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Abstract—This work is devoted to the study of one of the
fundamental properties of the beam, namely, space-charge-
limited current in a cylindrical drift tube located in an external
magnetic field of various intensities. The value of the external
magnetic field is determined for different beam energies, at which
a sharp change in the critical current and beam dynamics occurs.

Index Terms—nonlinear dynamics, electron beams, virtual
cathode

I. INTRODUCTION

One of the fundamental issues of electronics and plasma
physics is the analysis of the nonlinear dynamics of the various
systems [1]-[6]. The processes of interaction of electromag-
netic fields with electron beams in the VC formation mode
have a unique combination of fundamental and applied sig-
nificance for high-power relativistic electronics, radiophysics,
and plasma physics [7]-[13]. Indeed, the collective effects of
space charge leading to the formation of VCs are characteristic
of various types of vacuum electronics devices (vircators,
relativistic klystrons, etc.) [14]-[20].

At the same time, beam-plasma system with VC is a typical
active distributed electron-wave medium capable of demon-
strating various nonlinear effects such as the formation and
interaction of electronic structures, turbulence, etc. [21]-[29],
[29]-[31]. Powerful electromagnetic radiation generated by
devices with VC can be used in various practical applications
[1], [2]. This work is devoted to the study of one of the
fundamental properties of the beam, namely, space-charge-
limited current in a cylindrical drift tube located in an external
magnetic field of varying intensity.

II. MAIN RESULTS

It is well known that when an electron beam is injected
into the equipotential drift space, the potential sags due to
the action of space charge forces. In this case, the potential
sagging in the system increases with an increase in the injected
current. As a result, in the region between the injection plane
and the potential minimum, the electron beam is decelerated
until it stops completely and turns back to the injection plane
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at a current equal to the critical one. Such processes lead to the
accumulation of negative charge in the region of the potential
minimum, which contributes to its further sagging.

Let’s consider the results of analysis of the critical current.
Note, that this current is an important value for understanding
the physical processes in VC-based generators from both
fundamental and applied points of view since it determines
the starting conditions for their generation. The critical current
in a vacuum for a completely magnetized electron beam is
determined by the following expression:
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where 7y is a relativistic factor, G is a geometric factor equal
G = % + QZn%D for a tubular electron beam, and G = 1 +
QZnR;—’b“ — for a continuous one, 7} is the average radius of the
beam, R,, is the radius of the drift tube, d is the thickness of
the beam.

0 01 02 03 04 05 06 07 08 09 1
BT

Fig. 1. Dependence of the normalized critical current on the external
longitudinal magnetic field B for a beam in a cylindrical drift chamber of
radius Ry, = 10 mm. Curve 1 — critical current for the beam energy
W = 400keV; Curve 2 — critical current for the beam energy W = 800keV;
Beq(k) — dependence of the magnetic field on the injected current at which
the expanding beam reaches the radius of the drift tube.

Figure 1 shows the dependences of the critical current
normalized to the current determined by the formula (1) on the
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external longitudinal magnetic field B for two values of the
beam energy (400 and 800keV). One can see that the critical
current smoothly increases with an increase in the magnetic
field to a certain characteristic value B4, upon overcoming
which the critical current in the system falls.

Consider the motion of electrons in a magnetic field. We will
assume that the external magnetic field is strong enough that
the intrinsic magnetic fields of the beam can be neglected. Let
the electron flow with current I, have radius R}, in the injection
region, and radius R in the VC region. When electrons move
in a constant magnetic field between points with radii R, and
R, they acquire an angular momentum, which is proportional
to the difference between the induction flows through the REB
cross-sections at points with radii R and R [32]:
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where df/dt is the azimuthal velocity of the electrons. The
motion of electrons is determined by the action of the cen-
trifugal force F, = ~yomer (df/dt)®, the Coulomb repulsive
force F), = —eFE, and the Lorentz force F;, = —er(df/dt) By
(where e and m,. are the charge and mass of the electron,
respectively, r is the radial coordinate of the electron, F,
is the radial component of the space charge field strength).
Considering the above, the relation (2) and the equation
d?r/dt? = (2nVo/v0)d*r/dz?, one can write down the
equation of motion for the boundary electron of the beam:
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where Vj is the accelerating voltage.

From the equation (3) it follows that there is a characteristic
value of the beam current ., for a fixed external magnetic
field By at which the relativistic electron beam (REB) main-
tains a constant radius R. Indeed, we can determine it if we
put d?r/dz? = 0 in the equation (3), which means there is no
acceleration in the radial direction. Let us fix R = R,, and
find the dependence of the equilibrium value of the magnetic
field on the value of the injected current:

V2kIyE?
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where B, is the equilibrium value of the magnetic field, 7 is
the initial radius of the considered electron, I, is the critical
current in a vacuum for a completely magnetized electron
beam, k is the ratio of the injected current to I,.

To understand the physical mechanisms responsible for the
sharp drop in the critical current, it is necessary to consider
the dynamics of the relativistic electron beam in a certain
neighborhood of B,,. Let us describe the beam dynamics for
three characteristic values of the magnetic field.

Beg(k) = R “4)

e At B < B, the injected electron beam is rapidly
expanded under the action of space charge forces and is
deposited on the walls of the waveguide. In this case, the
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potential sagging in the beam is observed in the region
between the injection plane and the nearest point of beam
settling on the waveguide walls. In this case, the critical
current is relatively large due to the fact that expanding of
the beam significantly reduces the space charge density.
At B = B, the external magnetic field compensates
the effect of the Coulomb forces. When propagating in
the drift chamber due to the Coulomb forces of the
space charge, the electron beam acquires a radial velocity
directed to the walls of the waveguide and begins to twist
in the external magnetic field. Upon reaching a radius of
the order of the drift tube, the beam is compressed to
the radius approximately equal to the injection radius.
Note that when it enters the drift space, the longitudinal
beam velocity decreases, while the radial velocity, on the
contrary, increases. When approaching the walls of the
drift chamber, the REB electric field lines are closed on
the walls of the drift chamber, that leads to an increase
in the critical current in this region of space, despite the
fact that the longitudinal beam velocity has decreased.
Further, when the beam reaches the equilibrium radius,
the radial velocity changes its sign, the beam begins to
compress and the reverse process begins. The field lines
become less closed on the walls and the critical current
for this region of space falls. When it becomes less than
the beam current, a VC forms. Note that a VC forms
much farther from the injection plane, in comparison with
the previous case.

At B > B.q the equilibrium beam radius becomes less
than the drift tube radius. The beam does not settle on
the walls. At the same time, this leads to an increase in
the space charge density and a greater deceleration of the
bunch in the longitudinal direction when entering the drift
tube. A decrease in the equilibrium radius also leads to
a smaller closure of the electric field lines on the walls.
Thus, the combination of these factors leads to a sharp
decrease in the critical current and its approach to the
theoretical value for a completely magnetized beam.
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