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Extreme value theory inspires 
explainable machine learning 
approach for seizure detection
Oleg E. Karpov1, Vadim V. Grubov2,3, Vladimir A. Maksimenko2,3, Semen A. Kurkin2,3, 
Nikita M. Smirnov2, Nikita P. Utyashev1, Denis A. Andrikov4, Natalia N. Shusharina3 & 
Alexander E. Hramov2,3,5*

Epilepsy is one of the brightest manifestations of extreme behavior in living systems. Extreme 
epileptic events are seizures, that arise suddenly and unpredictably. Usually, treatment strategies 
start by analyzing brain activity during the seizures revealing their type and onset mechanisms. 
This approach requires collecting data for a representative number of events which is only possible 
during the continuous EEG monitoring over several days. A big part of the further analysis is searching 
for seizures on these recordings. An experienced medical specialist spends hours checking the 
data of a single patient and needs assistance from the automative systems for seizure detection. 
Machine learning methods typically address this issue in a supervised fashion and exhibit a lack of 
generalization. The extreme value theory allows addressing this issue with the unsupervised machine 
learning methods of outlier detection. Here, we make the first step toward using this approach for the 
seizure detection. Based on our recent work, we specified the EEG features showing extreme behavior 
during seizures and loaded them to the one-class SVM, a popular outlier detection algorithm. Testing 
the proposed approach on 83 patients, we reported 77% sensitivity and 12% precision. In 60 patients, 
sensitivity was 100%. In the rest 23 subjects, we observed deviations from the extreme behavior. 
The one-class SVM used a single subject’s data for training; therefore, it was stable against between-
subject variability. Our results demonstrate an effective convergence between the extreme value 
theory, a physical concept, and the outlier detection algorithms, a machine learning concept, toward 
solving the meaningful task of medicine.

Extreme events are rare abnormal deviations of the system’s behavior from a typical  state1–3. From the statistical 
perspective, extreme events occur in the tails of a probability distribution. In the absence of extreme events, the 
probability distribution has typically a gaussian shape with exponential tails. In the presence of extreme events, 
these tails become heavy and start following the power law with a fixed power ∼ p−α , α > 0 . Sometimes, extreme 
events (severe rains, economic crises, tsunamis) occur in real-world systems and harm human life. Therefore, 
an important task is understanding the developing mechanisms of these events to predict their occurrence in 
the  future4–7.

On the time series, extreme events correspond to outliers. Outlier is a general term in statistics and data sci-
ence that characterizes data points that differ significantly from other observations. Outliers can occur by chance 
in any data, but they also indicate that a system has a heavy-tailed distribution. Outliers reduce the statistical 
explanation abilities for traditional data-driven modeling methods. Therefore, an essential part of data analysis 
is searching for outliers and removing them from the  data8.

Recently scientists started considering spontaneous synchronous activity in neuronal populations as extreme 
events, referring the epileptic seizures as their brightest  example3,9–11. In the previous studies, we found the signs 
of extreme behavior on epileptic electroencephalograms (EEG). First, we revealed that the onsets of seizures in 
rats demonstrate on-off intermittency dynamics, similar to extreme  events12–14. Then, we reported heavy tails on 
the probability distributions of the spectral power of epileptic  EEG15. Finally, we considered EEG of the patients 
with epilepsy and revealed that the probability distribution of the spectral power in the 1–5 Hz frequency range 
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also has a heavy tail manifesting extreme  behavior16. Thus, epileptic seizures in humans are extreme events that 
cause outliers on the time series of the 1–5 Hz EEG spectral power. The connection between extreme events and 
outliers opens the way for using a vast repertory of outlier detection techniques for seizure detection.

According to the International League Against Epilepsy and the International Federation of Clinical Neuro-
physiology, there is a need for automated seizure detection to decrease morbidity and mortality associated with 
seizures and for objective seizure identification and  quantification17. The authors concentrated on the wearable 
devices for seizure detection on an outpatient basis. In contrast, we focus on seizure identification in hospital 
settings, which also plays a crucial role in epilepsy diagnostics and treatment. Usually, treatment strategies start 
by analyzing brain activity during seizures revealing their type and onset mechanisms. This approach requires 
collecting data for a representative number of events which is only possible during the continuous EEG monitor-
ing over several days. Based on 248 patients, Friedman and Hirsch concluded that it is common to require more 
than three days in an epilepsy monitoring unit to record and diagnose the nature of paroxysmal episodes and not 
rare to require more than a  week18. A big part of the further analysis is searching for seizures on these record-
ings. An experienced specialist spends hours reviewing the data of a single patient and needs assistance from 
automated systems for seizure detection. While the fully automated diagnostic remains a matter of discussion, 
the working solution is partial automation, known as the Clinical decision support system (CDSS)19. In CDSS, 
the computer analyses data and provides recommendations, and the medical expert makes the final decision.

An optimistic approach to seizure detection is machine learning (ML)20. For the ML, seizure detection comes 
down to classifying EEG data in two classes, seizures (class 1) and non-seizures (class 2)21,22 . The classification 
requires ML algorithms to be trained on the training data. This approach, a supervised classification, suffers from 
the class imbalance and overfitting. The class imbalance comes from the rare nature of seizures and requires 
artificially balancing the number of the class 1 and the class 2 examples in the training data. A promising way to 
manage the imbalance is constructing feature space resulting in the long distance between classes. The modern 
deep learning algorithms handle it well but suffer from overfitting. The overfitting implies that the algorithm per-
forms satisfactorily on the training data but fails to operate with data of the other patients. Addressing this issue 
relies on selecting a subspace of features containing the biomarkers of seizures common for the most patients. 
These reasonings lead us to the problem of the features interpretability which often occurs in machine learning.

We propose using the outlier detection ML technique, one-class SVM, to overcome these issues. First, this 
method incorporates the rare nature of seizures, hence handling the class imbalance problem. Second, it is unsu-
pervised and may train and perform on the data of a single patient. Finally, we will feed the algorithm with an 
interpretable feature (EEG power in the 1–5 Hz frequency range) which demonstrates extreme behavior during 
seizures. We suppose that interpretability gives us a prior knowledge about the ability of an algorithm to handle 
the data of this patient, hence assessing its credibility.

Methods
Dataset. The experimental dataset under study was provided by the National Medical and Surgical Center 
named after N. I. Pirogov of the Russian Healthcare Ministry (Moscow, Russia). All medical procedures were 
held in the Center following the Helsinki Declaration and the Center’s medical regulations and were approved 
by the local ethics committee. All patients provided written informed consent before participation. The data-
set includes anonymized long-term monitoring data of patients in the Department of Neurology and Clinical 
Neurophysiology between 2017 and 2019. The data were collected during routine medical procedures aimed at 
registration of epileptic activity and verification of epileptogenic zones for further clinical treatment. Continuous 
EEG and video monitoring during everyday activity including sleep and wakefulness were performed for these 
patients. During the monitoring, patients kept a regular daily routine with occasional physiological trials (such 
as photostimulation and hyperventilation) that are standard for this type of  research23,24. The length of record-
ing varied from 8 to 84 h according to the patient’s condition and the number of epileptiform activity episodes 
needed for the proper diagnosis. Each patient had from one to five epileptic seizures during the time of the moni-
toring. None of the seizures was triggered by photostimulation or hyperventilation, i.e., all epileptic seizures 
were spontaneous. In this work, we use the dataset which contains the data of 83 patients diagnosed pathologi-
cally with focal epilepsy. Epileptic focuses were found in frontal, temporal, or parietal areas of left, right, or both 
hemispheres, so there was no homogeneity in the dataset in terms of the epileptic focus localization.

Data acquisition and preprocessing. “Micromed” encephalograph (Micromed S.p.A., Italy) was used 
for EEG recording. EEG signals were recorded with 25 channels according to the international “10–20” system 
with a ground electrode placed on the forehead and reference electrodes placed at the ears. EEG signals were 
recorded with a sampling rate of 128 Hz. The video monitoring system was used to monitor patients’ states for 
easier data analysis and segmentation. Experimental EEG data and video recordings were examined and deci-
phered by an experienced neurophysiologist. This analysis resulted in the marking that includes information on 
episodes of epileptic seizures and physiological tests.

EEG signals are known to be highly susceptible to the influence of various external and internal noises, espe-
cially during prolonged  recording25. In clinical monitoring, external noises usually come from hardware-related 
problems (poor contact of EEG electrodes, loose wires), power network, cellphone calls, etc. Internal noises (or 
physiological artifacts) originate from physiological processes such as heartbeat, blinking, or  breathing26. The 
basic way to deal with noises and artifacts on EEG is the data filtration: a high-pass filter is used to restrain the 
low-frequency components (stray effects, cardiac rhythm, breathing artifacts), while a low-pass filter deals with 
the high-frequency activity, commonly associated with the muscle artifacts. In our study, we used the band-pass 
filter with the cutoff frequencies of 1 Hz and 60 Hz and the 50-Hz notch filter.
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We considered the frequency band 1–30 Hz, which is commonly regarded as an effective frequency range 
of epileptic EEG. However, some undesired activity (e.g., eye-movement artifacts) can interfere with the EEG 
activity in this range. We used the standard procedure based on an independent component analysis (ICA) to 
remove these  artifacts27.

Time-frequency analysis. We performed a time-frequency analysis of EEG signals using continuous 
wavelet transform (CWT) with Morlet mother wavelet  function28. CWT has proved itself as a powerful instru-
ment in the analysis of complex nonstationary signals in systems of different nature, including biological  ones29. 
We considered wavelet power (WP):

where n = 1, 2...N is the number of EEG channel ( N = 25 for the considered dataset), f and t are the frequency 
and time point, wn(f , t) are the coefficients of CWT. WP is one of the common CWT-based characteristics to 
describe the time-frequency structure of a  signal30.

CWT can be demanding in terms of computational costs: application of CWT in the frequency range of inter-
est to several day-long multichannel EEG data with even low sampling rate will generate an immense amount 
of WP data. Such a big dataset is difficult to calculate, store, and analyze, so some approaches to reduce data 
complexity are required.

The first step includes averaging WP over the frequency band of interest. Initially, WP was calculated in 
the 1–30 Hz frequency range as it is acceptable for both normal and epileptic  EEG31. Earlier in our  paper15, we 
applied extreme event theory to analyze electrocorticogram (ECoG) recordings of WAG/Rij rats with a genetic 
predisposition to the absence epilepsy. We reported that the absence seizures induced a drastic increase of WP in 
the frequency range of 6–8 Hz, and WP distribution is best fitted with the Weibull function after averaging WP 
over the 6–8 Hz range. The WP time series demonstrated extreme events-related properties in this frequency 
range, while there were no manifestations of the extreme behavior for other frequencies. We conducted similar 
research in our  paper16 for epilepsy in human patients and showed that WP averaged over the frequency range 
of 2–5 Hz demonstrates extreme-like behavior during epileptic seizures. So, we choose the F ∈ [2; 5] Hz range 
as the frequency band of interest in the present study.

The second step includes averaging WP over the 25 EEG channels. This step can be explained by the features 
of epilepsy—in the case of generalized seizures, activity arises suddenly all over the brain, and all EEG signals 
are highly  correlated32. In focal seizures, there are only a few EEG channels near the focus that demonstrate pro-
nounced epileptic activity, however, these channels stand out in terms of EEG signal amplitude and frequency 
structure, so even after averaging over the channels WPs for normal and pathological activity differ drastically.

Thus, we calculated averaged over the frequency band F ∈ [2; 5] Hz and N = 25 EEG channels WP (AWP) as:

where �F = 3 Hz is the width of the frequency band F ∈ [2; 5] Hz.
We applied “downsampling” of AWP to decrease the complexity of the data additionally. We divided each 

EEG recording into 60-s intervals Tm , where m = 1, 2...M , M = L//60 , L—the length of EEG recording in sec-
onds, “//” stands for integer division. The choice of such interval length is justified by the average duration of an 
epileptic seizure— from 30 to 120  s33. AWP values were calculated for each time interval m and averaged over 
the whole length of the interval to obtain downsampled AWP (DAWP):

where �T is the length of each interval Tm ( �T = 60 s).

Probability density function. To construct a probability density function (PDF), we normalized E(t) and 
em by corresponding global minimum as: E(t)norm = E(t)− Emin , enormm = em − emin . For E(t)norm , we addition-
ally extracted all local maxima. According to the Fisher–Tippett–Gnedenko  theorem34, if a Gumbel, Frechet, or 
Weibull distribution describes the obtained PDF, then the process is characterized by extreme event properties. 
Our previous studies on epilepsy in the WAG/Rij  rats15 and human  patients16 suggest that the Weibull distribu-
tion is more suitable for this task. Thus, PDFs for EEG data were fitted by the Weibull distribution in the present 
 work35:

where c is the shape parameter of the Weibull law ( x > 0 , c > 0 ), l is the localization parameter that shifts the 
distribution with fixed shape parameter c across the axis of WP, s is the scale parameter responsible for the 
expansion/compression of the initial distribution.

In our previous  papers15,16, we have shown that experimental PDFs for normal and epileptic activity are fitted 
by Weibull distributions with drastically different parameters, so it can be problematic to properly fit the whole 
dataset with a single Weibull distribution. Figure 1 illustrates this issue, demonstrating the PDF of E(t)norm for 
one subject as the blue histogram and the fitted Weibull distribution as the red line. It is clear from Fig. 1A that 
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the tail of the Weibull distribution, in this case, is poorly fitted. In the present study, we are mainly interested 
in epileptic extreme events that would obviously lie within the tail of the Weibull distribution. With this in 
mind, we applied additional preprocessing prior to fitting experimental data with Weibull distribution. We have 
shown in Refs.15,36 that the cross point between normal and extreme behavior distributions can be found using 
the Pickands-Balkema-de Haan theorem and assessed empirically. In the present study, we proposed another 
approach for separating “normal” and “extreme” distributions. We calculated the 95th percentile of the analyzed 
data and divided the whole dataset into two subsets: above the 95th percentile (shown as a blue histogram in 
Fig. 1A) and below the 95th percentile (shown as a dark blue in Fig. 1A). We suggested that 5% of data (above the 
95th percentile) should mainly consist of extreme events, while the rest 95% (below the 95th percentile) should 
contain the normal data. We selected the above 95th percentile subset and fitted it with the Weibull distribution; 
Fig. 1B shows that the fitting becomes more accurate.

According to Ref.15, we used the chi-square goodness-of-fit test to be sure that the Weibull distribution is 
appropriate to fit the studied experimental data. The chi-square goodness-of-fit test determines if a data sample 
comes from a specified probability distribution, with parameters estimated from the data. The test groups the data 
into bins, calculating the observed and expected counts for those bins and computing the chi-square test statistic.

where Oh are the observed counts and Eh are the expected counts based on the hypothesized distribution, 
h = 1, 2...H is the number of bins in PDF distribution.

To fit the experimental PDFs with the Weibull distribution and perform the goodness-of-fit test, we used 
NumPy and SciPy libraries from Python, namely, statistical functions of the special module (scipy.stats). The 
function stats.weibull_min.fit was applied to PDF data—it returns maximum likelihood estimations for c, l, and 
s parameters of the Weibull distribution for the data (PDF). The function numpy.percentile was used to calculate 
the 95th percentile. The function stats.chisquare was used to calculate the one-way chi-square test.

Machine-learning algorithm. One of the most common unsupervised ML algorithms is one-class 
 SVM37–39. In this work, we addressed the aforementioned issues by proposing a new approach that uses a “non-
black-box” unsupervised ML algorithm, one-class SVM, fed with the features extracted following the fundamen-
tal knowledge about human seizures. We used SVM with a kernel in the form of a radial basis function and the 
standardized predictor. The Iterative Single Data Algorithm (ISDA)40 was used for the classifier optimization.

The overall framework of the ML algorithm is illustrated in Fig. 2, while Fig. 3 depicts examples of data 
obtained from certain steps of the algorithm. The first step of the algorithm took raw EEG data as the input and 
performed preprocessing. This included filtration and ICA-based artifact removal as well as EEG data segmenta-
tion into a number of 60-s intervals—the result of preprocessing step is shown in Fig. 3A. Then the preprocessed 
data served as the input for the feature extraction step. The features for the SVM algorithm were extracted 
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Figure 1.  PDF of E(t)norm for one subject for: (A) the whole dataset and (B) above 95th percentile subset; dark 
blue histogram shows below 95th percentile subset, blue histogram—above 95th percentile subset; the Weibull 
approximations are shown as red lines.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11474  | https://doi.org/10.1038/s41598-022-15675-9

www.nature.com/scientificreports/

according to the results of the time-frequency analysis of human epileptic EEG. During the feature extraction 
procedure based on expert-level domain knowledge the following actions were performed: 

1. CWT was applied to EEG data intervals and WP was computed in the frequency range of 1–30 Hz;
2. WP was averaged over: 

(a) 2–5 Hz frequency band of interest;
(b) 25 EEG channels;
(c) length of each time interval (60 s);

Figure 3B illustrates the result of feature extraction.
Obtained features were used as the input for the SVM training step. At this step, we trained multiple SVM 

models with different hyperparameters. There were two hyperparameters of the algorithm that might affect its 
performance:

• Type of learning is a strategy used in learning and approbation of the algorithm. We considered two 
approaches:

– k-fold cross-validation (CV): the dataset is randomly permuted and split up into k groups or folds, then, 
for each k, the kth group is taken as a test data set, while the remaining k − 1 groups comprise the train-
ing data  set41. In our case, we used data of one subject as a dataset and chose k = 10.

– “Leave-one-out cross-validation” (LOO): a configuration of k-fold cross-validation where k is set to the 
number of examples in the  dataset42. In our case, we set k to the number of subjects, i.e. we used data of 
all subjects except one in learning and then verified the algorithm on the data of the excluded subject.

• The threshold is the expected proportion of outliers in training data. SVM algorithm trains the bias term such 
that 100× Threshold% of the observations in the training data have negative scores and will be considered as 
“outliers”. The minimum achievable threshold value is determined by dataset properties and SVM classifier 
parameters. Actually, by applying the threshold, we consider only some fraction of these events with the 
highest AWP values. We assume that outliers corresponding to extreme events—epileptic seizures—should 
be the ones with the highest values of AWP. Thus, with the application of the threshold, we aim to separate 
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epileptic seizure outliers from others caused by noises and artifacts. We tested eight values of the threshold: 
10, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05%.

After this step, we obtained a set of SVM models with different hyperparameters. We used this set of SVM mod-
els as the input for the next step, where we aimed to find the most efficient model and corresponding optimal 
hyperparameters. To evaluate the efficiency of the ML algorithm, we used several characteristics derived from 
a confusion  matrix43:

• True positive (TP): correctly identified events, i.e. identified as epileptic activity by both ML method and 
expert.

• False positive (FP): falsely identified events, i.e. identified as epileptic activity by the ML method but not by 
an expert.

• False negative (FN): missed events, i.e. identified as epileptic activity by an expert but not by the ML method.

Each event was represented by one or several 60-s intervals Tm (when the algorithm identifies/misses several 
consecutive intervals, they are treated as one event). Examples of these events are shown in Fig. 3C.

Using these characteristics, we evaluate the efficiency of our algorithm in terms of two measures: sensitivity 
and precision. In diagnostics, sensitivity is a measure of how well a test can identify true positives, or, in our case, 
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Figure 3.  Example of data obtained at various steps of the algorithm: (A) EEG data (25 channels) with 3 
epileptic seizures (shown as red frames); (B) result of WP averaging over the 2–5 Hz frequency range, 25 
channels, 60-s time intervals; (C) result of ML training and testing with a number of correctly (TP) and falsely 
(FP) detected events (shown as red and grey circles correspondingly).
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the probability of a positive test given that the patient has epilepsy. Precision is the probability that subjects with a 
positive screening test truly have the disease. To reflect sensitivity, we calculated the True Positive Rate (TPR) as:

Precision or the Positive Predictive Value (PPV) is commonly defined as:

Dependence of TPR and PPV on threshold value is usually quite simple for classifiers: TPR decreases and PPV 
increases with the decrease of the threshold value. Thus, the choice of the optimal threshold value is dictated by 
balancing between appropriate TPR and PPV. However, the effect of the type of learning is not so obvious and 
requires statistical analysis.

We performed the group-level statistics for TPR and PPV. For statistical analysis, we used Wilcoxon signed-
rank test since the samples’ distribution is abnormal. After that, Holm correction was applied. Normality was 
tested via the Kolmogorov-Smirnov test. We performed a statistical analysis using SciPy and Statsmodels pack-
ages for Python.

After finding the optimal SVM model, we used it to analyze the clinical data and obtain the final results—the 
marking with time intervals that correspond to epileptic seizures (see Fig. 3C).

Results
To verify the presence of extreme behavior in the analyzed data, we fitted AWP data of all 83 subjects with the 
Weibull distribution, as we described in the Methods section. Figure 4 shows the PDF of E(t)norm for all subjects 
as the blue histogram and fitted Weibull distribution as the red line. According to the Pickands–Balkema–de 
Haan  theorem44,45, the elongated tail of experimental distribution fitted by the “heavy-tailed” Weibull distribution 
(shape parameter c ∼ 0.6 ) is the sign of extreme behavior (see Fig. 4). This finding also agrees quite well with 
our other  paper15. We can conclude that our data demonstrates extreme behavior and thus can be subjected to 
techniques aimed at detection of “outliers”, such as SVM.

We applied the developed SVM to the data and calculated TPR and PPV. At first, we calculated TPR and 
PPV for different values of threshold. Results are shown in Table 1: we calculated TPR and PPV values averaged 
over all 83 subjects for each value of threshold (10, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05%) and each type of learning (CV 
and LOO). We can see that for CV TPR decreases and PPV increases with the decrease of the threshold value, 

(6)TPR =
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TP + FN
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(7)PPV =
TP

TP + FP
× 100%.
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Figure 4.  PDF of E(t)norm for all subjects (histogram) and fitted Weibull distribution (red line).

Table 1.  Results of data analysis with SVM classifier: threshold influence.

Threshold, %

TPR mean, % PPV mean, %

CV LOO CV LOO

10 93.53 85.10 4.79 10.22

5 85.66 73.09 7.05 13.66

2.5 81.72 54.08 10.34 12.16

1 79.08 44.21 12.22 10.77

0.5 76.98 39.96 12.70 9.30

0.25 76.98 39.56 13.07 9.00

0.1 76.67 39.56 13.09 9.00

0.05 76.67 39.56 13.09 9.00
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as expected. However, an increase of PPV past the threshold value of 0.5% becomes less noticeable while TPR 
is still high. For LOO, TPR also decreases with the decrease of the threshold value, but TPR values are generally 
lower than in the case of CV. Thus, we focused on TPR and PPV for CV and selected the threshold value of 0.5% 
to be used in the SVM classifier.

As we mentioned above, mean TPR is noticeably higher for CV than for LOO, thus comparison of these 
two types of learning via statistical test is required for better representation. With chosen threshold, we calcu-
lated TPR and PPV values for two types of learning—the results are shown in Table 2. We found a significant 

Table 2.  Results of data analysis with SVM classifier: type of learning influence.

42 0 0 0 0 
43 66.67 0 20 0 
44 0 0 0 0 
45 100 0 30 0 
46 100 0 14.29 0 
47 0 0 0 0 
48 100 100 10 50 
49 0 0 0 0 
50 100 100 3.70 33.33 
51 100 0 16.67 0 
52 100 0 20 0 
53 100 100 16.67 28.57 
54 0 100 0 7.14 
55 100 0 20 0 
56 100 100 8.33 20 
57 100 0 18.18 0 
58 60 20 33.33 0 
59 100 100 16.67 0 
60 100 100 15.79 16.67 
61 100 0 11.11 0 
62 100 0 4.76 0 
63 0 0 0 0 
64 100 0 8.33 0 
65 100 0 20 0 
66 100 0 7.69 0 
67 100 0 57.14 0 
68 100 100 16.67 50 
69 100 50 33.33 0 
70 100 100 40 50 
71 100 0 22.22 0 
72 100 0 14.29 0 
73 100 100 14.29 33.33 
74 100 0 5.56 0 
75 0 0 0 0 
76 100 0 33.33 0 
77 100 0 16.67 0 
78 100 0 25 0 
79 100 100 10 20 
80 0 0 0 0 
81 100 100 14.29 16.67 
82 100 50 14.29 50 
83 100 50 10.53 0 

mean 76.97 39.96 12.70 9.30 
std 

error 
4.40 5.20 1.47 1.72 

subject TPR, % PPV, % 
CV LOO CV LOO 

1 66.67 66.67 8.70 25 
2 100 100 4.76 25 
3 50 100 3.23 4.55 
4 100 100 9.09 25 
5 100 100 25 0 
6 100 100 22.22 66.67 
7 100 100 4.35 9.09 
8 100 100 2.22 3.45 
9 100 100 11.76 25 

10 100 100 9.09 14.29 
11 0 0 0 0 
12 100 60 10.42 18.75 
13 0 0 0 0 
14 100 100 20 0 
15 20 20 2.50 1.89 
16 100 100 11.11 25 
17 100 100 5.56 9.09 
18 100 0 8.33 0 
19 100 100 6.25 25 
20 100 100 4.76 11.11 
21 100 100 4.76 9.09 
22 0 0 0 0 
23 100 0 14.29 0 
24 75 0 75 0 
25 100 100 9.09 20 
26 100 0 11.11 0 
27 0 0 0 0 
28 100 0 57.14 0 
29 100 0 11.11 0 
30 100 0 6.25 0 
31 100 100 11.11 50 
32 100 100 11.11 28.57 
33 100 0 8.33 0 
34 0 0 0 0 
35 0 0 0 0 
36 0 0 0 0 
37 50 0 9.09 0 
38 100 0 7.14 0 
39 100 0 9.09 0 
40 100 0 16.67 0 
41 0 0 0 0 
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main effect of type of learning on TPR but surprisingly not on PPV. Learning and testing with CV resulted in 
TPR = 76.97± 4.40 (mean ± standard error (SE)) that was significantly ( p = 3.18× 10−7 ) higher than for 
LOO—TPR = 39.96± 5.20 . However, there was no significant effect ( p = 0.12 ) for PPV: PPV = 12.70± 1.47 
for CV vs PPV = 9.30± 1.72 for LOO. Thus, we chose CV as a more appropriate type of learning and considered 
these TPR and PPV values as the final result of the SVM algorithm. The value of TPR is acceptable for a simple 
unsupervised classifier, and it possibly can be improved by further tuning of classifier’s hyperparameters. The 
value of PPV is comparatively low, but we should take into account the heavy skewness of EEG data and the 
considerable length of recordings. In the end, the results of the proposed classifier are not outstanding and cannot 
compete with some supervised classifiers in terms of sensitivity or precision. However, the primary goal of this 
SVM classifier was to demonstrate that the link between epilepsy and extreme behavior opens up the opportunity 
for novel approaches in EEG data analysis.

TPR in most cases (76 out of 83 subjects) has one of the two opposite values: 100% (60 subjects) or 0% (16 
subjects). On one hand, this may be caused by a small number of seizures in each subject, usually, only one, so 
TPR = 100% when this one seizure is detected and TPR = 0% when it is not detected. On the other hand, there 
are some instances where multiple seizures were all detected or all missed—this may suggest some unexpected 
features in the data that make difference. To study this possibility, we formed and analyzed two datasets: subjects 
with 100%TPR (shown as red in Table 2) and subjects with 0%TPR (shown as blue).

We hypothesized that extreme behavior somehow differs between these two datasets. To check the hypothesis, 
we performed an analysis similar to that presented in Fig. 4, but this time we considered DAWP. We constructed 
PDF individually for each subject and fitted it with the Weibull distribution. We analyzed Weibull distributions 
for two datasets separately and calculated the mean ± SE for each dataset. Figure 5A demonstrates PDFs for 
100%TPR (shown as red histogram) and 0%TPR (blue histogram). Fitted Weibull distributions are shown as 
solid lines and shaded areas (mean ± SE): red for 100%TPR and blue for 0%TPR . Figure 5B shows marking 
with TPs (red) and FNs (blue) that were obtained during classification. PDF for 100%TPR group possesses 
a more evident “heavy tail”, and we speculate that it corresponds to more pronounced extreme behavior. To 
check this, we performed the statistical analysis and compared characteristics of fitted Weibull distributions for 
100%TPR and 0%TPR groups. The analysis showed that shape parameter c was significantly ( p < 0.005 ) higher 
for 100%TPR dataset, which explains the “extreme” tail of the Weibull distribution. Additionally, one can see 
that TPs are distributed in the tail, while many FNs lie in the < 0 area, which suggests that they did not make 
to the 95th percentile.

Discussion
We propose using the outlier detection ML technique, one-class SVM, to detect epileptic seizures. Testing our 
approach on 83 patients, we reported 77% sensitivity and 12% precision. In 60 patients, sensitivity achieved 100%. 
Low precision indicates that 88% of detections reflect the suspicious non-seizure activity that becomes a subject 
of manual sorting by an medical expert. Due to the rare nature of seizures, their number hardly surpasses 10 
resulting in the overall number of detections below 100. Thus, running a seizure detection algorithm reduced 
the expert’s workload up to 95%.

Unlike the traditional classification algorithms, outlier detection incorporates the rare nature of seizures, 
hence handling the class imbalance problem. Classifying EEG data into two classes, “seizure” and “non-seizure”, 
one finds that the distribution of examples across these classes is heavily biased. Most of the classification algo-
rithms use an assumption of an equal number of examples for each class; therefore, they demonstrate poor 
predictive performance for the minority  class46. The popular methods to handle imbalance data rely on the 
oversampling of the minority class or undersampling of the majority  class47. These methods (known as external 
methods) aim at balancing data and require advanced preprocessing  procedures48. An alternative approach 
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is employing the design of a new classification algorithm to tackle the bias produced by the imbalanced data 
(internal methods). A working solution is the one-class classifiers, which fit models using only a single class 
of  data49. A one-class  SVM37–39 is an example of one-class classifiers used for outlier  detection50 including the 
detection of extreme  events51,52.

Unlike the supervised algorithms, outlier detection methods may train and operate on the data of a single 
patient, hence handling the overfitting. The majority of existing seizure detection methods rely on supervised 
ML  algorithms53 and face a high possibility of overfitting. The EEG data demonstrate high variability between 
patients and even between the different recordings of the same patient. Thus, there is a risk that the model fits 
specific features of the particular subject and fails on the data of other subjects. Addressing this issue requires 
forming highly representative training data, which is a challenging task in epileptology. Unsupervised algorithms 
use unlabeled data and perform its  clusterization21. For seizure detection, they cluster EEG data in two clusters: 
“seizure” and “normal activity”54. For the one-class SVM, we tested how its performance depends on the training 
data and found the better performance when it classifies the data of the same subject rather than others. These 
results evidence that there are subject-specific epilepsy-related characteristics of EEG. Thus, we theorize that 
these individual features are more important for the classifier than the common ones derived from the dataset 
of multiple subjects.

We feed the algorithm with the interpretable feature (EEG power in the 2–5 Hz frequency range) which 
demonstrates extreme behavior during seizures. Direct application of ML algorithm to the raw EEG data barely 
produces a reasonable output. Thus, it requires using informative input features, which are identified through 
the feature selection procedure. Informative feature space may be constructed from the data using deep-learning 
(DL) methods. Sometimes, DL enables achieving outstanding performance but it utilizes features that lack 
interpretation. In supervised algorithms, it increases the risk of overfitting since the model fits the data in the 
data-specific feature space. An alternative way is constructing features manually using the expert-level knowledge 
of the dataset. In the multichannel EEG data, the high-dimensional feature space can be derived by the time-
frequency  decomposition55–57. Many researchers proposed time-domain features, e.g., line length, frequency, and 
 energy58,59. The repeatability, regularity (periodicity), synchronicity, and amplitude variation of EEG are also the 
major time-domain features differentiating seizure from the normal  activity60. The most understandable way 
is using features whose significance is supported by the results of EEG research. For epilepsy, a bulk of studies 
report EEG biomarkers distinguishing seizures from the normal  EEG61,62. In this study, we use the previous 
results proving extreme behavior of the 2–5 Hz power during  seizures15,16.

We suppose that the interpretability gives us prior knowledge about the ability of an algorithm to handle the 
data of current patient, hence assessing its credibility. Comparing the data of the subjects from 100%-precision 
group with others, we observe distinct probability distributions. In the 100%-precision group, the probability 
distribution has a heavy tail indicating the presence of the extreme events. For the rest of the subjects, the prob-
ability of the extreme events is smaller and the tail is close to exponential. The detailed analysis reveals that the 
tail in the 100%-precision group almost solely consists of the detected seizures. For the rest of the subjects, the 
actual seizures belong to the 95% of data (see Fig. 5B).

Finally, we estimate a possible practical effect of using our algorithm in a decision-support system. The analy-
sis of the whole dataset with a total duration of tbase can be now substituted with the analysis of the subset with 
the duration of treduc . This subset includes all episodes marked as seizures by the algorithm: true positives (TPs) 
with a total duration of tTP and false positives (FPs) with tFP , so the duration of the subset is treduc = tTP + tFP . 
We assume that the time required for the expert to process this data is proportional to the size of the dataset. 
Thus, the workload reduction percentage is Preduc = 100%(tbase − treduc)/tbase.

For the 100%-precision group, we found that the workload reduction percentage was Preduc = 95.84± 0.46 
(mean ± SE) (see Table 3). Thus, the expert will spend ∼ 95% less time detecting seizures, so the patient will 
earlier be provided with a confirmed diagnosis and get the necessary treatment. Moreover, the time reduction 
may prevent the fatigue of the expert, which occurs during the analysis of prolonged EEG datasets and increases 
the probability of misdiagnosis.

The principal limitation of the present study is that it did not aim to develop an optimal algorithm with 
characteristics (sensitivity and precision) superior to other methods for seizure detection or the results of a 
medical expert. Here, we demonstrate the concept of applying the outlier detection methods to the seizure 
selection problem, with the extreme event theory applied to the considered problem supporting the choice of 
this class of methods. This makes the developed approach interpretable, and one should consider the proposed 
method as the basis of a medical decision support system. It is important to note that the developed method can 
greatly facilitate the work of the expert, reducing the duration of the analyzed dataset up to 95%. Also, note that 
we chose one-class SVM in our work because this classifier is the traditional algorithm for solving the problem 
of detecting outliers. Of course, SVM can be replaced by other better methods. Conducting such research is 
intriguing and planned for our future studies.

Conclusions
Based on extreme event theory, we propose using an outlier detection algorithm, one-class SVM, to detect epilep-
tic seizures on the human EEG using the 2–5 Hz power as a feature. In most patients, the probability distribution 
of the 2–5 Hz EEG power was heavy-tailed, demonstrating the presence of extreme events. For them, one-class 
SVM achieved 100% sensitivity and 12% precision. Low precision indicates that 88% of detections reflect the 
suspicious non-seizure activity that becomes a subject of manual sorting by an expert. Due to the rare nature 
of seizures, their number hardly surpasses 10, resulting in the overall number of detections below 100. Thus, 
running a seizure detection algorithm reduced the expert’s workload up to 95%. For the rest of the subjects, 
the probability distribution barely displayed the manifestations of extreme behavior, and SVM demonstrated a 
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sub tip, min tFp, min tbase, min Preduc, %

2 1 24 480 94.79

4 2 11 480 97.29

5 2 6 480 98.33

6 4 9 480 97.29

7 2 36 480 92.08

8 2 83 480 82.29

9 5 20 480 94.79

10 2 22 467 94.86

12 7 58 5050 98.71

14 2 8 1246 99.20

16 3 8 440 97.50

17 2 90 480 80.83

18 2 20 480 95.42

19 2 55 480 88.13

20 1 40 480 91.46

21 5 73 2029 96.16

23 2 6 480 98.33

25 2 13 480 96.88

26 2 16 480 96.25

28 4 6 405 97.53

29 1 8 480 98.13

30 1 20 480 95.63

31 1 9 480 97.92

32 4 29 480 93.13

33 2 12 480 97.08

38 1 15 296 94.59

39 1 12 480 97.29

40 3 12 480 96.88

45 3 9 480 97.50

46 2 13 480 96.88

48 1 12 480 97.29

50 3 38 338 87.87

51 1 6 480 98.54

52 1 6 417 98.32

53 3 12 480 96.88

55 7 15 315 93.02

56 2 14 480 96.67

57 2 16 480 96.25

59 2 7 480 98.13

60 4 20 480 95.00

61 2 10 480 97.50

62 4 22 480 94.58

64 2 20 480 95.42

65 1 6 480 98.54

66 1 25 480 94.58

67 4 6 405 97.53

68 2 6 480 98.33

69 4 5 480 98.13

70 4 3 480 98.54

71 2 7 481 98.13

72 2 9 480 97.71

73 3 6 480 98.13

74 1 29 1813 98.35

76 6 12 1539 98.83

77 2 7 281 96.80

78 3 3 281 97.86

Continued
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poor ability to detect seizures. Finally, we showed that one-class SVM used a single subject’s data for training; 
therefore, it was stable against between-subject variability. Our results demonstrate an effective convergence 
between the extreme value theory, a physical concept, and the outlier detection algorithms, a machine learning 
concept, toward solving the meaningful task of medicine.

Data availability
The data that support the findings of this study are available from National Medical and Surgical Center named 
after N. I. Pirogov of Russian Healthcare Ministry but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. Data are however available from 
the authors upon reasonable request and with permission of National Medical and Surgical Center named after 
N. I. Pirogov of Russian Healthcare Ministry.
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