
Detection of Eye Movement Characteristics Using
Reservoir Computing in High-Noise Environments

Nikita Brusinskii
Baltic Center for Neurotechnology

and Artificial Intelligence
Immanuel Kant Baltic Federal University

Kaliningrad, Russia
nikita@brusinskii.ru

Vladimir Antipov
Baltic Center for Neurotechnology

and Artificial Intelligence
Immanuel Kant Baltic Federal University

Kaliningrad, Russia
VMAntipov@kantiana.ru

Artem Badarin
Baltic Center for Neurotechnology

and Artificial Intelligence
Immanuel Kant Baltic Federal University

Kaliningrad, Russia
Badarin.a.a@mail.ru

Abstract—Accurate real-time detection of saccades is crucial
in neuroscience but challenging under high noise levels. We
introduce a model based on reservoir computing and tested on
simulated eye movement signals with varying 1/f noise. The model
achieved 99.5% accuracy without noise and maintained over
90% accuracy even at high noise levels, demonstrating its noise
resistance and suitability for real-time brain-computer interfaces.

Index Terms—reservoir computing, EyeTraking, machine
learning, saccads

I. INTRODUCTION

One of the key tasks of modern neuroscience is the study of
brain mechanisms and related psychophysiological processes
[1]–[6]. In neuroscience, oculography stands out as one of
the most important tools, as it allows for the analysis of eye
movements during the perception and processing of visual
information [7], [8]. Since oculomotor activity is closely
related to cognitive processes such as attention, memory, and
the analysis of visual stimuli, its study is extremely important
for understanding brain function as a whole [9].

Traditionally, eye movements are divided into two main
phases—saccades and fixations. Saccades, which are rapid
eye movements between fixation points, play a key role in
visual perception. However, accurate detection of saccades
in real time is especially difficult under high noise levels,
complicating the analysis of oculomotor activity [10]. In
such situations, the accuracy of recording and processing eye
movements is critically important, as it minimizes the impact
of artifacts and provides reliable data for subsequent research.

To overcome these difficulties and reduce hardware re-
quirements, we are developing an algorithm for detecting eye
movements in real time using reservoir computing (RC). RC
has already proven to be an effective tool in a number of tasks
related to signal analysis under noisy conditions [11]. Due to
its ability to efficiently process complex temporal sequences

of data [12], [13], RC appears to be a promising method for
analyzing oculomotor activity in real time.

Thus, the main purpose of this work is to develop and apply
an algorithm for the accurate determination of oculomotor
activity in real time using reservoir computing.

II. METHODS

The developed saccade detection algorithm based on reser-
voir computing was tested on a simulated oculographic sig-
nal. Simulating the oculographic signal is necessary because
manual classification of oculographic data does not always
yield reliable results due to the influence of various factors
[14]. Moreover, the simulated signal provides full control over
all examined characteristics, such as the number, amplitudes,
and durations of saccades and fixations. The simulated signal
is based on the model proposed by Richard Schweitzer and
colleagues [15], incorporating different levels of noise. The
choice of the model proposed by Schweitzer for simulating
the oculographic signal, specifically the horizontal and vertical
components, is due to its ability to generate post-saccadic os-
cillations, making the data more relevant to real-world signals.
Additionally, the eye movement simulation model used allows
for the modeling of fixation drift (tremor, microsaccades),
further aligning the simulated signal with real oculographic
data [16]. The noise used in the simulation was 1/f (flicker)
RMS noise [17]. Various levels of RMS noise enable the study
of how noise affects detection accuracy and help identify the
limits of algorithm performance in the presence of significant
data distortions. Using the model described above, 150 con-
secutive saccades and fixations were generated with varying
levels of flicker noise. In this study, post-saccadic oscillations
were not considered.

Simulated eye movements were fed to the input of a
reservoir based on nonlinear vector autoregression and pro-
posed in [18]. The task of the RC was to classify the time
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series, namely to perform a binary classification to distinguish
between fixations and saccades. Thus, a step function was used
as the target function, where the value 1 corresponded to the
saccade, and the value 0 corresponded to the fixation (see fig.
1a). Additionally, we applied threshold filtering to the reservoir
output: values above 0.5 were assigned a value of 1, and values
below 0.5 were assigned a value of 0.

III. RESULTS

First, we ensured that our proposed model for classifying
eye movements is effective. To achieve this, we optimized the
hyperparameters of the reservoir using noise-free simulated
data (see Fig. 1a). The optimal parameters were a quadratic
nonlinearity, 25 delays each with a duration of 3. Figure
1a shows the temporal realizations of eye movements; the
dotted line corresponds to the data labels, and the solid line
represents the results of the model classification. It is clear to
see that the proposed model successfully performs the task of
classifying eye movements. The accuracy was calculated as
the proportion of correctly classified points, which was 99.5%
for the specified parameters.

After that, the effect of noise on accuracy was investigated.
Various noise levels ranging from 0 to 100 were considered,
and it was found that even at high noise levels, the accuracy
remained above 90%.

Fig. 1. Temporal realizations of eye movements: Figure (a) corresponds to a
noise-free implementation, while figure (b) corresponds to an implementation
with noise where the RMS value equals 100. The dotted line represents the
data labels, and the solid line shows the results of model classification.

IV. CONCLUSION

Thus, the proposed model based on next-generation reser-
voir computing is resistant to noise and allows for the detection
of saccades with high accuracy and low latency, making it
suitable for use in real-time brain-computer interfaces.
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