for the study of the dynamics of semiconductor
structures in sub-THz and THz electronic devices. In
particular, magnetic field can be used to efficiently
control the properties of electron transport and the
analysis with allowance for the magnetic field is
important for an increase in the generation frequency
in semiconductor structures [11]. It is also important
to take into account the effect of external resonant sys-
tems on the generation of oscillations in semiconduc-
tor nanostructures [12].

To study the stability of and analyze the oscillation
regimes in a semiconductor structure for autonomous
dynamics and with allowance of various external
effects, it is expedient to employ the Lyapunov expo-
nents. Such a method is actively used in similar prob-
lems for a set of f low dynamic systems and discrete
mappings [13]. However, the method for calculation
of the spectrum of the Lyapunov exponents has been
proposed and tested predominantly for systems with a
relatively small number of the degrees of freedom. The
direct application of such a method in the analysis of
spatially distributed systems (e.g., semiconductor
superlattices) is impossible. The main problem related
to the calculation of the spectrum of Lyapunov expo-
nents for spatially distributed systems is related to the
infinite-dimensional phase space in which the states
of such systems are determined, analysis of distributed
perturbations, simulation of their dynamics, and
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orthogonalization. Attempts at the calculation of the
spectrum of Lyapunov exponents based on artificial
sampling [14] of distributed systems or simulation of
perturbed state [15] are inefficient, since the features
related to the spatial distribution are disregarded. Note
that such features may cause atypical dynamics related
to modifications of the original system.

In this work, we propose a method for the calcula-
tion of the spectrum of Lyapunov exponents for a
semiconductor superlattice based on the analysis of
the dynamics of a set of small perturbations for the
ground state. Such an approach is used to analyze the
stationary state of the system and the corresponding
oscillation regimes for autonomous dynamics and
under the action of a tilted magnetic field.

SYSTEM UNDER STUDY
To describe the cooperative transportation of

charge in semiconductor superlattices, we use the
semiclassical approach of [16]. In the framework of
such an approach, the motion of charge carriers and
the spatiotemporal dynamics of the configuration of
the electric field in the structure are calculated with
the aid of a hydrodynamic model containing self-con-
sistent equations of continuity and Poisson equations:

 (1)

where F(x, t) is the electric field distribution, n(x, t) is
the concentration of carriers, J(x, t) is the current den-
sity in the semiconductor structure, ν = 15.769 and
β = 0.031 are dimensionless control parameters, and
nD = 1.0 is the dimensionless equilibrium concentra-
tion of carriers in the semiconductor. Dimensionless
quantities in Eqs. (1) are related to the dimensional
parameters:

 (2)

Here, dimensional quantities are denoted with
prime. For the system under study,  = 3 × 1022 m–3

is the equilibrium concentration of carriers; L' =
115.2 nm and d' = 8.3 nm are the length and period of
the superconductor superlattice, respectively; e > 0 is
the electron charge; τ' = 250 fs is the scattering time of
carriers in the semiconductor;  = 12.5 is the relative
permittivity of the material; and Δ' = 19.1 meV is the
width of the energy miniband.

The drift approximation is used to calculate the
current density

 (3)
where υ(F) corresponds to the dimensionless drift
velocity of carriers in the semiconductor superlattice
[17]. In the framework of the semiclassical approach,
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such a dependence can be obtained using the law of
motion of a single electron in the miniband of the
semiconductor superlattice with allowance for the
scattering time [18]. At low temperatures, in the
absence of external magnetic fields, the dependence is
represented as

 (4)

Dimensionless potential difference V = V'/(FcL) at
the boundaries of the system serves as the control
parameter in the model. Such a difference remains
constant:

 (5)

where Vc is the voltage drop at the contacts of the semi-
conductor superlattice that is chosen in accordance with
the parameters of the experimental sample [16, 18].1

Figure 1 presents the results of the numerical sim-
ulation of Eqs. (1) and (3)–(5) for two different values
of the applied voltage. Figure 1a illustrates the spatio-
temporal dynamics of the concentration of carriers for
the dimensionless potential difference V ~ 9, which
corresponds to a voltage of V' = 330 mV. It is seen that
the transient process in the system results in the sta-
tionary distribution of the concentration that is char-
acterized by a near-emitter layer with an increased
concentration of carriers. Figure 1c shows the time
dependence of the current density. Figures 1b and 1d
present the spatiotemporal dynamics and the depen-
dence of the current density for V ~ 11 (V' = 400 mV).
In this case, the system exhibits the development of
instability and the formation of moving domains
(Fig. 1b).

EFFECT OF THE MAGNETIC 
FIELD

In accordance with the experimental and theoreti-
cal results, external tilted magnetic field substantially
affects the characteristics of electron transport in
semiconductor nanostructures [11, 17, 19].

The effect of the magnetic field is taken into
account in the semiclassical approximation in the cal-
culation of the drift velocity of electrons versus longi-
tudinal electric field υ(F). As was mentioned, depen-
dence υ(F) obeys Esaki–Tsu formula (4) at low tem-
peratures in the absence of magnetic field. Figure 2a
shows such a dependence. It is seen that the drift
velocity of carriers increases with increasing electric
field and reaches a maximum that is known as the

1The calculations (including the below calculation of the spectrum 
of Lyapunov exponents) are performed in terms of dimension-
less quantities. For convenience of the analysis of the results,
several quantities on the plots are presented in dimensional
units.
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Esaki–Tsu peak. A further increase in electric field
strength F leads to a decrease in the velocity due to the
scattering of carriers and the Bragg reflection of elec-
trons from the edges of the energy miniband. Such an

effect has been demonstrated in [1] and is also related
to the THz Bloch oscillations of electrons. The falling
fragment of curve υ(F) determines the negative differ-
ential conductance of semiconductor nanostructures

Fig. 1. Spatiotemporal dependences of (a, b) concentration of carriers and (c, d) current that f lows through the superlattice for
applied voltages V = (a, c) 9 and (b, d) 11 (V' = (a, c) 330 and (b, d) 400 mV).
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Fig. 2. Plots of the mean drift velocity of carriers in the first miniband of the semiconductor superlattice vs. electric field strength
(a) in the absence and (b) in the presence of magnetic field at B = 15 T and Θ = 40°.

0.5500

0.4125

0.2750

0.1375

0 5 10
F

15 20

υ

0.5500

0.4125

0.2750

0.1375

0 5 10
F

15 20

υ

(a) (b)



320

TECHNICAL PHYSICS  Vol. 61  No. 3  2016

MAKSIMENKO et al.

[20] and gives rise to nonstationary regimes of electron
transport.

External magnetic fields and temperature primarily
affect the dynamics of carriers in the semiconductor
superlattice and, hence, dependence υ(F). In this
case, analytical calculations are impossible and the
dependence must be numerically calculated [17]. In
this work, we analyze the effect of the tilted magnetic
field and calculate dependence υ(F) using the method
of [17]. Figure 2b shows such a dependence for the
magnetic field with induction B' = 15 T and tilt angle
Θ = 40°. It is seen that the magnetic field strongly
affects the behavior of the drift velocity upon variation
in the electric field strength in the superlattice. Note
the presence of additional peaks related to the Bloch
cyclotron resonances [17]. The amplitudes of such
peaks can be greater than the amplitude of the Esaki–
Tsu peak (Fig. 2b).

Thus, the magnetic field may significantly affect
the properties of a semiconductor nanostructure and,
hence, the stability of the stationary state therein and
the parameters of the nonstationary dynamic regimes.

METHOD FOR CALCULATION 
OF THE LYAPUNOV EXPONENTS

Methods based on the Benettin algorithm [21] are
normally used in the calculation of the Lyapunov
exponents. Such an algorithm involves the simulation
of the dynamics of small (linear) perturbations of the
reference state and calculation of their norm versus
time with the aid of orthogonalization and normaliza-
tion procedures [21]. In this case, the reference state of
the system is determined by a set of dynamic variables
that unambiguously describe the state of the system at
each time moment.

At each moment, the state of the semiconductor
structure under study is determined by spatial distri-
butions of electric field F(x), concentration of carriers
n(x), and current density J(x). A set of these quantities
can be considered as the reference state. Following the
approach of [22] in which the Lyapunov exponents are
calculated for spatially distributed systems, we elimi-
nate electric field strength and current density from
the reference state, since both quantities are one-to-
one determined by the concentration of carriers using
Eqs. (1) and (3). Thus, the reference state of the sys-
tem under study can be represented as quantity

 (6)

which depends on time and spatial coordinate.

Spatially distributed perturbation (x, t) serves as
the small perturbation of state (6). The normalization
condition  = 1 is satisfied at the initial
moment, where scalar product ( , ) is written as
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Time evolution of the perturbation is simulated
using operator (1), (3)–(5) linearized in the vicinity of
the reference state:

 (8)

To calculate the spectrum of the Lyapunov expo-
nents, we introduce a set of perturbations (x, t) that
satisfies the orthogonality condition:

 (9)

Such a set can be obtained with the aid of the
Gram–Schmidt procedure, which is represented in
the following way for spatially distributed systems [20]:

 (10)

Here, tGS is the time moment at which the proce-
dure is employed.

We integrate Eqs. (1) and (3)–(5) simultaneously
with Eqs. (8), which describe the dynamics of the set
of perturbations, and periodically employ procedure
(10) with recalculated functions φi(x) = (x, tGS) to
calculate the Lyapunov exponents as

 (11)

where i is the exponent number, M is the number of
renormalization and orthogonalization operations
(11), and T is the time interval between renormaliza-
tions. Figure 3 illustrates the calculation of four high-
order Lyapunov exponents for M = 6000 and T ~ 2.5
(T = 6.25 × 10–13 s). It is seen that multiple (M ~ 6000)
orthogonalizations and normalizations make it possi-
ble to obtain almost constant Λ that correspond to the
Lyapunov exponents of the system.
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Fig. 3. Plots of four high-order Lyapunov exponents vs. time for an autonomous semiconductor superlattice in (a) stationary state
V ~ 9 (V ' = 330 mV) and (b) regime of periodic generation V ~ 11 (V ' = 400 mV).
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The Lyapunov exponents in Fig. 3 are calculated
for V ~ 9 (V' = 330 mV) and V ~ 11 (V' = 400 mV)
(Figs. 3a and 3b, respectively) for which Fig. 1 shows
the numerically simulated dynamics of the reference
state. It is seen that only negative high-order Lyapunov
exponents correspond to the stationary state (Fig. 3a)
whereas the regime of periodic generation is charac-
terized by the zero high-order exponent (Fig. 3b).

The proposed method is used to calculate the
dependences of five high-order Lyapunov exponents
on the applied voltage for both autonomous dynamics
(Fig. 4a) and in the presence of the tilted magnetic
field (Fig. 4b). We take into account the effect of the
magnetic field using dependences υ(F) and dυ(F)/dF
in Eqs. (1), (3)–(5), and (8), which describe the evo-
lution of the reference state and the set of perturba-
tions. In both cases, zero positive Lyapunov exponent
appears in the spectrum when the voltage increases.
Such a results indicates a transition to the nonstation-
ary dynamics and the generation of the oscillations of
current that f lows through the structure. The magnetic
field affects the voltage that is needed for the develop-
ment of generation (the voltage increases to 560 mV).
In spite of the effect of the magnetic field that causes

additional falling fragments on dependence υ(F)
(Fig. 2b), the oscillations in the system remain peri-
odic at relatively high applied voltage (zero high-order
Lyapunov exponent is obtained).

Thus, the method proposed for the calculation of
the spectrum of the Lyapunov exponents is efficient in
the analysis of the stability of the stationary state in the
semiconductor superlattice and identification of the
type of oscillation dynamics. The method is also
employed for the analysis of the effect of the tilted
magnetic field on the dynamics of the system in the
stationary state and generation regime.

CONCLUSIONS

We have proposed a method to calculate the spec-
trum of the Lyapunov exponents for a semiconductor
superlattice that is described in the framework of the
semiclassical approach using partial differential equa-
tions. The method is used to analyze the dynamics of
an autonomous superlattice and the dynamics of the
system in the presence of the tilted magnetic field.
When dc voltage is applied, the system exhibits insta-
bility in both cases and periodic oscillations are gener-
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ated. However, the voltages needed for the instability
are significantly different. The analysis of the spec-
trum of the Lyapunov exponents makes it possible to
study the stability of the system and identify the type of
nonstationary dynamics when the voltage increases.
In the autonomous semiconductor system, an increase
in the applied voltage does not lead to changes of the
type of dynamics and the oscillations remain periodic.
Variations in the magnetic field also do not cause
changes of the type of dynamics, which is proven by a
zero high-order Lyapunov exponent for a wide range
of applied voltages.

The method proposed for the calculation of the
spectrum of the Lyapunov exponents is efficient in the
analysis of the stability of the stationary state and iden-
tification of the type of oscillation regime both for
autonomous dynamics and in the presence of a mag-
netic field. The method is promising for the analysis of

complicated regimes of electron transport in semicon-
ductor nanostructures that interact with external elec-
trodynamic structures and fields, which is important
for the simulation of real sub-THz and THz electronic
devices.
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