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ABSTRACT Neuroeducation seeks to implement knowledge about neural mechanisms of learning into
educational practice and to understand the impact of learning itself. The crucial tasks in this field are to
evaluate and to enhance cognitive abilities, that are used in monitoring educational performance, but also
known to greatly impact learning process. Contemporary neuroscience achieved significant progress in
measuring brain cognitive abilities through mental state assessment. Popular approach to this task based
on brain-computer interface can be difficult to implement in the context of education, but general concept of
neuroadaptation is still plausible. In this study, we propose open-loop neuroadaptive system for enhancing
student’s cognitive abilities in learning. Assessment of cognitive abilities is based on the concept of executive
functions. We design EEG study with special tests and use combined analysis of behavioral and brain
activity to assess the level of development of cognitive abilities. Feedback in this system is implemented
in the form of recommendations aimed to develop and enhance underdeveloped cognitive abilities and
skills. Recommendations have form of various types of extracurricular activities and are based on extensive
literature search. This is the system with open-loop adaptation, as it can assess cognitive abilities, provide
feedback aimed to enhance these abilities and then after a period of time it can assess cognitive abilities
again as a part of the next loop. We believe that developed neuroadaptive system has a potential to be used
in educational institutes.

INDEX TERMS Neuroadaptive system, open-loop, cognitive abilities, executive functions, decision
support system, educational neuroscience, behavioral characteristics, neurophysiological characteristics,
electroencephalogram.

I. INTRODUCTION
Learning is the cognitive process of acquiring knowledge
and skills through education. One fundamental purpose of
education is to provide students with the cognitive abilities
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(CAs), also known as cognitive functions or cognitive skills,
related to problem-solving, logical and creative thinking,
that generally help to succeed in life. Measuring CAs is
essential for monitoring student’s educational performance
and personal growth. However, the reverse is also true:
CAs and other individual factors have a great impact on
learning process [1]. Studying CAs is one of fundamental

49034


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-2491-2592
https://orcid.org/0000-0002-6392-4580
https://orcid.org/0000-0002-3212-5890
https://orcid.org/0000-0002-3438-5717
https://orcid.org/0000-0003-0359-0897
https://orcid.org/0000-0003-1850-2394
https://orcid.org/0009-0003-9612-0305
https://orcid.org/0000-0003-2658-4545
https://orcid.org/0000-0003-2787-2530
https://orcid.org/0000-0001-8911-727X


V. V. Grubov et al.: Open-Loop Neuroadaptive System for Enhancing Student’s CAs in Learning

domains of neuroscience, so education could potentially
benefit from findings in this area of knowledge. This
naturally leads to the concept of educational neuroscience
(or neuroeducation) as an interdisciplinary field of study,
that seeks to implement knowledge about neural mechanisms
of learning into educational practice and to understand
the impact of learning process on the student’s brain [2],
[3], [4]. However, a certain gap remains between the
fundamental findings and their application in the classrooms,
and some aspects of neuroeducation are still a subject of a
heated discussion [5], [6], [7]. On the one hand, methods
developed for strict lab conditions may be inappropriate to
use in classrooms [8], [9]. On the other, implementation of
poorly justified results often leads only to spreading and
reinforcing neuromyths in education [10], [11]. This explains
the active usage of neuroscientific approach for solving
tasks in education [12], [13], for instance in the context
of distance learning [14]. Thus, proper neuroeducational
technology should combine robustness of execution with
scientific soundness of approach.

A traditional approach for assessing CAs comes from
psychology and implements various tests and questionnaires.
While some researchers suggest that psychological studies
provide enough results to build scientifically sound con-
cepts for education [15], neuroscientific approach has a
number of advantages. Brain activity provides a continuous
source of data, that can be analyzed to go deeper and
focus on the underlying brain mechanisms. Contemporary
neuroscience achieved significant progress in measuring CAs
through mental state assessment [16], which became possible
thanks to the advances in the portable neuroimaging tech-
niques such as electroencephalography (EEG) or functional
near-infrared spectroscopy (fNIRS) [17], [18]. While mental
state assessment is possible with just recording and analyzing
brain activity, implementation of interactivity, feedback and
adaptation to the system can widen its possibilities greatly.
In neuroscience these terms are usually associated with
brain-computer interface (BCI) — a computer-based system
that acquires brain signals, analyzes them, and translates them
into commands that are relayed to an output device to carry
out a desired action [19]. Common area of use for BCI is
medicine, where it is implemented to aid disabled users in
regaining their communication [20] and motor abilities [21].
Nonetheless, innovative use of BCI technology can be found
in other fields including education [22], [23], [24].
There are three types of BCI [19]: (i) active (commands

are voluntarily induced by the user), (ii) reactive (commands
are measured as a response to an external stimulus), and
(iii) passive (commands are derived from spontaneous brain
activity). It is believed that passive BCIs are the most suitable
for the task of monitoring and assessing cognitive states.
Indeed, in passive BCI the brain activity is not expressly
or voluntarily modulated, but rather reflects aspects of
the naturally present cognitive state of the user [25]. The
feedback of such system is implicit, so it can be referred to as

adaption, and since adaptation is based on brain activity, the
system itself can be called neuroadaptive one [26]. Passive
BCIs can be divided into categories according to the degree
of their interactivity, i.e. how they respond to a user’s input
and form a feedback [27]. Two interesting categories here
are systems with closed-loop and open-loop adaptation [28].
In closed-loop adaptive systems the behavior adapts to certain
changes in the assessed state, which affects further input
and future actions, while open-loop systems lack any direct
coupling of the adaptation back to the input.

Despite many benefits BCI technology have its share of
problems when it comes to implementation in education.
Firstly, BCI usage is associated with brain activity recording
which requires wearing a device with sensors. Modern EEG
recording units can be fairly compact, which, however, comes
at a cost of reduced number of recorded EEG channels
and lower sampling rate. Obtaining clean EEG signal with
high signal/noise ratio usually demands application of special
conductive gel that only adds to the inconvenience of the
study. There are some dry EEG electrode solutions [29],
[30], but their implementation tends to result in the noisier
signals. Secondly, BCI works in real-time and thus mental
states can be adjusted only for a short time, which contradicts
the main purpose of education — acquisition of skills. Any
long-term effect requires extensive training and multiple
BCI sessions [31], which amplifies earlier described issues.
Summarizing all the above, BCIs are ill-suited for use in
classrooms on a regular basis. However, general concept
of neuroadaptive system (NAS) is still plausible. In this
paper, we propose for the first time an approach to building
an open-loop neuroadaptive system for enhancing student’s
cognitive abilities in learning, the general scheme of which
is illustrated in Figure 1. Based on the results obtained in
the cognitive neuroscience and the development of brain-
computer interfaces, we can assume that neuroadaptation
can be effectively implemented in the educational process as
follows:

• experimental session is performed, during which a
student’s brain activity is recorded;

• brain activity is analyzed and used to assess certain CAs
(offline);

• feedback is provided after the session in the form
of recommendations aimed to adjust/enhance assessed
CAs;

• student is supposed to follow given recommendations
for a period of time, after that a new session is initiated,
which signifies the start of the next loop.

Such a system is somewhat similar to open-loop passive
BCI, except its performance is more distributed over time.
We believe that this approach would achieve more robust
performance, provided sound approach to assessing CAs and
forming recommendations.

The described concept is in line with trends in education,
which include individualization [32], [33], personalization
[34], [35], [36] and the concept of lifelong learning [37].
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FIGURE 1. General scheme of the neuroadaptive approach.

In the context of lifelong learning, learning is not limited
to the formal education at school, college or university.
Non-formal learning outside of educational institutions, for
example, in working groups or student clubs, as well as
informal learning, which occurs naturally in everyday life,
also becomes relevant. Individualization of formal education
has limits at primary and higher education due to the preset
educational program, thus non-formal and informal education
provide more opportunities for personalization. Therefore,
the recommendations of the neuroadaptive system based on
the student’s data can refer not only to formal but also
to non-formal and informal learning, offering him different
trajectories of choice of extracurricular activities.

In this paper we consider the creation of open-loop
neuroadaptive system aimed to assess and enhance CAs of
students through adjustments in non-formal/informal aspects
of education. The contribution of our study was as follows.

• We proposed a general scheme of NAS;
• developed specific tests for assessing CAs and electronic
environment to implement these tests;

• designed and carried out experimental EEG study for
assessing CAs;

• introduced an approach for evaluating development
level of CAs based on analysis of behavioral and
neurophysiological characteristics;

• developed a system to provide recommendations for
enhancing underdeveloped CAs.

II. GENERAL SCHEME OF NEUROADAPTIVE SYSTEM
The general scheme of the proposed NAS is shown in
Figure 2. The work of the NAS consists of several stages.

1) Experimental session. At this stage, the student is
asked to perform a series of cognitive tests. At the

same time, their multimodal data is recorded, including
behavioral data and data on brain activity during the
completion of tests. The multimodal data registration
is carried out using two hardware blocks:
a) Touch-screen device (tablet or laptop) with a spe-

cially designed electronic environment. It imple-
ments an interface for the student to complete
cognitive tests. It also collects behavioral data on
the accuracy and speed of task completion (in
other words reaction time).

b) EEG recording device. The device records the
student’s EEG signals during the completion
of cognitive tests. The data is segmented and
synchronized with the presentations and the
student’s responses on the touch-screen device.

2) Data processing. At this stage, the data is transferred
to the cloud server. Here, with the help of specially
developed software, biomarkers based on behavioral
data and EEG signals are calculated to assess CAs.

3) Formation of recommendations. The software com-
pares the calculated characteristics of CAs with the
predetermined thresholds. As a result, the level of
development for each individual CA is assessed.
After that, a list of recommendations is formed, i.e.
additional activities that can be used to adjust certain
underdeveloped CAs.

4) Verification of recommendations. At this stage, the
list of selected recommendations is analyzed by a
teacher and/or a neuropsychologist, who forms a
proposal for parents to include certain additional
activities in the student’s schedule.

5) Implementation of recommendations. The student
follows the recommendations and, for a certain time,
participates in the proposed additional activities. This
is followed by a new study, a new assessment of the
CAs’ development levels and the next iteration in the
work of the NAS.

The developed systemwas tested in the experimental study.
At this stage the student performs a series of cognitive tests
that are fundamentally unrelated to the student’s educational
tasks. However, the results of these tests are used to assess the
development levels of CAs.

During the experimental study, the student is sitting in a
comfortable chair with the touch-screen device on the table in
front of them. In a specially designed electronic environment,
the student performs a series of cognitive tests described
below, and the answers are selected by pressing a finger
on the touch screen. The study begins with familiarization
with the task. The researcher explains the basics and they
complete a couple of tasks together with the participant. Then
the participant tries to complete several tasks by their own, the
researcher assesses the student’s understanding of the tasks
and repeats their explanations if necessary. After that, the
main part of the study begins — the student performs the
tasks independently, while the researcher observes from
the side.
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FIGURE 2. General scheme of the proposed NAS. The NAS involves five stages: (1) recording multimodal data
including reaction time and accuracy of cognitive tasks solutions, as well as data on brain activity during
cognitive tests. (2) Data are sent to the cloud where biomarkers based on behavioral data and EEG signals
are calculated to assess CAs. (3) A recommendation system generates a set of recommendations for formal
and/or informal learning. (4) The generated recommendations are verified by a teacher who forms a proposal
to include additional activities in the student’s schedule. (5) The student fulfils the recommendations, after
which the next stage of cognitive development verification is possible.

III. ASSESSMENT OF COGNITIVE ABILITIES
In psychology, executive functions (EFs), also known as
cognitive control, are commonly used to assess basic cogni-
tive processes such as attention control, cognitive inhibition,
inhibitory control, working memory, and cognitive flexibility
[38], [39], [40]. Number of studies reveal connections
between EFs and academic performance, especially in
primary education [40], [41]. There are reported methods for
the assessment of individual EFs in children, both healthy
and impaired [42], [43], as well as approaches for the
development of certain EFs [44], [45]. We suggested that
comprehensive analysis on EFs can be used to estimate CAs
in the proposed NAS.

Psychological tests can be implemented to assess EFs,
but neuroscientific methods make it possible to include
estimates acquired through a direct study of brain activity,
for example with EEG. In this study we proposed to assess
EFs by analyzing behavioral and brain activity during certain
cognitive tests. We introduced cognitive tests, which are
closely related to various types of cognitive activity during
learning (see Fig. 2) [4], [46], [47], namely:

• Visual search pertains to a person’s ability to efficiently
locate specific visual information amidst a complex
array of stimuli. It plays a pivotal role in tasks
that require visual attention, pattern recognition, and
information retrieval.

• Working memory is integral to the temporary storage
and manipulation of information during cognitive tasks.
It influences a person’s capacity to process and retain
data, particularly in tasks that involve multitasking,
problem-solving, and decision-making.

• Mental arithmetics focuses on a person’s numer-
ical processing abilities, including mental calcu-
lations, mathematical reasoning, and quantitative
problem-solving. Proficiency in mental arithmetics
is vital for a wide array of academic and practical
tasks.

• Ability to combine CAs is crucial because almost any
complex cognitive task can be decomposed into several
CAs. Thus, the ability to solve such a complex task
will be determined, in particular, by the efficiency of
combining these CAs.
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While these tests are not conventionally used to evaluate EFs,
they are connected to EF skills, especially in the context of
neuroeducation.

For example, visual search task is closely related to
selective visual attention. According to the theory of visual
attention, perception of visual scenes is considered in terms of
competition amongmultiple representations— such as colors
or objects [48]. Selective visual attention adds ‘‘bias’’ to
this competition in favor of certain selected representations.
According to Miller and Cohen’s model [49], this selective
attention mechanism is a special case of cognitive control,
and thus the results of visual search test should correlate to
the level of EFs’ development.

Working memory is an important concept in EF theory
as one of influential models is based on it. Baddeley’s
multicomponent model of workingmemory [50] is composed
of a central executive system, that directs attention to relevant
information and regulates three subsystems: the phonolog-
ical loop that stores verbal information; the visuo-spatial
sketchpad that stores visual and spatial information; and
the episodic buffer that integrates short-term and long-term
memory. The existing results show that working memory
capacity correlates with some, but not all of EFs [51], so we
suggest that working memory test is an adequate addition to
our set of cognitive tests.

Mathematical proficiency is an important aspect of aca-
demical performance, and mental arithmetics (arithmetical
calculations using only the human brain) has long been
a component of mathematical education. There is ample
evidence that EFs, namely working memory and attentional
control, underly the mechanisms of mental arithmetics [52],
[53], [54], hence this cognitive test matches the purpose of
our study.

One of the important EFs is cognitive flexibility —
mental ability of cognitive system to adjust its activity
and content, switching between different task rules and
corresponding behavioral responses [55]. In the context of
our approach, we can consider some cognitive test comprised
from combination of other, simpler, tests for evaluation of
EFs/CAs. We believe that such test reflects the ability to
combine several CAs and thus cognitive flexibility skill.

The completion of each cognitive test involves solving
many tasks of the same type. The general schemes of the tasks
are shown in Figure 3.

A. VISUAL SEARCH ASSESSMENT TEST
One task example is shown in Figure 3a. At first, a cross
appears on the screen to attract the participant’s attention.
The duration of the cross presentation varies from 0.75 to
1.25 seconds. The ‘‘floating’’ time of stimulus presentation
is used to prevent the student from getting used to the
task’s timings [56]. Then the target number, which the
participant needs to remember, is displayed on the screen for
1.5–2.0 seconds. Following this, a 5 × 5 table of numbers
appears on the screen. The subject’s task is to find and

indicate the target number in the table. The table remains on
the screen until the student provides an answer. In addition,
the student has the opportunity to skip a particular task
using the ‘‘skip’’ button, for example, if they were distracted
and could not remember the target number. After the student’s
answer, a short pause of 1.5 seconds follows, and then the next
task of this type begins.

This test uses two types of tables with two-digit numbers.
Tables of the first type comprise numbers that contain at least
one or both digits of the target number. For instance, if the
target number is 24, a table of the first type might contain
25, 43, 44, 42, etc. In the tables of the second type, all the
numbers do not include a single digit from the target number.
For instance, for the same target number 24, a table of the
second type might contain 50, 18, 39, 67, etc. This separation
is introduced to test two visual search options: when the target
object has similarities with other objects, and when it does
not [57]. The test uses equal number of tables of the first and
the second type, randomly mixed. There are 10 tasks for each
type of table, resulting in a total of 20 tasks.

B. WORKING MEMORY ASSESSMENT TEST
The design of the test is based on the widely used Sternberg
paradigm [58]. One task example is shown in Figure 3b.
At first, a cross is shown on the screen for 0.75–1.25 seconds.
Then a set of numbers appears on the screen, which may
contain 2 or 3 two-digit numbers. The set consists of two
rows with fixed positions: three in the top row and four in
the bottom. Two or three positions are randomly selected
and filled with numbers, and the remaining positions are
filled with ‘‘*’’. The set of numbers is demonstrated for
1.5–2.5 seconds, followed by a short pause of 2.0–4.0 sec-
onds. After that, a cross appears again for 0.75–1.25 seconds,
followed by a ‘‘trial’’— a number is shown on the screen. The
participant is required to determine whether the displayed
number was earlier in the set by pressing ‘‘Yes’’ or ‘‘No’’
button, accordingly. The trial will remain on the screen until
the student provides an answer. The answer is followed by a
short pause of 1.5 seconds, after which the next task of this
type begins.

The task’s complexity is determined by the size of the set
of numbers. This test uses an equal number of complexity
‘‘2’’ and complexity ‘‘3’’ tasks, mixed in random order. There
are trials of two types: target (when the presented number
is included in the set) and non-target (when the presented
number is not included in the set). The test uses an equal
number of target and non-target trials, randomly mixed. The
test includes 2 complexity types and 2 trial types, with 5 tasks
for each complexity and trial type, which results in a total of
20 tasks.

C. MENTAL ARITHMETICS ASSESSMENT TEST
One task example is shown in Figure 3c. At first, a cross
is shown on the screen for 0.75–1.25 seconds. Then a
mathematical equality of the type X−N = Y appears on
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FIGURE 3. General schemes of tasks for assessing (a) visual search, (b) working memory, (c) mental arithmetics, (d) combination of CAs.

the screen, where X and Y are two-digit numbers and N =

1, 2, 3. The student’s goal is to mentally calculate X−N = Z
and to compare their answer (Z ) with the one shown on
the screen (Y ), i.e. to decide whether the given equality
X−N = Y is true. The student should press ‘‘Yes’’ button
if the equality is correct and ‘‘No’’ button otherwise. The
equality will remain displayed on the screen until the student
provides a response. A short pause of 1.5 seconds follows the
answer and then the next task of this type begins.

The task’s complexity is determined by the value of N .
An equal number of tasks of difficulty ‘‘1’’, ‘‘2’’ and ‘‘3’’ are
used, mixed in a random order. There are 10 tasks for each
difficulty level, resulting in a total of 30 tasks.

D. TEST TO ASSESS THE ABILITY TO COMBINE
COGNITIVE ABILITIES
It is based on the previously obtained results of assessing the
effectiveness of children’s performance in the Schulte table
task. We demonstrated that the effectiveness of solving this
test is determined not by one particular CA, but by their
combination [59]. One task example is shown in Figure 3d.
At first, two numbers are shown on the screen for 3 seconds
for the student to memorize: X1 and N , where X1 is a
two-digit number and N = 1, 2, 3. Then a cross is shown for
0.75–1.25 seconds, after which a 5 × 5 table of numbers
appears. The student’s goal is to:

1) find and indicate the first number in the table (X1),
2) subtract the second number from the first number and

find the result in the table (X2 = X1 − N ),

3) subtract the second number from the result again and
find a new number in the table (X3 = X2 − N ), etc.
The table consists of 5 × 5 = 25 numbers, which form

a sequence: X1,X2 . . .X25. The task is completed when the
numberX25 is selected. To avoid unintentional memorization,
the table is shuffled after each number selection [46].
During the task completion, a feedback system highlights

the answers: correct ones in green and incorrect ones in red.
In addition, if the answer is incorrect, a hint appears in the
bottom right of the screen: the current Xi, that the participant
needs to find, and N . The student can also access a hint by
clicking on the same area of the screen, for example, in case
of confusion.

The complexity of the task is determined by the value
of N . In this case, the entire cognitive test is the performance
of a single task with a certain complexity. Thus, formally,
instead of one cognitive test, we get three tests with a different
complexity: ‘‘1’’, ‘‘2’’ and ‘‘3’’.

The experimental study consists of three parts separated
by breaks. In each part, six cognitive tests are randomly
conducted, including visual search, working memory, mental
arithmetics and three variants of tasks with a different
complexity for combined CAs. A 120 second break occurs
after completion of the last task in the part, followed by a
60 second recording of background activity. Total duration
of the experimental session was about 50 minutes. When
performing cognitive tests and recording background activity,
the student is advised to avoid talking and to minimize motor
activity that is not related to answering the tasks. During the
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break, the student can rest, but it is not recommended to get
up from the table.

Before performing each cognitive test, instructions are
displayed on the screen. Examples of instructions are shown
in Figure 4. The instruction is provided to inform the student
of the test type and to remind them the basic rules of the tasks.
The instruction remains on the screen until the student clicks
on the screen — after that, the instruction disappears and the
tasks begin.

IV. DATA ACQUISITION AND PREPROCESSING
In experimental study aimed at testing NAS, the LiveAmp
electroencephalograph (Brain Products, Germany) is used
to register EEG signals. This compact and wearable device
permits unrestricted movement of the student during the
study. We suggest, that using such system brings the study
closer to natural environment of the school. Registration is
performed for 64 EEG channels at a sampling rate of 500 Hz.
The electrodes are placed into the sockets of a special cap
in accordance with the international ‘‘10–10’’ arrangement
scheme. Before installing the electrodes, a NuPrep abrasive
gel is applied to the scalp, and a conductive SuperVisc gel is
used during electrode placement to achieve low impedance
(<10 k�) and high quality of EEG signals.

LiveAmp electroencephalograph is connected to the
touch-screen device through the local Wi-Fi network and
synchronized via the Lab Streaming Layer (LSL) system.
LSL is a unified time series acquisition system that enables
networking and synchronization of different types of research
equipment to collect a variety of neurophysiological data.
The choice of this system is due to its flexibility, high
accuracy, open source code, cross-platform and ability to
work within a wireless network. LSL helps to achieve
precise synchronization between different modalities of the
data, which is crucial for multimodal system. Electronic
environment used on touch-screen device is developed with
the goals of this study in mind. It is a cross-platform
application capable of working on various types of devices
such as laptops and tablets.

EEG data preprocessing is a two-step procedure.
First, Butterworth bandpass (1-100 Hz) and notch (50 Hz)

filters are applied to the EEG signals. The lower cutoff
frequency of 1 Hz is selected to filter out low frequency
parasitic components, such as breathing artifacts and inter-
ference due to external mechanical action on the electrodes.
The upper cutoff frequency of 100 Hz is used to eliminate
high-frequency components, such as muscle activity [60].
The notch filter is used to suppress interference from the
power grid.

Second, physiological artifacts whose frequency range
interferes with the informative range of the EEG signal, are
removed. Examples of such artifacts include eye movements
and cardiac activity. At this step, a method based on Indepen-
dent Components Analysis (ICA) is applied: 64-channel EEG
data are decomposed into a set of independent components,
components with artifacts are selected and removed, and then

cleaned EEG signals are restored based on the remaining
components [61], [62]. For preprocessing of EEG data,
we use EEGLAB — set of MATLAB tools specifically
designed for the analysis of electrophysiological signals,
in particular EEG [63].

The study involved 60 students from Lyceum No. 23 in
Kaliningrad, Russia and experimental school ‘‘New vision’’
in Moscow, Russia. The students were of two age categories:
9–10 years old (grades 3-4) and 11–12 years old (grade 5).
There were 36 boys and 24 girls. 15 participants were
excluded, since they could not complete all 3 parts of the
experiment due to various personal reasons such as high
fatigue and low involvement in the task.

The experimental study was conducted in the morning in
a quiet room with sufficient natural light on the Lyceum
premises. Before the experiment, the schoolchildren were
advised to follow a healthy lifestyle for 48 hours, including
an 8-hour night’s rest, moderate physical activity and
limited caffeine consumption. Before participating in the
study, the student and their parents (legal guardians) were
instructed of the general design, objectives andmethods of the
experiment. They were allowed to ask any related questions
and received comprehensive answers. After that, the parents
(legal guardians) filled out and signed the informed consent
form. The experimental study was conducted in accordance
with the Declaration of Helsinki. The study design was
approved by the Ethics Committee of Immanuel Kant Baltic
Federal University (Protocol No. 32 from 04.07.2022).

V. LEVEL OF DEVELOPMENT FOR COGNITIVE ABILITIES
Several characteristics are used to assess the level of
development for each CA. Some of the characteristics are
behavioral, as they are based on the analysis of the student’s
behavior during the performance of cognitive tests. Two such
characteristics were chosen: the correctness of the cognitive
test P and the average response time ⟨T ⟩. The correctness P
shows the percentage of correct answers in the total number
of tasks in the cognitive test. However, in our study, it is more
convenient to use the inverse characteristic — the percentage
of errors C , C = 100% − P. The average response time ⟨T ⟩

is calculated as the mean response time across all tasks in one
cognitive test.

Other characteristics are neurophysiological, because they
are calculated on the basis of neurophysiological data of
the student. We have chosen two such characteristics that
reflect features of attention and fatigue. These characteristics
will be described in detail in the further sections of the
paper.

An assessment is conducted individually for each char-
acteristic of the CA. The level of a specific student’s
characteristic is determined by comparing the obtained value
with the reference values. To obtain the reference values,
an experimental study is carried out in advance on a group
of students. For each characteristic, a distribution of values
in the group is constructed, the quartiles of this distribution
are calculated and the boundaries of the quartiles are taken as
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FIGURE 4. Instructions for tasks assessing (a) visual search, (b) working memory, (c) mental arithmetics, (d) combination of CAs.

the reference values. In the developed NAS, characteristics
are assessed as follows: values in the second and the third
quartiles are treated as norm, while values in the first quartile
are below the norm and values in the fourth quartile are above
the norm. Figure 5 illustrates the general scheme for assessing
an individual characteristic of the CA.

To assess the overall level of CA’s development, all
its characteristics are considered together: if the level of
two or more characteristics is above the norm, the CA
requires additional development, i.e. it is necessary to form
recommendations for its enhanced training.

A. CHARACTERISTIC FOR ASSESSING ATTENTION
One of the important characteristics of individual is the
capacity to stabilize the content of attention over time [64].
Here stability of attention, i.e. attentional control, indicates
the ability of the student to maintain a certain level
of attention during the performance of a cognitive task.
Evaluation of attentional control is implemented here as a
part of evaluation of EFs in general. However, previously
we have proposed a reliable method for assessing the inverse
characteristic— the instability of attention [65]. In this study,
we decided to use the same method, the essence of which is
described below.

1) The performance of one cognitive test is considered.
The time frame for completing the test is determined
from the moment the first task appears on the screen

to the answer to the last task. Then the resulting time
interval is divided into n equal parts.

2) In each of the n parts, EEG signal is considered, for
which a time-frequency analysis is performed based on
a continuous wavelet transform (CWT) with a Morlet
mother wavelet [66], [67]. During the analysis, the
wavelet spectrum of the EEG signal is calculated and
then averaged over the frequency range of EEG alpha
rhythm (8-14 Hz) and over time within each of the n
parts. As a result, the time-averaged power of EEG
alpha rhythm E is obtained.

3) For the obtained n values of the alpha rhythm power,
the variance σ 2

E is calculated. The variance σ 2
E is then

normalized to the alpha rhythm power averaged over n
values ⟨E⟩:

σ 2
Enorm = σ 2

E/⟨E⟩
2 (1)

It is clear that the difference in the variance σ 2
E in two

students can be caused by a significant difference in the
values of mean power of ⟨E⟩. Normalization is used to avoid
this situation. The resulting normalized characteristic σ 2

Enorm
is used to evaluate the stability of attention — the higher is
the value, the less stable is the attention.

To validate the proposed characteristic, an analysis was
carried out to check for the presence of a correlation between
this characteristic and behavioral data.
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FIGURE 5. The scheme of assessment of an individual characteristic of the CA.

We believe that the response time T is a measure of the
performance in a single task. At the same time, the average
response time ⟨T ⟩ acts as a measure of the performance in
the cognitive test as a whole. In this context, the variance
of the response time σ 2

T calculated for all tasks within a
single cognitive test, can be considered as a stability of the
performance in the test. However, the variance of σ 2

T may
depend on the average response time ⟨T ⟩, so the difference in
the variance for two students may be caused by the difference
in the efficiency of the test performance rather then difference
in the instability of attention. To resolve this issue, we have
introduced a normalized variance of the response time σ 2

Tnorm,
which is calculated as follows:

σ 2
Tnorm = σ 2

T /⟨T ⟩ (2)

In our opinion, this dimensionless characteristic better
reflects the instability of attention and does not depend on
the efficiency of the cognitive test performance.

Then a correlation analysis was carried out. The Spearman
correlation was calculated [68] between the normalized
variance of the alpha rhythm power σ 2

Enorm in each of
the 64 EEG channels and the normalized variance of the
response time σ 2

Tnorm. Figure 6a shows a topogram of EEG
channels for which the correlation was found to be significant
(p < 0.05). It is clearly seen that the EEG channel with
the highest correlation coefficient in the absolute value
(r ≈ −0.6) is F6, and the regression model σ 2

Enorm(σ
2
Tnorm)

was constructed for this specific channel (see Figure 6b). The
obtained result justifies the use of the normalized variance of
the alpha rhythm wavelet power σ 2

Enorm in channel F6 as a
characteristic for assessing the instability of attention.

FIGURE 6. A topogram of EEG channels for which the correlation between
the normalized variance of the alpha rhythm wavelet power σ2

Enorm and
the normalized variance of the response time σ2

Tnorm was significant
(p < 0.05) (a). A regression model constructed for channel F6 with the
highest correlation coefficient (r ≈ −0.6) (b).

B. CHARACTERISTIC FOR ASSESSING FATIGUE
In cognitive test performance fatigue can be associated with
fatigue of cognitive control [69], so fatigue evaluation can
be beneficial for assessing EFs and CAs as a result. In this
study, for the assessment of fatigue we used the characteristic
proposed in the work by Johns et al. [70]. Characteristic F
is calculated as the ratio of the amplitude of blink A to the
peak closure velocity (PCV) of eye. In the original paper,
these indicators were measured using a method based on
the evaluation of infrared reflectance. However, it has been
shown that the electrooculogram (EOG) signal is also suitable
for accurate assessments [71]. As EOG was not recorded
separately in our study, we applied methods to extract EOG
from EEG signals using ICA. From a set of independent
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FIGURE 7. Change in characteristic F between the start and the end of
the experiment.

components, the ones that best correlate with the frontal EEG
channels (Fp1, Fp2) are selected. Based on these components,
the characteristics for fatigue assessment are calculated using
a specialized BLINKER package on MATLAB [72].

In the original paper [70] it was shown that the value
of the calculated characteristic F negatively correlates with
the subject’s response time when performing cognitive tasks.
The absolute values of the characteristic F associated with
states of low and high fatigue were also demonstrated. This
study proposes the evaluation of ‘‘initial’’ fatigue level,
which is measured at the beginning of the experiment before
completing any tasks. This characteristic can be used to assess
the reliability of the results obtained — if the subject’s initial
fatigue is high, the results of the study may be unreliable.

Analysis of the experimental data shows that characteristic
F significantly (p < 0.005) differs between part 1 and
part 3 of the experiment, i.e. it increases from the beginning
to the end of the experiment in the group of subjects (see
Figure 7). This may be due to the accumulation of fatigue
in the subjects during the course of the cognitive tests. In this
context, we introduced the characteristic 1F , which is the
difference between the values of F at the end and at the
beginning of the experiment.We believe that1F is a measure
of the fatigue accumulated due to the performance of the
tasks, which reflects the working load on the subject and can
be used as a characteristic in assessing the CAs. Note that1F
is calculated for the whole experiment in general and thus the
obtained value 1F is shared for all four cognitive tests.

VI. EXAMPLE OF APPLICATION
The data obtained as a result of the pilot experiment was
analyzed. To do this, all the characteristics for each individual
CA were calculated for each subject. Characteristic value
distributions of the subject group were constructed. To assess
the norm, the reference values were calculated as the first and
the third quartiles of the distribution. The distributions and
reference values for each characteristic of various CAs are
presented in Figure 8.

To demonstrate the work of the proposed NAS, the results
of one subject were considered. The individual values of each

characteristic of the subject are shown by ‘‘diamond’’ marks
on the distributions in Figure 8.
From Figure 8 it is possible to draw conclusions about the

level of development of all CAs in this subject. For visual
search (Figure 8a), the values of all the characteristics are
within the norm range, so this CA is well developed. For
working memory (Figure 8b), the value of the ‘‘response
time’’ characteristic is higher than normal, but the values
of the other characteristics are within the normal range —
we can assume that this CA is also well developed. For
mental arithmetics and the combination of CAs (Figure 8c,d),
the values of the characteristics ‘‘percentage of errors’’ and
‘‘response time’’ exceed the norm — this is enough to
conclude that these CAs are not sufficiently developed.

VII. DISCUSSION
In our system, the recommendations take the form of
extracurricular activities, that consider the results of the CAs’
assessment, student’s personal preferences, as well as the
capabilities of a particular school. We formed a database of
recommendations based on meta-analysis of the scientific
literature — we reviewed studies about the impact of certain
types of activities (e.g. musics [73], sports [74], clubs of
interest [75], etc.) on children’s cognitive development. The
database lies in the core of NAS, however, we do not describe
the construction of such database here as it is a subject of
another extensive study planned to be reported separately in
the future. In this paper we discuss only the basic principles
of this database and NAS development. In the database, the
tag system is implemented: each potential recommendation
(type of activity) has a number of tags, that reflect developed
CA(s) as well as areas of interest, availability, time demands,
etc. Hence, the selection of a particular recommendation is
dependent on a comprehensive assessment of its characteris-
tics in order to best match the student’s needs and preferences.
The proposed system conceived as a tool for decision support,
sowhile recommendations are offered automatically, they can
be adjusted by teacher/psychologist, for example, considering
student’s previous negative or positive experiences with
extracurricular activities.

The NAS for schoolchildren has been tested at Lyceum
No. 23 in Kaliningrad and has shown its high efficiency in
identifying the features of the individual development of the
CAs of schoolchildren. 54 schoolchildren aged 9–12 years
took part in the experiment, and we used their data to
determine the reference values of the development of each
of the CA. Currently, a prototype of the NAS has been
prepared, which is able to measure and process behavioral
characteristics and EEG signals of the subjects in order
to assess the individual development of CAs and to offer
recommendations for their improvement.

Research on connections between cognitive development
and educational success can be quite diverse as it includes
studies on the influence of nervous system features [76],
[77], impairments [78], [79], age [80], etc. A special place
in this research is given to executive functions and cognitive
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FIGURE 8. Results of the analysis of CAs’ characteristics in the group of subjects: distributions of values in the
group (histograms) and reference values of the norm Q1 and Q3 (vertical dotted lines) for CA visual search (a),
working memory (b), mental arithmetics (c), combination of CAs (d). Individual values for one of the subjects are
shown on the distributions by ‘‘diamond’’ marks.

abilities, especially attention [81] and working memory [82].
However, in majority of these studies CAs are considered
separately, mostly due to the difficulties in identification
and separation of multiple CAs [83]. Thus, in our work we
proposed a novel approach to evaluate individual CAs and
their combination, which provides opportunity to investigate
the contribution of each of CAs and possible interactions
between them.

Another issue in this field is related to the technical aspect
of the studies. By now a substantial success is achieved
in the sphere of neuroimaging techniques, which includes
reliable and accessible means of portable neuroimaging [17].
However, the scope and methodological approach in such
studies can be spotty. Researchers usually tend to focus on
one topic such as reading performance [84], [85], influ-
ence of presentation patterns [86], [87], human-computer
interaction [88], game-based learning [89]. Studied cognitive
aspects are also limited per work: most commonly it is
attention [90], [91] or motivation [89], [92]. There is also
inconsistency in analyzed types of data — it is usually
the results of psychological tests or some derivatives from
neuroimaging data and rarely combination of both [83].
Distinctive feature of our approach is the combination of
behavioral and EEG data used to assess multiple aspects of
cognitive development, which ensures more general coverage
of the studied area.

Decision support aspect of our proposed system is also
very important. There were some attempts in development
of various decision support systems for education, including
artificial intelligence-based ones [93], [94], yet we couldn’t
find a direct analog to our system that would consider
subject’s features of cognitive development as well as
personal preferences.

VIII. LIMITATIONS AND FUTURE STUDIES
Limitations of our study are shared with many other works
in this field. Firstly, it is an ambiguity of obtained results
that is mainly tied to the somewhat ambiguous nature
of neurophysiological studies. Tests designed to assess
cognitive abilities are all based on literature search and
our own studies, however, their precision in reflecting
targeted cognitive functions requires further validation and
research. Additionally, number of characteristics used to
assess cognitive abilities in this study is limited. Connection
between brain activity and level of cognitive abilities is still
under study, and implementation of additional EEG-based
characteristics may add to precision of assessing cognitive
abilities.

Another open-ended question is about influence of age
and environment. Our pilot study included schoolchildren
in the age of 9–12, yet we expect the age to be an
important parameter in our system affecting, for instance,
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complexity of cognitive tasks and reference values during
assessment of cognitive abilities. Thus, we are planning to
reiterate experimental study for other age groups to expand
existing database and correct parameters in our system.
Additionally, an important direction of future research is to
study effects of the system’s implication over time, since
lasting enhancement of cognitive abilities is the very purpose
of such system. It would be very interesting to evaluate
cumulative effect of multiple successive loops of cognitive
assessment and enhancement and compare it to natural
cognitive development of students. It is a challenging task,
but we are planning further experimental studies.

Last but not least, there are legal and ethical questions [95].
These commonly emerge in studies that involve underage
students or changes to established educational system.
We believe that extensive consulting with teachers and
psychologists will eliminate any barriers for the system’s
implication.

IX. CONCLUSION
In this paper we proposed an open-loop neuroadaptive system
aimed to assess and enhance cognitive abilities of students.
The system is based on the assessment of CAs in learning
process with the help of executive functions theory. The
technical part of the neuroadaptive system is aimed at
measuring the student’s both behavioral characteristics and
brain activity estimated by EEG during the performance of
specially developed cognitive tests. The system includes a
portable EEG recording system and a tablet PC for presenting
tests and recording the student’s reaction to these tasks,
as well as cloud-based software for analyzing the obtained
experimental data and calculating biomarkers of cognitive
abilities. We developed a set of specific cognitive tasks for
testing CAs and implemented it in the form of an electronic
testing environment. While the subject performs these tasks,
we collect both behavioral and neurophysiological data to
extract specific biomarkers related to corresponding CAs.
We use these biomarkers to estimate the level of development
of each CA and to propose recommendations aimed at
advancing underdeveloped CAs.

We believe that such system is suitable to be used in
educational institutes, as it has few key features.

Firstly, it is modular approach. Our proposedNAS uses two
hardware blocks to record multimodal data:

1) touch-screen device used to perform cognitive tests and
gather behavioral data;

2) EEG recording device used exclusively to gather
neurophysiological data.

The EEG device is certainly the more demanding of the two,
since in addition to higher costs it requires special conditions
and trained personnel. This creates a potential barrier for
the system’s application in institutes that cannot afford
EEG device. In this paper and our previous studies [47],
we theorized that cognitive abilities can be assessed with
combination of behavioral and neurophysiological character-
istics, however, in a pinch even a fraction of this set will

suffice. In this context, to assess cognitive abilities, we can
use behavioral data only — this provides more rough but
still reasonable estimation. Thus, we can propose a variant
of the system that is just a tablet with electronic environment.
This variant would have lower confidence of estimation for
cognitive abilities but also much lower costs, so it could be
implemented in most educational institutes.

Secondly, it is implementation of recommendations. The
system provides recommendations in the form of extracurric-
ular activities, i.e. non-formal or informal learning. This is
an important advantage, since formal education is commonly
bounded by the preset educational program and is ill-suited
for individualization.
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