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 A B S T R A C T

Background: We tested the hypothesis that Schizophrenia (SCZ) involves a systematic breakdown in brain 
network organization across different levels of graph-theoretical hierarchy.
Methods: Using resting-state fMRI from 43 SCZ patients and 63 matched healthy controls, we implemented 
an analytical multi-level framework. This integrated: global graph theory metrics to assess overall network 
topology; macronetwork metrics to measure functional specialization of large-scale systems; network-based 
statistics (NBS) to identify specific, altered pathways at the local level; a multigraph model to visualize hub 
reorganization between networks.
Results: We revealed a coherent pattern of multi-level dysfunction. Globally, SCZ networks showed increased 
local clustering and connection density, indicating a shift toward a less efficient, overly segregated architecture. 
At the macroscale, sensory and salience networks displayed elevated local connectivity, while higher-order 
cognitive networks (e.g., DMN, DAN) showed reduced specialization and increased cross-talk. Locally, NBS 
identified a core subnetwork of weakened connectivity within temporal-orbitofrontal-cingulate circuits. The 
multigraph model synthesized these findings, showing a widespread reduction in the integrative role of key 
cognitive hubs.
Conclusions: Our findings establish a model of SCZ as a disorder of disintegrated brain network hierarchy, 
where disruptions at the level of local circuits and functional specializations collectively lead to global 
topological inefficiency.
1. Introduction

The development of robust neuroimaging biomarkers for schizophre-
nia (SCZ) represents a critical need for improving diagnosis and per-
sonalized treatment of this complex psychiatric disorder (Varaprasad 
and Goel, 2025). Contemporary neuroscience conceptualizes SCZ as a 
disorder of brain network dysconnectivity, where disrupted integration 
and segregation of large-scale networks underlie its diverse symptoma-
tology (Friston et al., 2016; Lynall et al., 2010; Więcławski W. Bielski 
et al., 2024). While resting-state functional MRI (rs-fMRI) has emerged 
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as a powerful tool for mapping these disruptions (Li et al., 2019; 
Voineskos et al., 2024; Zhang et al., 2024), a fundamental gap remains 
in understanding how alterations at different hierarchical scales – from 
global network architecture to local circuit dysfunction – collectively 
contribute to the pathophysiology of SCZ.

Traditional fMRI studies of SCZ have predominantly focused on 
either isolated regional abnormalities or pairwise connectivity between 
predefined networks (Sheffield et al., 2015; Repovs et al., 2011; Chat-
terjee and Hilal, 2024). This approach has identified key alterations 
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in networks such as the default mode network (DMN) (Buckner, 2013; 
Menon, 2023; Whitfield-Gabrieli and Ford, 2012; Zhou et al., 2016), 
salience network (SN) (Uddin, 2014; Huang et al., 2022), and fronto-
parietal network (Li et al., 2019; Liang et al., 2021). However, these 
investigations often fail to capture the multi-level nature of network 
disruption in SCZ, where global topology may appear preserved while 
critical subsystem interactions become profoundly impaired (Li et al., 
2019; Kurkin et al., 2025). Moreover, existing frameworks struggle 
to explain how localized disruptions in circuits like the orbitofrontal 
cortex or thalamocortical pathways propagate to produce system-wide 
dysfunction (Dong et al., 2018).

Our study addresses these gaps through three key innovations. First, 
we integrate analyses across hierarchical levels – global (whole-brain 
topology), macro (large-scale network interactions), and local (indi-
vidual node connectivity) – to provide a unified view of SCZ-related 
disruptions. In this context, we define hierarchical network dysfunc-
tion as the pathological disruption of the brain’s nested organization, 
where abnormalities at one level (e.g., local circuit disconnection) 
systematically propagate to alter functional dynamics at higher levels 
(e.g., macronetwork specialization and global integration). Second, we 
use a modified participation coefficient that specifically quantifies im-
balances in network integration versus segregation, overcoming limita-
tions of conventional metrics in overlapping functional systems. Third, 
we employ a multigraph model to visualize how focal disruptions affect 
the entire network architecture, bridging the gap between localized 
connectivity changes and their global functional consequences.

2. Materials and methods

2.1. Subjects

The study involved 106 participants: 43 patients with schizophre-
nia (Sz group) and 63 healthy control subjects (HC group). Socio-
demographic group characteristics do not differ statistically as pre-
sented in Table  1. All participants underwent a diagnostic clinical 
interview conducted by a physician and were screened for comorbidi-
ties, using MINI (Sheehan et al., 1998). Schizophrenia symptoms were 
evaluated using the Positive and Negative Symptom Scale (PANSS) (Kay 
et al., 1987). There has been estimated the total score, as well as 
the scores on positive (P), negative (N), and general psychopathol-
ogy (G) scales. Positive scale captures productive symptoms, including 
assessment of verbal-acoustic hallucinations (item P3), whereas the 
negative scale is supposed to capture the deficit symptoms. Based on 
the diagnostic assessment, the patients fulfilled the DSM-V criteria 
for schizophrenia. The leading clinical inclusion criteria were set as 
total PANSS score above 60, and positive scale score above 4, with 
an additional criterion of P3> 3 (Table  1). The assessment of P3 
(manifestation of auditory verbal hallucinations) was performed under 
the rationale of another research project (Zaykova et al., 2025).

All patients received stable dose atypical antipsychostics mainte-
nance treatment. Healthy volunteers were recruited from the local 
community. Exclusion criteria for healthy participants comprised neu-
rological disorders, psychiatric illnesses, and a history of traumatic 
brain injury. The Ethics Committee of Medical University of Plovdiv 
approved the study (Protocol No. 1/11.01.2024). The research protocol 
complied with the 1964 Helsinki Declaration and its subsequent amend-
ments. All participants provided voluntary written informed consent, 
allowing for the publication of any potentially identifiable images or 
data included in this manuscript.

2.2. Data acquisition

The MR scanning procedure was performed on a 3T MRI system (GE 
Discovery 750w). The protocol included a high-resolution structural 
scan (Sag 3D T1) with slice thickness of 1 mm, matrix 256 × 256, TR 
(relaxation time) 7.2 s, TE (echo time) 2.3 s, and flip angle 12◦, FOV 
24, resting-state functional scan — with slice thickness 3 mm, matrix 
64 × 64, repetition time — 2000 ms, echo time — 30 ms, flip angle 
90◦, 192 volumes (Stoyanov et al., 2020).
2 
Table 1
Socio-demographic and clinical characteristics.
 Characteristic Sz (𝑛 = 43) HC (𝑛 = 63) 𝑝  
 Age (Mean±SD) 35.4 ± 12.4 36.0 ± 12.5 0.771𝑎  
 Sex (M/F) 26/17 31/32 0.253𝑏  
 PANSS total score (mean±SD) 71 ± 12 – –  
 PANSS-P score (mean±SD) 20 ± 3 – –  
 PANSS P3 score (mean±SD) 5.1 ± 0.62 1.0 ± 0.0 0.000∗𝑎 
 Illness duration, days (mean±SD) 138 ± 85 – −  
SD – Standard Deviation, 𝑎 Student’s t-test, 𝑏𝜒2 – test, * – 𝑝 < 0.05.

2.3. Preprocessing

The whole pipeline of the study is schematically represented in
Fig.  1. The functional images were pre-processed with SPM 12 soft-
ware (SPM, 2024) in a typical way (see Sec. 2.1.3 in Ref. Pitsik et al. 
(2023) for the details). Standard preprocessing procedures were em-
ployed, including motion correction, co-registration with high-resolution
T1, and normalization to the Montreal Neurological Institute’s standard 
space (Khorev et al., 2025; Kurkin et al., 2024; Andreev et al., 2023). 
We omitted slice timing correction because the temporal discrepancy 
between slices was negligible relative to the hemodynamic response 
given the 2000 ms TR and our experimental design. Filtering is effec-
tively performed during the subsequent detrending step. As a result, we 
obtained voxel-level blood-oxygen-level-dependent (BOLD) signals.

Using the AAL3 anatomical atlas (Rolls et al., 2020), we divided 
the brain into 165 distinct regions. To measure functional connectivity, 
we first averaged the BOLD time series within each region and treated 
each region as a network node to construct a connectivity matrix. This 
parcellation step also serves as a smoothing procedure. After detrending 
these averaged time series, we computed pairwise Pearson correlation 
coefficients between all nodes. Only connections with 𝑝 < 0.05 were 
kept (Pisarchik et al., 2023). This resulting connectivity matrix captures 
the functional brain network, reflecting the coupling strength between 
different brain regions based on their correlated BOLD signals (Fig. 
1, panel II). The values in the matrices were taken modulo for the 
calculation of network measures.

2.4. Network analysis

Our approach considers several levels of network interaction:

• Global level: Interactions between macronetworks – large-scale 
networks (LSNs) – treated as single units or macronodes (Yang 
et al., 2016; Wang et al., 2020).

• Macro level: Interactions between macronetworks, accounting 
for both (i) intra-macronetwork node interactions and (ii) inter-
macronetwork node connections (Kelly and Castellanos, 2014; 
Hardikar et al., 2024).

• Local level: Interactions between individual nodes within the 
original network.

For global level analysis, we considered 15 macronetworks (see 
Table  2) from Zwir et al. (2023), encompassing all major LSNs. The 
global correlation matrix (15 × 15) was constructed using pairwise 
Pearson correlations between macronetworks, derived from their mean 
BOLD signals (averaged across constituent nodes — see Fig.  1, panels 
II and III).

2.5. Network characteristics

2.5.1. Network measures
We computed a set of network measures for both the global network 

and each local macronetwork (Fig.  1, panel IV):
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Fig. 1. The schematic pipeline of the study.
-

• Clustering Coefficient: Measures local network cohesiveness by 
quantifying the tendency of nodes to form densely interconnected 
clusters, reflecting the density of connections among a node’s 
direct neighbors (Costantini and Perugini, 2014; Khorev et al., 
2024).

• Node Strength: Generalizes degree centrality to weighted net-
works by summing the weights of all edges connected to a node, 
representing its total interaction strength within the network (Ru-
binov and Sporns, 2011).

• Global Efficiency: Evaluates the network’s information integra-
tion capacity by computing the average inverse shortest path 
length between all node pairs, with higher values indicating more 
efficient parallel information transfer (Onnela et al., 2005).

• Eigenvector Centrality: Assesses a node’s influence based on 
its connections to other highly central nodes, derived from the 
principal eigenvector of the network’s adjacency matrix. High 
centrality indicates a strategically important position in the net-
work (Newman, 2008).

2.5.2. Modified participation coefficient
We used a modified participation coefficient (PC) tailored for single-

network communities (Kurkin et al., 2025), defined as: 

𝑃𝑖 = 1 −
(

𝑤𝑖𝑠
𝑤𝑖

)2
, (1)

where 𝑃𝑖 represents the modified PC for node 𝑖, 𝑤𝑖𝑠 denotes the total 
connection weight between node 𝑖 and other nodes within its com-
munity, and 𝑤  is the node 𝑖’s total strength (sum of all connection 
𝑖

3 
weights, intra- and inter-community). This metric quantifies a node’s 
position relative to its community, where 𝑃𝑖 → 1 indicate connector 
nodes with predominantly external connections (gateway nodes), while 
𝑃𝑖 → 0 reflects a core nodes with primarily internal connections.

To assess whole-community properties, we computed the community
averaged PC: 

⟨𝑃 ⟩𝑘 = 1
|𝑘|

∑

𝑖∈𝑘

𝑃𝑖, (2)

where 𝑘 are nodes in community 𝑘 and |𝑘| is the community size. 
The averaged PC provides insights into community organization: low 
values (⟨𝑃 ⟩ → 0) indicate strongly segregated communities with pre-
dominantly internal connections, while high values (⟨𝑃 ⟩ → 1) suggest 
communities heavily dependent on external connections. A balanced 
community with equal internal and external connectivity would yield 
⟨𝑃 ⟩ = 0.75.

For macro-level analysis, we treated the 15 predefined LSNs (Table 
2) as distinct communities (𝑘 = 1,… , 15) and computed their 𝑃
values. This adaptation resolves two key limitations of the standard 
PC Guimera and Nunes Amaral (2005): (1) ambiguity in overlapping 
communities (typically for LSNs), and (2) robust quantification of 
integrative (external) vs. segregative (internal) properties.

Hereafter, we refer to this modified metric simply as the participa-
tion coefficient (PC).

2.5.3. Statistical analysis
For local-level network comparisons, we applied the network-based 

statistic (NBS) method (Zalesky et al., 2010) to identify significantly 



V.S. Khorev et al. Psychiatry Research: Neuroimaging 354 (2025) 112078 
Table 2
Considered large-scale networks (LSNs)/macronetworks (Zwir et al., 2023).
 LSN Abbreviation Main constituent brain regions 

(nodes)
 

 Auditory Network AN Heschl’s gyrus, Bilateral Superior 
Temporal gyri, Posterior Insular 
Cortex, et al.

 

 Cingulo-Opercular Network CON Anterior Insula/Operculum, 
Dorsal Anterior Cingulate Cortex, 
Thalamus, et al.

 

 Context Network Context Parahippocampal Cortex, 
Retrosplenial Cortex

 

 Default Mode Network DMN Posterior Cingulate Cortex, 
Precuneus, Medial Prefrontal 
Cortex, Angular Gyrus

 

 Dorsal Attention Network DAN Visual Motion Area, Frontal Eye 
Fields, Superior Parietal Lobule

 

 Intraparietal Sulcus, Ventral 
Premotor Cortex

 

 Perception Network perN Lateral Orbitofrontal, 
Ventromedial Temporal, Temporal 
Pole, Subgenual

 

 Anterior Cingulate Cortices, 
Fusiform Gyrus, Rostral Superior 
Temporal Sulcus,

 

 Ventrolateral Amygdala  
 Somatomotor Network SMN S1, M1, Supplementary Motor 

Area (SMA), Thalamus
 

 Striatum Striatum Caudate, Putamen, Ventral 
Striatum

 

 Thalamus Th Thalamic Nuclei, Subcortical 
Regions

 

 Ventral Attention Network VAN Bilateral Ventrolateral Prefrontal 
Cortex, Bilateral 
Temporal-Parietal Junction

 

 Visual Network Visual Middle Temporal Visual 
Association Area at the 
Temporal-Occipital Junction

 

 Fronto-Parietal Network FPN Intraparietal Sulcus, Ventral 
Inferior Temporal Lobe, Lateral 
Prefrontal Cortex

 

 Salience Network SN Limbic and Prefrontal Regions, 
Amygdala, Anterior Insula,

 

 Dorsal Anterior Cingulate Cortex, 
Ventral Striatum

 

 Amygdala Network Amygdala Amygdala, Precuneus, Nucleus 
Accumbens

 

 Entorhinal-Hippocampal Network EHN Olfactory Bulb, Hippocampus, 
Parahippocampal area, Temopral 
lobe

 

altered subnetworks in the complete 165 × 165 connectivity matrix 
between groups (Fig.  1, panel V). Instead of controlling the error rate 
at the level of individual edges in a connectivity matrix – which can 
be excessively conservative when large numbers of edges are tested 
simultaneously – NBS adopts a cluster-based approach. The analysis 
was performed with 50,000 permutations using a primary threshold of 
𝑡 = 3.1 (𝑝 = 0.05), providing robust control for multiple comparisons 
while maintaining sensitivity to detect connected patterns of altered 
connectivity.

At the global and macro levels, we compared network measures 
between groups using the two-sided Mann–Whitney U test. The test was 
applied to node-averaged values of each network metric to evaluate 
systematic between-group differences in network topology.

The PANSS scales were correlated post-hoc with the network mea-
sures using Pearson correlation.

IWe implemented the Bonferroni correction to account for multiple 
comparisons across macronetworks. In the correlation analysis, we ap-
plied the Benjamini–Hochberg procedure to control the false discovery 
4 
rate. We applied these corrections separately for each type of network 
measure (e.g., clustering coefficient and global efficiency) across all 15 
macronetworks to ensure rigorous control of false positives.

2.6. Multigraph representation of altered network interactions

To effectively visualize the disrupted patterns of communication 
between large-scale networks (LSNs) in schizophrenia, we developed a 
multigraph model (Kurkin et al., 2025). This model was constructed by 
incorporating statistically significant connections that differed between 
patient and control groups. In our visual representation, the thickness 
of an edge between any two LSNs directly corresponds to the total 
number of disrupted connections they share, providing an intuitive, 
quantitative assessment of how severely their interaction is altered. 
A key strength of this model is its ability to integrate information 
across multiple scales, combining macro-level changes in network par-
ticipation coefficient with local-level disruptions in connectivity. This 
integrated method effectively illustrates how localized, individual con-
nection failures propagate upward to produce significant alterations in 
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Table 3
Between-group comparisons of the global-level network measures. Statistical tests were 
performed for the network of large-scale networks (LSNs).
 Measure SZ M ± SD HC M ± SD d Sz>HC u Sz>HC p  
 Global efficiency 7.43 ± 15.63 3.94 ± 3.17 0.31 1.9303 0.0536  
 Eigenvector centrality 0.26 ± 0.00 0.26 ± 0.00 0.02 0.3667 0.7138  
 Node strength 9.07 ± 1.88 8.29 ± 1.26 0.49 2.4193 0.0156* 
 Clustering coefficient 0.70 ± 0.15 0.64 ± 0.10 0.46 2.3807 0.0173* 
* indicates significant changes; d is Cohen’s d.
Fig. 2. Difference in distributions of network measures on global level between groups (A) Node strength, (B) Clustering coefficient.
the integration-segregation balance at the level of LSNs, which in turn 
manifest as changes in the brain’s overall network organization.

3. Results

Significant between-group differences emerged at the global level 
(network of LSNs) for node strength and clustering coefficient (Table 
3 and Fig.  2), indicating altered functional connectivity architecture 
in schizophrenia. Patients exhibited elevated node strength, reflecting 
increased overall connectivity between LSNs. Paradoxically, this hyper-
connectivity co-occurred with higher clustering coefficient, suggesting 
a shift toward fragmented, locally dense clusters of LSNs.

At the macroscale level (Tables  4–6), these group differences persist 
across all measures, but with important regional specificity. Notably, 
significant differences in eigenvector centrality are confined to the 
auditory network, implying that this network may play a particularly 
central or influential role in the altered connectivity patterns seen in 
schizophrenia. For node strength and clustering coefficient, the differ-
ences are consistently observed in six out of the fifteen LSNs: Auditory, 
Cingulo-Opercular, Somatomotor, Thalamus, Salience, and Entorhinal-
Hippocampal networks. This suggests that the disruptions in network 
local hyperconnectivity and clustering are not uniformly distributed 
across the brain, but are instead concentrated within specific functional 
systems.

Analysis of the macronetwork-averaged PC revealed significant 
between-group differences in several LSNs, as shown in Table  7. Specif-
ically, significant alterations in PC were observed in 6 out of 15 
LSNs: Context, Default Mode, Dorsal Attention, Perception, Entorhinal-
Hippocampal networks, and most notably, the Visual network. Impor-
tantly, the set of LSNs showing altered PC is largely distinct from those 
identified by differences in node strength or clustering coefficient, with 
the exception of the Entorhinal-Hippocampal network.

The participation coefficient is a measure that reflects the extent 
to which nodes within a network are connected to nodes in other net-
works, thus capturing the balance between within-network (intra-LSN) 
and between-network (inter-LSN) connectivity. The observed increases 
in PC among affected LSNs indicate that nodes within these networks 
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Table 4
Between-group differences in eigenvector centrality (EC) at the macro level 
across predefined large-scale networks (LSNs).
 LSN SZ M ± SD HC M ± SD d Sz>HC u Sz>HC p  
 AN 0.35 ± 0.01 0.34 ± 0.01 0.38 2,7603 0,0058* 
 CON 0.13 ± 0.01 0.13 ± 0.01 0.27 1,4348 0,1513  
 Context 0.38 ± 0.03 0.38 ± 0.02 −0.02 0,2059 0,8369  
 DMN 0.39 ± 0.02 0.40 ± 0.01 −0.24 −0,4890 0,6248  
 DAN 0.34 ± 0.02 0.34 ± 0.02 0.08 0,4182 0,6758  
 perN 0.23 ± 0.01 0.23 ± 0.01 −0.01 0,8751 0,3815  
 SMN 0.15 ± 0.01 0.15 ± 0.01 0.33 1,8852 0,0594  
 Striatum 0.38 ± 0.03 0.38 ± 0.02 0.07 1,3640 0,1726  
 Th 0.14 ± 0.01 0.14 ± 0.01 0.28 1,2482 0,2119  
 VAN 0.30 ± 0.02 0.30 ± 0.02 −0.03 0,2831 0,7771  
 Visual 0.39 ± 0.02 0.39 ± 0.02 −0.13 −0,2381 0,8118  
 FPN 0.34 ± 0.01 0.34 ± 0.02 0.12 1,1517 0,2494  
 SN 0.23 ± 0.01 0.23 ± 0.01 0.14 1,7951 0,0726  
 Amygdala 0.37 ± 0.04 0.35 ± 0.05 0.29 1,5120 0,1305  
 EHN 0.34 ± 0.02 0.34 ± 0.01 −0.12 0,9651 0,3345  
* indicates significant changes; d is Cohen’s d; no comparisons survive the Bonferroni 
correction.

tend to have a greater proportion of outward-directed connections to 
other LSNs than inward-directed connections within their own network 
in schizophrenia. This result is consistent with the effect obtained at the 
global level for node strength (Table  3).

At the local level, the NBS results reveal (see Fig.  3) 15 significantly 
different local connections between 17 nodes in the original 165 × 165 
network in the HC > Sz direction. The node with the highest degree 
of alternations is Temporal Inf L, while the nodes with relatively high 
degrees are Cingulate Mid R, Occipital Mid R, and OFCpost L and R. 
Notably, Temporal Inf L shows broadly reduced connections to the 
motor (Precentral R), limbic (OFCant L and Cingulate Mid L), and 
sensorimotor (Paracentral Lobule R) regions. Meanwhile, the OFCpost 
L/R exhibit reduced integration of visual (Occipital Mid R) and tha-
lamic inputs (Thal PuA R), as well as cingulate and parietal feedback 
(Cingulate Mid R).

The multigraph visualization (Fig.  4) provides further insight into 
these connectivity alterations from the perspective of the NBS method. 
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Fig. 3. Connectogram displaying significantly different functional connections identified by network-based statistics (NBS) for HC > Sz. Node color represents 
the degree of connectivity alterations, scaled by the number of significantly different connections per node.
Table 5
Between-group differences in node strength (NS) at the macro level across 
predefined large-scale networks (LSNs).
 LSN SZ M ± SD HC M ± SD d Sz>HC u Sz>HC p  
 AN 3.40 ± 1.17 2.83 ± 0.95 0.53 2,8568 0,0043*  
 CON 7.86 ± 6.22 5.02 ± 3.57 0.56 2,6638 0,0077*  
 Context 1.84 ± 0.74 1.63 ± 0.53 0.34 1,3769 0,1685  
 DMN 2.33 ± 0.79 2.29 ± 0.72 0.06 0,2702 0,7870  
 DAN 2.92 ± 1.11 2.93 ± 0.95 −0.00 −0,3410 0,7331  
 perN 5.56 ± 2.29 4.93 ± 1.79 0.30 1,8724 0,0612  
 SMN 5.98 ± 4.67 4.11 ± 2.82 0.48 2,1876 0,0287*  
 Striatum 1.89 ± 1.12 1.44 ± 0.65 0.49 1,6214 0,1049  
 Th 6.04 ± 5.09 3.75 ± 2.79 0.56 2,7217 0,0065*  
 VAN 3.32 ± 1.60 2.72 ± 1.01 0.44 1,5571 0,1195  
 Visual 2.08 ± 0.83 1.91 ± 0.73 0.22 1,0037 0,3155  
 FPN 3.13 ± 1.36 2.73 ± 1.05 0.33 1,2482 0,2119  
 SN 5.31 ± 2.58 4.21 ± 1.58 0.52 2,5865 0,0097*  
 Amygdala 1.47 ± 0.81 1.18 ± 0.48 0.43 1,5442 0,1225  
 EHN 3.29 ± 1.39 2.70 ± 0.98 0.49 2,2906 0,0220*  
* indicates significant changes; d is Cohen’s d; no comparisons survive the Bonferroni 
correction.

One striking pattern is the predominance of increased connections 
between LSNs in the control group, particularly involving central hubs 
such as the DMN, Ventral Attention Network (VAN), Fronto-Parietal 
Network (FPN), as well as nodes in the orbitofrontal cortex that are 
not assigned to any specific LSN. Nodes of the orbitofrontal cortex par-
ticipate in the communication with the thalamic nodes and amygdala, 
while Striatum only has one connection with DMN.

We examined correlations between PANSS scores and network mea-
sures to identify clinically relevant associations. While no significant 
correlations were observed at the global level, several emerged at the 
macroscale (Tables  8–11 in Appendix). However, these correlations 
did not survive correction for multiple comparisons. These results and 
limitations are discussed further in the respective sections.
6 
Fig. 4. The multigraph combining information about LSNs and NBS-derived 
connections that are significantly different for the HC > Sz direction.

4. Discussion

Most of our findings aligned with previous literature, reinforc-
ing established models of network dysconnectivity in SCZ. However, 
some discrepancies emerged, highlighting potential directions for fu-
ture research. Notably, significant group differences were observed in 
node strength and clustering coefficient at the global level, with SCZ 
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Table 6
Between-group differences in clustering coefficient (CC) at the macro level across predefined 
large-scale networks (LSNs).
 LSN SZ M ± SD HC M ± SD d Sz>HC u Sz>HC p p-bc  
 AN 0.37 ± 0.14 0.30 ± 0.13 0.57 3,1142 0,0018* 0,027* 
 CON 0.13 ± 0.15 0.07 ± 0.08 0.54 2,7796 0,0054* 0,081  
 Context 0.22 ± 0.13 0.19 ± 0.10 0.29 1,1002 0,2712 1  
 DMN 0.32 ± 0.14 0.31 ± 0.13 0.03 0,0579 0,9538 1  
 DAN 0.29 ± 0.15 0.29 ± 0.13 0.00 −0,4182 0,6758 1  
 perN 0.28 ± 0.15 0.24 ± 0.12 0.28 1,7115 0,0870 1  
 SMN 0.12 ± 0.14 0.07 ± 0.08 0.47 2,3292 0,0198* 0,297  
 Striatum 0.25 ± 0.19 0.17 ± 0.11 0.51 1,6407 0,1009 1  
 Th 0.12 ± 0.14 0.06 ± 0.07 0.53 2,7731 0,0056* 0.084  
 VAN 0.26 ± 0.17 0.20 ± 0.11 0.43 1,4027 0,1607 1  
 Visual 0.27 ± 0.14 0.24 ± 0.13 0.17 0,7850 0,4325 1  
 FPN 0.33 ± 0.18 0.28 ± 0.14 0.31 1,0745 0,2826 1  
 SN 0.26 ± 0.16 0.19 ± 0.10 0.51 2,4000 0,0164* 0.246  
 Amygdala 0.16 ± 0.13 0.12 ± 0.08 0.43 1,5120 0,1305 1  
 EHN 0.35 ± 0.18 0.28 ± 0.13 0.46 1,9753 0,0482* 0.723  
* indicates significant changes; p-bc is Bonferroni-corrected 𝑝-value; d is Cohen’s d.
Table 7
Between-group differences in participation coefficient (PC) at the macro level across predefined large-scale 
networks (LSNs).
 LSN SZ M ± SD HC M ± SD d Sz>HC u Sz>HC p p-bc  
 Auditory 0.9933 ± 0.0028 0.9928 ± 0.0027 0.1549 1,0616 0,2884 1  
 CingularOper 0.9230 ± 0.0118 0.9214 ± 0.0182 0.1098 0,1802 0,8570 1  
 Context 0.9968 ± 0.0016 0.9958 ± 0.0024 0.4859 2,1619 0,0306* 0.459  
 DMN Zwir 0.9946 ± 0.0032 0.9931 ± 0.0038 0.4156 2,2713 0,0231* 0.3465  
 DAN Zwir 0.9927 ± 0.0027 0.9912 ± 0.0035 0.4826 2,7345 0,0062* 0.093  
 perN 0.9784 ± 0.0068 0.9741 ± 0.0087 0.5568 2,4321 0,0150* 0.2550  
 Somatomotor 0.9467 ± 0.0111 0.9421 ± 0.0181 0.3084 1,0745 0,2826 1  
 Striatum 0.9974 ± 0.0011 0.9972 ± 0.0012 0.1797 0,8815 0,3781 1  
 Thalamus 0.9422 ± 0.0104 0.9392 ± 0.0184 0.2004 0,2960 0,7673 1  
 VAN 0.9918 ± 0.0026 0.9914 ± 0.0024 0.1388 0,8171 0,4138 1  
 Visual 0.9974 ± 0.0015 0.9965 ± 0.0020 0.4707 3,0498 0,0023* 0.0345* 
 FPN 0.9934 ± 0.0022 0.9935 ± 0.0020 −0.0240 0,1287 0,8976 1  
 SN 0.9801 ± 0.0053 0.9784 ± 0.0057 0.2958 1,6793 0,0931 1  
 Amygdala 0.9982 ± 0.0008 0.9980 ± 0.0011 0.1955 0,5791 0,5625 1  
 EHN 0.9938 ± 0.0022 0.9929 ± 0.0025 0.4073 2,1490 0,0316* 0.474  
* indicates significant changes; p-bc is Bonferroni-corrected 𝑝-value; d is Cohen’s d.
 

demonstrating higher values than HC. These findings suggest that, at 
the whole-brain scale, schizophrenia is associated with increased local 
network integration, reflecting a brain that is more densely connected 
but potentially less segregated. In other words, the networks in patients 
show signs of being over-connected in an inefficient manner — ex-
hibiting higher overall connectivity alongside excessive local clustering. 
Such a configuration indicates a breakdown in the brain’s critical 
balance between integration and segregation. This disrupted network 
organization is consistent with the broader concept of dysconnectivity 
in psychosis, where altered connectivity patterns contribute to cog-
nitive and functional impairments (Skåtun et al., 2016; Lynall et al., 
2010).

Based on these observations, we examined the relationship be-
tween symptom severity and network organization characteristics. No 
significant correlations were observed between global measures and 
PANSS scores, suggesting that symptoms do not uniformly affect whole-
brain integration or segregation. Instead, negative symptoms, as well 
as positive symptoms to a lesser extent, were consistently linked to 
reduced hubness and local clustering in the CON, SMN, thalamus, 
VAN, and Context Network. This pattern indicates hypoconnectivity 
and weakened functional specialization across control, sensorimotor, 
attentional, and associative hubs, reflecting both diminished influence 
within the network and local disorganization. 

In our analyses, the correlation between the Context Network and 
total PANSS scores is particularly noteworthy. The Context Network, 
which primarily includes the parahippocampal cortex and the retrosple-
nial cortex, has been strongly implicated in human spatial navigation, 
a function closely tied to higher-order cognitive processes (Epstein, 
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2008). From a clinical perspective, this finding is intriguing because 
SCZ is characterized not only by perceptual disturbances but also by 
deficits in reality monitoring and cognitive insight. Previous work has 
linked abnormalities in these medial temporal and retrosplenial regions 
to impaired reality processing and altered integration of contextual 
information, which may contribute to difficulties in distinguishing 
internal from external experiences (Lee et al., 2015). Accordingly, the 
observed association between PANSS severity and Context Network 
disruptions may reflect a neural substrate underlying both cognitive 
and perceptual alterations in SCZ. In this framework, higher symptom 
burden could exacerbate the breakdown of contextual representations, 
impairing the ability to organize and interpret environmental and 
internal cues coherently. These findings suggest that altered connec-
tivity within the Context Network may serve as a mechanistic link 
between cognitive dysfunction, perceptual anomalies, and the clinical 
expression of symptom severity in schizophrenia. Thus, the revealed 
nuanced patterns suggest that SCZ disruptions are not uniformly global, 
but rather manifest more strongly within specific functional systems, 
affecting both hub influence and local network integrity.

Extending this analysis to macronetwork measures, patients with 
SCZ exhibited altered eigenvector centrality and increased node strength
within the Auditory Network (AN). Increases in node strength were 
also observed in the Cingulo-Opercular Network (CON), Thalamus (Th), 
Somatomotor Network (SMN), Salience Network (SN), and Entorhinal-
Hippocampal Network (EHN). Similarly, clustering coefficients were 
higher in the AN, CON, SMN, Th, SN, and EHN. Significant group 
differences in participation coefficient emerged across several net-
works, including the Default Mode Network (DMN), Dorsal Attention 
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Network (DAN), Context Network, Perception Network (perN), Visual 
Network (VN), and EHN. The involvement of both sensory and control-
related networks points to widespread disruptions that may underlie 
the heterogeneous symptomatology observed in SCZ. In summary, the 
results on network measures at the macro level suggest two main 
findings:

• Local Disorganization: In sensory and salience-related networks 
(Auditory, Salience, etc.), the schizophrenia-related disruptions 
include high local density and fragmentation (high node strength 
and clustering), which suggests inefficient processing within these 
systems.

• Boundary Disintegration: In higher-order cognitive networks (De-
fault Mode Network, Dorsal Attention, Perception, and Visual), 
the main disruption is a loss of functional specialization. These 
networks form relatively excessive connections outside their own 
boundaries, resulting in high PC and blurring their distinct roles. 
This causes pathological ‘‘cross-talk’’ between systems that should 
be more segregated, such as those responsible for internal thoughts
and external attention.

This EHN network is the only one affected in both analyses. This 
makes sense as the hippocampus participates both in processing in-
formation locally (memory consolidation) and linking that information 
to widespread cortical networks for context (memory retrieval). The 
finding suggests it is failing at both its local and global roles, making 
it a critical hub for pathology.

Network-Based statistics (NBS) also revealed reduced inter-regional 
connectivity in patients compared to controls with no region showing 
increased connectivity in SCZ. This pattern can imply lowered integra-
tive hub function, which would result in network-level ‘‘disconnection’’ 
consistent with the classic ‘‘dysconnectivity hypothesis’’ of SCZ (Friston 
et al., 2016). These findings highlight that schizophrenia is associated 
with both global and regionally specific alterations in brain network 
organization. The increased node strength and clustering at the global 
level, together with the targeted disruptions in particular LSNs, point 
to a complex reorganization of network topology that may underlie the 
cognitive and clinical features of the disorder. The observed changes 
in the participation coefficient suggest a shift toward greater global 
integration of networks and reduced modularity, which may reflect a 
breakdown in the functional specialization of these LSNs.

Building on these network findings, it is pertinent to consider es-
tablished structural alterations that may underpin these functional 
changes, such as those observed in the orbitofrontal cortex (OFC). 
Studies consistently report reduced gray matter volume and cortical 
thickness of the OFC in individuals with SCZ compared to healthy 
controls. For example, diminished medial orbitofrontal cortex (MOFC) 
thickness is significantly associated with greater negative symptom 
severity, such as apathy and anhedonia, supporting the notion that OFC 
structural alterations underpin some negative symptoms (Nakamura 
et al., 2007; Walton et al., 2017; Dong et al., 2025). Besides that, 
altered sulcogyral patterns (the folding structure of the OFC) were also 
found in SCZ, suggesting prenatal neurodevelopmental disruptions may 
contribute to the disorder’s vulnerability, with distinct alterations es-
pecially evident in female patients (Isomura et al., 2017). Exaggerated 
gyrification (folding of the cortex) of the OFC was also found – par-
ticularly in chronic auditory verbal hallucinators – showing abnormal 
wiring or connectivity in this subgroup (Núñez et al., 2024). There is 
some evidence for smaller OFC subregion volumes in violent or highly 
agitated schizophrenic patients compared to those with lower agitation, 
linking OFC morphology with emotional regulation and impulsivity, 
although findings are somewhat inconsistent across studies (Dong et al., 
2025; Chen et al., 2022). These findings further support the hypothe-
sis that OFC dysfunction contributes not only to negative affect and 
social withdrawal, but also to impulsivity and disinhibition frequently 
observed in SCZ. While most studies report reductions in network-
level measures among patients, there is a subset of the literature 
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documenting selective increases under specific conditions, suggesting 
a more complex pattern of dysregulation (Zhang et al., 2022; Hadley 
et al., 2016; Sokunbi et al., 2014).

Given the prominence of symptoms such as auditory and visual 
hallucinations in SCZ, it is not unexpected that the corresponding 
sensory networks have received attention in the literature. Research on 
dynamic functional connectivity has reported altered temporal variabil-
ity and changes in nodal centrality within both the auditory and visual 
networks in patients. These disruptions may underlie the emergence 
of positive symptoms, such as auditory verbal hallucinations, lending 
further support to the hypothesis that sensory network dysfunction 
plays a role in the pathophysiology of hallucinations (You et al., 2021). 
Furthermore, a frequent finding of rs-fMRI research that has contrasted 
SCZ subjects with HC is reduced auditory network FC (Joo et al., 
2020; Li et al., 2019; Woodruff et al., 1997). Such alterations may 
reflect abnormal integration or insufficient inhibition within primary 
and secondary auditory cortices. Supporting this, a meta-analysis of 
ICA-based resting-state fMRI studies reported reduced functional con-
nectivity in SCZ patients compared to healthy controls within both the 
AN and CON, highlighting their central roles in aberrant information 
processing (Li et al., 2019). Dysfunctions in early sensory processing 
may cascade into higher-order associative disturbances, potentially 
contributing to the emergence of hallucinations. This aligns with our 
findings, which point to dissociable network-level disruptions that may 
underlie specific clinical symptoms of SCZ — an interpretation fur-
ther supported by existing literature. Alternatively, evidence validates 
that impaired connectivity among other large-scale brain networks, 
i.e., the SN and the DMN, can lead to compensatory hyperactivity of 
AN (Mallikarjun et al., 2018).

Our findings of disrupted connectivity across the CON, FPN, and 
DMN are consistent with prior research implicating such disruptions 
in the impaired cognitive control and sustained attention characteristic 
of SCZ (Repovs et al., 2011). Moreover, this study provides further 
validation for established research on CON hypoconnectivity in SCZ 
and the functional disconnections within cortico-striatal circuits of the 
CON, which have been linked to negative symptom severity (Tu et al., 
2012). Conversely, the literature is not entirely consistent regarding 
these group-level differences. One particular study, for example, found 
no significant differences in CON and FPN connectivity when com-
paring SCZ patients with HC (Sheffield et al., 2015). These variations 
highlight the multidimensionality of large-scale network disruptions in 
SCZ, offering an explanation for divergent findings based on clinical 
characteristics, illness stages, or analytical methods.

EHN alterations observed in our study align with previous inves-
tigations of this region. Although fMRI studies targeting specifically 
the EHN in SCZ remain limited, structural MRI and histopathological 
studies report abnormalities in this region. Some studies have observed 
volume reduction and cytoarchitectural disturbance in the entorhi-
nal cortex in patients with SCZ, particularly in antipsychotic-naive 
populations (Jose et al., 2012; Nasrallah et al., 1997; Arnold, 1991). 
These findings indicate that the entorhinal cortex, a key node for asso-
ciative and memory processing, undergoes structural alterations even 
at the early stage of the disease. Furthermore, reduced resting-state 
modularity of the hippocampal–medial temporal lobe cortex network, 
which includes the entorhinal cortex, has been previously associated 
with relational memory impairment in patients (Avery et al., 2018). 
Additionally, decreased functional connectivity between hippocampus-
circuits and subcortical circuits also supports the concept of disrupted 
EHN integration (Gangadin et al., 2021). These findings underscore the 
critical role of entorhinal-hippocampal dysconnectivity in the cognitive 
and large-scale network impairments observed in SCZ.

The DMN has been extensively investigated in SCZ, consistently re-
vealing disruptions in its network organization and functional connec-
tivity. Expanding on this, our results specifically showed a significant 
difference in DMN participation coefficient when comparing patients 
with HC. Notably, reduced DMN efficiency, particularly within its core 
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Table 8
Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient 
(CC) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs) 
and total PANSS score.
 LSN r EC p r NS p r CC p r PC p  
 AN 0,1434 0,359 −0,009 0,9542 0,0169 0,9145 −0,0562 0,7206 
 CON −0,1675 0,283 −0,2167 0,1629 −0,2148 0,1666 0,1535 0,3258 
 Context −0,2119 0,1726 −0,3192 0,037* −0,3118 0,0418* −0,1324 0,3974 
 DMN 0,1526 0,3285 −0,1303 0,405 −0,077 0,6235 0,1215 0,4378 
 DAN 0,1496 0,3383 −0,076 0,6283 −0,051 0,7454 −0,0849 0,5883 
 perN 0,0034 0,9826 −0,0452 0,7734 −0,0341 0,8283 −0,2486 0,108  
 SMN −0,1773 0,2554 −0,226 0,1451 −0,2231 0,1504 −0,0249 0,8739 
 Striatum 0,2045 0,1883 0,0586 0,7089 0,0792 0,6138 0,0083 0,958  
 Th −0,1367 0,3819 −0,2274 0,1424 −0,2289 0,1398 0,0904 0,5643 
 VAN 0,0813 0,6041 −0,1801 0,2479 −0,1498 0,3376 0,1259 0,4212 
 Visual −0,0336 0,8305 −0,1183 0,4498 −0,1162 0,458 −0,1249 0,4248 
 FPN 0,1093 0,4852 −0,0112 0,9429 0,0213 0,8922 0,0078 0,9606 
 SN −0,1346 0,3895 −0,0846 0,5898 −0,0598 0,7031 −0,1453 0,3527 
 Amygdala −0,0992 0,5268 −0,1197 0,4445 −0,1777 0,2542 0,0404 0,7971 
 EHN −0,1014 0,5176 −0,0341 0,828 −0,0068 0,9655 −0,2038 0,19  
* indicates significant changes; no correlations survive the Benjamini–Hochberg correction.
Table 9
Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient 
(CC) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs) 
and PANSSP score.
 LSN r EC p r NS p r CC p r PC p  
 AN −0,017 0,914 −0,0479 0,7602 −0,0436 0,7812 −0,0522 0,7398 
 CON −0,0004 0,9979 −0,1041 0,5065 −0,1165 0,4571 0,218 0,1601 
 Context −0,2644 0,0866 −0,3181 0,0376* −0,3258 0,033* −0,0744 0,6355 
 DMN 0,1654 0,2891 −0,0068 0,9654 0,0302 0,8476 0,1773 0,2553 
 DAN −0,0323 0,8371 −0,0485 0,7575 −0,0502 0,7493 0,0563 0,7197 
 perN 0,0338 0,8297 −0,0101 0,9489 −0,0222 0,8878 −0,1642 0,2928 
 SMN 0,0181 0,9081 −0,1181 0,4508 −0,1297 0,4072 0,1712 0,2722 
 Striatum 0,2665 0,0841 0,1548 0,3216 0,1549 0,3214 −0,2665 0,0841 
 Th 0,021 0,8936 −0,1167 0,4563 −0,1315 0,4006 0,2705 0,0794 
 VAN 0,2006 0,1971 −0,0706 0,6527 −0,0344 0,8264 0,0673 0,6683 
 Visual −0,0535 0,7333 −0,1129 0,4711 −0,1339 0,3919 −0,0777 0,6203 
 FPN 0,2275 0,1424 0,022 0,8884 0,036 0,8188 0,0981 0,5315 
 SN −0,0754 0,631 −0,0283 0,8569 −0,0194 0,902 −0,0019 0,9902 
 Amygdala −0,1375 0,3792 −0,0719 0,6467 −0,1164 0,4574 −0,1641 0,2929 
 EHN 0,0193 0,902 0,037 0,8138 0,0457 0,771 −0,0712 0,6502 
* indicates significant changes; no correlations survive the Benjamini–Hochberg correction.
Table 10
Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient 
(CC) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs) 
and PANSSN score.
 LSN r EC p r NS p r CC p r PC p  
 AN 0,1489 0,3407 −0,0407 0,7957 −0,0059 0,9701 −0,0382 0,808  
 CON −0,3336 0,0288* −0,3273 0,0321* −0,312 0,0417* 0,0953 0,5431  
 Context −0,1827 0,241 −0,2512 0,1042 −0,2176 0,1611 −0,1692 0,2782  
 DMN 0,031 0,8433 −0,2833 0,0656 −0,2344 0,1302 0,039 0,8041  
 DAN 0,1354 0,3867 −0,1732 0,2667 −0,1316 0,4002 −0,1977 0,2038  
 perN −0,0647 0,6802 −0,1553 0,3201 −0,1439 0,3573 −0,2753 0,074  
 SMN −0,3518 0,0207* −0,319 0,0371* −0,3007 0,0501 −0,2736 0,0759  
 Striatum −0,0128 0,9352 −0,1517 0,3315 −0,1235 0,4299 0,3001 0,0506  
 Th −0,3268 0,0324* −0,33 0,0307* −0,3165 0,0387* −0,1219 0,4361  
 VAN −0,2143 0,1677 −0,3113 0,0421* −0,2945 0,0552 0,1227 0,4333  
 Visual 0,0224 0,8866 −0,1637 0,2943 −0,1236 0,4298 −0,1847 0,2358  
 FPN −0,1651 0,29 −0,1831 0,24 −0,1651 0,2902 −0,1323 0,3977  
 SN −0,2098 0,1769 −0,2234 0,1498 −0,215 0,1661 −0,2717 0,078  
 Amygdala −0,1051 0,5025 −0,2186 0,159 −0,2556 0,0981 0,1553 0,3201  
 EHN −0,1824 0,2418 −0,2038 0,19 −0,182 0,2429 −0,3523 0,0205* 
* indicates significant changes; no correlations survive the Benjamini–Hochberg correction.
medial temporal lobe subsystem, has been linked to negative symptoms 
like apathy and avolition (Cao et al., 2025). In addition, aberrant 
DMN activity has also been implicated in cognitive impairment, with 
cognitively impaired patients having been shown to have reduced 
suppression of the core DMN areas such as medial prefrontal cortex and 
posterior cingulate cortex during task performance (Zhou et al., 2016).
9 
In this regard, our findings align with existing evidence suggesting 
disrupted DMN integration, which may be linked to negative symp-
toms. However, this view is not universally accepted. Some research 
indicates that DMN connectivity reductions are more closely associated 
with positive and affective symptoms than with negative symptoms, 
and that DMN abnormalities differ depending on cognitive status and 
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Table 11
Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient 
(CC) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs) 
and PANSSG score; there are no significant correlations.
 LSN r EC p r NS p r CC p r PC p  
 PANSSG r EC p r NS p r CC p r PC p  
 AN 0,1741 0,2643 0,0372 0,8127 0,0593 0,7057 −0,0493 0,7536 
 CON −0,0844 0,5903 −0,1222 0,4348 −0,1223 0,4345 0,099 0,5276 
 Context −0,1224 0,4343 −0,2449 0,1135 −0,2497 0,1063 −0,0895 0,568  
 DMN 0,1699 0,2761 −0,046 0,7697 −0,0009 0,9954 0,1004 0,522  
 DAN 0,2031 0,1914 0,0032 0,9838 0,0223 0,8873 −0,0547 0,7275 
 perN 0,0313 0,842 0,0267 0,865 0,0463 0,768 −0,1832 0,2396 
 SMN −0,1005 0,5212 −0,1374 0,3795 −0,138 0,3774 0,0439 0,78  
 Striatum 0,2395 0,1218 0,1252 0,4236 0,1442 0,3563 −0,0399 0,7994 
 Th −0,0439 0,7797 −0,1334 0,3937 −0,1371 0,3805 0,1 0,5235 
 VAN 0,1841 0,2373 −0,0839 0,5928 −0,0593 0,7056 0,1129 0,4712 
 Visual −0,0477 0,7612 −0,046 0,7695 −0,0575 0,7141 −0,0634 0,6861 
 FPN 0,1879 0,2275 0,0905 0,5637 0,1309 0,4029 0,0494 0,7529 
 SN −0,0657 0,6757 0,01 0,949 0,0451 0,7738 −0,0842 0,5913 
 Amygdala −0,0366 0,8159 −0,0341 0,8282 −0,0919 0,5579 0,0606 0,6995 
 EHN −0,0752 0,6319 0,0539 0,7313 0,0849 0,5882 −0,0998 0,5243 
clinical outcome (Lee et al., 2019). The heterogeneity suggests that 
SCZ’s DMN dysfunction is multifaceted and symptom profiles and 
illness stages are likely to be responsible for these network alterations.

5. Limitations

While this study provides novel insights into hierarchical network 
disruptions in schizophrenia, several limitations should be acknowl-
edged. First, all patients included in the study had severe auditory 
verbal hallucinations, which may limit the generalizability of our find-
ings to schizophrenia patients without this symptom profile. Second, 
we performed formal statistical analyses to correlate network measures 
with clinical symptom severity (PANSS scores). There were significant 
results, but they did not survive correction for multiple comparisons, 
indicating they should be interpreted with caution and precluding 
definitive clinical inferences. One possible explanation for this find-
ing is that FDR or Bonferroni corrections become overly conservative 
when applied to more than ten comparisons (in our case, fifteen). 
The same applies to comparing network measures between groups, 
which results in few significant effects after correction. Moreover, this 
finding reflects the limitations of clinical observer-based rating scales, 
as discussed elsewhere (Di Nicola and Stoyanov, 2021). Third, all pa-
tients were receiving stable doses of atypical antipsychotics at the time 
of scanning, and we did not control for potential medication effects 
on functional connectivity patterns. These pharmacological influences 
could have modulated the observed network alterations, though the 
direction and magnitude of such effects remain unclear. Future studies 
incorporating unmedicated patients and systematic symptom-network 
correlations would help address these limitations. Another limitation is 
the translation of the results into clinical reasoning.

6. Conclusions

This multi-level fMRI study advances our understanding of
schizophrenia by demonstrating that the disorder arises from hierar-
chical disruptions in brain network organization. At the macroscale 
level, we identified a fundamental imbalance in integration-segregation 
dynamics, characterized by pathologically elevated participation co-
efficients in higher-order cognitive networks including the DMN and 
DAN. These macroscale disturbances co-occur with localized circuit 
failures, most prominently in temporal-orbitofrontal-cingulate path-
ways, creating a dual pathology where global hyperconnectivity masks 
critical local disconnections. The orbitofrontal cortex emerges as a 
pivotal hub in this system, with its structural deficits driving functional 
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disintegration that underlies negative and impulsive symptoms, while 
sensory network vulnerabilities may provide mechanistic explanations 
for hallucinatory phenomena.

The impact of this work advances the field in several dimensions. 
Methodologically, our multi-level framework is promising for resolving 
longstanding challenges in reconciling seemingly contradictory find-
ings of both hyper- and hypoconnectivity in SCZ by demonstrating 
how these phenomena coexist at different hierarchical levels. Clini-
cally, we identify distinct network biomarkers for core symptom do-
mains: sensory network vulnerabilities correlate with hallucinations, 
orbitofrontal-thalamic disconnection underlies negative symptoms, and 
dorsal attention network alterations reflect compensatory mechanisms. 
These findings provide actionable targets for developing circuit-specific 
interventions. The multigraph model particularly demonstrates how 
reduced centrality of high-level cognitive networks and orbitofrontal-
thalamic-amygdala circuits distinguishes patients from healthy con-
trols. These network signatures offer new possibilities for precision 
medicine approaches.

Theoretically, the demonstrated hierarchy of disruptions – from dys-
function in local level to impaired global network integration – provides 
a testable framework that unites neurodevelopmental hypotheses with 
observed clinical manifestations. Our approach, which spans multiple 
network levels, explains previously paradoxical findings of coexisting 
hyper- and hypoconnectivity in schizophrenia. It also establishes a new 
paradigm for investigating complex neuropsychiatric disorders. Future 
research should focus on longitudinal tracking of network evolution 
during disease progression, targeted intervention trials, and translation 
of multigraph modeling into clinical stratification tools. These advances 
move the field toward biologically grounded subtyping of schizophre-
nia and personalized therapeutic strategies based on individual network 
profiles.
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