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Abstract—In this paper, we discovered the increase in EEG
power in the theta frequency range in the occipital cortex during
a visual analysis of new information and the power decrease in the
alpha range in the temporal lobe during retaining information.
The revealed increase in theta power correlates with the response
time and errors rate. The alpha power correlates with response
time. Summarizing the above, the detected cluster of theta-
activity during information perception may reflect the increased
concentration of attention.

Index Terms—Electroencephalography, source localization,
cognitive activity analysis, efficiency of information processing,
working memory, learning information, retrieving information

I. INTRODUCTION

Currently, the urgent tasks of cognitive sciences are associ-

ated with the search for opportunities to increase the efficiency

of retaining new information through intelligent systems to op-

timize the educational load, taking into account the individual

psychophysiological characteristics of students, their cognitive

state, and characteristics of memory [1]–[3]. This direction is

actively developing in world science [4]. A bulk of works aim
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to identify neurophysiological markers that characterize the

efficiency of the human brain in the process of perception and

assimilation of information and the efficiency of memory [5]–

[7]. In these works, the features of the time-frequency and

space-time structure of brain activity signals are determined

using artificial intelligence methods and statistical analysis

[8]–[14]. However, as a rule, the specific neurophysiological

mechanisms of neural activity that determine the formation of

the corresponding patterns are not discussed in detail. As a

result, the developed approaches are characterized by a strong

binding to a specific subject and instability of operation due

to the variability of the properties of neural activity under

the influence of external and internal factors. In addition,

the mechanisms that determine the relationship between the

cognitive state of a person and the efficiency of memory in the

process of retaining new information remain poorly understood

[15].

Here, we investigate the mechanisms of the neural activity

responsible for the relationship between the cognitive state

of a person in the learning process and the effectiveness of

assimilation of educational material.
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Fig. 1. Arrangement of EEG electrodes on the subject’s head based on scheme
10-10; Nz – ground, REF – reference.

II. MATERIALS AND METHODS

The experimental design was based on the Sternberg

paradigm. This test allows one to explore information-

processing mechanisms in short-term memory [16]. The main

part of the experiment begins and ends by recording the

background activity for 60 s and consists of four blocks of

tasks. Each block in the main part consists of 72 trials; within

a trial, it is necessary to complete the task in the form of the

Sternberg test.

The experimental studies involved 17 student volunteers (11

males and 6 females, mean age – 20 years) — nonsmokers,

not taking medications, not involved in professional sports,

with normal or restored to normal vision, without a history

of neurophysiological diseases. Within 48 hours before the

experiment, all volunteers were asked to adhere to a healthy

lifestyle: ensure at least 8 hours of sleep, eliminate alcohol

consumption, eliminate or limit consumption of caffeine-

containing foods, and avoid excessive physical exertion. The

volunteers were familiarized with the experimental procedure

in advance and were aware of the possible inconveniences

associated with participating in the experiment. Also, they had

the opportunity to ask questions of interest and get satisfactory

answers to them. Each volunteer completed and signed an

informed consent form for participation in the experiment. All

experimental works were carried out in accordance with the

requirements of the Declaration of Helsinki and approved by

the Ethics Commission of Innopolis University.

The experiment was carried out as follows. The subject

sat in a specialized chair for carrying out neurophysiological

experiments. There was a monitor on the table in front of

him (distance from the screen to the eyes 90 cm; monitor

resolution 1920 x 1080). A mouse and two one-button remote

controls were used as input devices. The monitor was used

to demonstrate tests and tasks, while input devices were

used to record the subject’s responses. The duration of each

experiment was about 60-65 minutes. During the experiment,

the electrical activity of the brain was recorded using ac-

tiCHamp electroencephalograph (Brain Products, Germany).

EEG signals were recorded from 63 channels following the 10-

10 scheme (see Fig. 1). The ground (Nz) was located at the lo-

cation of the Fpz electrode, and the reference electrode (REF)

was placed behind the right ear. For EEG registration, active

Ag/AgCl electrodes ActiCAP were used, which were located

on the scalp surface in the sockets of a special EasyCAP cap.

The scalp was pretreated with NuPrep abrasive gel to improve

signal quality and provide better conductivity, and then the

electrodes were positioned using SuperVisc conductive gel.

In the experiments, EEG signals were recorded with a

sampling rate of 1 kHz and filtered using: bandpass (1-70 Hz)

and notch (49.5-50.5 Hz) filters. The bandpass filter limits the

considered frequency range on the EEG signals and removes

low-frequency and high-frequency activities not associated

with the EEG. The notch filter removes 50 Hz interference

from the power grid. Eyes blinking and heartbeat artifacts re-

moval was performed by the Independent Component Analysis

(ICA). Data was then inspected manually and corrected for

remaining artifacts.

The work investigates the influence of task complexity,

expressed in the amount of processed information, on the

cognitive mechanisms of material learning. The amount of

information was measured in the number of symbols (letters)

that the subject had to remember. According to the number of

memorized symbols, we divided the difficulty into three levels:

Low, Moderate, and High. At first, we studied the influence of

task complexity on behavioral assessments of the effectiveness

of information processing: the time that the subject spent

retrieving information from memory when passing the test

(response time, RT) and the percentage of erroneous answers

(errors rate, ER). We used repeated-measures ANOVA for the

analysis.

For EEG analysis, we considered three types of trials. The

first type (TOI1) had a duration of 1.5 seconds and was

time-locked to the moment of information presentation. In

this case, we analyze the effect of task complexity on neural

activity associated with processing sensory information. The

second type of trial (TOI2) had a duration of 3 seconds

and was time-locked to the moment of disappearance of the

material. Here we study the effect of task complexity on neural

activity associated with learning (placement of information

in working memory). The third type of trial (TOI3) had a

duration of 2 seconds and was time-locked to the moment of

the presentation of the test card. In this case, we investigate

the influence of task complexity on neural activity associated

with retrieving information from working memory.

To identify the mechanisms of the neural activity respon-

sible for the relationship between the cognitive state of a

person and the efficiency of memorization, we localized the

sources of neural activity in frequency bands of interest (FOI)

corresponding to the time-frequency clusters identified at the

sensor-level [17]. To this end, the exact low-resolution elec-

trical tomography (eLORETA) method [18] was used, which

works in the time domain. The Colin27 brain MRI template

[19] was used to create a head model based on the boundary

element method (BEM) with three tissue types (brain, skull,
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Fig. 2. Distribution of the F-statistic value in 3 orthogonal sections (A) and
twenty head slices in a single plane (B) in the cluster identified for TOI1 in
the frequency range 6-8.5 Hz, in which the power of the sources significantly
differs between 3 levels of task difficulty. The cross in Figure A indicates the
area with the highest F-statistic. (C) Dependence of the power of the sources
in the identified cluster, averaged over all subjects, on the task complexity.

and scalp) [20]. As a result of applying the eLORETA method

for each condition, the power distributions of the activity of the

sources in the brain on a three-dimensional grid with 11930

nodes (voxels) were obtained. We used the brain atlas with

automated anatomical labeling (AAL) [21] to correlate the

location of the sources with the anatomical regions of the

brain. Note that the powers of the sources were averaged over

the corresponding time interval of interest (TOI). To reduce

the variability of the obtained power distributions between the

subjects, they were normalized to the power of the sources

at rest (the so-called ”baseline correction”) in the form of a

relative change. The statistical F-test was used to compare

the obtained power distributions of the sources corresponding

to different conditions. The problem of multiple comparisons

was solved using a cluster permutation test with Monte Carlo

randomization [22]. To analyze the direction of the effect

between conditions, we averaged the power of the sources over

the voxels included in the corresponding identified cluster.

We used FieldTrip software for all processing [23]. Cor-

relation analysis was carried out using the repeated-measures

correlations method [24]. For each case, the correlation coef-

ficient, the value of the statistics, and the confidence interval

boundaries were calculated.

III. RESULTS

For TOI1, we found a significant cluster in the 6-8.5 Hz

frequency range with a significance level of 0.0085 (see

Fig. 2A, B). The cross in Fig. 2A indicates the zone with

the highest F-statistic, located in the left hemisphere in the

vicinity of the visual sulcus (Calcarine L) and the middle

occipital gyrus (Occipital Mid L). The cluster includes the

following areas of the brain in the left hemisphere: Calcarine
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Fig. 3. Distribution of the F-statistic value in 3 orthogonal sections (A) and
twenty head slices in a single plane (B) in the cluster identified for TOI2 in
the frequency range 7-9.25 Hz, in which the power of the sources significantly
differs between 3 levels of task difficulty. The cross in Figure A indicates the
area with the highest F-statistic. (C) Dependence of the power of the sources
in the identified cluster, averaged over all subjects, on the task complexity.

L, Cuneus L, lingual gyrus (Lingual L), superior occipital

gyrus (Occipital Sup L), Occipital Mid L, inferior occipital

gyrus (Occipital Inf L), fusiform gyrus ( Fusiform L), middle

temporal gyrus (Temporal Mid L), inferior temporal gyrus

(Temporal Inf L), and cerebellar zones. The power of the

sources in this cluster increased with the increasing complexity

of the task (see Fig. 2C).

For TOI2, we found a significant cluster in the 7-9.25 Hz

frequency range with a significance level of 0.003 (see Fig. 3A,

B). The cross in Fig. 3A indicates the zone with the highest F-

statistic, located in the left hemisphere in the vicinity of the su-

perior temporal gyrus (Temporal Sup L). The cluster includes

the following areas of the brain in the left hemisphere: precen-

tral gyrus (Precentral L), opercular part of the inferior frontal

gyrus (Frontal Inf Oper L), rolandic operculum (Rolandic

Oper L), insular lobe (Insula L), amygdala (Amygdala L ),

middle occipital gyrus (Occipital Mid L), inferior occipital

gyrus (Occipital Inf L), postcentral gyrus (Postcentral L),

supra-marginal gyrus (SupraMarginal L), Heschl L, superior

temporal gyrus (Temporal Sup L), middle temporal gyrus

(Temporal Mid L), inferior temporal gyrus (Temporal Inf L),

and the cerebellar zone. The power of the sources in this

cluster decreased with the increasing complexity of the task

(see Fig. 3C). We identified no significant clusters for TOI3.

We obtained the following results from the analysis of

correlations between the efficiency of information processing,

expressed in response time (RT) and errors rate (ER), and

patterns of neural activity. The response time (RT) positively

correlates with the power of sources of neural activity in

the theta range in TOI1: r(29) = 0.61, p = 0.00022, 95%

confidence interval: [0.3220.801]. The RT negatively correlates

with the power of neural activity sources in the alpha range
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in TOI2: r(29) = −0.518, p = 0.00282, 95% confidence

interval: [−0.743 − 0.187]. The error rate (ER) positively

correlates with the power of sources of neural activity in

the theta range in TOI1: r(29) = 0.557, p = 0.0011, 95%

confidence interval: [0.2390.767]. The ER does not correlate

with the power of sources of neural activity in the alpha range

in TOI2: r(29) = −0.331, p = 0.068, 95% confidence interval

[−0.6220.040].

IV. CONCLUSION

We revealed that, in terms of neural activity, there is an

increase in EEG power in the theta range in the occipital cortex

during a visual analysis of information (TOI1), as well as a

decrease in the power in the alpha range in the temporal lobe

during memorization (TOI2). The increase in theta power in

TOI1 correlates with the RT and ER. The alpha power at TOI2

correlates with RT but is not correlated with ER. Summarizing

the above, the detected cluster of theta-activity during infor-

mation perception may reflect the increased concentration of

attention. According to the results of the correlation analysis,

this indicator determines the effectiveness of the subject during

the subsequent retrieving of information from memory, both

in terms of RT and ER.

V. ACKNOWLEDGMENT

This work was supported by the Russian Science Foundation

(Grant No. 19-72-10121).

REFERENCES

[1] G. Knyazev, E. Merkulova, A. Savostyanov, A. Bocharov, and
A. Saprigyn, “Personality and eeg correlates of reactive social behavior,”
Neuropsychologia, vol. 124, pp. 98–107, 2019.

[2] L.-W. Ko, O. Komarov, W. D. Hairston, T.-P. Jung, and C.-T. Lin,
“Sustained attention in real classroom settings: An eeg study,” Frontiers
in human neuroscience, vol. 11, p. 388, 2017.

[3] T. Bukina, M. Khramova, and S. Kurkin, “Modern research on primary
school children brain functioning in the learning process,” Izvestiya VUZ.
Applied Nonlinear Dynamics, vol. 29, no. 3, pp. 449–456, 2021.

[4] V. Maksimenko, A. Kuc, N. Frolov, S. Kurkin, and A. Hramov, “Effect
of repetition on the behavioral and neuronal responses to ambiguous
necker cube images,” Scientific Reports, vol. 11, no. 1, pp. 1–13, 2021.
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