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INTRODUCTION

The development of tools for digital processing of
multichannel records of the brain’s electric activity is
the topical direction of modern neurodynamics. Spe�
cial methods for analyzing electroencephalogram
(EEG) structures makes it possible to diagnose basic
interactions between different brain regions and the
mechanisms underlying the formation of different
types of rhythmic activity [1, 2]. Investigation of these
issues has not only a fundamental scientific meaning
concerned, e.g., with the study of cognitive brain func�
tions but also practical significance, in particular, to
create the monitoring systems of pathologic activity
and specific brain–computer interfaces [3, 4].

A large number of various rhythmic components,
the frequencies of which are important characteristics
of the functional activity of nervous structures, can be
extracted from EEG signals [1]. The characteristic
oscillatory patterns of EEGs, such as sleep spindles
(SSs) and spike�wave discharges (SWDs), can be visu�
ally identified in experimental EEG records. However,
the visual examination of long multichannel EEG sig�
nals is an intricate procedure. When the amount of
analyzed and decoded data is large, even a skilled
expert will commit errors. For example, according to
the estimates presented in [5], solving the similar
problem (the identification and recognition of long
neural spike sequences), expert can take erroneous
decisions in 50% of cases even when a single�channel
record is analyzed. During the identification of, e.g.,
SS patterns, the number of errors will be substantially
lower. At the same time, they always occur if an expert

must estimate a large experimental sample. Automatic
recognition of EEG oscillatory patterns completely
eliminates a human factor. This increases the reliabil�
ity of results and ensures their repeatability and repro�
ducibility, which are especially important for indepen�
dent expert estimation. Thus, the creation of efficient
algorithms capable of automating EEG signal analysis
is the problem of vital importance. It should be
emphasized that the automatic recognition of the fea�
tures of an EEG signal can be the first stage in solving
more complicated problems at which the type of a
cognitive human activity is recognized using an EEG
signal shape in the real time mode (the brain–com�
puter interface) or the technical problems of hardware
control.

In the last few years, wavelet analysis is successfully
employed to investigate the normal and pathological
EEGs of animals and people [6–8]. This is due to the
fact that wavelet analysis is applicable to research of
nonstationary signals, the spectral composition and
statistical characteristics of which vary with time, and
enables us to localize their peculiarities in time and
frequency domains. In complex multichannel pro�
cesses, the oscillatory pattern recognition problem is
efficiently solved via wavelet analysis because this
mathematical tool exhibits a number of properties
[9, 10]. First, the application of soliton�like functions
(wavelets) localized in the time domain makes it pos�
sible to implement efficient signal “scanning” in time,
revealing the typical features of rhythmic dynamics
and comparing them with the assigned template. Since
the used basis is localized, the time interval within
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which signals are analyzed can be narrowed to several
oscillations. As a result, digital processing of experi�
mental data is performed rather rapidly. Second, in
contrast to simple correlation methods that estimate
the degree of the linear dependence (correlations)
between the chosen fragment of experimental data and
the previously chosen template, wavelet analysis
makes it possible to carry out much more detailed
investigations of the structure of an analyzed signal.

In our previous studies [8, 11–14], the various
types of EEG oscillatory patterns were recognized by
means of wavelet analysis. In this study, we propose the
updated algorithm for automatic EEG pattern recog�
nition [11] to increase the reliability of EEG auto�
matic marking, which relies on the stricter approach
using optimization theory methods to the selection of
continuous wavelet transform (CWT) parameters.

1. METHOD FOR IDENTIFYING 
THE CHARACTERISTIC SHAPES 

OF RHYTHMIC ACTIVITY 
IN ELECTROENCEPHALOGRAMS VIA 

THE CONTINUOUS WAVELET TRANSFORM

A distinction between wavelet analysis and classical
spectral analysis involving the expansion of signal x(t)
in the harmonic function basis is a diversity in the
selection of functions ψ(t) ∈ L2(R) underlying the
basis formation. In this case, the necessary require�
ment is that a basis function and its Fourier transform
must be localized in time and frequency domains.
Drawing the known analogy between wavelet analysis
and a “mathematical microscope” [15], it is possible
to assume that quantity ψ(t) is selected in the same way
as it is done by a microscope lens enabling the obser�
vation of either separate details or a general view of the
object under examination. Hence, the selection of
appropriate basis (or “mother”) function ψ(t) strongly
affects the efficiency of solution to the problem con�
cerning the identification of oscillatory patterns in
EEGs.

After quantity ψ(t) is chosen, the CWT is applied to
signal x(t):

(1)

As a result, wavelet coefficients W(a, b) are calculated
at the fixed values of scale parameter a corresponding
to an oscillation period (in the case of rhythmic
dynamics) and parameter b characterizing the shift in
basis function along the time axis. During scale trans�
formations of a basis function, its norm is retained due
to the multiplier before the integral sign in formula (1).
Wavelet coefficients are often used together with the

energy spectrum E(a, b) =  which contains
no information on the oscillation phase (with the use
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of complex bases) but is more convenient when the
amplitude characteristics of signals are compared.

As basis functions ψ(t), the derivatives of the Gaus�
sian function (WAVE, MHAT, DOG, and other wave�
lets) can be chosen [6, 7, 9, 10]. In particular, they
were used to solve the electric activity recognition
problem in neuron systems [16–19]. In the identifica�
tion of EEG oscillatory patterns, it is reasonable to
employ complex basis functions [8, 11, 14, 20], e.g.,
the Morlet wavelet:

(2)

The number of oscillations of function (2) varies with
parameter f0 called the central frequency. In the fre�
quency–time representation of rhythmic processes, it
is suitable to pass from scale a to the corresponding
values of frequency f [7]. In particular, in the case of
function (2), the approximate equality f ≈ f0/a can be
used.

As is known from [8, 11–14], the SWD patterns of
EEGs is conveniently identified by means of the inte�
gral instantaneous energy

(3)

in the frequency range Δf ∈ [30, 50] Hz because the
SWD is characterized by the increased energy of the
corresponding range. The given amplitude criterion
enabled us to identify SWD patterns to within 98–
100% [12]. The more complicated situation was
observed during SS recognition. As opposed to SWDs,
spindles exhibited an appreciable variability in shape
and frequency composition, which extremely
impeded their identification and automatic recogni�
tion [11]. When the Morlet wavelet and the amplitude
criterion (by analogy with SWD patterns) were used,
the SSs of an EEG signal were recognized with the
lower accuracy (about 60%). An additional complex�
ity of identification consists in overlapping the fre�
quency ranges of different EEG patterns. Hence, they
cannot be separated from each other with the help of
simple principles of digital filtering. Wavelet analysis
also serves as a filter, and wavelet transform parameters
are selected according to the optimal frequency range
within which the desired pattern exhibits the maxi�
mum distinction from other EEG patterns. In
[11, 13], the authors have proposed the special adap�
tive wavelet transform–based method whereby EEG
fragments most similar to the shape of sought SS pat�
terns were selected as basis functions. The advantage
of the given method is that oscillatory patterns are rec�
ognized with a high quality, and its disadvantage is a
significant amount of precalculations caused by the
necessity of testing a large number of EEG fragments
with SSs used as adaptive wavelets.

Another variant for improving the SS identification
quality, which is discussed below, is to modify the algo�
rithm for recognizing EEG oscillatory patterns. In this
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case, CWT parameters are optimally chosen to obtain
specific characteristics by means of which these pat�
terns can be distinguished from other oscillatory struc�
tures. The given approach was evolved in [14, 21].
However, the CWT and wavelet basis parameters were
selected empirically without the use of numerical opti�
mization methods. In this study, we propose the adap�
tive EEG pattern recognition technique based on the
CWT, which formalizes the automatic recognition
method and demonstrates the stricter approach to
selection of the wavelet basis and CWT parameters.

Let us consider the essence of the proposed method.
It is assumed that the analyzed EEG signal is function
S(t). SS patterns can be identified with the help of the
characteristic templates thereof. They can be existing
data bases containing the most typical types of rhythmic
activity or patterns marked by an expert in the short (as a
rule, initial) fragment of an experimental record. Let us
consider the second variant and select a comparatively
short fragment of initial signal S(t), where characteristic
oscillatory structures were marked by a neurophysiolo�
gist. Expert estimate Se(t) was represented as a telegraph
signal: Se(t) = 1 or 0 at instants when the desired patterns
under examination were or were not observed in the sys�
tem. Using the given estimate, we can adjust (adapt) the
CWT�based recognition algorithm. Duration T of the
marked fragment (the adaptation period) is determined
experimentally according to the frequency at which
desired patterns appear.

The given method is based on CWT (1) combined
with Morlet basis function (2). With the help of

expression (1), initial signal S(t) is converted to the
space of wavelet coefficients. Quantity W(a, b) is tradi�
tionally regarded as the function of two variables (scale
and shift), actually representing a surface in the 3D
space. However, using the Morlet wavelet, we obtain
an additional parameter, central frequency f0, which
specifies a tradeoff between resolutions in the time and
spectral domains, defining the number of oscillations
of the basis function. The given wavelet in formula (2)
can be simplified by introducing the parameter
ω0 = 2πf0. Since basis function shift b defines the
“focusing” point of the wavelet (the selection of a def�
inite instant), this quantity does not affect the spectral
resolution in the neighborhood of the chosen instant.
Thus, to increase the EEG pattern recognition quality,
two other parameters (a and ω0) must be optimally
adjusted. For this purpose, the wavelet transform
results is assumed to be interpreted as three�variable
function  two of which can be used to per�
form optimization. Let us introduce objective function
R1, which characterizes distinctions between the
energy characteristics of desired patterns and other
oscillatory structures in the marked region of the
EEG, i.e., a change in the average oscillation energy
(Fig. 1). In this study, function R1 is specified as fol�
lows [22]. According to formula (3), oscillation ener�
gies E averaged over all regions with SS patterns
(Fig. 1, regions s2, s4) and other EEG fragments with�
out SS patterns (Fig. 1, regions s1, s3, s5) are calculated
in chosen frequency range Δf. Note that the given
energies depend on parameter ω0 and frequency range
Δf (or parameter a that determine the center of the
given frequency range). Let us designate the average
energies of regions with SS patterns and EEG frag�
ments without SS patterns as  and ,
respectively. The optimal set of parameters a and ω0

enabling us to distinguish between required patterns
and other EEG fragments is found by maximizing the
function

(4)

i.e., by searching for parameters that satisfy the con�
dition

(5)

Since the value of instantaneous oscillation energy
(3) can exhibit strong fluctuations within the character�
istic pattern under consideration, which can lead to the
erroneous interpretation of the results (in the case of
fluctuations E(t), two adjacent patterns can be identi�
fied instead of a single one), additional filtering of the
given time dependence must be performed by means of
a low�pass filter. For this purpose, filtering operator F is
introduced. In this case, any of the standard approaches
to digital filtering, including direct and inverse Fourier
transforms, wavelet filtering, averaging over the sliding
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Fig. 1. Calculated values of instantaneous oscillation
energy E(t) in the fragment of EEG signal S(t) with expert
mark Se(t). Regions s2 and s4 correspond to SS patterns
and the higher instantaneous energies. Regions s1, s3, and
s5 designate the EEG fragments without SS patterns.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 58  No. 8  2013

ADAPTIVE WAVELET TRANSFORM–BASED METHOD 793

time window, and so forth, can be implemented. This
study deals with the last method, which is the simplest
variant of function smoothing enabling the elimination
of high�frequency fluctuations.

Let chosen filter F be specified by vector  of param�
eters that characterizes the adjustment of its spectral
properties. In particular, the parameters of the moving�
average method are the time window duration (averaging
is carried out within this window) and the number of
average values. After filtering implemented with the help
of operator F, output signal  is analyzed by
means of threshold function C with thresholds θ1 and θ2.
Function C serves as a comparator used to compare an
input signal with the assigned thresholds. If the signal
takes the value belonging to the interval [θ1, θ2], the given
function is equal to unity. Otherwise, its value is zero.
When an expert visually mark signal Se(t), he usually
adheres an analogous approach (zero or unity is chosen if
there is no or is the sought pattern). Hence, to compare
the result of automatic marking with an expert signal in
an opportune manner, objective function R2 is com�
monly defined as

(6)

At the stage of adaptation, the thresholds θ1 and θ2
of function C are selected by minimizing objective
function R2. The given algorithm can be generalized in
terms of the set of mathematical operations, which
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makes it possible to improve the quality of solution to
the EEG oscillatory pattern identification problem.
This set involves the following operations:

(i) EEG signal S(t), in which the fragment of dura�
tion T is selected, is recorded to obtain expert estimate
Se(t).

(ii) CWT  is calculated, and an optimal
set of parameters a and ω0 is determined according to
objective function R1 (4). The instantaneous energy
E is calculated from formula (3).

(iii) The thresholds θ1 and θ2 of function C are
selected under the condition of minimum of objective
function R2 (6).

(iv) EEG signal S(t) is marked with the help of the
built�in algorithm.

2. RESULTS

The theoretical justification of the applicability of
CWT�based adaptive algorithm was confirmed by
investigating the 25�min record of an EEG signal con�
taining about 200 SS patterns. To analyze the accuracy
of the proposed method, the expert estimate Se(t) of
the entire signal was used. However, in this case, the
duration of the fragment used to adjust the algorithm
was approximately 15%. During an adaptation pro�
cess, the algorithm was adjusted so as to identify only
SS patterns. For a relatively short fragment of the ana�
lyzed EEG, an example of operation of the proposed
adaptive algorithm is presented in Fig. 2.This example
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Fig. 2. EEG signal S(t) fragment estimated according to the proposed adaptive method. The values of instantaneous oscillation
energy E(t), threshold function C, and expert estimate Se(t) are presented.
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illustrates the main principles of the proposed method
and does not correspond to the case of the minimum
error of SS pattern recognition. In particular, as is seen
in Fig. 2, the selection of thresholds θ1 and θ2 strongly
affects the quality of automatic marking of an EEG
signal. Threshold θ2 makes it possible to remove large�
amplitude signal fluctuations associated, e.g., with
more powerful SWD patterns or various artifacts. In
particular, when quantity θ2 diminishes, two closely
spaced patterns can appear instead of a single one
identified by an expert (Fig. 2). Changes in threshold
θ1 also vary the number of automatically recognized
patterns. As a consequence, the marking obtained by
means of the algorithm under consideration will differ
from the expert estimate. Calculations performed to
optimize the selection of algorithm parameters enable
us to diminish the number of erroneously identified
patterns, thereby increasing the automatic marking
accuracy.

The accuracy of detection of sought patterns also
depends on the variant of objective function R1.
According to the principles of optimization theory
[22], different variants of selection can be offered, e.g.,
with allowance for both average oscillation energies

 and  and the spread of oscillation
energy E(t) with respect to the average level in the
regions with desired SS patterns and the other frag�
ments of an EEG signal. In our studies, four variants of
function R1 were tested. Comparison of test results
enabled us to choose the variant defined by formula (4),
which is relatively simple and provides a high accuracy.

Further investigations were performed with the
help of the data base containing multichannel EEGs
of six rats. At the very beginning, an expert marked the
initial fragment of each experimental record. During
processing, the accuracy of automatic recognition of
SS patterns reached approximately 90%. An advan�
tage of the proposed adaptive method is that an EEG
is automatically marked without the influence of
human factors, e.g., an expert experience needed to
select CWT parameters. The difference between the
results of the given approach and expert estimates is
about 10%. This can be related to the fact that the
given signal contains several oscillatory patterns with
almost identical shapes (SSs, five� and nine�Hz oscil�
lations, and SWDs), which can be erroneously inter�
preted by means of the algorithm, impeding estima�
tion of functions C at the stage of algorithm adjust�
ment (adaptation) and during its application to
unestimated EEG regions. Moreover, the quality of
expert estimates depends on the human factor: an
expert can make mistakes when an EEG record is ana�
lyzed. Hence, expert estimate Se(t) cannot be consid�
ered an absolute standard.

The advantage of the developed adaptive method is
that the algorithm adjustment enables us to obtain the
definite accuracies of identification. As was demon�
strated with the help of the numerical experiment,

1 0( , )G a ω 2 0( , )G a ω ,

these accuracies remain almost unchanged at the stage
of analysis of an unestimated EEG region. In particu�
lar, this circumstance can be employed to simplify an
empirical search for adaptation period T.

CONCLUSIONS

The proposed adaptive method for identifying
oscillatory patterns is capable of eliminating the main
drawback of approaches based on the wavelet trans�
form, namely, the problem of empirical selection of
parameters affecting the solution quality. It is this
problem that restricts the efficiency of the wavelet
methods for sorting neural spikes in the automatic
mode [16–19] because parameters (and respective
wavelet coefficients) selected from general recom�
mendations [23] often make it impossible to achieve
an acceptable accuracy of recognition of similar oscil�
latory structures in the analyzed signal. In the pro�
posed approach, wavelet transform parameters are
adjusted using the optimization theory. As a result, the
desired oscillatory patterns in electroencephalogram
signals are recognized with minimum errors. The error
arising when sleep spindle patterns of EEGs are deter�
mined is four times lower in the performed investiga�
tions than in previous studies based on the empirically
chosen continuous wavelet transform parameters.
Although the given method has been developed to per�
form automatic processing of EEG records, the field
of its potential applications is rather wide because the
algorithm can be used to solve various problems of
image recognition with the help of wavelet analysis
tools, including the problems of radio physics, radar,
and so forth.
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