УДК 517.9

АНАЛИЗ ФОРМИРОВАНИЯ КЛАСТЕРОВ В АДАПТИВНОЙ СЕТИ ОСЦИЛЛЯТОРОВ КУРАМОТО ПО ИНТЕГРАЛЬНЫМ СИГНАЛАМ

© 2016 г. А. А. Харченко¹, В. В. Макаров^{1, 2}, А. Е. Храмов^{1, 2}

E-mail: ainadil@mail.ru, hramovae@gmail.com

Проведено численное исследование адаптивной сети связанных осцилляторов (генераторов Курамото). Рассмотрен вопрос диагностики фазовой синхронизации в сети путем изучения вейвлет-спектров интегрального сигнала и эволюции распределения разности фаз в кластерах адаптивной сети. Проанализирован процесс возникновения фазовых кластеров с использованием интегральных характеристик.

DOI: 10.7868/S0367676516020137

введение

Одна из наиболее важных задач современной ралиофизики в области исследования сетей осцилляторов – изучение режимов синхронизации взаимодействующих элементов [1, 2]. Узлы в таких сетях выступают в качестве элементов этих сложных систем, а связи между узлами представляют собой взаимодействие между ними. В последнее время возникает интерес к рассмотрению сетей, топология которых развивается и адаптируется с течением времени, что либо обусловлено внешними воздействиями, либо соответствует конкретным заранее определенным правилам эволюции [3]. Такие сети носят названия адаптивных сетей, и их исследования представляют значительный интерес как с точки зрения фундаментальных вопросов нелинейной динамики, так и для решения прикладных задач в различных отраслях естествознания, а также при изучении биологических, социальных, экономических и других систем, представляющих совокупность большого числа агентов с различными типами и интенсивностями связей между ними [4-7].

Особенно важны данные исследования для нейродинамики и нейрофизиологии, где исследуемые объекты — нейронные ансамбли центральной и периферийной нервных систем — представляют собой сложные сети элементов с собственной сложной динамикой — нейронов, связи между которыми постоянно перестраиваются и меняются в зависимости от решаемых задач [8]. Традиционным и весьма эффективным методом исследования электрической активности головного мозга является регистрация электроэнцефалограмм (ЭЭГ), которые представляют собой усредненную сумму электрических полей, генерируемых синаптическими токами большой группы нейронов в окрестности регистрирующего электрода [9]. У человека запись ЭЭГ проволится обычно посредством электродов, размешаемых на коже головы. У животных традиционно используется метод вживленных электродов, который даёт возможность получить более детальную информацию об электрической активности относительно небольших популяций нейронов коры головного мозга и подкорковых структур. Важно отметить, что в обоих случаях сигналы электроэнцефалограмм представляют собой усредненные (интегральные) характеристики, описывающие динамику сложной нейронной сети. Увеличение амплитуды ЭЭГ говорит о повышении когерентности колебаний в ансамбле нейронов в окрестности регистрирующего электрода.

В последнее время задачи, связанные с диагностикой синхронных режимов в нейронных сетях головного мозга, представляют большой интерес для исследований патологической активности, в частности эпилептической, в связи с чем возникает важный вопрос оценки эффективности использования для этих целей интегральных характеристик, представляющих интегральные усредненные по ансамблю характеристики [10, 11].

Цель данной работы — исследование сети связанных фазовых осцилляторов Курамото как классической базовой модели в теории сетей [3] и анализ возникновения кластеров по интегральным характеристикам. В качестве объекта исследований рассмотрена модель сложной сети с адаптивными связями, в которой синхронная динамика приводит к появлению кластеров, взаимодействующих между собой смежных элементов. Динамику данной сети анализировали с использованием непрерывного вейвлет-преобразования интегральных характеристик сети [10, 11], которые позволяют провести диагностику формирования и динамику кластеров. Использование распределения

¹ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный университет имени Н.Г. Чернышевского".

² Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А.".

фаз позволяет количественно оценить уровень кластеризации рассматриваемой модели сети.

ИССЛЕДУЕМАЯ МОДЕЛЬ И МЕТОД ДИАГНОСТИКИ

Синхронизации в сети

В настоящем исследовании используется модель фазового осциллятора Курамото, являющаяся одной из наиболее распространенных базовых моделей в теории сетей, которая выступает в качестве математической интерпретации коллективной динамики химических и биологических осцилляторов [12]. В последнее время различные модификации данной модели сети фазовых осцилляторов активно применяют для анализа процессов кластеризации и синхронизации, в том числе в нейронных сетях и социальных системах [3].

Базовой моделью для исследования выступает сеть осцилляторов, представляющих собой связанные генераторы Курамото, где каждый узел сети имеет связь с другими узлами ω_{ij} и фазу φ_i изменяющиеся во времени:

$$\dot{\varphi}_i = \delta_i + \lambda \sum_{j=1}^{N} \omega_{ij} \sin(\varphi_j - \varphi_i), \qquad (1)$$

где δ_i — заданные случайным образом круговые частоты осцилляторов Курамото, N — число генераторов в сети, λ — интенсивность связей между генераторами и ω_{ii} — вес связи между *j*- и *i*-узлами.

В данной работе рассматривается модель сложной сети с адаптивными связями, предложенная ранее в работе [3]. Данная модель отражает две главные особенности природных сетей, а именно безмасштабное распределение веса связей и формирование мезомасштабных структур. Такие явления могут быть причиной возникновения следующих механизмов: "гемофилии", связанной с усилением связей между синхронизированными узлами, и "гомеостазом" — механизмом конкуренции, с помощью которого повышение некоторой связи от одного элемента сети уравновешивается ослаблением других связей того же узла в сети, осуществляемым путем наложения условия:

$$\sum_{\substack{i\neq i}}^{N} \omega_{ij} = 1, \qquad (2)$$

т.е. сумма всех весов, входящих в узел, постоянна в любой момент времени, ω_{ij} — коэффициент, определяющий силу связи, соединяющей узлы *j*- и *i*-сети.

Величина ω_{*ij*} изменяется с течением времени по закону [3]

$$\dot{\omega}_{ij}(t) = \omega_{ij}(t) \left[s_{ij} p_{ij}^{T}(t) - \sum_{l=1}^{N} \omega_{il} p_{ij}^{T}(t) \right], \qquad (3)$$

8 ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 80 № 2 2016

где $s_i = \sum_{j=1}^{N} \omega_{ij}$ – общая входная сила узла *i*, $p_{ij}^{T}(t)$ – это степень локальной синхронизации между осциллятором *i* и *j*, усредненная по времени в интервале [t-T, t], которая определяется через уравнение

$$p_{ij}^{T}(t) = \left| \frac{1}{T} \int_{t-T}^{T} e^{\sqrt{-1} \left[\varphi_{j}(\tau) - \varphi_{i}(\tau) \right]} d\tau \right|.$$
(4)

Здесь параметр управления Tбыл выбран равным T = 100 для всех расчетов аналогично работам [3, 13].

В работах [11, 14] была показана возможность обнаружения кластеров в адаптивных сетях, основанная на вейвлет-анализе макроскопической динамики. Для анализа синхронизации с использованием интегральных характеристик мы рассматривали интегральный сигнал, представляющий собой усреднения колебаний по некоторому подмножеству N элементов сети (в данном исследовании рассматривали сигнал, представляющий собой усреднение по всей сети из N осцилляторов)

$$X(t) = \frac{A}{N} \sum_{i=1}^{N} \cos(\varphi_i(t)), \qquad (5)$$

где $\varphi_i(t)$ — это фазы осцилляторов генерируемых от каждого узла в сети, A — амплитуда сигналов, которая в модельной системе была положена равной 1.

Характеристику (5) в первом приближении можно рассматривать как аналог интегрального сигнала электроэнцефалограммы, характеризующего вклад некоторой группы осцилляторов (например, нейронов в нейронной сети) в регистрируемый в эксперименте сигнал от сети осцилляторов (1). Сигнал *X*(*t*) анализировали с помощью непрерывного вейвлетпреобразования [14]

$$W(s,\tau) = \int_{-\infty}^{\infty} X(t) \psi^*(s,\tau) dt, \qquad (6)$$

где * означает комплексное сопряжение;

$$\Psi(s,\tau) = \frac{1}{\sqrt{s}} \Psi_0 \left(\frac{t-\tau}{s}\right) \tag{7}$$

представляет собой вейвлетный базис, где ψ_0 – материнский вейвлет, τ параметр сдвига, *s* – временной масштаб. В своей работе мы будем использовать материнский вейвлет Морле, наиболее подходящий для задачи частотно-временного анализа и распознавания характерных паттернов на сигналах физиологической природы [14]

$$\psi_0(\eta) = \pi^{-\frac{1}{4}} e^{j\omega_0 \eta} e^{-\frac{\eta^2}{2}}, \qquad (8)$$

где центральная частота была выбрана равной $\omega_0 = 2\pi$. В нашем случае при данной центральной частоте соотношение между частотой фурье-преобразования и масштабным параметром (временным масштабом *s*) может быть записано как f = 1/s.

Рис. 1. Вейвлет-спектр интегрального сигнала (5) для различных λ : $\lambda = 1.5$ (кривая *I*), $\lambda = 2$ (кривая *2*), $\lambda = 2.5$ (кривая *3*), $\lambda = 3$ (кривая *4*), $\lambda = 3.5$ (кривая *5*).

РЕЗУЛЬТАТЫ АНАЛИЗА ФАЗОВОЙ СИНХРОНИЗАЦИИ ПО ИНТЕГРАЛЬНЫМ ХАРАКТЕРИСТИКАМ

Рассмотрим результаты численного моделирования адаптивной сети связанных генераторов Курамото (1). Исследовалась сеть из 150 генераторов, значения круговых частот осцилляторов Курамото δ_i были заданы случайным образом в диапазоне [0, 2 π], параметр связи между генераторами будем варьировать в пределах $0 \le \lambda \le 3.5$ с постоянным шагом $\Delta = 0.1$.

При малом параметре интенсивности связи $0 \le \lambda \le 1.5$ на вейвлетной поверхности наблюдается несинхронное поведение элементов сети Курамото, но уже при $\lambda = 1.5$ мы видим три четко выраженных кластера. В работах [11, 14] было показано, что при увеличении интенсивности связи λ наблюдающиеся характерные ритмы, диагностируемые по вейвлетному спектру, связаны с процессом кластеризации, в результате которой с дальнейшем увеличением параметра интенсивности связи происходит установление режима глобальной фазовой синхронизации. Соответствующие усредненные во времени вейвлет-спектры интегрального сигнала приведены на рис. 1 для нескольких значений λ : $\lambda = 1.5$ (кривая *1*), $\lambda = 2$ (кривая 2), $\lambda = 2.5$ (кривая 3), $\lambda = 3$ (кривая 4), $\lambda = 3.5$ (кривая 5). Каждый максимум на вейвлетном спектре соответствует формирующемуся кластеру. Хорошо видно, что с увеличением силы связи λ в адаптивной сети образуются три кластера, число которых далее уменьшается с ростом интенсивности связи, что приводит в итоге к режиму глобальной фазовой синхронизации в сети и, как следствие, образованию единого кластера, включающего все элементы анализируемой сети.

На рис. 2 представлена эволюция распределения фаз анализируемых сетевых кластеров. Данное рас-

Рис. 2. Распределение разности фаз между осцилляторами Курамото в адаптивной сети для различной силы связи λ : $\lambda = 1.5$ (*a*), $\lambda = 2$ (δ), $\lambda = 2.5$ (*b*), $\lambda = 3$ (*c*), $\lambda = 3.5$ (*d*). Цифрами на графике обозначены кластеры, возникающие в сети. Сплошная кривая соответствует функции Гаусса, использованной для аппроксимации распределений.

Результаты выявления кластеров адаптивной сети. Здесь ε — интенсивность силы связи, A — амплитуда пика на вейвлет-спектре сигнала, σ — дисперсия распределения фаз, N — количество осцилляторов в кластере

1 кластер			
3	A	σ	N
1.5	51.3	1.3	31
2	83.4	0.51	53
2.5	41.1	0.66	71
3	261.1	1.13	115
2 кластер			
1.5	23	0.46	30
2	22.3	0.55	97
2.5	57	0.58	79
3	7.8	0.41	35
3.5	100.6	0.5	150
3 кластер			
1.5	5.5	0.89	89

пределение позволяет не только качественно, но и количественно установить число связанных между собой осцилляторов в кластерах адаптивной сети. Сравнивая между собой вейвлет-спектры интегрального сигнала (рис. 1) и распределения фаз сетевых кластеров (рис. 2) можем заметить для случая малой связи $\lambda = 1.5$ (рис. 2*a*) пик с максимальной амплитудой соответствует распределению фаз с наибольшей дисперсией, в то время как распределение фаз с наименьшей дисперсией соответствует второму по величине пику на вейвлет-спектре сигнала. По количеству входящих в кластер осцилляторов рассмотренные кластеры примерно равны. Далее, если рассматривать случай $\lambda = 2.5$ (рис. 2*в*). можно отметить, что кластеры также равны по количеству входящих в них осцилляторов, так как на рассматриваемой зависимости наблюдается равенство дисперсии и амплитуды характеристики. Случай большой связи соответствует единственному кластеру также с Гауссовым распределение фаз осцилляторов (рис. 2д).

В таблице представлены результаты исследования сетевой модели Курамото с адаптивно меняющимися связями. В ней показано, как от интенсивности связей зависит изменение амплитуды вейвлет-спектра, соответствующая дисперсия распределения фаз σ и количество вовлекаемых в отдельные кластеры осцилляторов *N*. Мы видим четкую связь между числом элементов в каждом кластере с амплитудой соответствующего ритма в интегральном сигнале, что открывает возможности по диагностике характеристик кластеров, в первую очередь числа элементов, входящих в тот или иной кластер фазовой синхронизации, образующийся в исследуемой адаптивной сети, по интегральным характеристикам.

ЗАКЛЮЧЕНИЕ

Дан анализ фазовой синхронизации в адаптивной сети фазовых осцилляторов Курамото путем изучения вейвлет-спектров интегрального сигнала и эволюции распределения разности фаз в выделенных синхронных кластерах. Показано, что диагностика синхронизации по вейвлет-спектрам, их сравнение с распределением разностей фаз осцилляторов дают корректное качественное и количественное описание процессов кластеризации при большой силе связи в адаптивной сети. Использование такого подхода позволяет определить, какое количество осцилляторов находится во взаимодействии в том или ином кластере.

Практическая значимость представленных результатов связана с применением разработанного подхода к анализу реальных объектов, состоящих из большого числа сетевых элементов, где экспериментальные данные ограничены использованием интегральных характеристик: сигналы электроэнцефалограм и магнитоэнцефалограмм, биологические популяции того или иного вида, социальные и техногенные сети. Дальнейшим шагом исследования планируется анализ биологических данных на основе проведенной работы.

Работа выполнена при поддержке РФФИ (проект № 15-02-00624, 14-02-31235) и Министерства образования и науки РФ (задания 3.23.2014/К и 931).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pikovsky A., Rosenblum M., Kurths J.* Synchronization: a Universal Concept in Nonlinear Sciences. Cambridge: Cambridge Univ. Press, 2003. 432 p.
- 2. Boccaletti S. et al. // Phys. Reports. 2006. V. 424. P. 175.
- 3. Assenza S. et al. // Sci. Reports. 2013. V. 1. № 99. P. 1.
- 4. Dorogovtesev S.N., Mendes J.F.F. Evolution of networks. Oxford: Univ. Press, 2003.
- Restrepo J.G., Ott E., Hunt B.R. // Phys. Rev. E. 2005. V. 71. P. 036151.
- 6. *Yu L.H., Fang J.C.* // Acta Physica Sinica. 2012. V. 54. № 9. P. 4012.
- Shuai J., Wong K. // Phys. Rev. E. 1993. V. 57. № 6. P. 7002.
- 8. Buzsaki G., Draguhn A. // Science. 2004. V. 304. P. 1926.
- 9. Zschocke S., Speckmann E-J. Basic Mechanisms of the EEG (Brain Dynamic series). Boston: Birknauser, 1993.
- 10. Харченко А.А., Макаров В.В., Храмов А.Е // Изв. РАН. Сер. физ. 2014. Т. 78. № 12. С. 1616.
- 11. *Maksimenko V.A. et al.* // Proc. SPIE. 2015. V. 9322. P. 932213.
- 12. *Kuramoto Y*. Chemical oscillations, waves, and turbulence. N. Y.: Springer-Verlag, 1984. 156 p.
- 13. Makarov V.A. et al. // Proc. SPIE. 2015. V. 9448. P. 94481S.
- Hramov A.E., Koronovskii A.A., Makarov V.A. et al. Wavelets in Neuroscience. Berlin–Heidelberg: Springer, 2015.