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Abstract We develop an advanced model of

bistable perception based on the interplay of noise

and adaptation. The model describes the decision-

making process in the brain consisting in involuntary

switches between perceptual states. We study the

effects of noise and the stimulus duty cycle on the

dominance of a particular externally biased perceptual

state. We discuss the biological relevance of our

model and compare the obtained numerical results

with neurophysiological experiments on brain dynam-

ics. The model qualitatively describes the results of

neurophysiological experiments on human perception

using bistable images, such as gamma distribution of

average dominance times and the effect of brain noise

on sustained attention.

Keywords Adaptation � Bistable perception � Brain
noise � Perception � Bistability

1 Introduction

The thinking process in the brain, as a multistable dy-

namical system, can be considered as alternative

switching between coexisting mental states [23].

These switches can be either spontaneous or initiated

by external stimulation, but in both cases they are

triggered by neuronal brain noise. Inherent brain noise

was experimentally detected in rat neocortical pyra-

midal neurons as 1/f noise (or pink noise) in membrane

potential fluctuations [22]. This kind of noise is

common in biological systems, including human

cognition [14]. Hausdorff & Peng [16] suggested that

a possible source of 1/f noise results from different

time scales of biological processes. Recently, endo-

geneous brain noise was estimated in neurophysio-

logical experiments using electroencephalography

(EEG) [45] and magnetoencephalography (MEG)

[41] in subjects observing ambiguous images. A

particular case of perceptional bistability with two

interpretations of an ambiguous visual stimulus was

widely studied in experiments based on binocular

rivalry and ambiguity in geometry, figure-ground, and

motion direction (for comprehensive review see

[1, 30, 33]). Inherent brain noise is known to induce

switches between coexisting perceptual states during

prolonged gazing of a multistable image [4].

Let us consider, for instance, a bistable image, such

as the Necker cube, which can be interpreted as either

left- or right-oriented. Viewing this figure for a
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prolonged time a spontaneous alternation between the

two percepts takes place, changing as often as every

few seconds [43] and vary among subjects [6]. This

alternation has been attributed to neural adaptation or

satiation [17, 24]. Random switches between the two

percepts were also found in neurophysiological exper-

iments, where the underlying electrical membrane

potential was measured [5]. Although these switches

are known to be induced by inherent brain noise, the

exact microscopic mechanism of these oscillations

remains unknown [48].

Noise is ubiquitous in the brain at multiple scales,

from vesicular release and spiking variability to

fluctuations in a global neurotransmitter level. The

sources of endogeneous brain noise lie in quasi-

random release of neurotransmitters by synapses,

random synaptic input from other neurons, random

switching of ion channels, stochasticity in N-methyl-

D-aspartate activated receptors which affect the sta-

bility of short-term memory and attention, random

alteration of gamma-amino-butyric acid receptor

which activates synaptic ion channel conductances

and determine how likely the system jumps into a

pathological state [8]. To describe the random cogni-

tion process, several formal models based on compe-

tition and self-inhibition of representative neuronal

populations or engrams (hypothetical traces in the

memory that represent each object) were suggested

[27, 28, 52]. In these models, the competition is

manifested between the competing perceptual neu-

ronal populations bymeans of the reciprocal inhibition

accompanied by a slow adaptation of the dominant

population [21]. To date, the presence of noise and

adaptation in neural perception is accepted by many

researchers and widely reported in scientific literature

(see, e.g., [3, 10, 37, 39, 47]. In particular, Huguet et al.

[21] suggest that adaptation plays an important role in

determining perceptual choice, while brain noise

induces randomness in switching over different

engrams [49]. In the oscillatory models, the switching

is primarily driven by adaptation, while in the noise-

driven energy models, noise is the only reason behind

switches between coexisting attractors. The main

drawback of the latter models is that they are not able

to simulate such experimental data as resting time

histogram shapes and correlations between durations

of successive engrams. Instead, the combination of

both models would allow gauging relative strengths of

noise and adaptation. Therefore, empirically obtained

arbitrary parameters, such as a stimulus amplitude,

noise intensity, and strengths of mutual inhibition and

adaptation are meaningful in relation to each other,

and the qualitative behavior of perception in the model

context should in turn portray a real cognitive process.

The aim of this work is to capture the essence of

adaptation processes in a simplistic mechanism of

bistable perception assisted by brain noise with

minimal elements and assumptions. The model is

inspired from the motion quartet model of Hock et al.

[19] with four competing neurons, each dependent on

its own abstract adaptation variable. The results of the

recent MEG experiments [41] closely match the model

prediction in the metastable regime.

2 Model

It can be argued that there are no object-specific

neurons (or engrams) inside the brain [44], there rather

exists a feature-specific neuronal network with a finite

number of neurons which can be suitably co-activated

to form a unique representation of each object or

thought [50]. However, the neuronal clusters repre-

senting each feature may internally compete to

manifest the degree to which the feature sub-popula-

tion as a whole is excited. This means that the same

ambiguous image can excite or inhibit different sets of

neurons depending on its interpretation.

In the case of bistable perception, let us to denote

two extreme perceptions or states as X and Y. Since the

same stimulus causes both perceptions, the feature

space remains the same for both and hence, all excited

or inhibited neurons (feature-specific) for both per-

ceptions are common. Examples of such feature-

specific neurons are neurons dedicated to capturing

basic colors, length, width, depth, motion direction

[51], and orientation.

Let the total number of such feature-specific

neuronal clusters be N. Hereinafter, for simplicity we

refer to these clusters as single neurons. However, the

reader can understand them as a co-activated cluster of

neurons reflecting a sensory input feature. Now,

imagine a N-dimensional feature space representing

the activation (membrane potential or spiking rate) for

each of the N neurons. In this space, X and Y are two

separate points. Many neurophysiological experi-

ments are devoted to the study of the perception

transition based on the variation of a single feature-

123

P. Chholak et al.



space parameter biasing one perception over the other,

while keeping all other features the same. To fit the

scope of these experiments, we simplify our model by

fixing the stimulus in (N � 1) dimensions and varying

it only in one dimension. So, the primary dynamics can

be seen in that dimension and the rest of the space can

be kept aside for simplicity. Hence, we will treat X as a

scalar and not as a vector with N components. In the

future work, we may generalize the model to include a

more diverse feature set within the same framework

only by increasing the dimensional space in which we

define X.

Our sensory organs undergo random fluctuations of

physiological variables (endogenous noise), such as

body temperature, blood pressure, spontaneous neu-

ronal activity, that result in physiological tremor.

However, we do not feel these fluctuations, so our

perception remains quite stable. Therefore, the above

consideration requires us to introduce a self-stabiliza-

tion mechanism into the perception model.

Numerous empirical studies of bistable perception,

as well as discussions with other researchers suggest

that at every moment of time, a person is capable to

interpret an ambiguous stimulus in only one of the

possible ways, and never make two or more decisions

simultaneously. In this regard, the brain works similar

to a computer, but with a much slower clock rate. The

volume of information we receive each day is

enormous, and a large part of this information is

ignored by the brain. This way, we only focus on the

most important details, which form a very small

segment of the environment. This means that a

decision-making process in favour of one of the

possible solutions suppresses all other solutions.

Therefore, in our model, we also need to introduce a

term that captures competitive inhibition between

coexisting states. Taking into account the nature of the

synaptic input processing, which implies the neuron

firing only if the input signal is sufficiently strong

(otherwise, the neuron is silent), we use a sigmoidal

function to model synaptic connections for competi-

tive inhibition, as follows

rðXÞ ¼ 1

1þ e�bX
ð1Þ

Next, our model needs to capture adaptation which

reveals itself as a slow self-destabilization tendency to

any stimulus interpretation. When we receive an

ambiguous stimulus and fix our attention on one of the

possible interpretations, after a certain period of time

our attention involuntarily switches to another inter-

pretation. These switches are irregular due to endoge-

nous brain noise. However, the mean duration of each

percept, measured in psychological experiments on

bistable visual perception, is rather regular [31, 38].

This suggests that apart from brain noise there also

exists a deterministic mechanism referred to as

adaptation, which induces involuntary transitions

between perceptual states.

To account for adaptation in our model, we

introduce a variable representing each percept in the

working memory [13, 46], which tracks the activity of

the percept. If the activity is prolonged enough, then

adaptation destabilizes the active neuronal state. For

this reason, the time constant for the memory state

should be much larger than that for the perceptual

states. This is congruent with our idea of the brain

ability to maintain only a stable perception in memory,

that must not concur with random fluctuations in

perception. Only after the stimulus is clearly per-

ceived, it begins to register in the memory. For this

reason, we again use the sigmoidal function for

perception states (say X and Y) to affect memory

states (Xm and Ym). We assume that the memory states

are also self-stabilized to ensure that spontaneous

switching does not occur in the memory until the

specific causal perception of this memory has changes.

Moreover, memory activation should be significantly

stronger than random fluctuations in order to destabi-

lize current perception through adaptation. Hence, we

will again use the sigmoidal function to capture the

Fig. 1 Schematic illustration of the advanced perception

adaptation model. Xm and Ym are memory neuron states

inhibitory coupled with perceptual states X and Y, which in

turn are inhibitory coupled with each other, a and c are the

corresponding coupling strengths, and h and hm are the resting

potential for perceptual states and working memory, respec-

tively. The big arrows indicate the inputs of stimuli SX and SY
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memory effect on the perceptual state. A schematic

representation of our model is illustrated in Fig. 1.

Keeping in mind the above consideration, the

perception model can be introduced as follows:

s _X ¼ SX þ h� X � crðYÞ � arðXmÞ þ gnXðtÞ;
ð2aÞ

sm _Xm ¼ hm � Xm þ crðXÞ þ gmnXm
ðtÞ; ð2bÞ

s _Y ¼ SY þ h� Y � crðXÞ � arðYmÞ þ gnYðtÞ;
ð2cÞ

sm _Ym ¼ hm � Ym þ crðYÞ þ gmnYmðtÞ; ð2dÞ

where X and Y are perceptual neuronal states, Xm and

Ym are memory states, SX and SY are input signals, a is
a coefficient associated with the strength of adaptation,

and c is a constant representing the strength of

suppression by the winner state on the losing state or

competitiveness coefficient. The competitiveness

coefficients for both perceptual states are taken to be

the same because any state can win the competition

initially and suppress the loser neuron with equal

strength. The ratio between SX and SY is determined by

the stimulus ambiguity. When the stimulus is com-

pletely ambiguous (as, e.g., a bistable Necker cube),

we deal with an unbiased signal, i.e. SX ¼ SY .

To account for endogenous brain noise, indepen-

dent zero-mean Gaussian noise n of intensities g and

gm ¼
ffiffiffiffiffiffiffiffiffiffi

s=sm
p

g is added in Eq. (2) to perception and

memory variables, respectively. This noise is gener-

ated using an in-built function of MATLAB (randn)

for producing normally distributed random numbers.

The probability density function of a random variable

z is given by

pðzÞ ¼ 1

r
ffiffiffiffiffiffi

2p
p exp�

ðz�lÞ2

2r2 ;

where l ¼ 0 is mean and r ¼ 1 is standard deviation.

For the perceptual (X and Y) and memory (Xm and Ym)

neurons, s and sm are time constants, and h and hm are

resting potentials in the absence of any stimulus. Since

the same set of perceptual neurons is involved in the

processing of both input signals, the time constant is

kept the same for both states. For the memory neurons,

c is a coefficient which determines how much the

choice of the current state affects the memory.

The parameter values are present in Table 1. The

choice of parameters is directly linked to the motion

quartet model of Hock et al. [19], where exactly the

same values were used for parameters s, sm, h, hm, a, c,
and g. The resting potentials h and hm are chosen

negative, so that they cannot have a suppressing effect

on the active neuronal population, as the sigmoidal

function decays to zero for negative input values.

Next, the amplitude of stimulating signals in their

model was varied between 12 and 20. Due to the

reduction in the number of participating neurons, we

choose jSX j ¼ jSY j ¼ 10. The cross-coupling between

the four neurons in their model was heterogeneous and

took values of either 3.5 or 7. In our model we choose a

similar value of C ¼ 5. In addition, we take b ¼ 5 to

ensure a sufficiently nonlinear behavior of the r-
function for synaptic connectivity. Lastly, we vary

duty cycle d from 0 to 1 to cover all extremes, from no

stimulation to uniform stimulation, as well as other

periodic stimulation variants in between.

3 Analytical study of the deterministic system

The analytical study is performed for the deterministic

case, i.e., for g ¼ gm ¼ 0 in Eqs. (2a)–(2d).

3.1 Linear approximation

For the explored set of the parameters (see Table 1),

the exact solution of the system cannot be found

analytically. In order to find an equilibrium point, we

approximate the sigmoidal function in Eq. 1 by the

linear slope

rðXÞ� 5

4
X þ 2

5

� �

; ð3Þ

tangent to it at X ¼ 0, as shown in Fig. 2.

For the same input signal to both perceptual

neurons X and Y, the system in Eq. (2) is symmetric

and hence we expect symmetric steady states. Using

this observation to simplify calculations, the fixed-

point analysis yielded the equilibrium point

ðX; Y ;Xm; YmÞ ¼ ð0; 0; 0; 0Þ:

The linear stability analysis at this point shows that the

largest real part of eigenvalues RðkÞmax ¼ 0:2467 is

positive, i.e., the fixed point is unstable for the set of
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the system parameters given in Table 1. The stability

of the fixed point depends on the system parameters.

In Fig. 3, we show how the largest real part of

eigenvalues of the fixed point depends on the

suppression strength c and time scales ratio sm=s.
One can see from Fig. 3a that the fixed point is

stable (RðkÞmax\0) only for small c and small ratios

between the time scales of memory and perception

(sm=s). For other fixed parameters (see Table 1), the

fixed point is only stable for sm=s\0:2, as seen from

Fig. 3b. Thus, the high difference between the time

scales of memory sm and perception (s) is crucial for
the fixed point stability. Since memory is always much

longer than the perception time (sm � s), the fixed

point is always unstable.

On the other hand, the perceptual neurons in our

model should be responsive for activation, while the

memory neurons for inhibition. In order to avoid the

inhibition which perpetually suppresses any neural

activity, we need to keep the activity of the memory

neurons slower than that of the perceptual neurons.

3.2 Fixed point analysis in the absence of memory

adaptation

Let us now consider an alternate scenario which would

happen in the absence of memory adaptation (a ¼ 0).

In this case, we deal with a unidirectional coupling

between the respective activation and memory. There-

fore, we first solve the equations for X and Y variables,

Table 1 Parameter values

Parameter s sm h hm SX SY c a b c g d

Value 20 1000 �5 �5 10 10 5 5 5 10 0� 1 0� 1

Fig. 2 Linear approximation of the sigmoidal function in Eq. 1

for b ¼ 5

Fig. 3 The largest real part of eigenvalues versus competitiveness (c) and ratio (sm=s) between time scales of memory and perception
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and then evaluate Xm and Ym which depend on the

steady-state values of the former variables.

Taking a ¼ 0, g ¼ 0 and keeping all other param-

eters as in Table 1, we equate Eq. (2) to zero to

calculate fixed points. As a result, we get

X ¼ 5� 5rðYÞ; ð4aÞ

Xm ¼ �5þ 10rðXÞ; ð4bÞ

Y ¼ 5� 5rðXÞ; ð4cÞ

Ym ¼ �5þ 10rðYÞ: ð4dÞ

As seen from Fig. 2, the range of r-function is from
0 to 1 with rð0Þ ¼ 0:5. Simple computations show that

Eqs. (4a) and (4c) would iteratively converge to either

ðX; YÞ ¼ ð0; 2:5Þ or ðX; YÞ ¼ ð2:5; 0Þ. The calcula-

tions of ðXm; YmÞ ¼ ð0; 5Þ and ðXm; YmÞ ¼ ð5; 0Þ are

straightforward from Eqs. (4b) and (4d). Thus, in the

absence of memory adaptation, there are two possible

fixed point solutions (FP1 and FP2):

ðX; Y ;Xm; YmÞFP1 ¼ð0; 2:5; 0; 5Þ;
ðX; Y ;Xm; YmÞFP2 ¼ð2:5; 0; 5; 0Þ:

The obtained results are reminiscent of the winner-

takes-all behavior of the activation variables X and

Y. Here, the steady-state solution depends on initial

conditions only.

3.3 Reduced dynamical equations

Owing to the symmetry between X and Y variables and

their reciprocative behaviors, we may opt for an even

more sophisticated approach for analytical analysis of

the system to shed light on some of the key features of

the system. The results of our numerical simulations

presented below (Fig. 4a) demonstrate that the vari-

ables X and Y oscillate in antiphase. Using this

property and after substituting the parameter values

given in Table 1 for zero noise (g ¼ 0) into Eqs. (2a)

and (2b), they can be rewritten as

20 _X ¼ �X þ 5� 5rð�XÞ � 5rðXmÞ; ð5aÞ

1000 _Xm ¼ �Xm � 5þ 10rðXÞ: ð5bÞ

Next, multiplying Eq. (5a) by (�2) and adding to

Eq. (5b), we get

1000 _Xm � 40 _X ¼ 2X � Xm � 15þ 10rðXmÞ
þ 10½rðXÞ þ rð�XÞ�:

ð6Þ

A simple calculation gives

rðXÞ þ rð�XÞ ¼ 1

1þ e�bX
þ 1

1þ ebX
¼ 1: ð7Þ

Therefore, using Eq. (7), we can simplify Eq. (6) into

1000 _Xm � 40 _X ¼ 2X � Xm � 5þ 10rðXmÞ: ð8Þ

From Fig. 4a, one can see that X and Y vary

approximately between �4 and þ4, while Xm and Ym
between �0:5 and þ0:5. At the same time, the linear

approximation of the sigmoidal function in the

½�0:5; 0:5� range is not far from reality (see Fig. 2),

whereas the linear approximation for X and Y variables

outside this domain would be grossly incorrect. The

steps from Eq. (5) to Eq. (8) have been directed to get a

rid of the dependence on rðXÞ, and hence we will only
use the linear approximation for rðXmÞ in the justified

½�0:5; 0:5� domain. Therefore, using the linear

approximation stated in Eq. (3), we can rewrite

Eq. (8) as

1000 _Xm � 25

2
Xm ¼ 2X þ 40 _X: ð9Þ

One of possible solutions of the simplified Eq. (9) may

be a harmonic signal X ¼ A cosðxtÞ, whose amplitude

A and frequency x are chosen from numerical

simulations (as in Fig. 4a) to obtain similar dynamics,

specifically, A ¼ 4 and the modulation period

T ¼ 4500. Substituting the cosine function in

Eq. (9), we get

1000 _Xm � 25

2
Xm ¼ 8 cosðxtÞ � 160x sinðxtÞ;

ð10Þ

where

x ¼ 2p
4500

� 1:40� 10�3:

Equation (10) can be simplified to

_Xm þ kXm ¼ B cosðxt þ hÞ; ð11Þ

where k ¼ �25=2000, h ¼ 0:03, B ¼ 8=1000, h is the
initial phase difference. Ignoring the initial phase

difference (h ¼ 0), that only shifts the input signal
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marginally to the right on the time-axis, we look forXm

in the following form

XmðtÞ ¼ C cosðxt � /Þ; ð12Þ

where C ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ x2
p

¼ 0:64 and

/ ¼ tan�1ðx=KÞ ¼ �0:11.

This analytical solution matches the results of the

numerical simulations (Fig. 4a) in the following

aspects:

(i) Xm exhibits a periodic behavior with an

amplitude close to 0.5.

(ii) The modulation frequency is the same.

(iii) Xm lags behind X.

A better analytical solution might be revealed using a

closer approximation of the numerically foundX function

presented in Fig. 4a. An alternate approach to solve

Eq. (9) could be applied if instead of X we approximate

Xm by a triangle function, since the numerically

calculated Xm variable has a triangular shape. How-

ever, a triangular wave is not smooth and therefore not

differentiable, that creates additional difficulty.

4 Numerical simulations

In order to find numerical solutions of Eq. (2), we carry

out numerical simulations using the Euler-Maruyama

scheme.

4.1 Deterministic case

First, we simulate deterministic dynamics (g ¼ 0) of

Eq. (2) with uniform and unbiased stimulation

(SX ¼ SY ¼ 10). The time series and the correspond-

ing phase portrait are present in Fig. 4a, b, respec-

tively. From the time series, one can see that the

variables X and Y, as well as the variables Xm and Ym,

periodically alternate with each other representing a

stable limit cycle shown in Fig. 4b.

4.2 Stochastic case

The application of additive noise destabilizes the limit

cycle resulting in stochastic oscillations, as shown in

Fig. 5. As discussed in Sect. 1, the duration of the

activation of each state is a random variable with a

characteristic time of few seconds, due to the adap-

tation mechanism described above. This means that

each switch occurs after a certain random time

interval. Following Hock et al. [19], in our model,

we use Gaussian noise due to its popularity in natural

systems and easy implementation. We have also found

in our recent experimental MEG study on visual

perception of flickering images [41] that brain noise in

some subjects displayed Gaussian probability distri-

bution, whose kurtosis was close to 3. Nevertheless, in

future works, it would also be informative to model

noise using non-Gaussian noise [9] to check whether it

improves the results and predictions of our model.

Fig. 4 Deterministic dynamics (g ¼ 0) of Eq. (2) illustrated with a time series and b phase portrait. The dot in the phase portrait

indicates the location of the unstable fixed point found analytically in Sect. 3.
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Essentially, noise-induced drifts in the activation

variable trajectory affect the relative values of X and Y,

which in turn determine the amount of competitive

inhibition between the two perceptual states. This

leads to early or late switches between the perceptual

states, deterministically induced by adaptation. One

can see that now the trajectory randomly alternates

between two perceptual states. The switches can be

recognized using different criteria. For definiteness,

we choose a 3g criterion since it yields the best

statistical results. This criterion states that a switch is

recognized when the difference between X and Y

variables crosses the threshold value defined as

jX � Yj ¼ 3g, as illustrated in Fig. 5a.

In order to characterize stochastic dynamics, we

calculate the number of switches between X and Y

perceptual states as a function of the noise intensity.

As seen from Fig. 6, for relatively strong noise

(g[ 0:3), the number of switches grows linearly as

the noise intensity is increased.

Next, we are also interested in how noise affects the

dominance duration, i.e., the time the system spends in

the perceptual states. Given that we now know about

time instants corresponding to switches in perception

using the 3g-criterion discussed above, the intervals

between these switches indicate the time the system

spends in each perceptual state. When the dominance

intervals in Fig. 5a occur in the positive region, the X-

state is dominant, whereas the negative region

Fig. 5 Time series of the

stochastic system in Eqs. (2)

with noise intensities a g ¼
0:1 and b g ¼ 0:5. The
square yellow line shows

switches recognized with

the 3g-criterion

Fig. 6 Number of switches versus noise intensity during

t ¼ 2:5� 105
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indicates the Y-state dominance. In Fig. 7 we plot the

probability distributions of the dominance durations

for three different intensities of noise. While for weak

noise the distribution is somewhat Gaussian (Fig. 7a),

for intermediate values of the noise intensity it is close

to a gamma distribution (Fig. 7b) typical for biological

systems [29, 38], whereas for very strong noise, the

distribution is exponential (Fig. 7c).

The simulations also show that the most probable

(mode) dominance duration decreases as the noise

intensity is increased (Fig. 8). This result is in a good

agreement with experiments on bistable perception

[7, 38, 43].

Stochastic dynamics can also be characterized by

coherence as a measure of order [2, 12, 42], that can be

calculated in terms of correlation time sc as [40]

sc ¼
Z 1

0

C2ðtÞdt; ð13Þ

where C is the normalized autocorrelation function

given as

CðsÞ ¼

D�

XðtÞ �
�

XðtÞ
�

��

Xðt þ sÞ � hXðtÞi
�E

D�

XðtÞ �
�

XðtÞ
�

�2E
;

ð14Þ

where
�

. . .
�

means averaging and s is the lag time. The

larger the correlation time sc, the higher the coherence.
As seen from Fig. 9, the dependence of the

correlation time on the noise intensity can be approx-

imated by the power law sc � e �0:73 with the

characteristic exponent close to �3=4.

Fig. 7 Probability distributions of dominance durations for noise intensities a g ¼ 0:1, b g ¼ 0:3, and c g ¼ 1

Fig. 8 Mode dominance duration versus noise intensity

Fig. 9 Correlation time versus noise intensity. The straight red

line is a power-law approximation which yields a �0:73 slope
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4.3 Habituation

In their paper, Leopold et al. [31] reported that the

perceptual alternation may be slowed down, and even

brought to a standstill, if a visual stimulus is period-

ically removed from view. To simulate such a

behavior, we apply a square-shape modulation to both

stimuli SX and SY as follows

SX ¼ jSXj square ðtÞ; ð15aÞ

SY ¼ jSY j square ðtÞ; ð15bÞ

where jSY j ¼ 10 and jSX j ¼ f8; 9; 10; 11; 12g are the

stimulus amplitudes such that the stimulus signals go

from 0 to jSXj or to jSY j.
The results of the periodic neuron activation with

period p ¼ 50 are present in Fig. 10. One can see that

during a prolonged time (t � 1500), the Y state

remains excited, while the X is inhibited. Then, the

system dynamics changes so that the inhibited state

becomes excited. If we compare this figure with

Fig. 5a, we can see that the dominance time for one of

the states enlarges in the presence of modulation (1500

versus 400). This means that the periodic modulation

stabilizes the perceptual states. The stabilization effect

was highlighted in many neurophysiological experi-

ments with bistable perception [20, 25, 34, 35].

One can see from Fig. 10 that the memory state

variable Ym gradually increases from a negative value

to a value close to zero; this causes the state

Y inhibition and the X state excitation.

4.3.1 Effect of stimuli parameters

Now, we will study how the dominance times depend

on the stimuli. The important stimulus characteristics

are the intensity, modulation period p, bias

b ¼ jSX j=jSY j, and duty cycle d. Evidently, if we bias

the system towards the state X by stimulating this

neuron stronger than Y, i.e. jSX j[ jSY j, then the

X neuron excitation period will dominate over the

Y neuron excitation period. At the same time, the

dominance depends on both the bias and the duty

cycle.

The effect of the stimulus duty cycle d on the state

dominance is illustrated in Fig. 11, where we plot the

mean difference (X � Y) over the entire stimulation

time for various bias levels b of the stimulus intensity.

For b[ 1, we observe the maximum in the X state

dominance for d � 0:5 (50%). The decrease in the

dominance for higher duty cycle (d[ 0:5) reflects the

effect of adaptation which is not strong enough for

smaller d. Note that the extrema do not always occur at

the 50% duty cycle because their location depends on

the stimulus amplitude jSXj.
Similarly, the state Y dominates over the state X

when the stimulus is biased towards Y (b\1). For the

unbiased stimulus (b ¼ 1) case, the dominance is

independent of the duty cycle and therefore averages

to zero.

4.3.2 Effect of noise

The effect of noise on average dominance of the biased

state depends on the duty cycle and bias values. The

influence of noise on the dominance is illustrated in

Fig. 12a, b for duty cycles d ¼ 0:5 and d ¼ 1,

respectively. Interestingly, the dominance behavior

in these graphs is completely different. While in the

former case the absolute difference between X and

Y tends to decrease with increasing noise intensity, for

the latter case this value gradually grows.

The difference in the dominance behavior in

Fig. 12a, b can be understood from the following

Fig. 10 Neuron activation

under square-shape

stimulation for g ¼ 0:1

123

P. Chholak et al.



consideration. In our model we suppose that the

memory time scale is much larger than the perception

time. Moreover, the memory of each perception state

acts as a driving force behind adaptation. Adding

highly erratic perturbations to the perceptual state

causes the heavily inertial memory to evolve and adapt

even slower. One can think of it in the sense that we do

not retain a particular piece of information until we are

certain about its perception, and not when the percep-

tion itself changes erratically. This way, noise sup-

presses adaptation and enables biased stimulation to

increase the dominance of a chosen state, as can be

seen in Fig. 12b. However, this does not mean that the

increasing noise intensity for high duty cycles would

entail that the number of switches between the states

decreases. On the contrary, with a 100% duty cycle,

the number of switches between two states enlarges, as

the noise intensity is increased (Fig. 6).

5 Discussion

Let us now discuss the most relevant outcomes of the

proposed model and its adequacy for the description of

experimental results.

5.1 Dominance duration distribution

We have shown that for certain values of the noise

intensities the probability distribution of dominance

durations is well approximated by gamma or log-

normal distribution [29, 32]. As we already mentioned

above, this type of distribution is typical for biological

systems [29, 38]. Moreover, the mode dominance

duration evaluated from the distributions decreases as

the noise intensity is increased. This was confirmed by

numerous psychological and neurophysiological

experiments with bistable stimuli (see, e.g.,

[38, 43]), where more frequent switches between

coexisting percepts were detected in subjects with

stronger brain noise. Recent experimental studies [7]

have shown that dominance times decreases linearly

with noise, as the graph in Fig. 8 displays in the

vicinity g ¼ 0:3. Therefore, our model quantitatively

Fig. 11 Dominance of state X over state Y as a function of

stimulus duty cycle d for various bias levels b and g ¼ 0:1

Fig. 12 Dominance versus noise intensity for various bias levels for a 50% and b 100% stimulus duty cycle
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matches the actual experiments on humans when we

choose the noise intensity to be around g ¼ 0:3.

5.2 Implementation of adaptation with noise

Although our model is similar to that proposed by

Huguet et al. [21], the two models yield fundamentally

different results concerning the relative adaptation and

noise intensities. While in the Huguet’s model, the

effect of adaptation is weaker than the noise effect and

insufficient to induce switches between the states, in

our model the adaptation is strong enough to cause

switches even in the absence of noise, though with a

higher effort.

In the psychological experiments with the

bistable Necker cube [43], switches between two

different percepts were studied under a time-varying

control parameter and compared with a generic

double-potential energy model. Recently, Meilikhov

et al. [37] reported that in these experiments only brain

noise is not able to induce jumps between two

perceptual states, and therefore a change in the control

parameter is needed. They found that brain noise only

provided 15–40% of the energy gap among the

subjects who participated in the discussed experiment

[43]. This further validates our model showing that the

adaptation effect prevails over the noise effect.

Another model that can be considered similar, but

different in terms of synaptic connection is the

generalized firing rate model proposed in the book

of Ermentrout and Terman [11]. Their approach

implies first summarizing all synaptic inputs before

passing them through a sigmoidal function, rðXÞ, like
in our model, but with b ¼ 1. Differing from the

generalized firing rate model, we pass each synaptic

input separately through rðXÞ and then add them to

determine dynamics of each perceptual state. The

previous approach implies that only a single neuron

represents each state while a synaptic input from all

synapses first enters the cell body and then it is

collectively processed and passes forward through the

axon. Instead, as indicated above, we consider a

cluster of neurons, whose collective activity represents

a perceptual state. In this cluster, the neurons are not

connected all-to-all, but only to a specialized group of

cells, such as corresponding memory cells or parallel

activation cells of another perceptual state. The total

cluster activity is the result of superposition of the

activity of all the neuron sub-populations within the

cluster. Another minor difference of our model from

the previous one is that our model carefully refrains

from committing the perceptual activation variable

with either membrane potential or spiking rate of the

neurons. This allows us to generalize our approach to

both domains by keeping the same dynamical

characteristics.

It is important to realize that there are about 86

billion neurons in the human brain [18] and thus

something of the same order in the visual cortex. In our

model, we superpose the activity of all neurons

representing a feature in each hemisphere and neglect

the spatial variation across the surface. In spite of the

crude approximation, our model is adequate for

qualitative simulation of some neurophysiological

experiments. For instance, the most popular neu-

roimaging modality, EEG, often records neuronal

activity in the visual cortex from two hemispheres by

using only two channels (O1 and O2) in the most basic

setups. Other techniques, such as MEG and functional

magnetic resonance imaging (fMRI) also do not have

very high spatial resolution.

5.3 Perception stabilization effect

As discussed above, perceptual alternation can be

brought to a standstill, if a visual stimulus is period-

ically removed from view (habituation). In the context

of our model, this would be the case when the stimulus

duty cycle is low enough to avoid adaptation effects

(0–50% duty) as demonstrated in Sect. 4.3.

Recently, Dotov et al. [10] argue that the internal

brain dynamics is inherently unstable due to adapta-

tion forces, but with cues from the experience acting as

contextual constraints, the competition between the

percepts increases. As a result, we are able to make

stable perceptual decisions in our every day practice.

On the contrary, stimuli selected for experiments are

special and contextually impoverished.

Visual perception can be biased if one or more of

object features, as represented in the visual cortex

feature-space, are additionally stimulated. For exam-

ple, the perceived rotation direction of an ambiguously

rotating sphere concurring with hand rotation is biased

in the direction of the hand rotation [36].

Another method to bias the perception is based on

memory. A more frequently observed perception uses

a neuronal network activated multiple times in the

past. The repeated activation renders synapses more
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conductive to the neuronal current. Naturally, the next

stimulus more likely activates this network as com-

pared to more resistive less frequent perception.

Lastly, let us discuss the significance of the

obtained results for the average dominance time

versus noise intensity in the case of a 100% duty

cycle. The results imply that for a constantly biased

stimulus, such as, e.g., a stationary Necker cube image

which can be interpreted as either left- or right-

oriented, when the contrast of the inner lines giving

preference for the left orientation is higher, when

viewed for a prolonged time is perceived as a left-

oriented cube more often than a right-oriented cube

during the entire experiment duration in subjects

having stronger brain noise [41, 45].

5.4 Biological relevance

Since the brain structure is symmetric, having two

hemispheres including the visual cortex, we conjec-

ture that every brain tends to have feature-specific

neuronal clusters composed of two sub-populations,

representing extreme ends of those features that

constantly compete with each other to process the

observed object.

Popularly, this dynamical process is treated using

the metaphor of a ball traveling along an energy

landscape assisted by ‘‘noisy’’ pushes [15]. For an

ambiguous image, the two extremes can be visualized

as energy wells with the same characteristic depth.

However, for a biased stimulus, such as a completely

left-oriented Necker cube, the corresponding energy

well is so deep due to perceptual learning of this

orientation, that it cannot be overcome by adaptation

or noise.

Another paradigmatic example of a bistable stimu-

lus is a ‘‘blue-and-black dress’’, which is unique in the

sense that its perception does not switch for most

subjects (Fig. 13). This image, recently popularized in

social media, was found to have two main perceptual

states. In the interesting study of Lafer-Sousa et al.

[26] with 1400 respondents, 57% persons saw the

dress blue and black, 30% white and gold, 11% blue

and brown, and 10% could switch between two

different colors, while the remaining respondents

perceived it as blue and gold. The dress was dispro-

portionately seen as white and gold by women and

elders. In addition, if we balance the illumination of

seeing the picture, the dress becomes ambiguous and

highly bistable. The authors conclude that since the

illumination is different for each individual due to

perceptual learning, it produces a strong bias affect for

each person.

Perception as a whole is composed of both adap-

tation and noise at its core. Adaptation provides the

inherent tendency of brain to eventually switch

between the two perceptual states by destabilizing

the current state. This deterministic mechanism is

crucial for switching between alternated perceptual

decisions of comparable energy-well depths and avoid

settling for the first deep decision one may come

across. At the same time, the stochastic mechanism

allows the system to effortlessly traverse through the

energy landscape avoiding shallow energy wells that

can be overcome solely by noise.

6 Conclusion

In this paper, we have developed a biologically

relevant stochastic perception model based on adap-

tation, and carried out analytical and numerical

analyses of this model. The comparison of the results

of numerical simulations with recent neurophysiolog-

ical experiments allowed us to conclude that our

model, with adequate parameters, can be successfully

used for a qualitative description of biological exper-

iments, in particular, gamma distribution of domi-

nance times and their decrease with increasing noise

intensity.

Fig. 13 The blue-and-black dress image
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43. Pisarchik, A.N., Jaimes-Reátegui, R., Magallón-Garcı́a,

C.D.A., Castillo-Morales, C.O.: Critical slowing down and

noise-induced intermittency in bistable perception: bifur-

cation analysis. Biol. Cybernet. 108(4), 397–404 (2014).

https://doi.org/10.1007/s00422-014-0607-5

44. Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., Fried,

I.: Invariant visual representation by single neurons in the

human brain. Nature 435, 1102–1107 (2005). https://doi.

org/10.1038/nature03687DO

45. Runnova, A.E., Hramov, A.E., Grubov, V.V., Koronovskii,

A.A., Kurovskaya, M.K., Pisarchik, A.N.: Theoretical

background and experimental measurements of human

brain noise intensity in perception of ambiguous images.

Chaos Soliton Fract. 93, 201–206 (2016). https://doi.org/10.
1016/J.CHAOS.2016.11.001

46. Scocchia, L., Valsecchi, M., Gegenfurtner, K.R., Triesch, J.:

Differential effects of visual attention and working memory

on binocular rivalry. J. Vis. (2014). https://doi.org/10.1167/

14.5.13

47. Shpiro, A., Moreno-Bote, R., Rubin, N., Rinzel, J.: Balance

between noise and adaptation in competition models of

perceptual bistability. J. Comput. Neurosci. 27(1), 37–54
(2009). https://doi.org/10.1007/s10827-008-0125-3

48. Sterzer, P., Kleinschmidt, A., Rees, G.: The neural bases of

multistable perception. Trends Cognit. Sci. 13(7), 310–318
(2009). https://doi.org/10.1016/J.TICS.2009.04.006

49. Urakawa, T., Bunya, M., Araki, O.: Involvement of the

visual change detection process in facilitating perceptual

alternation in the bistable image. Cognit. Neurodyn. 11(4),
307–318 (2019)

50. Valdez, A.B., Papesh, M.H., Treiman, D.M., Smith, K.A.,

Goldinger, S.D., Steinmetz, P.N.: Distributed representation

of visual objects by single neurons in the human brain.

J. Neurosci. 35(13), 5180–5186 (2015). https://doi.org/10.

1523/JNEUROSCI.1958-14.2015

51. Wertheimer, M.: Experimentelle Studien über das Sehen

von Bewegung. Zeitschriftfür Psychologie 61, 161–265

(1912)

52. Wilson, H.R., Blake, R., Lee, S.H.: Dynamics of travelling

waves in visual perception. Nature 412(6850), 907–910
(2001)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

An advanced perception model

https://doi.org/10.1111/j.1467-9280.2007.02030.x
https://doi.org/10.1007/s11571-019-09554-9
https://doi.org/10.1152/jn.00116.2007
https://doi.org/10.1152/jn.00116.2007
https://doi.org/10.1016/J.CSFX.2019.100005
https://doi.org/10.1016/J.CSFX.2019.100005
https://doi.org/10.1007/s00422-014-0607-5
https://doi.org/10.1038/nature03687DO
https://doi.org/10.1038/nature03687DO
https://doi.org/10.1016/J.CHAOS.2016.11.001
https://doi.org/10.1016/J.CHAOS.2016.11.001
https://doi.org/10.1167/14.5.13
https://doi.org/10.1167/14.5.13
https://doi.org/10.1007/s10827-008-0125-3
https://doi.org/10.1016/J.TICS.2009.04.006
https://doi.org/10.1523/JNEUROSCI.1958-14.2015
https://doi.org/10.1523/JNEUROSCI.1958-14.2015

	An advanced perception model combining brain noise and adaptation
	Abstract
	Introduction
	Model
	Analytical study of the deterministic system
	Linear approximation
	Fixed point analysis in the absence of memory adaptation
	Reduced dynamical equations

	Numerical simulations
	Deterministic case
	Stochastic case
	Habituation
	Effect of stimuli parameters
	Effect of noise


	Discussion
	Dominance duration distribution
	Implementation of adaptation with noise
	Perception stabilization effect
	Biological relevance

	Conclusion
	Acknowledgements
	References




