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Abstract—This paper explores rotating waves, a captivating
synchronization phenomenon observed in interconnected oscilla-
tors. These waves emerge from phase differences between neigh-
boring oscillators, giving rise to stable periodic, quasiperiodic,
or chaotic orbits. Rotating waves are observed in diverse non-
linear systems like electrical circuits, neural models, and various
oscillators. The study employs techniques such as time series
and phase-space analyses, bifurcation diagrams, power spectra,
and basins of attraction to unveil the intricate dynamics. These
methods reveal the route from stable equilibria to hyperchaos
through a series of bifurcations with increasing coupling strength,
including Andronov-Hopf, torus, and crisis bifurcations. Notably,
the research identifies instances of multiple coexisting rotating
waves under the same parameters. Special attention is given to
neural oscillators due to their significance in brain neural rings
associated with working memory. The study of rotating waves
finds broad relevance in fields like lasers, chemical reactions,
cardiorespiratory systems, and particularly neural networks and
brain function.

Index Terms—nonlinear dynamics, synchronization, multista-
bility, neural networks

[. INTRODUCTION

The exploration of collective dynamics in coupled os-
cillators has captivated researchers across diverse scientific
disciplines. Its importance has been greatly magnified by its
applications in engineering, biomedicine, and communications
[1]. Notably, the ring configuration stands out for its unique
ability to generate rotating waves along interconnected nodes
[2]. These rotating waves emerge due to phase differences
among adjacent oscillators. Their initial observation occurred
within reaction-diffusion systems [3], with subsequent ex-
perimental confirmation [4]. The genesis of rotating waves
can be attributed to the Andronov—Hopf, torus, and crisis
bifurcations as the coupling strength is increased [5]-[14].
Significantly, one-way communication plays a crucial role in
neural networks leading to the appearance of rotating waves
[15], [16]. Therefore, the characterization of rotating waves
holds relevance within neuroscience and biomedicine [17]-
[20].
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This paper provides a short review of findings on rotating
waves in unidirectional rings of coupled Duffing, laser, and
neural oscillators. In conclusion, we provide insights into
network models of working memory.

II. ROTATING WAVES IN DUFFING OSCILLATORS

The dynamics of a cyclic ring comprising N identical
double-well damped Duffing oscillators can be mathematically
expressed through the subsequent system of second-order
differential equations:

#1 + aiy + wiry + 073 + o(z1 — 2N) = 0,
&g + ado + wize + 623 + o(z2 — 21) = 0,
EN +ain +wizy + 0% +o(ey —azNn_1) = O

ey
where a = 0.4, wg = —0.25, 6 = 0.5 are constants [8], [21],
[22] and o is the coupling strength used as a control parameter.

In isolation, every oscillator resides within one of two stable
fixed points. However, in the unidirectional ring coupling, the
system showcases an array of intricate behaviors, spanning
from coexisting stable fixed points to hyperchaos as the
coupling strength o is increased.

Distinct coexisting attractors emerge and vanish with respect
to the coupling strength and the number of oscillators in
the ring. This phenomenon holds significant fascination [23].
Therefore, the coupling strength and the number of oscillators
intricately regulate the system dynamics. For instance, it was
found that in an N = 11 oscillator ring, very weak coupling
(0 < 0.06) yields 32 coexisting stable fixed points. With
stronger coupling (0.06 < o < 0.275), 11 attractors coexist,
encompassing two original fixed points and 9 periodic orbits
from the Andronov-Hopf bifurcation at ¢ =~ 0.6. As o
increases (0.275 < o < 0.34), chaos emerges alongside the
persisting original fixed points. With high coupling (¢ > 0.34),
solely the chaotic attractor endures.

The presence of multiple oscillatory attractors leads to the
emergence of multiple circulating rotating waves within the
ring.
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Fig. 1. (a—d) Rotating wave time series and (e-h) phase portraits of corresponding attractors in the ring of N = 11 oscillators for (a,e) o = 0.18 (homoclinic
orbit Hoz), (b,f) 0 = 0.192 (asymmetric heteroclinic orbit HeAs), (c,g) o = 0.236 (symmetric heteroclinic orbit HeS), and (d,h) ¢ = 0.308 (chaos). T}, is
the phase propagation time from node 1 to node 11, o is the inclination angle which defines wave speed WV derived by Eq. 2.

Rotating waves are shown through time series and phase
portraits in Fig. 1. This figure presents wave dynamics in the
N = 11 Duffing oscillator ring for four coupling strength
values: 0 = 0.18, 0 = 0.192, 0 = 0.236, and o = 0.308.
The phase shift between the oscillators forms the propagating
cyclic wave.

Figs. 1(a—d) depict time series patterns of all oscillators
illustrating their behavior over time. The lower row displays
corresponding attractor phase portraits in the (z;, y;) projection
(¢ = 1,...,N). Oblique stripes in time series signify the
rotating waves visually. The inclination angle o, marked in
Fig. 1(a), defines the phase shift velocity or wave speed W.
Simultaneously, wave frequency f,, is discernible from the
time series as the inverse period 7T, or through power spectra
analysis. Note that phase portraits in Figs. 1(e-h) are consistent
among identical oscillators. An intriguing feature is the growth
of attractor size with increasing coupling strength.

The rotating wave speed can be computed as:

T,
W = arctan N—fl’ )

where T}, represents the time taken for phase propagation from
node 1 to node N. It is evident that as coupling strength rises,
W = « decreases.

Hence, rotating waves in the unidirectionally coupled
double-well Duffing oscillator ring showcase intricate dynam-
ics. Wave speed analysis involves studying the inclination
angle of parallel stripes in time series. Notably, the wave
velocity remains fairly constant across coexisting limit cycles,
yet escalates exponentially with enhanced coupling strength.
In contrast, wave frequency varies among coexisting attractors,
exhibiting an almost linear growth tied to coupling strength.

ITII. ROTATING WAVES IN LASERS

Now, consider the emergence of rotating wave in the ring
of three coupled erbium-doped fiber lasers (EDFLs). The
dynamics of a single EDFL is governed by two differential
equations representing laser intensity x; (j = 1,2,3) and
population inversion y; [14]:

dx ;
% = ax;y; — bx; + c(y; +0.3075),
d .
1— (y; +0.3075)
— —18 (11—
exp { 8 ( 0.6150
with pumping
Ppmod; = 506[1 + k(zj_1 — ;)] “4)

Here, k signifies the coupling coefficient, while z; and y;
denote laser intensity and population inversion with parameters
a = 6.62 x 107, b = 7.4151 x 10%, ¢ = 0.0163, and d =
4.0763 x 103.

Rotating wave dynamics within the EDFL ring are de-
picted in Fig. 2 across four coupling strengths: £k = 2.58,
k = 3.82, k = 549, and k = b5.84. Oscillators differ
only in initial phases, inducing phase shifts between nodes
and creating rotating waves. The left column portrays two-
dimensional time series patterns, revealing oblique stripes
denoting rotating wave presence. Stripe inclination signifies
wave propagation speed. The right column showcases identical
phase portraits for corresponding attractors due to system
symmetry. Notably, higher coupling strength results in larger
attractors. Fig. 2 highlights various rotating wave types: a)
periodic, b) quasiperiodic with two frequencies in the 2D torus,
¢) quasiperiodic with three frequencies in the 3D torus, and
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d) chaotic. The figure’s strip slope variation with coupling
strength k reveals decreasing wave speed. In chaotic scenarios,
the wave transforms into a standing wave, ceasing propagation
(vertical strips in Fig. 2(d)).

IV. ROTATING WAVES IN NEURAL OSCILLATORS

Finally, consider the key contributions in the exploration
of rotating waves within neural models. Unidirectional ring
structures in neural networks are pivotal for modeling neural
dynamics and investigating information processing in neu-
roscience and medicine. Such ring motifs are crucial for
generating stable periodic motor commands via central pat-
tern generators, responsible for rhythmic animal locomotion
[24]. Additionally, ring-like topologies manifest in sequential
cortico-striatal-basal ganglia-thalamo-cortical motor loop pro-
jections, crucial for understanding Parkinson’s disease [25].
Consequently, scrutinizing rotating waves in neural models
holds significant relevance.

Several studies have been devoted to rotating waves in uni-
directional neural rings. The researchers used either a simple
sigmoidal neuron model [15] or the more advanced FitzHugh—
Nagumo (FHN) model [26]. Both approaches successfully
identified rotating wave presence. Given the FHN model’s
precision, we focus on its outcomes in this review.

The dynamics of a ring comprising FHN neurons, coupled
unidirectionally through chemical synapses, are described by
the subsequent equations:

by =v; =05 /3—w; +I; + C(V —vj)sj + 1(t — 7),
W = 0.08(v; + 0.7 — 0.8w;),

1—sj ©)

$; = 0.5 1 —0.6s;

% 1+exp|—4(v; —1.5)] 9
Here, v; and w; (j = 1,2,...,N) represent fast and slow

variables linked respectively to the membrane potential and
sodium channel reactivation and potassium channel deactiva-
tion of an individual neural cell j. s; symbolizes postsynaptic
potential for synaptic coupling, I; regulates neural spiking
dynamics as an external input, drawn from a Gaussian dis-
tribution around mean value I = 0.4 with standard deviation
o = 0.005. C stands for coupling strength, and 7 denotes
delay time. The reversal potential V' = 2 models excitatory
coupling. The unidirectional ring configuration is modeled as
sN +1=s;.

Fig. 3 portrays spatial dynamics of a 200-neuron ring with
and without coupling delay (7 = 0.03) as shown in Figs. 3(a)
and (b) respectively. Rotating waves, with distinct speeds
and frequencies contingent on initial conditions, manifest in
synchronous states.

First, examine the pattern sans delay (7 = 0) in Fig. 3(a).
Uncoupled (C' = 0) neurons fire asynchronously, yielding
scattered black circles with no wave patterns. Conversely,
elevating coupling strength generates multiple rotating waves.
Notably, synchronized state frequency varies depending on
initial conditions, signifying multistability in synchronized
regimes.

Considering a coupling strength of C' = 5 and tightly
grouped initial conditions, neuron synchronization occurs at
a frequency of f; = 18.2, resulting in a stationary wave
pattern (vertical red circles). In contrast, for widely dispersed
initial conditions, synchronization happens at either f; = 18.8
or f; = 17.7, leading to the emergence of firing fronts
depicted by green and blue circles, respectively. Within these
synchronized states, dual firing fronts traverse the ring. Each
neuron fires subsequent to its neighboring neuron’s spike.
Remarkably, these firing fronts can move in the direction of
synaptic coupling or opposite to it. The slope of the lines
in Fig. 3 determines the direction of wave propagation. A
rightward slope implies opposing direction of coupling, while
a leftward slope signifies coupling direction.

In addition to distinct frequencies, synchronized neurons
exhibit diverse spatial configurations of spiking dynamics.
Narrowly distributed initial conditions, as in [ = 0, result
in in-phase synchronized oscillators with simultaneous firing
(Fig. 3(a), red circles). Conversely, broadly distributed initial
conditions establish a rotating-wave regime with one or more
firing fronts traversing the ring. Here, each neuron fires
following its neighboring neuron’s spike. Intriguingly, these
firing fronts can travel clockwise or counterclockwise around
the ring. For instance, [ = 2 signifies two counterclockwise-
propagating rotating waves (green circles), while | = —2
signifies two clockwise-propagating rotating waves (blue cir-
cles). Notably, uncoupled and desynchronized neurons lack
distinguishable spatial structures, as shown by black circles in
the figures.

V. INSIGHTS INTO WORKING MEMORY MODELS

In this short review, we delved into the fascinating realm
of rotating waves observed in rings of coupled identical
oscillators. These stable periodic orbits, arising from phase
differences between neighboring oscillators, have been ob-
served across diverse nonlinear systems. The study of rotating
waves has unveiled their intricate behavior influenced by
coupling strength and oscillator count. Analyzing rotating
wave dynamics required an array of techniques, including
time series analysis, phase-space exploration, and bifurcation
diagrams. These tools have unraveled the complex transitions
from equilibria to hyperchaos, revealing sequences of Hopf,
torus, and crisis bifurcations. This research highlighted the
coexistence of multiple rotating waves under the same system
parameters.

The insights gained from this thorough exploration hold
significant implications across diverse scientific fields. They
provide invaluable understanding of the mechanisms that un-
derlie rotating waves in a multitude of real-world systems,
ranging from lasers to neural circuits. This increased knowl-
edge not only propels technological progress but also enriches
our comprehension of fundamental dynamical principles that
govern these intricate phenomena. Yet, amidst these achieve-
ments, crucial questions persist. Particularly challenging is
unraveling the role of rotating waves within neural networks,
potentially shedding light on the mechanisms of working
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Fig. 3. Synchronized spatial arrangements within the ring of N = 200 unidi-
rectionally synaptically coupled spiking neurons characterized by Eqs. (5). (a)
Rotating waves in the ring without delay (C' = 0). Non-uniformly distributed
black circles — asynchronous firing, vertically aligned red circles — in-phase
synchronization at C' = 5 and m = 0, green circles in lines with negative
slopes — two rotating waves propagating in the coupling direction (C' = 5 and
m = 2), and blue circles in lines with positive slopes — two rotating waves
moving opposite to the coupling (C' = 5 and m = —2). (b) Two coexisting
rotating waves in neuronal firing, introducing a delay 7 = 0.03 and C' = 5.
Onsets of spikes for different initial conditions are marked by black and grey
lines. Based on data from [26].

memory. Memory functions are intricately linked to transient
amplifications of neuronal activity, with persistent activity
observed even in the absence of external stimulation.

The utilization of network methods in controlled in vitro
settings facilitates the examination of these phenomena, shed-
ding light on the structures of working memory networks and
the corresponding neural dynamics. The intriguing variability
in wave propagation speeds within unidirectional neural rings

prompts inquiries about their relationship with the number
of neurons in the ring. Additionally, the participation of
individual neurons in multiple memory loops underscores the
intricate nature of neural networks. Analogous to individuals
engaging in multiple social groups, neurons exhibit versatility
within memory networks, and this intricate interplay among
elementary memory loops contributes to the network’s adapt-
able functionality.

Despite extensive research on rotating waves in various dy-
namical systems, numerous unresolved questions persist in this
field. A particularly challenging endeavor is the exploration
of rotating waves within neural networks of the brain, as it
holds the potential to unveil the mechanisms underpinning
working memory. It is worth noting that several scientists
have suggested a close connection between the neural network
structure in the brain and short-term (working) memory [27]—
[31]. Working memory involves a transient boost in neuronal
activity, lasting from milliseconds to seconds, for temporary
information storage and cognitive tasks [32], [33].

The observation of sustained activity in local brain circuits,
even without external stimulation, has been documented in
various brain regions, including the prefrontal cortex and
thalamus [34]-[36]. Researchers investigating phenomena like
persistent activity and information transmission observed in
vivo have employed the network geometry method in vitro.
This approach offers controlled experimental conditions to ex-
plore such phenomena, shedding light on the network structure
of working memory and the corresponding neural dynamics.

Given that connections between brain neurons mainly occur
through chemical synapses, the resulting neural rings are
usually unidirectional. This prompts a crucial question: How
does the speed of wave propagation in neural rings correlate
with the number of neurons within the ring?

Additionally, it is essential to recognize that a single neuron
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can participate in multiple memory loops. As an example,
think about the experience of memorizing the name of a
new person. This creates a memory loop specifically de-
signed to retain the name, while simultaneously linking to
other loops responsible for preserving memories associated
with the individual’s characteristics, such as their appearance,
personality traits, the context of your meeting, and more.
This multifaceted neural network enables the integration of
diverse memory loops, aiding in the retrieval and association of
related information. As a result, memory loops exhibit intricate
interconnections, forming complex high-order networks.

Each neuron in such a network can engage in distinct
elementary memory loops, contributing to its functional adapt-
ability. This phenomenon mirrors social networks, where an
individual might belong to various social groups, each involv-
ing different roles and interactions. This multi-dimensional
engagement showcases the complexity and adaptability present
in both neural and social systems.

In conclusion, this concise review has enriched our com-
prehension of rotating waves across various contexts, opening
avenues for extended investigation and interdisciplinary ap-
plications. The captivating dynamics of rotating waves offer
valuable insights into models of working memory, shedding
light on the complexities of neural systems and their contri-
butions to memory processes.
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