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Abstract
A theoretical model of a network of neuron-like ele-

ments was constructed. The network included several
subnetworks. The first subnetwork was used to translate
a constant-amplitude signal into a spike sequence (con-
version of amplitude to frequency). A similar process
occurs in the brain when perceiving visual information.
With an increase in the flow of information, the gener-
ation frequency of the neural ensemble participating in
the processing increases. Further, the first subnetwork
transmitted excitation to two large interconnected sub-
networks. These subnetworks simulated the dynamics
of the cortical neuronal populations. It was shown that
in the presence of inhibitory coupling, the neuronal en-
sembles demonstrate antiphase dynamics. Various con-
nectivity topologies and various types of neuron-like os-
cillators were investigated. We compare the results ob-
tained in a discrete neuron model (Rulkov model) and a
continuous-time model (Hodgkin-Huxley). It is shown
that in the case of a discrete neuron model, the periodic
dynamics is manifested in the alternate excitation of vari-
ous neural ensembles. In the case of the continuous-time
model, periodic modulation of the synchronization index
of neural ensembles is observed.
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1 Introduction
Nowadays, an understanding of processes of interac-

tion between different brain areas under cognition is an

important task. Many scientists use methods of networks
theory to analyse the processes [Palmeri and Gauthier,
2004; Haenschel et al., 2005; Cavanna and Monaco,
2009] based on both analysis of experimental data (elec-
trical or magnetical multichannel recordings) [Maksi-
menko et al., 2018b; Campbell, 2009; Buzsáki, 2004;
Chholak et al., 2019; Buzsáki and Draguhn, 2004; Mak-
simenko et al., 2018a] and numerical simulation of neu-
rons interaction [Valencia et al., 2008; Andreev et al.,
2017; Klinshov et al., 2015; Klinshov et al., 2014].

An idea of creating mathematical models describing
some features of processes of interaction is actual [Yun
et al., 2012]. Investigation of cognitive interaction is in
line with the construction of models of nonlinear net-
works with complex topology [Boccaletti et al., 2006;
Maslennikov and Nekorkin, 2017]. It was shown that
topology is the main factor determining the emergence,
stability, and propagation of synchronous states in com-
plex networks [Moreno and Pacheco, 2004]. For exam-
ple, in a number of works it was shown that the struc-
ture of freely scalable networks, which include, in par-
ticular, the neural network of the brain [Bullmore and
Sporns, 2009] is more resistant to external influences and
contributes to faster network synchronization [Gómez-
Gardenes et al., 2011; Gómez-Gardenes et al., 2007; An-
dreev et al., 2019].

Synchronization processes within complex networks
have been closely studied for a long time, but processes
of the interaction between networks of dynamic ele-
ments are still very poorly studied [Gao et al., 2014].
Nevertheless, interest in this problem has increased
sharply in recent years, and the attention of researchers is
shifting to the study of the processes of competition and
synchronization between interacting networks, which is
associated with the practical possibilities of describing
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many processes of real systems [Jiang and Perc, 2013;
Klinshov et al., 2014; Bolotov et al., 2016].

In this paper, we numerically study a neural network
of several subnetworks. The first subnetwork receives
an external stimulus and transmites excitation to two
large interconnected subnetworks. We show that in the
presence of inhibitory coupling, the neuronal ensem-
bles demonstrate antiphase dynamics. Various connec-
tivity topologies (“all-to-all”, “small-world” and com-
pletely random) and various types of neuron-like oscil-
lators (Hodgkin-Huxley model and Rulkov map) were
investigated. We compare the results obtained in a dis-
crete neuron model (Rulkov model) and a continuous-
time model (Hodgkin-Huxley). We show that in the case
of a discrete neuron model, the periodic dynamics is
manifested in the alternate excitation of various neural
ensembles. In the case of the continuous-time model, pe-
riodic modulation of the synchronization index of neural
ensembles is observed.

2 Mathematical Model
The time evolution of the transmembrane potential of

the HH neurons is given by [Hodgkin and Huxley, 1952]:

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa)− gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni
(1)

where Cm = 1µF/cm3 is the capacity of cell mem-
brane, Iexi is an external bias current injected into a neu-
ron in the network, Vi is the membrane potential of i-th
neuron, i = 1,...,N , gmaxNa = 120mS/cm2, gmaxK =
36mS/cm2 and gmaxL = 0.3mS/cm2 receptively de-
note the maximal sodium, potassium and leakage con-
ductance when all ion channels are open. VNa = 50mV ,
VK = −77mV and VL = −54.4mV are the reversal
potentials for sodium, potassium and leak channels re-
spectively. m, n and h represent the mean ratios of the
open gates of the specific ion channels. n4 and m3h
are the mean portions of the open potassium and sodium
ion channels within a membrane patch. The dynamics
of gating variables (x = m,n, h) depending on rate
functions αx(V ) and βx(V ) are given [Pankratova and
Polovinkin, 2005]:

dxi
dt

= αxi(Vi)(1− xi)− βxi(Vi)xi, x = m,n, h

(2)
Isyni is the total synaptic current received by neuron

i. We consider coupling via chemical synapses. The
synaptic current takes the form [White et al., 2000]

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (3)

where the alpha function α(t) describes the temporal
evolution of the synaptic conductance, gc is the maxi-
mal conductance of the synaptic channel and tj0 is the

time at which presynaptic neuron j fires. We suppose
α(t) = e−t/τsynΘ(t), there Θ(t) is the Heaviside step
function and τsyn = 3ms.
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Figure 1. Network model. The external stimulus with amplitudeA is
applied to the first subnetwork ofNex = 5 neurons. The subnetwork
is connected with the two other subnetworks of N1 = N2 = 50
neurons by one-directional excitatory couplings. The subnetworksN1

and N2 are connected with each other by two-directional inhibitory
couplings.

Each Rulkov map [Rulkov et al., 2004] is described by
the following system of equations

xn+1 = f(xn, xn−1, yn + βn),

yn+1 = yn − µ(xn + 1) + µσ + µσn + µ,
(4)

where x and y are fast and slow variables associated with
membrane potential and gating variables, respectively,
α, σ and µ ∈ (0, 1] are parameters which regulate the
system dynamics, f is a piecewise function defined as

f(xn, xn−1, yn) =
α/(1− xn) + yn, if xn ≤ 0,

α+ yn, if 0 < xn < α+ yn & xn−1 ≤ 0,

−1, if xn ≥ α+ yn or xn−1 > 0,
(5)

constructed in a way to reproduce different regimes of
neuron-like activity, such as spiking, bursting and silent
regimes. Here, βn and σn are parameters related to ex-
ternal stimuli and defined as

βn = βeIextn + βsynIsynn ,

σn = σeIextn + σsynIsynn ,
(6)

where βe and σe are coefficients used to balance the ef-
fect of external current Iextn defined as

Iexpn =

{
0, n < ts,

A, n ≥ ts,
(7)

βsyn and σsyn are coefficients of chemical synaptic cou-
pling [Hu and Cao, 2016], and Isynn is a synaptic current
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Figure 2. (a) Time evolution of V
(1)
avr and V

(2)
avr averaged over all

neurons of subnetworks N1 and N2 respectively. (b) Time evolution
of synchronization indexes S(1) and S(2) for the same subnetworks.
Network topology for subnetworks N1 and N2 is “all-to-all”, prob-
ability of coupling between two neurons of the subnetworks is 100%,
strength of coupling betweenN1 andN2 gc = −0.03.

given as

Isynn+1 = γIsynn − gsyn∗
(xpostn − xrp)/(1 + e−k(x

post
n −θ)), xpren ≥ α+ ypren

+βpren ,

0, otherwise,
(8)

where gsyn ≥ 0 is the strength of synaptic coupling,
θ = −1.55 and k = 50 are synaptic parameters which
stand for the synaptic threshold behavior. The super in-
dices pre and post refer, respectively, to the presynaptic
and postsynaptic variables, γ ∈ [0, 1] is the synaptic re-
laxation time defining a portion of synaptic current pre-
served in the next iteration, and xrp is a reversal potential
determining the type of synapse, inhibitory or excitatory.
The parameter values are chosen so that uncoupled neu-
rons are in a resting state, namely, α = 3.65, σ = 0.06
and µ = 0.0005. We also assume βe = 0.133, σe = 1.0,
βsyn = 0.1, σsyn = 0.5.

3 Results
We investigate dynamics of a network consisting of 3

subnetworks (Fig. 1). The external stimulus with am-
plitude A is applied to the first subnetwork of Nex = 5
neurons. The role of this subnetwork is to translate a
constant input signal into a spike sequence; an increase
in the amplitude of the signal leads to an increase in the
frequency of generation of spikes, thus modulating the
amplitude with a frequency. Inside it all neurons are
connected with each other by two-directional excitatory
couplings, coupling strength is chosen randomly from
the range [0;0.15]. The subnetwork Nex is connected
with the two other subnetworks of N1 = N2 = 50 neu-
rons by one-directional excitatory couplings with 30%
probability. The subnetworks N1 and N2 are connected
with each other by two-directional inhibitory couplings
with coupling strength gc and probability p.

First, we choose Hodgkin-Huxley neuron model as an
element of the network. For this case the external stimu-

lus with amplitude A = 9µA/cm2 is applied to the first
subnetwork that corresponds to the regime of continu-
ous spikes generation, and the current with amplitude
A = 6µA/cm2 s applied to N1 and N2 subnetworks
corresponding to “silent” regime when all neurons do not
generate spikes. We analyze the dynamics of the mem-
brane potentials averaged over N1 and N2 subnetwork:
Vavr =

∑N
i=1

Vi

N , where N is a number of neurons in
the subnetwork.

We consider three different network’s topologies: (1)
“all-to-all”, (2) “small-world”, and (3) “random topol-
ogy”. For “all-to-all” topology coupling strength is cho-
sen randomly from the range [0;0.15]. For p = 100%,
gc = −0.03 we find a phenomenon of N1 and N2 sub-
networks generating spikes in antiphase. So we can say
that two subnetworks are synchronized to each other
with a time lag of a half of a period [Blekhman et al.,
1997]. Moreover, in the dynamics of membrane po-
tentials averaged over each subnetwork, low-frequency
oscillations of the amplitude were observed, which, in
turn, were also in antiphase [see Fig. 2 (a)]. In order to
investigate it we calculate synchronization index as fol-
lows [Wang et al., 2009; Sausedo-Solorio and Pisarchik,
2017]:

S =

√√√√ 1

T

N∑
n=1

ξn, (9)

where ξn is the standard deviation given as

ξn =
1

N

N∑
i=1

(
x(i)n

)2
−

(
1

N

N∑
i=1

x(i)n

)2

. (10)

where T is a number of iterations, N is a number of neu-
rons in the subnetwork. The smaller S, the better the
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Figure 3. Time evolution of synchronization indexes S(1) and S(2)

for the subnetworks N1 and N2 for different topologies: (a) “all-to-
all”, strength of coupling between the elements inside the subnetworks
is chosen randomly from the range [0;0.15]; (b) “small-world”; (c)
“random topology”. For all cases probability of coupling between two
neurons of the subnetworks is 30%, strength of coupling betweenN1

andN2 gc = −0.09.



202 CYBERNETICS AND PHYSICS, VOL. 8, NO. 4, 2019

 40

 50

 60

 45

 55

 65

 60

 75

 90

 0  100  200  300  400  t (ms)

 S

 (b)

 S

 S

 (a)

 (c)

S(1)

S(2)

S(1)

S(2)

S(1)

S(2)

Figure 4. Time evolution of synchronization indexes S(1) and S(2)

for the subnetworksN1 andN2 respectively for “small-world” topol-
ogy for different values of strength of coupling betweenN1 andN2:
(a) gc = −0.06, (b) gc = −0.08, (c) gc = −0.1. For all
cases probability of coupling between two neurons of the subnetworks
is 30%.

synchronization; S = 0 means complete synchroniza-
tion.

Fig. 3 (b) illustrates time evolution of synchronization
indexes S(1) and S(2) of the averaged signals V (1)

avr and
V

(2)
avr. One can see that the synchronization indexes os-

cillate in antiphase. Thus, the subnetworks, interacting
with each other, in turn process the information arriving
to them, while maintaining the overall activity constant.

If we make the probability of coupling between neu-
rons of N1 and N2 subnetworks p = 30%, we still can
observe synchronization indexes oscillating in antiphase
[Fig. 3 (a)]. But gc must be bigger to make the input
synaptic current the same as number of inpus couplings
is decreased. Comparing Fig. 3 (a) and 3 (b) one can see
that the oscillation amplitude decreases but S is bigger
for all considered time.

Nest, we investigate how different network topologies
influence on the subnetworks interaction. In addition
to the already studied “all-to-all” topology, we consider
“small world” (SW) and “random topology”. SW net-
work is generated using the Watts-Strogatz model [Watts
and Strogatz, 1998] with parameters β = 0.3 and K =
5. The parameter β is the probability for a particular link
in the initially regular topology to be randomly rewired,
and K is the mean degree. The completely random net-
work is generated as a limit case of the Watts-Strogatz
model with β = 1, meaning that all links of the initially
regular topology are randomly rewired. Figs. 3 (b,c) il-
lustrate time evolution of synchronization indexes for the
subnetworks N1 and N2 for SW and random topologies
respectively. One can see that synchronization indexes
oscillate in antiphase for all considered topologies. Os-
cillation amplitude of S is the same for all of them, the
oscillation period is the largest for “all-to-all” topology,
S takes its highest values for the “small world”, and the
smallest for the random one.

For further research, we choose SW topology was cho-
sen due to the fact that this topology determines neuronal

coupling on an anatomical level [Muldoon et al., 2016;
Bassett and Bullmore, 2006]. We investigate influence
of strength of coupling gc between N1 and N2 subnet-
works on synchronization of all neurons inside each of
them. Fig. 4 illustrates time evolution of synchroniza-
tion indexes for three different values of gc. For small
coupling strength (a) synchronization indexes oscillate
in phase. Increasing gc leads to indexes start to oscillate
in antiphase, but oscillation amplitude remains the same
(b). If we continue to increase gc oscillation amplitude
and synchronization indexes increases (c).

Next, we choose Rulkov map as an element of the net-
work. For this case the external stimulus with amplitude
A = 2 is applied to the first subnetwork that corresponds
to the regime of continuous spikes generation, and no
current is applied to N1 and N2 subnetworks. The dy-
namics for this network differs from one demonstrated
by the Hodgkin-Huxley neurons system. For a network
of HH neurons both subnetworks alternately generated
spikes [Fig. 2 (a)], but for a network of Rulkov maps the
dynamics of the averaged signal of each subnetwork is
characterized by alternating periods of “silence” of the
network with periods of continuous generation of spikes
(Fig. 5), and if one subnetwork is in “silent” regime,
then the second one is in spike generation regime, and
vice versa. Thus, two interacting subnetworks demon-
strate antiphase dynamics, while maintaining the overall
dynamics constant. The figure illustrates that as soon as
one subnetwork activates, the second subnetwork imme-
diately deactivates.

4 Conclusion
We have investigated of a neural network included

several subnetworks. The first subnetwork was used
to translate a constant-amplitude signal into a spike se-
quence. The first subnetwork was connected to two large
interconnected subnetworks by excitatory couplings. It
was shown that in the presence of inhibitory coupling
between two large subnetworks, the neuronal ensem-
bles demonstrate antiphase dynamics. Various connec-
tivity topologies (“all-to-all”, “small-world” and com-
pletely random) and various types of neuron-like oscil-
lators (Hodgkin-Huxley model and Rulkov map) were
investigated. We have compared the results obtained in a
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discrete neuron model (Rulkov model) and a continuous-
time model (Hodgkin-Huxley). It is shown that in the
case of a discrete neuron model, the periodic dynam-
ics is manifested in the alternate excitation of various
neural ensembles. In the case of the continuous-time
model, periodic modulation of the synchronization index
of neural ensembles is observed. This is manifested in
low-frequency modulation of neural activity. According
to the literature, low-frequency modulation of spike ac-
tivity of neurons occurs due to cortical activity rhythms
(for example, theta, alpha, and beta), which are recorded
non-invasively using EEG. The influence of strength of
coupling between large subnetworks on synchronization
of all neurons inside each of them was investigated.

The constructed theoretical model of a network of
neuron-like elements can be used to explain the effect
of the oscillatory dynamics of cognitive performance.
Given that cognitive performance is determined by the
degree of involvement of neural populations of the cere-
bral cortex in information processing, it can be assumed
that the cognitive load is constantly redistributed be-
tween different populations of the cerebral cortex.
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Buzsáki, G. and Draguhn, A. (2004). Neuronal os-
cillations in cortical networks. science, 304 (5679),
pp. 1926–1929.

Campbell, I. G. (2009). Eeg recording and analysis
for sleep research. Current protocols in neuroscience,
49 (1), pp. 10–2.

Cavanna, A. E. and Monaco, F. (2009). Brain mech-
anisms of altered conscious states during epileptic
seizures. Nature Reviews Neurology, 5 (5), pp. 267.

Chholak, P., Niso, G., Maksimenko, V. A., Kurkin, S. A.,
Frolov, N. S., Pitsik, E. N., Hramov, A. E., and Pis-
archik, A. N. (2019). Visual and kinesthetic modes af-
fect motor imagery classification in untrained subjects.
Scientific reports, 9 (1), pp. 1–12.

Gao, J., Li, D., and Havlin, S. (2014). From a single
network to a network of networks. National Science
Review, 1 (3), pp. 346–356.
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