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Abstract—A method for increasing the accuracy of estimation of the predictability time of noisy chaotic
dynamics from system-related point sequences is proposed. General laws observed in the application of this
method to interspike interval series of model threshold devices of two types operating in the regime of phase-
coherent chaos are illustrated.
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The main peculiarity of dynamical systems exhibit-
ing chaotic regimes consists in that small changes in
the initial conditions and/or parameters of the system
lead to loss of predictability of the oscillatory process
in some time. The degree of predictability will also
change if the chaotic regime is studied in the presence
of additional sources of f luctuations. To estimate the
maximum time for which the system behavior can be
predicted, a concept of predictability-time horizon is
introduced [1] that depends on a priori data concern-
ing the system studied and the statistics of noise. If the
prognosis is based on experimental data, the predict-
ability time τp is frequently defined as the “Lyapunov
time”—a time interval for which the distance between
adjacent phase trajectories increases by a factor of e.
Estimation of the predictability horizon for a system
with chaotic dynamics as the inverse of the maximum
Lyapunov exponent (τp = 1/λ1) implies that an error in
determining the predictability time will arise provided
that calculation of the maximum exponent gives an
incorrect λ1 value.

The accuracy of calculation of the λ1 value depends
on the kind of information available about the system
dynamics. If the equations of a mathematical model
are known, the spectrum of Lyapunov exponents can
be calculated with required accuracy using a standard
algorithm [2]. When an analysis is carried out using
time series of a dynamic variable, then methods of
dynamical system reconstruction have to be employed
[3–5]. The problem of calculating Lyapunov expo-
nents becomes more complicated if the dynamic vari-
able is subject to transformations, leading to decrease
in the volume of information available on the system
dynamics. In particular, chaotic signal transformation
by threshold devices [6–9] results in that information

on the system dynamics acquires the form of time
series of stereotype pulses (interspike intervals, ISIs)
generated upon crossing the threshold, which are
referred to below as “point sequences.”

The possibility of using point sequences to estimate
the characteristics of chaotic dynamics, such as the
correlation dimension and Lyapunov exponents, has
been considered previously [6–13], and the conditions
have been determined under which the dynamic
regime at the input of a threshold device can be cor-
rectly identified. At high frequencies of pulse genera-
tion by a threshold device, the Sauer theorem is valid
that is applicable to point sequences of the “integrate-
and-fire” (IF) model type [10]. In the case of relatively
low frequencies and other models of threshold
devices, e.g., of the “threshold crossing” (TC) type,
the possibility of calculating Lyapunov exponents has
been confirmed by numerical simulations [11–15].
However, the aforementioned works did not take into
account the presence of measurement noise in the
input oscillatory process, which leads to additional
fluctuations of the ISI duration.

The present investigation was intended to modify
the method of determining the maximum Lyapunov
exponent [5] so as increase the accuracy of estimation
of the time of chaotic-dynamics predictability in the
case of a noisy-point process and the absence of data
on noise intensity.

The main idea of the proposed approach is as fol-
lows. The standard algorithm [5] stipulates the calcu-
lation of λ1 as the average rate of exponential expan-
sion of trajectories in a reconstructed phase space.
During the analysis of one-dimensional projections of
phase trajectories belonging to the chaotic attractor
upon reconstruction, the boundaries of linear approx-
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imation [lmin, lmax] for perturbation vector r(t) are
determined that correspond to the expansion of tra-
jectories related to the system dynamics. Above the
upper boundary (lmax), the estimate of λ1 is underesti-
mated because of a nonlinear limitation of the pertur-
bation-vector size. The lower boundary (lmin) is intro-
duced in order to eliminate the additional expansion of
trajectories caused by the presence of measurement
noise in the signal under consideration. The algorithm
[5] is also applicable to the analysis of point sequences
upon their preliminary processing. In case of the IF
model describing the generation of pulses at time
moments Ti, when the integral of input signal S
reaches threshold level θ, the input signal is recon-
structed as S(Ti) = θ/(Ti + 1 – Ti) with an accuracy that
grows with increasing generation frequency [7]. For a
TC-type model in which pulses are generated when
the input signal crosses the threshold level, the pro-

cessing consists in approximation of the average
instantaneous frequency as ω(Ti) = 2π/(Ti + 1 – Ti)
[11]. Then, we pass to a signal with uniform sampling,
which is determined by interpolation of S(iΔt) and
ω(iΔt) for IF and TC models, respectively, and finally
analyze the results using the standard method [5].

The presence of input noise leads to some difficul-
ties in calculations. In order to increase the accuracy of
calculation of the maximum Lyapunov exponent, it is
proposed to analyze the dependence of λ1 in maxi-
mum error of orientation α determined as the angle
between perturbation vectors before and after renor-
malization. From general considerations, it can be
suggested that very small and very large α values would
lead to a decrease in λ1. Therefore, the Lyapunov
exponents should be calculated for intermediate ori-
entation angles.

Figure 1a shows the results of calculation of the
maximum Lyapunov exponent for a phase-coherent
chaos in the Rössler model

(1)

Calculations were performed for a sequence of
2000 ISI values at the output of an IF-type model with
noisy input signal S(t) = x(t) + C + Dξ(t), where C is a
constant coefficient introduced so as to avoid negative
values of the input signal (in these calculations, C =
35) and ξ(t) is the white noise. The results were
obtained for lmin = 0.01 and lmax = 0.1. For the sake of
convenience, calculations were performed upon signal
S(iΔt) normalization to a unit interval.

The initial λ1(α) curve refers to dynamics in the
absence of noise (D = 0). In this case, maximum λ1(α)
is observed at α = αm corresponding to the theoreti-
cally predicted maximum exponent calculated using
the mathematical model (1) by the algorithm [2]. In
the given example, λ1 = 0.087 is indicated by the
dashed line in Fig. 1a. On the left from this maximum,
λ1 is underestimated because of a low probability of
selecting small values of the perturbation vector and
high probability of going outside the linear approxi-
mation. On the right from this maximum, increasing
error of the orientation vector makes it also necessary
to take into account the expansion of trajectories in
directions perpendicular to that of maximum expan-
sion.

It is important to note that the initial λ1(α) curve
has a characteristic form that does not qualitatively
change for systems with different chaotic behavior (in
addition, we have studied chaotic oscillation regimes
in the Lorenz model, oscillator with inertial nonlin-
earity, and Rössler model with weak and developed
chaos). Estimation of the predictability time accord-
ing to Fig. 1a yields λp(αm) = 1/λ1(αm). A deviation
from αm implies that τp given by this formula will sig-
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Fig. 1. Plots of the maximum Lyapunov exponent λ1 vs.
maximum error α of perturbation-vector orientation for
chaotic oscillations in Rössler system (1) calculated from
ISI sequences of (a) IF- and (b) TC-type models.
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nificantly exceed the duration of prognosis calculated
using model system equations (1) and lead to incorrect
conclusions concerning the degree of determinacy of
the analyzed dynamics.

The character of the λ1(α) dependence changes in

the presence of noise in the ISI sequence, which may
be related to interferences in the input signal and/or
fluctuations of the threshold level. Upon attaining the
α* value, the λ1(α) curve exhibits positive slope for

α > α*. The α* value tends to αm with increasing noise

intensity. This behavior of λ1(α) is also characteristic

of all the aforementioned examples of systems with
chaotic dynamics and the presence of noise in the ISI
sequence. Based on these laws, it is possible to use the
λ1(α) curve shape to draw qualitative conclusions

about the presence of noise and its intensity, since
increasing D leads not only to a decrease in α*, but
also to growth in the slope of λ1(α) at α > α*. Begin-

ning with certain noise intensity D, the maximum of
λ1(α) curve disappears and the estimates of predict-

ability time cease to be reliable. For the example in
Fig. 1a, the results fail to be correct at D = 0.0015,
which corresponds to the ratio of noise intensity to

average ISI duration of 5 × 10–4.

Analogous laws have been also revealed in the case
of a TC-type model. Figure 1b shows an example of
calculations of the maximum Lyapunov exponent for
a phase-coherent chaos in system (1) in the absence of
noise and in the presence of threshold f luctuations in
the ISI sequence. The initial signal represented x(t)
variable and the threshold was set at θ = 0. In the
absence of noise, this system also exhibits a character-
istic maximum of λ1(α) (minimum of τp(α)), which

corresponds to theoretically predicted estimates
(dashed line). The presence of noise leads to changes
in the slope for α > α*, and this slope (as well as the α*
value) varies with increasing noise intensity.

Thus, we have described a modified method for
calculation of the maximum Lyapunov exponent,
which is based on the construction of a plot of λ1 ver-

sus error α of the orientation of perturbation vector in
the reconstructed phase space. This approach revealed

the characteristic behavior of λ1, which that can be

used for drawing conclusions on the presence of noise
in the system. If data for various levels of noise are
available, the results can be qualitatively compared in
terms of their intensity. By selecting parameter α cor-
responding to the maximum of λ1(α) curve, it is pos-

sible to increase the accuracy of estimating the pre-
dictability time for the analysis of various types of
noisy-point sequences.
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