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Abstract—In the present work we studied human behavioral
characteristics during prolonged cognitive activity. For this pur-
pose we conducted experiment with interpretation of consistently
presented ambiguous visual stimuli with different levels of am-
biguity. As behavioral characteristic we chose the correctness of
ambiguous stimuli interpretation and we showed, that number
of errors changes significantly th rough th e experiment.

Index Terms—ambiguous visual stimuli, Necker cube, behav-
ioral estimates, cognitive load

I. INTRODUCTION

Mechanisms of brain adaptation or neuroplasticity is an

important and promising research field. Neuroplasticity is the

brain’s inherent ability to respond to internal and external stim-

uli by reorganizing the neural network structure [1]. It is well

known, that certain factors like developmental disorders and

neurodegeneration through ageing greatly affect brain activity

[2], [3]. Moreover, brain adaptation capabilities manifest them-

selves in response to more subtle changes too. For example, the

human brain shows mental fatigue after prolonged cognitive

load. This is due to the limited cognitive resources of the brain.

Mental fatigue negatively affects person’s attention and leads

to a decrease in behavioral indicators [4]. However, studies

show that the brain reserves cognitive resources to use them

in the future [5], [6]. The brain makes optimal use of resources

to recompense the effect of mental fatigue during prolonged

cognitive activity.

The study of neurophysiological mechanisms of adaptation

to cognitive load provides not only fundamental knowledge

about the work of the human brain [7], but is also the

basis for the development of both passive [8], [9] and active

brain-computer interfaces [10]. The brain-computer interface

(BCI) deciphers operator’s brain activity and transforms its

characteristic features into commands to control software

and/or hardware in real-time. BCI was used as a basis to
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propose the concept of brain-to-brain interface (BBIs) —

system featuring direct information transfer between the brains

of interacting living beings. One of the possible applications of

BBI is enhancement of performance in two-operator task — in

this case interaction between operators can be used to share

high mental load. The natural evolution of this approach is

collaborative BCIs [11], [12], aimed to further enhance human

performance by using multi-brain computing.

In this paper, we examined the behavioral characteristics

of the subjects during long-term cognitive activity. We have

shown that the distribution of events with incorrect interpreta-

tions of visual stimuli to the subjects is shifted to the beginning

of the experimental session, which indicates the adaptation of

the subjects to the cognitive task.

II. METHODS

A. Participants and Experimental setup

The experiments involved 26 healthy volunteers aged 20

to 36 years with normal or adjusted-to-normal visual acuity.

There were no subjects with history of neurological diseases

and/or prescripted medications. The participants were asked to

maintain a healthy lifestyle for 48 hours before the experiment,

which included 8-hour night rest, limited consumption of

alcohol and caffeine, moderate physical activity. The basic

design of the experiment was explained to the volunteers?

and they were informed about possible inconveniences. They

were able to ask any related questions and received proper

answers. All subjects signed informed written consent prior

their participation. The experimental design was approved by

the local Research Ethics Committee, and all experimental

works were carried out in accordance with the Declaration

of Helsinki.

Electroencephalogram (EEG) was acquired with NVX-52

amplifier (MKS, Zelenograd, Russia). To record EEG signals

we used 31 standard Ag/AgCl electrodes, that were placed

on the scalp according to the international “10-10” scheme.

Two reference electrodes were placed on the left and right
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mastoids, and the ground electrode was placed on the forehead.

During the experiment we monitored all electrode impedances

and kept them below 15 kΩ to ensure high signal-to-noise

ratio in acquired EEG signals. EEG data was recorded with

sampling rate of 1 kHz and filtered with bandpass filter (cut-

off frequencies 1 and 100 Hz) and 50 Hz notch filter.

B. Task

To study bistable visual perception and perceptual decision-

making we chose the Necker cube [13]. An observer without

perceptual deviations perceives this image as a 3D cube due

to particular arrangement of the edges. Bistability lies in the

perception of the Necker cube: it can be treated as left-

or right-oriented. However, the degree of ambiguity can be

controlled by changing the contrast of some edges. In our work

we considered middle edges for this purpose — there are total

six of them, three in the lower left part and three in the upper

right part. We chose the contrast of the lower left edges as a

control parameter a = [0, 1] while the contrast of the upper

right edges was 1− a. a was defined as a = g/255, where g
is the brightness of the edges in terms of the 8-bit gray-scale

palette. The boundary values a = 1 and a = 0 correspond to

g = 0 (black) and g = 255 (white) pixels luminance of the

edges. In this study we considered Necker cubes with eight

values of a = {0.15, 0.25, 0.4, 0.45, 0.55, 0.6, 0.75, 0.85} with

first four treated as “left-oriented” (LO) and latter four as

“right-oriented” (RO).

The Necker cubes were 14.2 cm in size and were drawn

with gray lines on a white background in the center of a 24-

inch monitor. The subjects seated in front of the monitor with

eye-to-monitor distance of 70-80 cm and viewing angle of

∼ 0.25 rad.

The subject’s task was to interpret orientation of conse-

quently presented Necker cubes and report their choice with

two-button input device — right button press for RO Necker

cube and left button press for LO Necker cube. During the ex-

periment 400 Necker cubes evenly distributed over 8 different

ambiguity levels were presented. The entire experiment lasted

approximately 40 minutes for each participant.

During the experimental sessions, an experimental protocol

was formed, which included the time of presentation of each

visual stimulus, the subject’s response time to the visual

stimulus, the orientation of the visual stimulus, as well as the

correctness of its interpretation.

C. Behavioral estimates

To analyze the behavioral characteristics, all Necker cubes

demonstrated to the subjects during the experimental sessions

were divided into two samples:

• Necker cubes with correctly interpreted orientation

• Necker cubes with incorrectly interpreted orientation

We used statistical analysis to compare these two samples.

The statistical analysis was performed using SPSS statis-

tics. The normality of the samples was checked using the

Kolmogorov-Smirnov test. The main effect was evaluated

using the Wilcoxon sign-rank test.

III. RESULTS
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Fig. 1. Distribution of the presentation time over the experiment for correctly
and incorrectly interpreted Necker cubes.

According to the Kolmogorov-Smirnov test, both samples

followed a normal distribution (p = 0.088 and p = 0.1,

respectively). The Wilcoxon sign-rank test showed significant

differences between the median values of the visual stimulus

presentation time for the samples under consideration (p =

0.0002).

Results of the statistical analysis are shown on Fig.1.

According to visualization of median values, the Necker cubes

with incorrectly interpreted orientation are distributed mainly

in the initial phase of the experimental session, while the cases

with correctly interpreted orientation are concentrated mostly

in the latter half of the session.

Obtained results suggest decrease in number of errors from

the start to the end of the experimental session. This implies

some sort of adaptation to the cognitive task. The most

obvious reason for these changes is the fact that the subject

is getting familiar with the task which leads to increase in

performance. However, this task can be treated as a prolonged

cognitive load, which should inevitably lead to mental fatigue

and, in its turn, decrease behavioral indicators. We speculate

that observed increase in performance could be due to some

intrinsic mechanism of brain adaptation to long-term cognitive

load. Further studies in this field are planned, that will involve

analysis of neurophysiological activity in a form of EEG.

IV. CONCLUSION

In this work we analyzed the behavioral characteristics of

the subjects during the performance of a long-term cognitive

task. It was revealed that the subjects make mistakes mainly at

the beginning of the experimental session, which indicates that

a person adapts to the assigned cognitive task. The obtained
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results provide grounds for further analysis of the identified

mechanisms at the sensory level of brain neural activity. We

suggest that knowledge of such mechanisms will open up new

opportunities in development of BCIs, especially collaborative

ones.
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