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We reveal the main characteristics of noise-induced intermittency in a dynamical system with two coex-
isting attractors. Both the residence time distributions and the mean residence time versus an asymmetry
parameter, are found analytically, for each of the coexisting states, and both of them obey exponential
laws. The proposed theory is applied to a bistable energy model, dissipatively coupled logistic maps and
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1. Introduction

Intermittency is an ubiquitous phenomenon in nonlinear sci-
ence [1]. It is usually understood as the alternation of apparently
regular (periodic or steady state) and irregular (chaotic) behav-
iors, or the alternation of different chaotic regimes. The initially re-
vealed type of intermittency is known as Pomeau-Manneville dy-
namics [2], while the latter is called crisis-induced intermittency
[3]. Intermittent switches between synchronous and asynchronous
behaviors can also occur near the onset of synchronization in a
coupled chaotic system. This type of intermittency is referred to as
intermittent synchronization (see, e.g. [4-9]).

Intermittency is observed in diverse dynamical systems, includ-
ing physical, medical and biological ones (see, e.g., [10-16]). Sev-
eral types of intermittent dynamics are traditionally classified into
types I-III [1,17], on-off [18], eyelet [4,13], and ring [7] intermit-
tencies, as well as mixed intermittency types can be released [19-
21]. Among the different kinds of intermittent chaotic synchro-
nization, one can distinguish intermittent generalized synchroniza-
tion [6], intermittent lag synchronization [5], intermittent phase
synchronization [22,23], etc., depending on the type of the syn-
chronous regime. Each intermittency type is known to be char-
acterized by specific mechanisms and statistical properties which
unambiguously allow the determination of the intermittency type
taking place in the system. Intermittency is typically characterized
by the distribution of laminar phase lengths calculated at the fixed
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control parameters and the dependence of the mean laminar phase
length on a criticality parameter.

Recently, the notion of intermittency was extended to multi-
stable systems, where noise induces switches between coexisting
states. In this case, the system is said to demonstrate noise-induced
intermittency, also known as multistate intermittency [24,25] or at-
tractor hopping [26-30]. Correspondingly, instead of laminar phases
the concept of residence times is used, i.e., time intervals when
the system is in the vicinity of one of the coexisting states with-
out switching between them. As a consequence, for noise-induced
multistate intermittency, the residence time distribution and the
dependence of the mean residence time on a criticality parame-
ter should be considered as statistical characteristics of this kind
of intermittency.

Despite of some achievements in the study of noise-induced
intermittency (see, e.g. [30-36]), there still remains a number of
problems demanding consideration and discussion. One of them is
the lack of an appropriate theory (except for special cases [33-36])
which would reveal the main characteristics of noise-induced in-
termittency, including the case of a bistable dynamical system.

The aim of this work is to develop a quantitative theory
of noise-induced intermittency in a system with two coexisting
regimes, and prove it with several different systems, from the point
of view of the proposed theory comparing the statistical character-
istics of the behavior of these systems with the theoretical predic-
tions.

The paper is organized as follows. In Section 2 we introduce
the general theory of noise-induced intermittency for systems with
two coexisting regimes. In Section 3 we prove our theory with the
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Fig. 1. (Color online) (a,d) Potential functions and (b,c,e and f) residence time distributions for two coexisting regimes in bistable energy model Eq. (1) for two different
values of the asymmetry parameter (a-c) b= 0 and (d-f) b= 0.15. Signs and straight lines show respectively the results of the numerical calculations and theoretical

approximations by the regularity Eq. (22), using the following approximation parameters:

examples of a bistable energy model, two mutually coupled logistic
maps and bistable Chua generator. The main conclusions are given
in Section 4.

2. Theory of noise-induced intermittency

A universal bistable system capable of demonstrating noise-
induced intermittency can be written as

dx dU(x)
T= e TEO. Q)

where S(t) is zero mean &-correlated Gaussian noise [(£(t)) =0

(E(t)E(T)) =DS(t — 1)), and D is the noise intensity. The dimen-
sionless energy function

4
Ux) = ——5+bx (2)

is shown in Fig. 1(a). It has two local minima x; 5 (U'(x12) =
U”(xq,2)>0) separated by the unstable equilibrium x* (U'(x*) =
0, U"’(x*)<0) corresponding to the local maximum of U(x). |b| <
2/(3+/3) is the parameter of the asymmetry of the potential [37-
41]. In the noiseless system (D = 0) the stable fixed points xq 5
correspond to two states of the bistable system, whereas in the
presence of noise (D > 0) two areas: —oco < X < x* and x* < X < +oo,
separated by x* are associated with the rival coexisting regimes. In
fact, Egs. (1) and (2) represent the universal model which describes
the bistable system dynamics, since the diversity of bistable energy
functions can be reduced to the fourth-degree polynomial in the
form of Eq. (2) [42].

The differential Eq. (1) with stochastic term &(t) results in the
stochastic differential equation

dUu(x)
I dt +dw, (3)

dX = —

(b) Ty = 722, (c) T, = 722, (e) Ty = 18508, and (f) T, = 66.

(where X(t) is a stochastic process and W(t) is a one-dimensional
Winner process), equivalent to the Fokker-Planck equation

apxa(f,t) aax[dU(X) x(x. t)}

D d%px(x.t)
2 ox?

(4)

for the probability density px(x, t) of the stochastic process X(t).

Statistical characteristics of the system behavior, namely, the
residence time distribution and the dependence of the mean res-
idence times on the control parameters can be obtained from the
evolution of the probability densities pq »(x, t) for both coexisting
states separately, i.e., pq(x, t) at [ = —oo <x < x* and p,(x, t) at
L, = x* < x < +o0. Both probability densities p; (x, t) must obey
the Fokker-Planck Eq. (4) in their definitional domains Iy ;.

Since in the intermittency regime the coordinate of the sys-
tem state is in the vicinity of one of the local minima for a long
time, we can assume that the probability densities p ,(x, t) can be
found in the form of the metastable distribution, slowly decaying
for a long period of time, i.e.

012(x, ) = A1 2(0)r(x), (5)

where r(x) is the stationary probability density obtained from the
solution of Eq. (4) in the stationary case and A; ,(t) are the coeffi-
cients slowly decreasing in time.

The general form of the stationary probability density r(x) being
the solution of the Fokker-Planck Eq. (4) can be obtained (see [43])
as

r(x) = exp (— ZU[EX)> |:C1 +G / exp (ZU(S)) d&] (6)

Having found the constant C, from the extremum condition

r(x12)=0G =0, (7)
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we get the final form of the stationary probability density function

r(x) = Cyexp (— ZUD(X)), (8)
where C; can be found from the normalization condition

+00
/ r(x) dx = 1. 9)

Finally, the stationary probability density r(x) can be expressed in
the form

rx) = B (10)
/_ g(E)dE

where

£(6) = exp (—2”,@) ()

The explicit form for the function A(t) can be, in turn, derived
from the differential equation
dA1 2 k

L= ——A (D)1 (xY), 12

a =g Ore) (12)

where x* is the critical point separating two coexisting states of
the bistable system Eqs. (1) and (2), k is a proportionality factor,
and P; , are the probabilities for the representation point to be
located in the vicinity of the first or the second local minimum,
respectively, defined as

f g(E)dE
P1=/ rE)dE =t
- G
- (13)
. g(E)dE
P, = / r(§)dé = /7
x* g(é)dé

In the limit of a large potentlal barrier in comparison with the
noise intensity A; ,(t) will decay exponentially! as

A (0) = A1 (0) exp (—"jf" )r) (14
1.2

with different exponents for each of the two local minima, that (as

we will show later) results in the exponential character of the res-

idence time distributions for each of the two coexisting regimes.

Indeed, the residence time distribution for the regime correspond-

ing to the first local minimum can be expressed as (see, e.g., [48])

apr(x, t
o= [ 2D (15)
while for the second local minimum, Eq. (15) takes the form
apa(x,t
p=- [ 028D (16)
-

Substituting Eqs. (5), (10), (11) and (14) into Egs. (15
and taking into account the normalization conditions

[ meod= [ morede=1
[ meode= [T nored =1

) and (16),

(17)

T It should be noted that in more general case (e.g., when the noise intensity is
comparable or larger than the potential barrier height) the Eq. (12) is not valid, and
solution can be found only numerically (see [44-47] for details).

we obtain the following relations for the residence time distribu-
tions:

P1.2(t) = K12 €Xp (—Kq2t), (18)
where
kr(x*
K12 = P( )7 (19)
1.2

i.e., in the regime of noise-induced intermittency the residence
time distributions obey the exponential laws.

On the basis of the obtained relations Eqs. (18)and (19
definition of the mean value

+00
Ty = /O tp1a(t)dt (20)

) and the

we obtain the relation for the mean residence times for each of
the two coexisting regimes

1 _ P
k1a  kr(x®)’

Ty = (21)
Therefore, the analytical Eq. (18) for the residence time distribu-
tions in the regime of noise-induced intermittency can be written
in the following form

pra() = = exp (—f) (22)
2 1,2

Having substituted the explicit relations for the probabilities P;
and stationary probability density r(x*) into Eq. (21) and taking
into account that the boundary point x*~b for small b, we obtain
the expressions for the mean residence times corresponding to the
coexisting regimes as follows

T —L—]ex 2 g-kb—z
=P p\T T2
Ly 2(b* b?
T2 = ?exp [D(‘l + 5 s (23)

where the integrals

X* 400
L=[ s)de and L= [ g@)ds (24)

can be found numerically.

In the symmetric case (b = 0) the mean residence times T; and
T, match each other, Ty = T, = T. Moreover, as it has been shown
in [49-51], they should coincide with the mean first passage time
of the point of symmetry. Furthermore, the integrals (24) can be
found in the explicit form allowing the analytical expression for
the mean residence time

T= & (4]D>[' ”“(41D> ””4(4113)] (2)

where I,(x) is the modified Bessel function of the first kind.

Thus, in the regime of noise-induced intermittency the statisti-
cal characteristics of the residence time should obey Eqs. (22) and
(23).

3. Examples of noise-induced intermittency

To verify our theoretical predictions we analyze numerically the
behavior of three different bistable systems which exhibit noise-
induced intermittency.

3.1. Bistable energy model

As the first example we consider the bistable energy sys-
tem (1) given in Section 1 with the potential function Eq. (2) and
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Fig. 2. (Color online) Dependencies of (a) integrals L; , and (b) mean residence times Ty , for two coexisting regimes on criticality parameter b (dots) and their approxi-
mations by exponential laws Eqs. (26) and (28) (solid lines) and Eq. (27) (dashed lines). Parameters of approximations are (a) C = 72.86, o = 18.86, (b) K = 867, o = 18.85,

D=0.1.

noise intensity D = 0.1. Fig. 1(a) and (d) show the potential func-
tions U(x) for the symmetric (b=0) and asymmetric (b= 0.15)
cases. In the same Fig. 1(b,c,e and f) we plot the correspond-
ing statistical distributions of the residence times for two coexist-
ing regimes: in Fig. 1(b,e) for the left state —co <x < x*, and in
Fig. 1(c,f) for the right state x* < x < +oo. The results of the numer-
ical simulations are marked by dots and triangles for two coexist-
ing regimes, while the theoretical approximations using the expo-
nential laws Eq. (22) with the parameters indicated in the caption,
are represented by straight lines. An excellent agreement can be
seen between the results of the numerical calculations and theo-
retical approximations for both the symmetric and asymmetric po-
tentials; this demonstrates the validity of the developed theory.

As additional evidence for the correctness of the obtained re-
sults, we find the dependence of the mean residence time for each
of the coexisting regimes, on the control parameter b. The analyt-
ical relation for such a dependence requires the calculation of the
integrals Ly , (Eq. 24) for different values of the asymmetry param-
eter b. In Fig. 2(a) we plot these dependencies calculated numeri-
cally for both integrals (marked by dots) and their approximations
(solid lines). It is clearly seen that the exponential laws fit these
dependencies very well, i.e.

Ly = Cexp(Fab) (26)

with the constants C = 72.86 and o = 18.86. Thus, the mean res-
idence times for both coexisting regimes obey the following rela-
tion

4 2
T, = Kexp(xab) exp [12) (Z + bz>:| (27)

where K = C/k is constant.

Fig. 2(b) shows the numerically obtained dependencies of
the mean residence times for two coexisting regimes (marked
by dots) and their theoretical approximations by regularities
Eq. (27) (dashed lines). The curve T; corresponds to the left state
X1, while the curve T, refers to the right state x,. The approxima-
tion parameters are indicated in the caption. A very good agree-
ment is clearly seen between the results obtained theoretically and
numerically in almost the whole range of the considered values of
the asymmetry parameter b.

It should be noted that for the small values of the asymmetry

parameter b the exponential term exp [%(% + %)] in Eq. (27) is
close to 1, and, therefore, the dependencies of the mean residence

500

200
100

0.5 1.0 1.5 20 D

Fig. 3. (Color online) Dependence of mean residence time T on noise intensity D
obtained for symmetrical case b = 0 numerically (dots) and theoretical prediction
Eq. (25) (solid line). The ordinate axis is shown in log scale.

times can be approximated by the exponential law
Ti» = Kexp(Fab). (28)

These dependencies are shown in Fig. 2(b) by straight solid lines.
It is clearly seen that for b € [-0.15,0.15] the theoretical curves
Egs. (27) and (28) almost coincide with each other, which allows
the successful application of the same approximation Eq. (28) to
the numerical data. For relatively large values of the asymmetry
parameter b the numerically obtained data distants itself from the
theoretical approximation curves by Eq. (28), meaning that the as-
sumption at the derivation of regularity Eq. (28) cannot be applied
anymore and, therefore, the initial theoretical law Eq. (27) must be
used.

Finally, the deduced dependence of the mean residence time on
the noise intensity Eq. (25) for the symmetrical case b =0 is also
in a good agreement with the results of the numerical calculations
(see Fig. 3). The mean residence times obtained for different values
of the noise intensity represented in Fig. 3 by dots are successfully
fitted by the predicted theoretical curve Eq. (25) within the broad
range of the parameter D.

Thus, for relatively small values of the asymmetry parameter
b, the dependencies of the mean residence times for both coex-
isting regimes obey the exponential laws (28) in full agreement
with our theoretical prediction, whereas for large values of b, the
more sophisticated and more precise expression Eq. (27) should
be used. For fixed values of the asymmetry parameter and noise
intensity, the residence time distributions satisfy the exponential
laws Eq. (22).
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Fig. 4. (a) Residence time distributions of the system (29) for in-phase (curves 1,3) and anti-phase (curves 2,4) states for the fixed values of the control parameters (A =
1.05, D =0.06, € = 0.002 for curves 1,2, ¢ = 0.012 for curves 3,4) and their theoretical approximations by the regularity (22). Theoretical curves are shown by solid lines,
numerically obtained data are marked by point. Vertical axis is shown in logarithmic scale. (b) Dependencies of the mean residence times for in-phase (curve 1) and anti-
phase (curve 2) states on the coupling parameter ¢ and their theoretical approximations by regularity (27). Theoretical curves are shown by solid lines, numerically obtained
data are marked by point. Vertical axis is shown in logarithmic scale. Parameters of approximations have been selected as follows: K = 2350, « = 40.
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Fig. 5. Time realizations (a,c) of the change of voltage on nonlinear element of Chua generator (30) and phase portraits (b,d) of such system for different values of the noise

intensity: (a,b) D= 0.0, (cd) D= 1.0.

3.2. Coupled logistic maps

In the next example we consider two mutually dissipatively
coupled logistic maps studied in [52,53] with multiplicative noise.
It should be noted that just the multiplicative noise plays an essen-
tial role in biological systems (see, e.g. [54-56]). The system under
study is given by

Xni1 = f(xn, A) + €(f(Yn. A) + Df(€n, 1) — f(xn, 1)),
Vor1 = fOn A) +e(f(xa, A) + Df (6n, 1) — f(Yn, M),

where f(x,A) =X —x2, &, is a noise term with zero mean value,
D is a noise intensity, A is a control parameter, &£ is a coupling
strength. As it has been shown in [52], for the certain values of
the control parameters logistic maps under study can demonstrate
both in-phase and anti-phase states depending on the choice of
initial conditions. If the additional noise term is added in the sys-
tem, i.e. D>0, as in the case of energy model (1) and (2), the
switching between the in-phase and anti-phase states would be
observed. As we have shown in [53], such switching can be charac-
terized by the parameter z,;, = x,,, at condition y,, < 0.6, at that the
distribution of z, should be described by Eq. (2). In other words,
the appearance of the noise-induced intermittency in the system
(29) allows us to apply the theory developed in Section 2 to the
system under study. In Fig. 4 we show the numerically obtained
distributions of the residence times corresponding to the in-phase
and anti-phase regimes (a) and dependencies of their mean resi-

(29)

dence times on the control parameter ¢ (b) as well as their the-
oretical approximations by the regularities Eqs. (22) and (27), re-
spectively. It is clearly seen a good agreement between the theo-
retically and numerically obtained data for both regimes observed
in the system.

3.3. Bistable Chua generator

As the last example we consider bistable generator with chaotic
dynamics proposed by Chua et al. [57]. The system under study is
given by

Xx=y—x—h(x) +D§,
y=al(x-y+2),
z=-8(y+ p2),

where £(t) is random Gaussian process with zero mean and unit
variance, D is an intensity of noise influence, variable x charac-
terises the change of voltage on nonlinear elements of the system,
variable y corresponds to the changes of voltage on capacitors in
oscillatory circuit, whereas the variable z characterizes the changes
of inductor current [58]. As characteristic of nonlinear element the
third-degree polynomial has been used [58]:

h(x) = —1.25x — 0.1x°.

(30)

(31)

The constant coefficients have been selected as follows: @ =9, § =
9. The dissipation parameter p has been chosen to be p = 0.01,
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Fig. 6. (a) Residence time distributions of Chua generator (30) near the first stable state and their theoretical approximations by the regularity (22): 1 — D=0.26, 2 —
D =0.32, 3 — D=0.37. (b) Dependence of the mean residence time for the system (30) near the first stable state on the noise intensity and its theoretical approximation
by the regularity (27) for k = 0.318. Theoretical curves in Fig. 6(a,b) are shown by solid lines, numerically obtained data are marked by points. Vertical axes are shown in

logarithmic scale .

that corresponds to the realization of autonomous oscillations in
the system under study in the one from two basins of attraction
depending on the choice of initial conditions. Fig. 5(a) illustrates
such situation in the case when the external noise amplitude D is
equal to zero, i.e. the system under study remains near the one
stable state. The phase portrait of Chua generator in such case is
shown in Fig. 5(b). At that, if the noise of high enough amplitude
influences on the system, the sequential transitions from the one
stable state to the other one would be observed. In other words, in
such case in Chua generator (30) the noise-induced intermittency
would be observed. Such situation is illustrated in Fig. 5(c) where
it is clearly seen that the system alternately switches from the one
stable state to the other one. In Fig. 5(d) the phase portrait of the
system in such case is shown.

Then we have analyzed the statistical characteristics of noise-
induced intermittency in the system under study (30). Due to the
symmetry of the chaotic attractor, we have restricted by the con-
sideration of such characteristics near the only one stable state.
In Fig. 6(a) the residence time distributions corresponding to the
first stable state of Chua generator for the fixed values of the
control parameters are shown. The numerically obtained data are
marked by points, their theoretical approximations by the regu-
larity (22) are shown by solid lines. Moreover, we have also ob-
tained the dependence of the mean residence time for the same
stable state of the system (30) on the noise intensity. It is shown
in Fig. 6(b) by points, its theoretical approximation by the regular-
ity (25) is specified by solid line. It is clearly seen from Fig. 6(a,b)
that the theoretical predictions and numerically obtained data are
in a good agreement with each other that allows us to apply the
proposed theory to the flow systems demonstrating chaotic dy-
namics.

4. Conclusion

In the present paper we have proposed the theory of noise-
induced intermittency in bistable dynamical systems. We have
shown that the residence time distributions for every coexisting
regime obey the exponential laws. The exponential law has also
been observed for the dependencies of the mean residence times
on the criticality parameter. The validity of the proposed theory
has been demonstrated with the help of the bistable generic en-
ergy model, coupled logistic maps and bistable Chua generator.

It should be noted that despite of the fact that the most part
of results has been obtained for the Gaussian source of noise, they
remain qualitatively the same for other sources of noise added in
the systems under study that is quite typical for nonlinear systems
including chaotic ones (see, e.g., [20,59-63]).

Authors thank Prof. Alexander N. Pisarchik for useful comments
and discussions. This work has been supported by Russian Founda-
tion for Basic Research (project no. 16-32-60078).
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