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ARTICLE INFO ABSTRACT

Keywords: Background: We tested the hypothesis that Schizophrenia (SCZ) involves a systematic breakdown in brain
fMRI network organization across different levels of graph-theoretical hierarchy.

Complex networks Methods: Using resting-state fMRI from 43 SCZ patients and 63 matched healthy controls, we implemented
Schizophrenia

an analytical multi-level framework. This integrated: global graph theory metrics to assess overall network
A topology; macronetwork metrics to measure functional specialization of large-scale systems; network-based
Neuroimaging biomarkers A N . . . X R
Cognitive impairment statistics (NBS) to identify specific, altered pathways at the local level; a multigraph model to visualize hub
Multigraph reorganization between networks.
Results: We revealed a coherent pattern of multi-level dysfunction. Globally, SCZ networks showed increased
local clustering and connection density, indicating a shift toward a less efficient, overly segregated architecture.
At the macroscale, sensory and salience networks displayed elevated local connectivity, while higher-order
cognitive networks (e.g., DMN, DAN) showed reduced specialization and increased cross-talk. Locally, NBS
identified a core subnetwork of weakened connectivity within temporal-orbitofrontal-cingulate circuits. The
multigraph model synthesized these findings, showing a widespread reduction in the integrative role of key
cognitive hubs.
Conclusions: Our findings establish a model of SCZ as a disorder of disintegrated brain network hierarchy,
where disruptions at the level of local circuits and functional specializations collectively lead to global
topological inefficiency.

Functional connectivity

1. Introduction as a powerful tool for mapping these disruptions (Li et al., 2019;
Voineskos et al., 2024; Zhang et al., 2024), a fundamental gap remains

The development of robust neuroimaging biomarkers for schizophre- in understanding how alterations at different hierarchical scales — from
nia (SCZ) represents a critical need for improving diagnosis and per-
sonalized treatment of this complex psychiatric disorder (Varaprasad
and Goel, 2025). Contemporary neuroscience conceptualizes SCZ as a
disorder of brain network dysconnectivity, where disrupted integration
and segregation of large-scale networks underlie its diverse symptoma-
tology (Friston et al., 2016; Lynall et al., 2010; Wiectawski W. Bielski predefined networks (Sheffield et al., 2015; Repovs et al., 2011; Chat-
et al., 2024). While resting-state functional MRI (rs-fMRI) has emerged terjee and Hilal, 2024). This approach has identified key alterations

global network architecture to local circuit dysfunction — collectively
contribute to the pathophysiology of SCZ.

Traditional fMRI studies of SCZ have predominantly focused on
either isolated regional abnormalities or pairwise connectivity between
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in networks such as the default mode network (DMN) (Buckner, 2013;
Menon, 2023; Whitfield-Gabrieli and Ford, 2012; Zhou et al., 2016),
salience network (SN) (Uddin, 2014; Huang et al., 2022), and fronto-
parietal network (Li et al., 2019; Liang et al., 2021). However, these
investigations often fail to capture the multi-level nature of network
disruption in SCZ, where global topology may appear preserved while
critical subsystem interactions become profoundly impaired (Li et al.,
2019; Kurkin et al., 2025). Moreover, existing frameworks struggle
to explain how localized disruptions in circuits like the orbitofrontal
cortex or thalamocortical pathways propagate to produce system-wide
dysfunction (Dong et al., 2018).

Our study addresses these gaps through three key innovations. First,
we integrate analyses across hierarchical levels — global (whole-brain
topology), macro (large-scale network interactions), and local (indi-
vidual node connectivity) — to provide a unified view of SCZ-related
disruptions. In this context, we define hierarchical network dysfunc-
tion as the pathological disruption of the brain’s nested organization,
where abnormalities at one level (e.g., local circuit disconnection)
systematically propagate to alter functional dynamics at higher levels
(e.g., macronetwork specialization and global integration). Second, we
use a modified participation coefficient that specifically quantifies im-
balances in network integration versus segregation, overcoming limita-
tions of conventional metrics in overlapping functional systems. Third,
we employ a multigraph model to visualize how focal disruptions affect
the entire network architecture, bridging the gap between localized
connectivity changes and their global functional consequences.

2. Materials and methods
2.1. Subjects

The study involved 106 participants: 43 patients with schizophre-
nia (Sz group) and 63 healthy control subjects (HC group). Socio-
demographic group characteristics do not differ statistically as pre-
sented in Table 1. All participants underwent a diagnostic clinical
interview conducted by a physician and were screened for comorbidi-
ties, using MINI (Sheehan et al., 1998). Schizophrenia symptoms were
evaluated using the Positive and Negative Symptom Scale (PANSS) (Kay
et al.,, 1987). There has been estimated the total score, as well as
the scores on positive (P), negative (N), and general psychopathol-
ogy (G) scales. Positive scale captures productive symptoms, including
assessment of verbal-acoustic hallucinations (item P3), whereas the
negative scale is supposed to capture the deficit symptoms. Based on
the diagnostic assessment, the patients fulfilled the DSM-V criteria
for schizophrenia. The leading clinical inclusion criteria were set as
total PANSS score above 60, and positive scale score above 4, with
an additional criterion of P3> 3 (Table 1). The assessment of P3
(manifestation of auditory verbal hallucinations) was performed under
the rationale of another research project (Zaykova et al., 2025).

All patients received stable dose atypical antipsychostics mainte-
nance treatment. Healthy volunteers were recruited from the local
community. Exclusion criteria for healthy participants comprised neu-
rological disorders, psychiatric illnesses, and a history of traumatic
brain injury. The Ethics Committee of Medical University of Plovdiv
approved the study (Protocol No. 1/11.01.2024). The research protocol
complied with the 1964 Helsinki Declaration and its subsequent amend-
ments. All participants provided voluntary written informed consent,
allowing for the publication of any potentially identifiable images or
data included in this manuscript.

2.2. Data acquisition

The MR scanning procedure was performed on a 3T MRI system (GE
Discovery 750w). The protocol included a high-resolution structural
scan (Sag 3D T1) with slice thickness of 1 mm, matrix 256 x 256, TR
(relaxation time) 7.2 s, TE (echo time) 2.3 s, and flip angle 12°, FOV
24, resting-state functional scan — with slice thickness 3 mm, matrix
64 x 64, repetition time — 2000 ms, echo time — 30 ms, flip angle
90°, 192 volumes (Stoyanov et al., 2020).
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Table 1

Socio-demographic and clinical characteristics.
Characteristic Sz (n=43) HC (n=63) P
Age (Mean=SD) 354+124 360125 0.7714
Sex (M/F) 26/17 31/32 0.253%
PANSS total score (mean+SD) 71+12 - -
PANSS-P score (mean+SD) 20+3 - -
PANSS P3 score (mean+SD) 5.1+0.62 1.0£0.0 0.000*
Illness duration, days (mean+SD) 138 + 85 - -

SD - Standard Deviation, ¢ Student’s t-test, ®y> — test, * — p < 0.05.

2.3. Preprocessing

The whole pipeline of the study is schematically represented in
Fig. 1. The functional images were pre-processed with SPM 12 soft-
ware (SPM, 2024) in a typical way (see Sec. 2.1.3 in Ref. Pitsik et al.
(2023) for the details). Standard preprocessing procedures were em-
ployed, including motion correction, co-registration with high-resolution
T1, and normalization to the Montreal Neurological Institute’s standard
space (Khorev et al., 2025; Kurkin et al., 2024; Andreev et al., 2023).
We omitted slice timing correction because the temporal discrepancy
between slices was negligible relative to the hemodynamic response
given the 2000 ms TR and our experimental design. Filtering is effec-
tively performed during the subsequent detrending step. As a result, we
obtained voxel-level blood-oxygen-level-dependent (BOLD) signals.

Using the AAL3 anatomical atlas (Rolls et al., 2020), we divided
the brain into 165 distinct regions. To measure functional connectivity,
we first averaged the BOLD time series within each region and treated
each region as a network node to construct a connectivity matrix. This
parcellation step also serves as a smoothing procedure. After detrending
these averaged time series, we computed pairwise Pearson correlation
coefficients between all nodes. Only connections with p < 0.05 were
kept (Pisarchik et al., 2023). This resulting connectivity matrix captures
the functional brain network, reflecting the coupling strength between
different brain regions based on their correlated BOLD signals (Fig.
1, panel II). The values in the matrices were taken modulo for the
calculation of network measures.

2.4. Network analysis

Our approach considers several levels of network interaction:

+» Global level: Interactions between macronetworks — large-scale
networks (LSNs) — treated as single units or macronodes (Yang
et al., 2016; Wang et al., 2020).

Macro level: Interactions between macronetworks, accounting
for both (i) intra-macronetwork node interactions and (ii) inter-
macronetwork node connections (Kelly and Castellanos, 2014;
Hardikar et al., 2024).

Local level: Interactions between individual nodes within the
original network.

For global level analysis, we considered 15 macronetworks (see
Table 2) from Zwir et al. (2023), encompassing all major LSNs. The
global correlation matrix (15 x 15) was constructed using pairwise
Pearson correlations between macronetworks, derived from their mean
BOLD signals (averaged across constituent nodes — see Fig. 1, panels
II and III).

2.5. Network characteristics

2.5.1. Network measures
We computed a set of network measures for both the global network
and each local macronetwork (Fig. 1, panel IV):
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Fig. 1. The schematic pipeline of the study.

Clustering Coefficient: Measures local network cohesiveness by
quantifying the tendency of nodes to form densely interconnected
clusters, reflecting the density of connections among a node’s
direct neighbors (Costantini and Perugini, 2014; Khorev et al.,
2024).

Node Strength: Generalizes degree centrality to weighted net-
works by summing the weights of all edges connected to a node,
representing its total interaction strength within the network (Ru-
binov and Sporns, 2011).

Global Efficiency: Evaluates the network’s information integra-
tion capacity by computing the average inverse shortest path
length between all node pairs, with higher values indicating more
efficient parallel information transfer (Onnela et al., 2005).
Eigenvector Centrality: Assesses a node’s influence based on
its connections to other highly central nodes, derived from the
principal eigenvector of the network’s adjacency matrix. High
centrality indicates a strategically important position in the net-
work (Newman, 2008).

2.5.2. Modified participation coefficient
We used a modified participation coefficient (PC) tailored for single-
network communities (Kurkin et al., 2025), defined as:

w\2
peio (), o
w;

where P, represents the modified PC for node i, w;; denotes the total
connection weight between node i and other nodes within its com-
munity, and w; is the node i’s total strength (sum of all connection

weights, intra- and inter-community). This metric quantifies a node’s
position relative to its community, where P, — 1 indicate connector
nodes with predominantly external connections (gateway nodes), while
P, - 0 reflects a core nodes with primarily internal connections.

To assess whole-community properties, we computed the community-
averaged PC:

Py =— Y P, @)
( )k | Ckl iezc;k i
where C, are nodes in community k& and |C| is the community size.
The averaged PC provides insights into community organization: low
values ((P) — 0) indicate strongly segregated communities with pre-
dominantly internal connections, while high values ((P) — 1) suggest
communities heavily dependent on external connections. A balanced
community with equal internal and external connectivity would yield
(P)y=0.75.

For macro-level analysis, we treated the 15 predefined LSNs (Table
2) as distinct communities (k = 1,...,15) and computed their P
values. This adaptation resolves two key limitations of the standard
PC Guimera and Nunes Amaral (2005): (1) ambiguity in overlapping
communities (typically for LSNs), and (2) robust quantification of
integrative (external) vs. segregative (internal) properties.

Hereafter, we refer to this modified metric simply as the participa-
tion coefficient (PC).

2.5.3. Statistical analysis
For local-level network comparisons, we applied the network-based
statistic (NBS) method (Zalesky et al., 2010) to identify significantly
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Table 2
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Considered large-scale networks (LSNs)/macronetworks (Zwir et al., 2023).

LSN Abbreviation

Main constituent brain regions
(nodes)

Auditory Network AN

Heschl’s gyrus, Bilateral Superior
Temporal gyri, Posterior Insular
Cortex, et al.

Cingulo-Opercular Network CON

Anterior Insula/Operculum,
Dorsal Anterior Cingulate Cortex,
Thalamus, et al.

Context Network

Context

Parahippocampal Cortex,
Retrosplenial Cortex

Default Mode Network DMN

Posterior Cingulate Cortex,
Precuneus, Medial Prefrontal
Cortex, Angular Gyrus

Dorsal Attention Network DAN

Visual Motion Area, Frontal Eye
Fields, Superior Parietal Lobule
Intraparietal Sulcus, Ventral
Premotor Cortex

Perception Network perN

Lateral Orbitofrontal,
Ventromedial Temporal, Temporal
Pole, Subgenual

Anterior Cingulate Cortices,
Fusiform Gyrus, Rostral Superior
Temporal Sulcus,

Ventrolateral Amygdala

Somatomotor Network SMN

S1, M1, Supplementary Motor
Area (SMA), Thalamus

Striatum

Striatum

Caudate, Putamen, Ventral
Striatum

Thalamus Th

Thalamic Nuclei, Subcortical
Regions

Ventral Attention Network VAN

Bilateral Ventrolateral Prefrontal
Cortex, Bilateral
Temporal-Parietal Junction

Visual Network Visual

Middle Temporal Visual
Association Area at the
Temporal-Occipital Junction

Fronto-Parietal Network FPN

Intraparietal Sulcus, Ventral
Inferior Temporal Lobe, Lateral
Prefrontal Cortex

Salience Network SN

Limbic and Prefrontal Regions,
Amygdala, Anterior Insula,
Dorsal Anterior Cingulate Cortex,
Ventral Striatum

Amygdala Network

Amygdala

Amygdala, Precuneus, Nucleus
Accumbens

Entorhinal-Hippocampal Network EHN

Olfactory Bulb, Hippocampus,
Parahippocampal area, Temopral
lobe

altered subnetworks in the complete 165 x 165 connectivity matrix
between groups (Fig. 1, panel V). Instead of controlling the error rate
at the level of individual edges in a connectivity matrix — which can
be excessively conservative when large numbers of edges are tested
simultaneously — NBS adopts a cluster-based approach. The analysis
was performed with 50,000 permutations using a primary threshold of
t = 3.1 (p = 0.05), providing robust control for multiple comparisons
while maintaining sensitivity to detect connected patterns of altered
connectivity.

At the global and macro levels, we compared network measures
between groups using the two-sided Mann-Whitney U test. The test was
applied to node-averaged values of each network metric to evaluate
systematic between-group differences in network topology.

The PANSS scales were correlated post-hoc with the network mea-
sures using Pearson correlation.

IWe implemented the Bonferroni correction to account for multiple
comparisons across macronetworks. In the correlation analysis, we ap-
plied the Benjamini-Hochberg procedure to control the false discovery

rate. We applied these corrections separately for each type of network
measure (e.g., clustering coefficient and global efficiency) across all 15
macronetworks to ensure rigorous control of false positives.

2.6. Multigraph representation of altered network interactions

To effectively visualize the disrupted patterns of communication
between large-scale networks (LSNs) in schizophrenia, we developed a
multigraph model (Kurkin et al., 2025). This model was constructed by
incorporating statistically significant connections that differed between
patient and control groups. In our visual representation, the thickness
of an edge between any two LSNs directly corresponds to the total
number of disrupted connections they share, providing an intuitive,
quantitative assessment of how severely their interaction is altered.
A key strength of this model is its ability to integrate information
across multiple scales, combining macro-level changes in network par-
ticipation coefficient with local-level disruptions in connectivity. This
integrated method effectively illustrates how localized, individual con-
nection failures propagate upward to produce significant alterations in



V.S. Khorey et al.

Table 3
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Between-group comparisons of the global-level network measures. Statistical tests were
performed for the network of large-scale networks (LSNs).

Measure SZ M + SD HC M + SD d Sz>HC u Sz>HC p
Global efficiency 7.43 + 15.63 3.94 + 3.17 0.31 1.9303 0.0536
Eigenvector centrality 0.26 + 0.00 0.26 + 0.00 0.02 0.3667 0.7138
Node strength 9.07 + 1.88 8.29 + 1.26 0.49 2.4193 0.0156*
Clustering coefficient 0.70 + 0.15 0.64 + 0.10 0.46 2.3807 0.0173*

* indicates significant changes; d is Cohen’s d.

A

Node strength
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Fig. 2. Difference in distributions of network measures on global level between groups (A) Node strength, (B) Clustering coefficient.

the integration-segregation balance at the level of LSNs, which in turn
manifest as changes in the brain’s overall network organization.

3. Results

Significant between-group differences emerged at the global level
(network of LSNs) for node strength and clustering coefficient (Table
3 and Fig. 2), indicating altered functional connectivity architecture
in schizophrenia. Patients exhibited elevated node strength, reflecting
increased overall connectivity between LSNs. Paradoxically, this hyper-
connectivity co-occurred with higher clustering coefficient, suggesting
a shift toward fragmented, locally dense clusters of LSNs.

At the macroscale level (Tables 4-6), these group differences persist
across all measures, but with important regional specificity. Notably,
significant differences in eigenvector centrality are confined to the
auditory network, implying that this network may play a particularly
central or influential role in the altered connectivity patterns seen in
schizophrenia. For node strength and clustering coefficient, the differ-
ences are consistently observed in six out of the fifteen LSNs: Auditory,
Cingulo-Opercular, Somatomotor, Thalamus, Salience, and Entorhinal-
Hippocampal networks. This suggests that the disruptions in network
local hyperconnectivity and clustering are not uniformly distributed
across the brain, but are instead concentrated within specific functional
systems.

Analysis of the macronetwork-averaged PC revealed significant
between-group differences in several LSNs, as shown in Table 7. Specif-
ically, significant alterations in PC were observed in 6 out of 15
LSNs: Context, Default Mode, Dorsal Attention, Perception, Entorhinal-
Hippocampal networks, and most notably, the Visual network. Impor-
tantly, the set of LSNs showing altered PC is largely distinct from those
identified by differences in node strength or clustering coefficient, with
the exception of the Entorhinal-Hippocampal network.

The participation coefficient is a measure that reflects the extent
to which nodes within a network are connected to nodes in other net-
works, thus capturing the balance between within-network (intra-LSN)
and between-network (inter-LSN) connectivity. The observed increases
in PC among affected LSNs indicate that nodes within these networks

Table 4
Between-group differences in eigenvector centrality (EC) at the macro level
across predefined large-scale networks (LSNs).

LSN SZ M + SD HCM + SD d Sz>HC u Sz>HC p

AN 0.35 + 0.01 0.34 + 0.01 0.38 2,7603 0,0058*
CON 0.13 + 0.01 0.13 + 0.01 0.27 1,4348 0,1513
Context 0.38 + 0.03 0.38 + 0.02 -0.02 0,2059 0,8369
DMN 0.39 + 0.02 0.40 + 0.01 -0.24 —0,4890 0,6248
DAN 0.34 + 0.02 0.34 + 0.02 0.08 0,4182 0,6758
perN 0.23 + 0.01 0.23 + 0.01 -0.01 0,8751 0,3815
SMN 0.15 + 0.01 0.15 + 0.01 0.33 1,8852 0,0594
Striatum 0.38 + 0.03 0.38 + 0.02 0.07 1,3640 0,1726
Th 0.14 + 0.01 0.14 + 0.01 0.28 1,2482 0,2119
VAN 0.30 + 0.02 0.30 + 0.02 -0.03 0,2831 0,7771
Visual 0.39 + 0.02 0.39 + 0.02 -0.13 —-0,2381 0,8118
FPN 0.34 + 0.01 0.34 + 0.02 0.12 1,1517 0,2494
SN 0.23 + 0.01 0.23 + 0.01 0.14 1,7951 0,0726
Amygdala 0.37 + 0.04 0.35 + 0.05 0.29 1,5120 0,1305
EHN 0.34 + 0.02 0.34 + 0.01 -0.12 0,9651 0,3345

* indicates significant changes; d is Cohen’s d; no comparisons survive the Bonferroni
correction.

tend to have a greater proportion of outward-directed connections to
other LSNs than inward-directed connections within their own network
in schizophrenia. This result is consistent with the effect obtained at the
global level for node strength (Table 3).

At the local level, the NBS results reveal (see Fig. 3) 15 significantly
different local connections between 17 nodes in the original 165 x 165
network in the HC > Sz direction. The node with the highest degree
of alternations is Temporal Inf L, while the nodes with relatively high
degrees are Cingulate Mid R, Occipital Mid R, and OFCpost L and R.
Notably, Temporal Inf L shows broadly reduced connections to the
motor (Precentral R), limbic (OFCant L and Cingulate Mid L), and
sensorimotor (Paracentral Lobule R) regions. Meanwhile, the OFCpost
L/R exhibit reduced integration of visual (Occipital Mid R) and tha-
lamic inputs (Thal PuA R), as well as cingulate and parietal feedback
(Cingulate Mid R).

The multigraph visualization (Fig. 4) provides further insight into
these connectivity alterations from the perspective of the NBS method.



V.S. Khorey et al.

W |eJjuadald

Psychiatry Research: Neuroimaging 354 (2025) 112078

L - Left

R - Right

Thal - Thalamus

SN - Substantia Nigra
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Fig. 3. Connectogram displaying significantly different functional connections identified by network-based statistics (NBS) for HC > Sz. Node color represents
the degree of connectivity alterations, scaled by the number of significantly different connections per node.

Table 5
Between-group differences in node strength (NS) at the macro level across
predefined large-scale networks (LSNs).

LSN SZ M + SD HC M + SD d Sz>HC u Sz>HC p

AN 3.40 + 1.17 2.83 + 0.95 0.53 2,8568 0,0043*
CON 7.86 + 6.22 5.02 + 3.57 0.56 2,6638 0,0077*
Context 1.84 + 0.74 1.63 + 0.53 0.34 1,3769 0,1685
DMN 2.33 £ 0.79 2.29 + 0.72 0.06 0,2702 0,7870
DAN 292 + 1.11 2.93 + 0.95 —0.00 —0,3410 0,7331
perN 5.56 + 2.29 4.93 + 1.79 0.30 1,8724 0,0612
SMN 5.98 + 4.67 4.11 + 2.82 0.48 2,1876 0,0287*
Striatum 1.89 + 1.12 1.44 + 0.65 0.49 1,6214 0,1049
Th 6.04 + 5.09 3.75 + 2.79 0.56 2,7217 0,0065*
VAN 3.32 + 1.60 2.72 + 1.01 0.44 1,5571 0,1195
Visual 2.08 + 0.83 1.91 + 0.73 0.22 1,0037 0,3155
FPN 3.13 + 1.36 2.73 + 1.05 0.33 1,2482 0,2119
SN 5.31 + 2.58 4.21 + 1.58 0.52 2,5865 0,0097 *
Amygdala 1.47 + 0.81 1.18 + 0.48 0.43 1,5442 0,1225
EHN 3.29 + 1.39 2.70 + 0.98 0.49 2,2906 0,0220*

* indicates significant changes; d is Cohen’s d; no comparisons survive the Bonferroni
correction.

One striking pattern is the predominance of increased connections
between LSNs in the control group, particularly involving central hubs
such as the DMN, Ventral Attention Network (VAN), Fronto-Parietal
Network (FPN), as well as nodes in the orbitofrontal cortex that are
not assigned to any specific LSN. Nodes of the orbitofrontal cortex par-
ticipate in the communication with the thalamic nodes and amygdala,
while Striatum only has one connection with DMN.

We examined correlations between PANSS scores and network mea-
sures to identify clinically relevant associations. While no significant
correlations were observed at the global level, several emerged at the
macroscale (Tables 8-11 in Appendix). However, these correlations
did not survive correction for multiple comparisons. These results and
limitations are discussed further in the respective sections.

HC>Sz

Orbito
frontal
cortex

Link strength

DMN - Default Mode Network
FPN - Frontoparietal Network
VAN - Visual Attention Network

Fig. 4. The multigraph combining information about LSNs and NBS-derived
connections that are significantly different for the HC > Sz direction.

4. Discussion

Most of our findings aligned with previous literature, reinforc-
ing established models of network dysconnectivity in SCZ. However,
some discrepancies emerged, highlighting potential directions for fu-
ture research. Notably, significant group differences were observed in
node strength and clustering coefficient at the global level, with SCZ
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Between-group differences in clustering coefficient (CC) at the macro level across predefined
large-scale networks (LSNs).

LSN SZ M + SD HC M + SD d Sz>HC u Sz>HC P p-be
AN 0.37 + 0.14 0.30 + 0.13 0.57 3,1142 0,0018* 0,027*
CON 0.13 + 0.15 0.07 + 0.08 0.54 2,7796 0,0054* 0,081
Context 0.22 + 0.13 0.19 + 0.10 0.29 1,1002 0,2712 1
DMN 0.32 + 0.14 0.31 + 0.13 0.03 0,0579 0,9538 1
DAN 0.29 + 0.15 0.29 + 0.13 0.00 —0,4182 0,6758 1
perN 0.28 + 0.15 0.24 + 0.12 0.28 1,7115 0,0870 1
SMN 0.12 + 0.14 0.07 + 0.08 0.47 2,3292 0,0198* 0,297
Striatum 0.25 + 0.19 0.17 + 0.11 0.51 1,6407 0,1009 1

Th 0.12 + 0.14 0.06 + 0.07 0.53 2,7731 0,0056* 0.084
VAN 0.26 + 0.17 0.20 + 0.11 0.43 1,4027 0,1607 1
Visual 0.27 + 0.14 0.24 + 0.13 0.17 0,7850 0,4325 1
FPN 0.33 + 0.18 0.28 + 0.14 0.31 1,0745 0,2826 1

SN 0.26 + 0.16 0.19 + 0.10 0.51 2,4000 0,0164* 0.246
Amygdala 0.16 + 0.13 0.12 + 0.08 0.43 1,5120 0,1305 1
EHN 0.35 + 0.18 0.28 + 0.13 0.46 1,9753 0,0482* 0.723

* indicates significant changes; p-bc is Bonferroni-corrected p-value; d is Cohen’s d.

Table 7
Between-group differences in participation coefficient (PC) at the macro level across predefined large-scale

networks (LSNs).

LSN SZ M =+ SD HC M + SD d Sz>HC u Sz>HC P p-be
Auditory 0.9933 + 0.0028 0.9928 + 0.0027 0.1549 1,0616 0,2884 1
CingularOper 0.9230 + 0.0118 0.9214 + 0.0182 0.1098 0,1802 0,8570 1
Context 0.9968 + 0.0016 0.9958 + 0.0024 0.4859 2,1619 0,0306* 0.459
DMN Zwir 0.9946 + 0.0032 0.9931 + 0.0038 0.4156 2,2713 0,0231* 0.3465
DAN Zwir 0.9927 + 0.0027 0.9912 + 0.0035 0.4826 2,7345 0,0062* 0.093
perN 0.9784 + 0.0068 0.9741 + 0.0087 0.5568 2,4321 0,0150% 0.2550
Somatomotor 0.9467 + 0.0111 0.9421 + 0.0181 0.3084 1,0745 0,2826 1
Striatum 0.9974 + 0.0011 0.9972 + 0.0012 0.1797 0,8815 0,3781 1
Thalamus 0.9422 + 0.0104 0.9392 + 0.0184 0.2004 0,2960 0,7673 1

VAN 0.9918 + 0.0026 0.9914 + 0.0024 0.1388 0,8171 0,4138 1
Visual 0.9974 + 0.0015 0.9965 + 0.0020 0.4707 3,0498 0,0023* 0.0345*
FPN 0.9934 + 0.0022 0.9935 + 0.0020 —-0.0240 0,1287 0,8976 1

SN 0.9801 + 0.0053 0.9784 + 0.0057 0.2958 1,6793 0,0931 1
Amygdala 0.9982 + 0.0008 0.9980 + 0.0011 0.1955 0,5791 0,5625 1

EHN 0.9938 + 0.0022 0.9929 + 0.0025 0.4073 2,1490 0,0316* 0.474

demonstrating higher values than HC. These findings suggest that, at
the whole-brain scale, schizophrenia is associated with increased local
network integration, reflecting a brain that is more densely connected
but potentially less segregated. In other words, the networks in patients
show signs of being over-connected in an inefficient manner — ex-
hibiting higher overall connectivity alongside excessive local clustering.
Such a configuration indicates a breakdown in the brain’s critical
balance between integration and segregation. This disrupted network
organization is consistent with the broader concept of dysconnectivity
in psychosis, where altered connectivity patterns contribute to cog-
nitive and functional impairments (Skatun et al., 2016; Lynall et al.,
2010).

Based on these observations, we examined the relationship be-
tween symptom severity and network organization characteristics. No
significant correlations were observed between global measures and
PANSS scores, suggesting that symptoms do not uniformly affect whole-
brain integration or segregation. Instead, negative symptoms, as well
as positive symptoms to a lesser extent, were consistently linked to
reduced hubness and local clustering in the CON, SMN, thalamus,
VAN, and Context Network. This pattern indicates hypoconnectivity
and weakened functional specialization across control, sensorimotor,
attentional, and associative hubs, reflecting both diminished influence
within the network and local disorganization.

In our analyses, the correlation between the Context Network and
total PANSS scores is particularly noteworthy. The Context Network,
which primarily includes the parahippocampal cortex and the retrosple-
nial cortex, has been strongly implicated in human spatial navigation,
a function closely tied to higher-order cognitive processes (Epstein,

indicates significant changes; p-bc is Bonferroni-corrected p-value; d is Cohen’s d.

2008). From a clinical perspective, this finding is intriguing because
SCZ is characterized not only by perceptual disturbances but also by
deficits in reality monitoring and cognitive insight. Previous work has
linked abnormalities in these medial temporal and retrosplenial regions
to impaired reality processing and altered integration of contextual
information, which may contribute to difficulties in distinguishing
internal from external experiences (Lee et al., 2015). Accordingly, the
observed association between PANSS severity and Context Network
disruptions may reflect a neural substrate underlying both cognitive
and perceptual alterations in SCZ. In this framework, higher symptom
burden could exacerbate the breakdown of contextual representations,
impairing the ability to organize and interpret environmental and
internal cues coherently. These findings suggest that altered connec-
tivity within the Context Network may serve as a mechanistic link
between cognitive dysfunction, perceptual anomalies, and the clinical
expression of symptom severity in schizophrenia. Thus, the revealed
nuanced patterns suggest that SCZ disruptions are not uniformly global,
but rather manifest more strongly within specific functional systems,
affecting both hub influence and local network integrity.

Extending this analysis to macronetwork measures, patients with
SCZ exhibited altered eigenvector centrality and increased node strength
within the Auditory Network (AN). Increases in node strength were
also observed in the Cingulo-Opercular Network (CON), Thalamus (Th),
Somatomotor Network (SMN), Salience Network (SN), and Entorhinal-
Hippocampal Network (EHN). Similarly, clustering coefficients were
higher in the AN, CON, SMN, Th, SN, and EHN. Significant group
differences in participation coefficient emerged across several net-
works, including the Default Mode Network (DMN), Dorsal Attention
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Network (DAN), Context Network, Perception Network (perN), Visual
Network (VN), and EHN. The involvement of both sensory and control-
related networks points to widespread disruptions that may underlie
the heterogeneous symptomatology observed in SCZ. In summary, the
results on network measures at the macro level suggest two main
findings:

+ Local Disorganization: In sensory and salience-related networks
(Auditory, Salience, etc.), the schizophrenia-related disruptions
include high local density and fragmentation (high node strength
and clustering), which suggests inefficient processing within these
systems.

Boundary Disintegration: In higher-order cognitive networks (De-
fault Mode Network, Dorsal Attention, Perception, and Visual),
the main disruption is a loss of functional specialization. These
networks form relatively excessive connections outside their own
boundaries, resulting in high PC and blurring their distinct roles.
This causes pathological “cross-talk” between systems that should
be more segregated, such as those responsible for internal thoughts
and external attention.

This EHN network is the only one affected in both analyses. This
makes sense as the hippocampus participates both in processing in-
formation locally (memory consolidation) and linking that information
to widespread cortical networks for context (memory retrieval). The
finding suggests it is failing at both its local and global roles, making
it a critical hub for pathology.

Network-Based statistics (NBS) also revealed reduced inter-regional
connectivity in patients compared to controls with no region showing
increased connectivity in SCZ. This pattern can imply lowered integra-
tive hub function, which would result in network-level “disconnection”
consistent with the classic “dysconnectivity hypothesis” of SCZ (Friston
et al., 2016). These findings highlight that schizophrenia is associated
with both global and regionally specific alterations in brain network
organization. The increased node strength and clustering at the global
level, together with the targeted disruptions in particular LSNs, point
to a complex reorganization of network topology that may underlie the
cognitive and clinical features of the disorder. The observed changes
in the participation coefficient suggest a shift toward greater global
integration of networks and reduced modularity, which may reflect a
breakdown in the functional specialization of these LSNs.

Building on these network findings, it is pertinent to consider es-
tablished structural alterations that may underpin these functional
changes, such as those observed in the orbitofrontal cortex (OFC).
Studies consistently report reduced gray matter volume and cortical
thickness of the OFC in individuals with SCZ compared to healthy
controls. For example, diminished medial orbitofrontal cortex (MOFC)
thickness is significantly associated with greater negative symptom
severity, such as apathy and anhedonia, supporting the notion that OFC
structural alterations underpin some negative symptoms (Nakamura
et al., 2007; Walton et al., 2017; Dong et al., 2025). Besides that,
altered sulcogyral patterns (the folding structure of the OFC) were also
found in SCZ, suggesting prenatal neurodevelopmental disruptions may
contribute to the disorder’s vulnerability, with distinct alterations es-
pecially evident in female patients (Isomura et al., 2017). Exaggerated
gyrification (folding of the cortex) of the OFC was also found — par-
ticularly in chronic auditory verbal hallucinators — showing abnormal
wiring or connectivity in this subgroup (Ntufez et al., 2024). There is
some evidence for smaller OFC subregion volumes in violent or highly
agitated schizophrenic patients compared to those with lower agitation,
linking OFC morphology with emotional regulation and impulsivity,
although findings are somewhat inconsistent across studies (Dong et al.,
2025; Chen et al., 2022). These findings further support the hypothe-
sis that OFC dysfunction contributes not only to negative affect and
social withdrawal, but also to impulsivity and disinhibition frequently
observed in SCZ. While most studies report reductions in network-
level measures among patients, there is a subset of the literature
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documenting selective increases under specific conditions, suggesting
a more complex pattern of dysregulation (Zhang et al., 2022; Hadley
et al., 2016; Sokunbi et al., 2014).

Given the prominence of symptoms such as auditory and visual
hallucinations in SCZ, it is not unexpected that the corresponding
sensory networks have received attention in the literature. Research on
dynamic functional connectivity has reported altered temporal variabil-
ity and changes in nodal centrality within both the auditory and visual
networks in patients. These disruptions may underlie the emergence
of positive symptoms, such as auditory verbal hallucinations, lending
further support to the hypothesis that sensory network dysfunction
plays a role in the pathophysiology of hallucinations (You et al., 2021).
Furthermore, a frequent finding of rs-fMRI research that has contrasted
SCZ subjects with HC is reduced auditory network FC (Joo et al,
2020; Li et al., 2019; Woodruff et al., 1997). Such alterations may
reflect abnormal integration or insufficient inhibition within primary
and secondary auditory cortices. Supporting this, a meta-analysis of
ICA-based resting-state fMRI studies reported reduced functional con-
nectivity in SCZ patients compared to healthy controls within both the
AN and CON, highlighting their central roles in aberrant information
processing (Li et al., 2019). Dysfunctions in early sensory processing
may cascade into higher-order associative disturbances, potentially
contributing to the emergence of hallucinations. This aligns with our
findings, which point to dissociable network-level disruptions that may
underlie specific clinical symptoms of SCZ — an interpretation fur-
ther supported by existing literature. Alternatively, evidence validates
that impaired connectivity among other large-scale brain networks,
i.e., the SN and the DMN, can lead to compensatory hyperactivity of
AN (Mallikarjun et al., 2018).

Our findings of disrupted connectivity across the CON, FPN, and
DMN are consistent with prior research implicating such disruptions
in the impaired cognitive control and sustained attention characteristic
of SCZ (Repovs et al., 2011). Moreover, this study provides further
validation for established research on CON hypoconnectivity in SCZ
and the functional disconnections within cortico-striatal circuits of the
CON, which have been linked to negative symptom severity (Tu et al.,
2012). Conversely, the literature is not entirely consistent regarding
these group-level differences. One particular study, for example, found
no significant differences in CON and FPN connectivity when com-
paring SCZ patients with HC (Sheffield et al., 2015). These variations
highlight the multidimensionality of large-scale network disruptions in
SCZ, offering an explanation for divergent findings based on clinical
characteristics, illness stages, or analytical methods.

EHN alterations observed in our study align with previous inves-
tigations of this region. Although fMRI studies targeting specifically
the EHN in SCZ remain limited, structural MRI and histopathological
studies report abnormalities in this region. Some studies have observed
volume reduction and cytoarchitectural disturbance in the entorhi-
nal cortex in patients with SCZ, particularly in antipsychotic-naive
populations (Jose et al., 2012; Nasrallah et al., 1997; Arnold, 1991).
These findings indicate that the entorhinal cortex, a key node for asso-
ciative and memory processing, undergoes structural alterations even
at the early stage of the disease. Furthermore, reduced resting-state
modularity of the hippocampal-medial temporal lobe cortex network,
which includes the entorhinal cortex, has been previously associated
with relational memory impairment in patients (Avery et al., 2018).
Additionally, decreased functional connectivity between hippocampus-
circuits and subcortical circuits also supports the concept of disrupted
EHN integration (Gangadin et al., 2021). These findings underscore the
critical role of entorhinal-hippocampal dysconnectivity in the cognitive
and large-scale network impairments observed in SCZ.

The DMN has been extensively investigated in SCZ, consistently re-
vealing disruptions in its network organization and functional connec-
tivity. Expanding on this, our results specifically showed a significant
difference in DMN participation coefficient when comparing patients
with HC. Notably, reduced DMN efficiency, particularly within its core
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Table 8
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Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient
(CQO) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs)

and total PANSS score.

LSN r EC P r NS P r CC P r PC P

AN 0,1434 0,359 —-0,009 0,9542 0,0169 0,9145 —-0,0562 0,7206
CON -0,1675 0,283 -0,2167 0,1629 -0,2148 0,1666 0,1535 0,3258
Context -0,2119 0,1726 -0,3192 0,037* -0,3118 0,0418* -0,1324 0,3974
DMN 0,1526 0,3285 -0,1303 0,405 -0,077 0,6235 0,1215 0,4378
DAN 0,1496 0,3383 -0,076 0,6283 —-0,051 0,7454 —-0,0849 0,5883
perN 0,0034 0,9826 —0,0452 0,7734 —-0,0341 0,8283 —-0,2486 0,108
SMN -0,1773 0,2554 -0,226 0,1451 -0,2231 0,1504 —-0,0249 0,8739
Striatum 0,2045 0,1883 0,0586 0,7089 0,0792 0,6138 0,0083 0,958
Th -0,1367 0,3819 —-0,2274 0,1424 —-0,2289 0,1398 0,0904 0,5643
VAN 0,0813 0,6041 -0,1801 0,2479 —-0,1498 0,3376 0,1259 0,4212
Visual —-0,0336 0,8305 -0,1183 0,4498 -0,1162 0,458 —-0,1249 0,4248
FPN 0,1093 0,4852 —-0,0112 0,9429 0,0213 0,8922 0,0078 0,9606
SN -0,1346 0,3895 —-0,0846 0,5898 —-0,0598 0,7031 —-0,1453 0,3527
Amygdala —-0,0992 0,5268 -0,1197 0,4445 -0,1777 0,2542 0,0404 0,7971
EHN -0,1014 0,5176 —-0,0341 0,828 —0,0068 0,9655 —-0,2038 0,19

* indicates significant changes; no correlations survive

Table 9

the Benjamini-Hochberg correction.

Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient
(CQO) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs)

and PANSSP score.

LSN r EC P r NS P r CC P r PC P

AN -0,017 0,914 —-0,0479 0,7602 —-0,0436 0,7812 —-0,0522 0,7398
CON -0,0004 0,9979 -0,1041 0,5065 -0,1165 0,4571 0,218 0,1601
Context —-0,2644 0,0866 -0,3181 0,0376* —-0,3258 0,033* —-0,0744 0,6355
DMN 0,1654 0,2891 —-0,0068 0,9654 0,0302 0,8476 0,1773 0,2553
DAN -0,0323 0,8371 —-0,0485 0,7575 -0,0502 0,7493 0,0563 0,7197
perN 0,0338 0,8297 —-0,0101 0,9489 —-0,0222 0,8878 —-0,1642 0,2928
SMN 0,0181 0,9081 -0,1181 0,4508 -0,1297 0,4072 0,1712 0,2722
Striatum 0,2665 0,0841 0,1548 0,3216 0,1549 0,3214 -0,2665 0,0841
Th 0,021 0,8936 -0,1167 0,4563 -0,1315 0,4006 0,2705 0,0794
VAN 0,2006 0,1971 —-0,0706 0,6527 —-0,0344 0,8264 0,0673 0,6683
Visual —-0,0535 0,7333 -0,1129 0,4711 -0,1339 0,3919 -0,0777 0,6203
FPN 0,2275 0,1424 0,022 0,8884 0,036 0,8188 0,0981 0,5315
SN —-0,0754 0,631 —-0,0283 0,8569 —-0,0194 0,902 —-0,0019 0,9902
Amygdala -0,1375 0,3792 -0,0719 0,6467 -0,1164 0,4574 -0,1641 0,2929
EHN 0,0193 0,902 0,037 0,8138 0,0457 0,771 -0,0712 0,6502

* indicates significant changes; no correlations survive

Table 10

the Benjamini-Hochberg correction.

Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient
(CQO) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs)

and PANSSN score.

LSN r EC P r NS P r CC P r PC P

AN 0,1489 0,3407 —0,0407 0,7957 —0,0059 0,9701 —-0,0382 0,808
CON -0,3336 0,0288* -0,3273 0,0321* -0,312 0,0417* 0,0953 0,5431
Context -0,1827 0,241 —-0,2512 0,1042 —-0,2176 0,1611 -0,1692 0,2782
DMN 0,031 0,8433 —-0,2833 0,0656 —-0,2344 0,1302 0,039 0,8041
DAN 0,1354 0,3867 -0,1732 0,2667 -0,1316 0,4002 -0,1977 0,2038
perN —0,0647 0,6802 —-0,1553 0,3201 -0,1439 0,3573 —-0,2753 0,074
SMN -0,3518 0,0207* -0,319 0,0371* —-0,3007 0,0501 -0,2736 0,0759
Striatum -0,0128 0,9352 -0,1517 0,3315 -0,1235 0,4299 0,3001 0,0506
Th —-0,3268 0,0324* -0,33 0,0307* -0,3165 0,0387* -0,1219 0,4361
VAN —-0,2143 0,1677 —-0,3113 0,0421* —0,2945 0,0552 0,1227 0,4333
Visual 0,0224 0,8866 -0,1637 0,2943 -0,1236 0,4298 —-0,1847 0,2358
FPN —-0,1651 0,29 —-0,1831 0,24 —-0,1651 0,2902 -0,1323 0,3977
SN —-0,2098 0,1769 —-0,2234 0,1498 —-0,215 0,1661 -0,2717 0,078
Amygdala -0,1051 0,5025 -0,2186 0,159 —-0,2556 0,0981 0,1553 0,3201
EHN -0,1824 0,2418 —-0,2038 0,19 -0,182 0,2429 -0,3523 0,0205*

* indicates significant changes; no correlations survive

medial temporal lobe subsystem, has been linked to negative symptoms
like apathy and avolition (Cao et al., 2025). In addition, aberrant
DMN activity has also been implicated in cognitive impairment, with
cognitively impaired patients having been shown to have reduced
suppression of the core DMN areas such as medial prefrontal cortex and
posterior cingulate cortex during task performance (Zhou et al., 2016).

the Benjamini-Hochberg correction.

In this regard, our findings align with existing evidence suggesting
disrupted DMN integration, which may be linked to negative symp-
toms. However, this view is not universally accepted. Some research
indicates that DMN connectivity reductions are more closely associated
with positive and affective symptoms than with negative symptoms,
and that DMN abnormalities differ depending on cognitive status and
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Table 11
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Correlations between averaged Eigenvector Centrality (EC), Node Strength (NS), Clustering Coefficient
(CQO) in participation coefficient (PC) at the macro level across predefined large-scale networks (LSNs)
and PANSSG score; there are no significant correlations.

LSN r EC P r NS P r CC P r PC P
PANSSG r EC P r NS P r CC P r PC P

AN 0,1741 0,2643 0,0372 0,8127 0,0593 0,7057 —0,0493 0,7536
CON —-0,0844 0,5903 —-0,1222 0,4348 -0,1223 0,4345 0,099 0,5276
Context -0,1224 0,4343 -0,2449 0,1135 -0,2497 0,1063 —-0,0895 0,568
DMN 0,1699 0,2761 —-0,046 0,7697 —0,0009 0,9954 0,1004 0,522
DAN 0,2031 0,1914 0,0032 0,9838 0,0223 0,8873 —0,0547 0,7275
perN 0,0313 0,842 0,0267 0,865 0,0463 0,768 —-0,1832 0,2396
SMN —-0,1005 0,5212 -0,1374 0,3795 -0,138 0,3774 0,0439 0,78
Striatum 0,2395 0,1218 0,1252 0,4236 0,1442 0,3563 —0,0399 0,7994
Th —0,0439 0,7797 —-0,1334 0,3937 -0,1371 0,3805 0,1 0,5235
VAN 0,1841 0,2373 —-0,0839 0,5928 -0,0593 0,7056 0,1129 0,4712
Visual —-0,0477 0,7612 —-0,046 0,7695 —-0,0575 0,7141 —-0,0634 0,6861
FPN 0,1879 0,2275 0,0905 0,5637 0,1309 0,4029 0,0494 0,7529
SN —-0,0657 0,6757 0,01 0,949 0,0451 0,7738 —0,0842 0,5913
Amygdala —-0,0366 0,8159 —0,0341 0,8282 -0,0919 0,5579 0,0606 0,6995
EHN —-0,0752 0,6319 0,0539 0,7313 0,0849 0,5882 —0,0998 0,5243

clinical outcome (Lee et al., 2019). The heterogeneity suggests that
SCZ’s DMN dysfunction is multifaceted and symptom profiles and
illness stages are likely to be responsible for these network alterations.

5. Limitations

While this study provides novel insights into hierarchical network
disruptions in schizophrenia, several limitations should be acknowl-
edged. First, all patients included in the study had severe auditory
verbal hallucinations, which may limit the generalizability of our find-
ings to schizophrenia patients without this symptom profile. Second,
we performed formal statistical analyses to correlate network measures
with clinical symptom severity (PANSS scores). There were significant
results, but they did not survive correction for multiple comparisons,
indicating they should be interpreted with caution and precluding
definitive clinical inferences. One possible explanation for this find-
ing is that FDR or Bonferroni corrections become overly conservative
when applied to more than ten comparisons (in our case, fifteen).
The same applies to comparing network measures between groups,
which results in few significant effects after correction. Moreover, this
finding reflects the limitations of clinical observer-based rating scales,
as discussed elsewhere (Di Nicola and Stoyanov, 2021). Third, all pa-
tients were receiving stable doses of atypical antipsychotics at the time
of scanning, and we did not control for potential medication effects
on functional connectivity patterns. These pharmacological influences
could have modulated the observed network alterations, though the
direction and magnitude of such effects remain unclear. Future studies
incorporating unmedicated patients and systematic symptom-network
correlations would help address these limitations. Another limitation is
the translation of the results into clinical reasoning.

6. Conclusions

This multi-level fMRI study advances our understanding of
schizophrenia by demonstrating that the disorder arises from hierar-
chical disruptions in brain network organization. At the macroscale
level, we identified a fundamental imbalance in integration-segregation
dynamics, characterized by pathologically elevated participation co-
efficients in higher-order cognitive networks including the DMN and
DAN. These macroscale disturbances co-occur with localized circuit
failures, most prominently in temporal-orbitofrontal-cingulate path-
ways, creating a dual pathology where global hyperconnectivity masks
critical local disconnections. The orbitofrontal cortex emerges as a
pivotal hub in this system, with its structural deficits driving functional
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disintegration that underlies negative and impulsive symptoms, while
sensory network vulnerabilities may provide mechanistic explanations
for hallucinatory phenomena.

The impact of this work advances the field in several dimensions.
Methodologically, our multi-level framework is promising for resolving
longstanding challenges in reconciling seemingly contradictory find-
ings of both hyper- and hypoconnectivity in SCZ by demonstrating
how these phenomena coexist at different hierarchical levels. Clini-
cally, we identify distinct network biomarkers for core symptom do-
mains: sensory network vulnerabilities correlate with hallucinations,
orbitofrontal-thalamic disconnection underlies negative symptoms, and
dorsal attention network alterations reflect compensatory mechanisms.
These findings provide actionable targets for developing circuit-specific
interventions. The multigraph model particularly demonstrates how
reduced centrality of high-level cognitive networks and orbitofrontal-
thalamic-amygdala circuits distinguishes patients from healthy con-
trols. These network signatures offer new possibilities for precision
medicine approaches.

Theoretically, the demonstrated hierarchy of disruptions — from dys-
function in local level to impaired global network integration — provides
a testable framework that unites neurodevelopmental hypotheses with
observed clinical manifestations. Our approach, which spans multiple
network levels, explains previously paradoxical findings of coexisting
hyper- and hypoconnectivity in schizophrenia. It also establishes a new
paradigm for investigating complex neuropsychiatric disorders. Future
research should focus on longitudinal tracking of network evolution
during disease progression, targeted intervention trials, and translation
of multigraph modeling into clinical stratification tools. These advances
move the field toward biologically grounded subtyping of schizophre-
nia and personalized therapeutic strategies based on individual network
profiles.
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