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Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and
complex networks
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The auxiliary system approach being de facto the standard for the study of generalized synchronization in
the unidirectionally coupled chaotic oscillators is also widely used to examine the mutually coupled systems
and networks of nonlinear elements with the complex topology of links between nodes. In this Brief Report
we illustrate by two simple counterexamples that the auxiliary-system approach gives incorrect results for the
mutually coupled oscillators and therefore to study the generalized synchronization this approach may be used
only for the drive-response configuration of nonlinear oscillators and networks.

DOI: 10.1103/PhysRevE.87.064901 PACS number(s): 05.45.Xt, 05.45.Pq

Generalized synchronization is an intricate fundamental
phenomenon of nonlinear sciences. The notion of gen-
eralized synchronization was introduced initially for two
unidirectionally coupled dynamical systems demonstrating
chaotic behavior [1], with numerous numerical and ex-
perimental examples demonstrating such phenomena being
found [2–7].

To detect the generalized synchronization regime in unidi-
rectionally coupled systems, different techniques have been
proposed, e.g., the nearest-neighbor method [1,8] or the
conditional Lyapunov exponent calculation [9]. Among these
techniques the auxiliary system approach proposed initially for
unidirectionally coupled chaotic oscillators may be generally
considered as the most easy, clear, and powerful tool to study
the generalized synchronization regime in chaotic systems.
Starting from the seminal paper of Abarbanel et al. [10], the
auxiliary system approach has become de facto the standard
of generalized synchronization studies being used in many of
the theoretical and experimental works (see, e.g., [3,11–14]).

In parallel with the unidirectionally coupled systems,
the auxiliary-system approach (usually without the proper
theoretical justification) was applied to the mutually coupled
oscillators [15] and the networks with a complex topology of
links between nodes [16,17]. Now this approach is used widely
as the standard tool to detect generalized synchronization for
the oscillators and networks with a mutual type of coupling
[18–22].

In this Brief Report we prove that the application of the
auxiliary-system approach to systems with a mutual type
of coupling for the generalized synchronization threshold
detection is misleading and leads to incorrect results even
for two mutually coupled oscillators. This aspect is critically
important since both generalized synchronization and complex
networks are subjects of great interest of scientists and the use
of incorrect tools may leads to misleading results in the topical
branches of knowledge.
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The modification of the auxiliary-system approach pro-
posed in [15] is developed for two mutually coupled chaotic
oscillators 1 and 2. Along with the original systems, two
additional auxiliary units 1′ and 2′ coupled unidirectionally
with 2 and 1, respectively, are treated (see Fig. 1 for details).
The systems 1 and 1′ (as well as 2 and 2′) are characterized by
the same control parameter values, but evolve with different
initial conditions lying in the same basin of attraction. When
only one couple of systems (say, 2 and 2′) starts demonstrating
identical behavior, the presence of the partial generalized
synchronization (PGS) regime is assumed to take place. As
soon as all sets of two oscillators show identical behavior in
pairs it is usual to detect the global (or complete) generalized
synchronization (CGS) regime.

At first sight, this extension of the auxiliary-system ap-
proach to the mutually coupled systems seems to be reasonable
and true. Nevertheless, after further examination we arrived
at the conclusion that the results obtained by means of this
method are incorrect.

To show the failure of both the proposed concept of
the partial and global generalized synchronization and the
auxiliary-system method extension to the systems with bidirec-
tional coupling we consider first two mutually coupled Rössler
oscillators, which are excellent model systems to be used as
the counterexample. Particularly two coupled Rössler systems
are well known to show the transition from the asynchronous
dynamics through the phase synchronization regime to lag
synchronization when the coupling strength between them
grows [23]. At the same time, lag synchronization is known to
be a special case (moreover, the strong form) of the generalized
synchronization [9] since in the case of the lag synchronization
regime the functional relation x2(t) = x1(t − τ ) is certain to
exist, which may be verified, e.g., by the phase tube approach
[24]. In other words, the presence of the lag synchronization
regime in the interacting systems is irrefutable evidence of the
existence of generalized synchronization and we use it in our
counterexample.

The equations describing two mutually coupled Rössler
systems are

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + ay1,2, (1)

ż1,2 = p + z1,2(x1,2 − c),
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FIG. 1. Schematic representation of the extension of the
auxiliary-system method to the mutually coupled oscillators proposed
in [15].

where x1,2(t) = (x1,2,y1,2,z1,2)T are the vector states of the
interacting systems, a = 0.15, p = 0.2, and c = 10 are the
control parameters, and ε is a coupling parameter. The
parameter ω1,2 defines the natural frequency of oscillations.
In our studies we have varied the ω1 parameter providing the
frequency mismatch of the oscillators, with ω2 = 0.95 being
fixed.

In Fig. 2 the onset of the lag synchronization regime
and PGS and CGS boundaries detected with the help of
the extended auxiliary-system method are shown. To find
the PGS and CGS boundaries (as well as the generalized
synchronization onset in the case of the unidirectionally
coupled systems described below) we have computed the
average distances

Di = lim
T →∞

1

T − T0

∫ T

T0

‖xi(t) − x′
i(t)‖dt (2)

between the original xi(t) and auxiliary x′
i(t) systems for

different values of the coupling strength ε. In (2) ‖x‖ =√
x2 + y2 + z2, i is the number of considered oscillators

(i = 1,2 for the case of mutual coupling and i = 2 for the
unidirectionally coupled systems), T = 2 × 104 is the time
of the calculation, and T0 = 105 is the transient. When Di

approaches zero, the state vectors of the original (response
for the unidirectionally coupled oscillators) and auxiliary
systems begin to coincide with each other, which means
the presence of partial (Di = 0 for i = 1 or 2) or complete
(Di = 0 for both i = 1 and 2) generalized synchronization
(generalized synchronization for the case of the unidirectional
coupling). The obtained boundaries have also been verified by
the conditional Lyapunov exponent calculation as well as with
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FIG. 2. (Color online) Parameter plane of two mutually coupled
Rössler oscillators (1): the onset of the lag synchronization regime
(curve 1) and the boundaries of the PGS (curve 2) and CGS (curve 3)
regimes found with the help of the modified auxiliary-system
approach proposed in [15].

the help of the nearest-neighbor method. We have also verified
that the increase of parameters T0 and T does not change the
boundary points.

To detect the lag synchronization regime and find its
boundaries we have computed (in the case of both the
unidirectional and mutual coupling) the dependences of the
minimum of the similarity function [23] σ = minτ S(τ ) on the
coupling parameter value, where

S2(τ ) = 〈[x2(t + τ ) − x1(t)]2〉√
〈x2

1 (t)〉〈x2
2 (t)〉

. (3)

Additionally, based on the fact that the lag synchroniza-
tion regime in flow systems corresponds to the complete
synchronization in discrete maps obtained from the initial
flow oscillators with the help of the Poincaré secant [25],
we have analyzed the complete synchronization regime on-
set in maps obtained in such a way to verify the found
boundaries.

One can see that almost in the whole considered range
of the ω1-parameter values the lag synchronization regime is
observed sufficiently below both PGS and CGS boundaries.
In other words, according to the concept proposed in [15]
(and used later in [16,17]) neither PGS nor CGS is observed
when in fact lag synchronization already exists. There is
no doubt that the lag synchronization detection without
generalized synchronization is misleading. It contradicts the
definition of the generalized synchronization regime itself
since the complete and lag synchronization regimes are partial
cases of generalized synchronization and correspond to its
strong form [9]. Obviously, such results must be rejected as
erroneous.

As far as two unidirectionally coupled Rössler oscillators

ẋ1 = −ω1y1 − z1, ẏ1 = ω1x1 + ay1,

ż1 = p + z1(x1 − c), ẋ2 = −ω2y2 − z2 + ε(x1 − x2), (4)

ẏ2 = ω2x2 + ay2, ż2 = p + z2(x2 − c)

are concerned, the boundary of the lag synchronization regime
is observed above the generalized synchronization onset (see
Fig. 3) in the whole plane of the control parameters and
therefore there is no contradiction between the definition
of generalized synchronization and the location of the syn-
chronous regimes on the parameter plane.1

The cause of the failure of the auxiliary-system method in
the case of the mutual type of coupling is the hidden nonequiv-
alence of the original oscillators 1 and 2 and their auxiliary
replicas 1′ and 2′ determined by the topology of coupling
links between systems under study. Although both systems 2
and 2′ are driven by the same signal 1, the original oscillator
2 also acts on the second oscillator 1, whereas the auxiliary

1The counterintuitive behavior of the generalized synchronization
onset when the critical coupling strength becomes maximum at ω1 =
ω2 (the same effect can be seen for PGS and CGS in Fig. 2) was
originally reported in the work of Zheng and Hu [4] and was explained
later with the help of the modified system approach in our work [26].
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FIG. 3. (Color online) Parameter plane of two unidirectionally
coupled Rössler oscillators (4): the onset of the lag synchronizarion
regime (curve 1) and the boundary of the generalized synchronization
regime (curve 2) found with the help of the auxiliary-system
approach [10].

replica 2′ does not. In this case there is some kind of feedback
between the original oscillators 2 and 1, which is absent for 2′
(and 1′). Driving oscillator 2, the second original system 1 in
turn adjusts to its dynamics (contrary to the dynamics of the
auxiliary system 2′). Obviously, two mutually coupled original
systems 1 and 2 become synchronized sufficiently early in
comparison with the unidirectionally coupled oscillators 1 and
2′ (as well as 2 and 1′). Therefore, the auxiliary-system method
applied to the mutually coupled oscillators detects supposedly
only the generalized synchronization onset when in fact the
oscillators under study are already synchronized greatly as
may be seen easily in Fig. 2.

Thus having considered two bidirectionally coupled
Rössler oscillators we arrive at the conclusion that the
auxiliary-system approach cannot be used correctly to detect
the generalized synchronization regime in both the oscillators
and networks of nonlinear elements with the mutual type of
coupling. The very same conclusion can be made for two
bidirectionally coupled Lorenz systems

ẋ1,2 = σ (y1,2 − x1,2) + ε(x2,1 − x1,2),

ẏ1,2 = r1,2x1,2 − y1,2 − x1,2z1,2, (5)

ż1,2 = −bz1,2 + x1,2y1,2
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FIG. 4. (Color online) (a) Similarity function S(τ ) and (b) time
series of two mutually coupled Lorenz oscillators (5) for ε = 7.0
[see also Figs. 2(a) and 2(b) in [15]]. Since the lag synchronization
with the small value of the delay time τ ≈ 0.007 is observed in the
systems, one time series is shown by the solid line and the second
one is displayed by the points.

used in [15], with the same values of control parameters
(σ = 10, b = 8/3, and r1,2 = 40,35). Indeed, in Fig. 4 the
similarity function (3) and time series of mutually coupled
Lorenz systems are shown for the coupling strength ε = 7.0,
which corresponds exactly to Figs. 2(a) and 2(b) in [15]. In that
work, based on the auxiliary-system approach, Zheng et al.
have decided that the generalized synchronization does not
exist in the system under study. In fact, the coupled Lorenz
systems (5) are in the lag synchronization regime (see Fig.
4) and as a consequence in the generalized synchronization
regime too.

In conclusion, the concept of partial and global gen-
eralized synchronization introduced for chaotic oscillators
coupled mutually and complex networks on the basis of
the auxiliary-system method extension is misleading. In
fact, the auxiliary-system approach may be applied correctly
only for the drive-response configuration of networks and
coupled oscillators. As far as the generalized synchronization
examination in the systems with the mutual type of coupling
and networks is concerned, possible ways are the calculation of
the spectrum of Lyapunov exponents or the nearest-neighbor
method [27] including refinement with the help of the phase
tube approach [24].
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