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ABSTRACT

We propose an approach to replicate a stochastic system and forecast its dynamics using a reservoir computing (RC). We show that such
machine learning models enable the prediction of the behavior of stochastic systems in a wide range of control parameters. However, the qual-
ity of forecasting depends significantly on the training approach used for the RC. Specifically, we distinguish two types of prediction—weak
and strong predictions. We get what is called a strong prediction when the testing parameters are close to the training parameters, and almost
a true replica of the system trajectory is obtained, which is determined by noise and initial conditions. On the contrary, we call the prediction
weak if we can only predict probabilistic characteristics of a stochastic process, which happens if there exists a mismatch between training
and testing parameters. The efficiency of our approach is demonstrated with the models of single and coupled stochastic FitzHugh–Nagumo
oscillators and the model of an erbium-doped fiber laser with noisy diode pumping. With the help of a RC, we predict the system dynamics
for a wide range of noise parameters. In addition, we find a particular regime when the model exhibits switches between strong and weak
prediction types, resembling probabilistic properties of on–off intermittency.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0252908

Machine learning has become an indispensable tool in our con-
temporary data-driven world, and its application often involves
data classification, uncovering hidden patterns, and, more
recently, predicting the behavior of complex nonlinear systems
using advanced machine learning methods, such as recurrent
neural networks and their variants, which include reservoir com-
puters. In the context of reservoir computing (RC), researchers
have proposed numerous approaches to predict the behavior of
dynamical systems exhibiting chaotic regimes, spatial complex-
ity, and other intricate characteristics. A pressing challenge arises
when dealing with stochastic systems in which dynamics are sig-
nificantly influenced by noise. A canonical example of this chal-
lenge is the phenomenon of stochastic and coherent resonances,
observed in nonlinear systems subjected to noise. These effects,
prevalent in systems of diverse nature, such as neural networks,
brain, lasers, and climate dynamics, have particular relevance to
living organisms, potentially playing a crucial role in the recogni-
tion of weak signals by sensory systems, the control of neuronal
ensembles, and other biological processes. The ability to predict
the behavior of such stochastic systems, particularly in response

to variations in noise parameters, holds significant promise in
biomedicine, intelligent control system design, brain–computer
interface development, and the implementation of adaptive bio-
logical feedback mechanisms. This paper presents an approach
for predicting the behavior of stochastic systems using a specif-
ically modified reservoir computer capable of effectively predict-
ing the effects of coherent resonance. We distinguish between two
types of predictions using the reservoir computer: strong pre-
diction, which allows us to predict, with a given accuracy, the
trajectory of a stochastic process under a specified noise level,
and weak prediction, which estimates only statistical characteris-
tics of the stochastic process. The transition from strong to weak
prediction follows a scenario inherent to on–off intermittency.
The proposed concept exhibits a resemblance to the concept of
generalized, or noise-induced, synchronization, where the estab-
lishment of generalized synchronization, as diagnosed by the aux-
iliary system method, mirrors the implementation of the strong
prediction mode in the reservoir computer influenced by a set of
noise signals. Furthermore, using a model of two coupled stochas-
tic neurons as an example, we demonstrate that insufficient or
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redundant information on noise sources significantly diminishes
the accuracy of predicting the stochastic system behavior.

I. INTRODUCTION

We are surrounded by complex nonlinear systems of differ-
ent nature and at different scales of observation—from genes and
proteins to socio-economic and technogenic networks. As a rule,
such systems in the process of their development in time demon-
strate the formation of complex temporal or spatial patterns, called
dissipative structures,1 whose emergence is determined by inter-
nal nonlinear interaction, and their existence is stabilized by the
exchange of matter, energy, or information with the surrounding
world.2–5 The description of such systems can rarely be achieved only
analytically, so methods of numerical analysis and prediction of the
behavior of complex non-equilibrium systems are of great interest.
Moreover, researchers are increasingly considering systems whose
mathematical models are either unknown or so complex that direct
mathematical and numerical analysis is not possible. This is a reason
why data-driven approaches that build models for poorly formalized
processes and phenomena are gaining attention.6,7 Large amounts
of data on many systems’ dynamics can be collected so that our
predictions on the system behavior under study as well as certain
decisions are based on the analysis and interpretation of collected
data. Models based on machine learning (ML) methods7–9 cope most
effectively with such a task as predicting the behavior of various sys-
tems based on big data. The ML-based models effectively generalize
features by relying on carefully trained and annotated datasets con-
taining empirical, often experimental, data about the system under
study.

Among various data-driven and model-independent ML meth-
ods, reservoir computing (RC)10 has recently gained widespread
popularity due to its effectiveness in predicting and classifying
dynamical systems.2,11–14 A RC is a type of recurrent neural net-
work architecture designed for various ML and multivariate time
series prediction tasks. The effectiveness and appeal of RCs lie in
the simplicity of their architecture, strong predictive capabilities,
and cost-effective learning by requiring only the output layer of the
reservoir to be trained. Recently, the RC has played a key role in
predicting a variety of dynamical systems’ characteristics, including
predicting chaotic time series,15,16 quantifying chaos,17,18 and predict-
ing cluster and burst synchronization,19,20 observation of turbulent
spatiotemporal dynamics,21,22 characterization of macroscopic prop-
erties of complex networks,23 modelling of basins of attraction,24

etc.
It is important to note that the behavior of complex non-

equilibrium systems is often determined not only by dynamical
processes, but also by stochastic influences or processes in the
systems.25–27 Stochastic processes can often lead to new nonlin-
ear effects, such as stochastic28,29 and coherent30 resonance, noise-
induced bifurcations and intermittency,31–33 noise-induced second-
order phase transitions,34,35 noise-enhanced stability,36 etc. In many
fields of natural science, we are faced with recording or collecting
some empirical data that are more or less disordered signals, images,
or data. The interpretation of such observations often brings uncer-
tainty, which in turn requires the involvement of probability in their

description. Consequently, the construction of their mathematical
models leads to stochastic differential equations or stochastic maps
with random variables.37 In the case of impossibility to build such
models, data-driven models come to the fore, allowing to use the
accumulated empirical data to build ML-based models, including
those using RC.

However, it should be noted that there is a certain gap in
the RC application for predicting the dynamics of stochastic sys-
tems. Recent studies in this area include the work of Grigoryeva
and colleagues,38 in which a time-delayed RC demonstrated robust
performance in predicting the conditional covariance associated
with multivariate discrete nonlinear stochastic processes of the
VEC-GARCH type. This RC-based model also performed well in
predicting the actual daily realized market volatility based on intra-
day quotes, using daily log-return series of modest size as training
inputs. In the work of Fang et al.,39 a data-driven model com-
bines RC and normalizing flow to predict the long-term evolution
of stochastic dynamical systems and reproduce their behavior. The
authors validate the effectiveness of this framework through vari-
ous simulations covering systems, such as the stochastic Van der
Pol and Lorenz oscillators and the simulated El Niño–Southern
Oscillation model. Recently, Liao et al.40 has developed a low-
power physical RC-based model based on a bistable stochastic
resonant system with excessive damping, offering an innovative
path for efficient computing in stochastic environments. In addi-
tion, Hramov et al.41 have proposed an RC design for predicting
dynamics of the stochastic FitzHugh–Nagumo (SHFN) neuron,
which turns out to be very effective over different ranges of the
noise control parameters, exactly replicating the main character-
istics of the original stochastic neuron, including the coherence
resonance effect.

However, it should be concluded that there are currently no
effective frameworks for reservoir computing capable of accurately
predicting stochastic systems, and there are only a few successful
examples of private problem analyses. This highlights the critical
importance of investigating and predicting the dynamics of systems
affected by noise and makes the task of building reservoir computing
frameworks for predicting stochastic systems relevant and signifi-
cant. At the same time, it is important to understand how we should
address such a challenge, in particular, whether we should set the
problem of accurate prediction of the dynamics of a stochastic sys-
tem using reservoir computing or whether it is sufficient to predict
some important characteristics of the stochastic process for a partic-
ular problem. The first approach, which we call strong prediction,
of accurate prediction of the trajectory of a stochastic system in
phase space is natural for a number of applied problems, in par-
ticular, for problems of optimal control theory or chaos control.
However, for many tasks, the forecasting of even certain characteris-
tics of a stochastic process or weak prediction is of primary interest.
For example, to predict stochastic resonance, we do not need an
exact copy of the trajectory of the stochastic system, but we need to
accurately forecast a particular coherence measure of the stochastic
system dynamics,30 which can be assumed to be a simpler task than
an exact prediction of the trajectory.

Usually, in the context of predicting the dynamics of nonlinear
systems, it is expected to obtain an accurate prediction of the tra-
jectory of the system. For example, in the case of chaotic systems,
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this is possible only on some time interval defined by the largest
Lyapunov exponent of the chaotic system.15,23 In our terminology,
this corresponds to a strong prediction, that is, to an accurate pre-
diction of the trajectory using RC, only at some time interval after
the start of the prediction. However, in the study of chaotic sys-
tems, the problem of predicting the characteristics of the dynamics
of chaotic systems, for example, the Lyapunov exponents, is posed,17

and in this case, the problem is reduced to the reproduction of the
chaotic attractor of the system with the help of the RC without set-
ting the problem of exact reproduction of the system trajectory.42

Such a problem can be regarded as an analog of weak prediction
in our case, i.e., prediction of statistical characteristics of a stochas-
tic process. Thus, standard approaches to predicting the temporal
dynamics of systems using RC usually correspond to the case of
strong prediction in our terminology. The models that provide weak
predictions may be simpler than the corresponding strong predic-
tive models of stochastic processes since the only goal of the weak
prediction models is to forecast the probability distribution. Such
models may be useful, for example, for building financial mod-
els when the goal is to predict the probability distribution law of
an asset price or interest rate,43 or in biology to predict collective
dynamics of population processes44 or neural ensembles.27 These
applications are mainly generated by the interest in finding one of
the statistical moments of a stochastically defined variable, and ML-
models for weak prediction may be simpler and sufficient for the
chosen purpose.

Thus, in this paper, we introduce the notion of strong and
weak predictions of the dynamics of stochastic systems using reser-
voir computing and consider the relation between weak and strong
predictions using as examples the stochastic FitzHugh–Nagumo
neuron, two coupled stochastic FitzHugh–Nagumo neurons, and
the model of an erbium-doped fiber laser (EDFL) with noisy diode
pumping.

II. GENERAL FORMALISM

As we already mentioned in Sec. I, there are many dynamical
models described by differential equations where random fluctu-
ations should properly be introduced. “How to do this” is one of
the most frequent problems in different areas of science (radio
engineering, thermodynamics, kinetics of chemical reactions, neu-
ral ensembles, astrophysics, etc). One way is the use of the Langevin
equation,

ẋi = fi(x) +
m

∑

α=1

gα
i (x)ξα(t), i = 1, . . . , k, (1)

where x = {xi|1 ≤ i ≤ k} is the set of unknown functions, fi and
gi are some functions describing a particular problem, and ξα are
random functions of time. If gi(x) ∝ x, then we are dealing with a
system with multiplicative noise. If gi are constants, then the system
is said to be subject to additive noise. In this paper, we will consider
the simpler case of additive noise.

From the point of view of mathematics, stochastic systems
are usually described in terms of some random process, i.e., noise
models. The most common noise is white noise described by

means of the Wiener process W(t), t > 0. This is a Gaussian pro-
cess with continuous trajectories, zero mean EW(t) = 0, t > 0,
and covariance function K(s, t) = EW(s)W(t) = min(s, t). In other
words, this is a continuous process with independent homoge-
neous increments, with W(0) = 0. The distribution of increments
W(s) − W(t) is normal with zero mean and variance (s − t). To
describe a multivariate stochastic process, the corresponding sys-
tem of stochastic differential equations can be written in a general
form as

dX(t) = a(t, X(t))dt + σ(t, X(t))dW(t), t ≥ 0, (2)

with initial conditions X(0) as random variables independent with
process W(t).

In Eq. (2), variable X(t) and drift a(t, X(t)) are k-component
column vectors, W(t) is a m-component column vector, and
σ(t, X(t)) is a k × m matrix. There are m sources of noise, modeled
by the m-component Wiener process W(t) (i.e., the components of
W are independent one-dimensional Wiener processes). It should
be noted that equality k = m is not required, and the case m < k is
common in applications. Equation (2) can be considered a reduced
form of the corresponding equation in an integral form for the ith
component of the column vector X as

Xi(t) = Xi(0) +
∫ t

0

ai(s, X(s))ds

+
∫ t

0

m
∑

α=1

σi,α(s, X(s))dWα(s), i = 1, . . . , k, (3)

where the second integral can be understood in the Ito sense or in
the Stratonovich sense, which is determined by the convenience of
analysis and qualitative properties of the analyzed system.

When posing the problem of predicting behavior of the
stochastic system [Eq. (1)] in the case of additive noise using ML,
we must keep in mind a number of factors. ML involves generating
a data set that describes the system being predicted to some extent
and allows us to train a predictive model based on it. Therefore, the
prediction quality will crucially depend on the completeness of the
collection of information about the behavior of the predicted sys-
tem. For example, the success of reservoir computing for forecasting
dynamical systems suggests that this is a solvable problem in the case
of a system not affected by noise (or such an effect is not critical for
making short-term or long-term forecasts so that noise effects can
be neglected). Therefore, when training RC, we do not use any data
on noise effects, restricting ourselves only to data on the dynamical
variables of the predicted system.

However, for stochastic systems, we fundamentally need to take
into account the stochastic impact factor in the predictive model. In
Figs. 1(a) and 1(b), we present a general scheme of RC training in
the classical case without noise influences and in a stochastic sys-
tem, respectively. One can clearly see two important effects of noise
in the latter case. First, when generating the training dataset, we need
to collect noise affect data in addition to the dynamical variables.
Second, even in the case of additive noise, we cannot always ensure
precise knowledge of all stochastic factors influencing the system.
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FIG. 1. General schemes for RC training and RC prediction of the stochastic
systems dynamics. (a) RC training in the classical case in the absence of noise
effects. For RC training, only a dataset of trajectories of the system under study
at some time interval is needed. (b) RC training in the case of a stochastic
system. In this case, the RC training requires not only the dataset of trajecto-
ries of the system under study at time interval δT , but also the knowledge of
noise influences during time δT . (c) Prediction using a RC trained on data on the
behavior of dynamical variables and noise. To evaluate the accuracy of the pre-
diction, we have to expose the predicted system and the RC to the same noise
and compare the output characteristics of the stochastic system and the RC. In
the case of strong prediction, we will get an accurate prediction of the system
trajectory, while in the case of weak prediction, only a match of the statistical
characteristics.

As a result, we often rely on hypotheses regarding the nature of
these stochastic influences, which means that accurate prediction of
the system’s trajectory cannot be guaranteed. However, assuming or
knowing the statistical properties of the noise impact, we can solve
a less ambitious problem; namely, we can try to predict the statis-
tical characteristics of the stochastic system’s dynamics, rather than
its exact trajectory.

The above observations lead us to conclude that the concept
of predicting the dynamics of stochastic systems using ML-models

requires classification. Specifically, it is important to distinguish
between strong and weak predictive models, as illustrated in
Fig. 1(c). Suppose that our stochastic system is described by a model
based on the stochastic differential equation (2). To predict the
behavior of the stochastic system, we need to train a ML-model,
for which we usually solve the stochastic differential equation (2)
numerically.

When we solve a stochastic system (2) in Ito formalism, we
employ the Euler–Maruyama (EM) numerical method45 for dis-
crete time points t = 0, 1t, 21t, . . . , n1t, . . . , L1t, where n ∈ N and
0 ≤ n ≤ L, Eq. (2) is replaced with

Xi,t+1t = Xi,t + ai(t, Xt)1t +
m

∑

α=1

σi,α(t, Xt)1Wα,t, (4)

1Wt = W(t + 1t) − W(t), Xt = X(t), t = n1t, i = 1, . . . , k.
(5)

In the case of Stratonovich formalism, we should use the
Euler–Heun (EH) numerical method,46 which requires calculation
of predictor and corrector steps,

X̃i,t+1t = Xi,t + ai(t, Xt)1t +
m

∑

α=1

σi,α(t, Xt)1Wα,t, (6)

Xi,t+1t = Xi,t + 1

2

[

ai(t, Xt) + ai(t + 1t, X̃t+1t)
]

1t

+ 1

2

m
∑

α=1

[

σi,α(t, Xt) + σi,α(t + 1t, X̃t+1t)
]

1Wα,t, (7)

1Wt = W(t + 1t) − W(t), Xt = X(t), t = n1t, i = 1, . . . , k.
(8)

When numerically solving the SDEs, we calculate 1Wt as ξt

√
1t,

where ξ is the zero-mean white Gaussian noise with standard
deviation.

Through training, the model learns to predict a stochastic
process using the trajectories of the process Xt and the external
noise sources Wt, as shown in Fig. 1(b). In a prediction mode, our
predictive model generates a signal rt, which serves as the predic-
tion and must be compared in some manner with the true target
process Xt.

In the case of strong prediction, it is assumed that the ML-
based predictive model enables the determination of the exact
trajectory of the stochastic system’s dynamics (2). This trajectory
is fully specified at time t by the given trajectory of the Wiener
process W over the temporal interval [0, L1t] and the initial
condition X0,

max
t=0,...,L1t

E (|Xt − rt|) ≤ ε, (9)

where rt is the process predicted by the ML-based model, Xt is the
true target process determined by the EM numerical model (4)–(5)
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or the EH numerical model (6)–(8) of the stochastic system (2), and
ε denotes the prediction accuracy—a small value that determines the
quality of a strong predictive model.

In the second case, a weak predictive model implies the
qualitative construction of a probabilistic model (probability
space) where some Wiener process W and process X satisfying
equation (2) are given. A predictive model gives a weak prediction if
the condition

max
t=0,...,L1t

|E(z(Xt)) − E(z(rt))| ≤ ε (10)

is fulfilled for all polynomials z(·). In this case, all moments of distri-
bution of stochastic processes Xt and rt turn out to be the same with
a given accuracy ε.

In other words, in the case of strong prediction, we reconstruct
the trajectories of a pair of random processes (W, X) with a certain
accuracy on some interval [0, t], while in the case of weak prediction,
we reconstruct only the distributions of this pair. The construction
of the weak prediction model in a strong sense automatically entails
the construction of the prediction in a weak sense.

Thus, depending on the nature of the predictive problem to
be solved, as well as on the data set available for training the pre-
dictive ML-based model, we can forecast strongly or weakly the
behavior of a stochastic system. In the former case, an approximate
trajectory of the Wiener process is constructed from the specific
trajectory of the process available in the dataset; i.e., the closeness
of the true and predicted trajectories can be understood in terms
of mean square, probability (uniform or point-wise), convergence
of approximations, etc. However, as we have already noted, for
many applications, a precise knowledge of the future trajectory is
not necessary, and a weak prediction of probabilistic properties is
enough. From the mathematical point of view, if we return to the
stochastic equation (2), this means the approximation of the joint
distribution of the Wiener process and the prediction of the solu-
tion of the stochastic system. The closeness can be understood as the
closeness of finite-dimensional distributions or in the sense of weak
convergence of probability measures on the corresponding func-
tional space of trajectories.47 In other words, the problem of weak
stochastic prediction can be solved by realizing a large number of N
independent trajectories of a process close in distribution to the real
observable process. In the case of an ergodic system, this means that
we can predict the system behavior in time and estimate the statisti-
cal characteristics of the forecast from a single time series generated
by the model.

To investigate the considered approach of separating strong
and weak prediction of stochastic systems, we take into account
three benchmark models that exhibit complex stochastic dynam-
ics under varying control parameters and noise power [see details
in Sec. III A]: (i) the stochastic FitzHugh–Nagumo neuron (SFHN)
demonstrating the effect of stochastic resonance when varying noise
intensity;48 (ii) the coupled SFHN neurons as a model demonstrat-
ing the limits of predictability of interaction effects of two stochastic
systems;49,50 and (iii) the noise-pumped erbium-doped fiber laser
(EDFL) model51,52 as an example of an excitable physical system
under noise influence.

III. METHODS

A. Stochastic systems under study

As the first mathematical model under study, we consider
the SFHN model given by the following system of equations with
additive noise term Dξ(t):

ẋ = x − x3/3 − y + 0.3,

ẏ = 0.08(x − 0.8y + 0.7) + Dξ(t), (11)

where x and y represent the excitatory and recovery variables,
respectively, ξ(t) is the zero-mean white Gaussian noise with an
autocorrelation function of 〈ξ(t)ξ(t + t0)〉 = δ(t0), and D represents
the noise amplitude.

In the deterministic case (D = 0), the SFHN model given by
Eq. (11) represents a steady-state solution. However, as the noise
amplitude D is increased, the system (11) exhibits a spiking behav-
ior with interspike intervals (ISIs) dependent on the noise intensity.
In addition, such a system demonstrates the effect of coherence
resonance,30 which consists in maximizing regularity of the gener-
ated spike sequences at a certain optimal noise amplitude, in our
case at D ≈ 0.2.

For the stochastic FHN neuron (11), the RC for predicting
signals (x(t), y(t)) was constructed in Ref. 41 where the possibility
to predict the effect of coherence resonance was demonstrated by
varying the noise amplitude D.

To compare the effect of different numerical approaches to
solving the stochastic equations (11) on observed RC prediction
quality, we employed both the EM method (4) and (5) and the EH
method (6)–(8) with a time step-size set at 1t = 0.1. Looking ahead,
we note that the prediction results in our case are practically inde-
pendent of the numerical solution scheme (see Sec. IV A). Therefore,
in the following, we use only the EM numerical method.

Another stochastic system which we will consider in this paper
is two coupled SFHN neurons. Similar to Refs. 49 and 50, we con-
sider electrically coupled SFHN neurons and analyze the limit of
predictability of interaction effects of two stochastic systems. The
corresponding model is written in the following form:

ẋ1 = x1 − x3
1/3 − y1 + 0.3 + ρ(x2 − x1),

ẏ1 = 0.08(x1 − 0.8y1 + 0.7) + D1ξ1(t),
(12)

ẋ2 = x2 − x3
2/3 − y2 + 0.3 + ρ(x1 − x2),

ẏ2 = 0.08(x2 − 0.8y2 + 0.7) + D2ξ2(t),

where ρ is the coupling strength and ξ1(t) and ξ2(t) are two differ-
ent zero-mean white Gaussian noises with the same distribution and
autocorrelation function of 〈ξ(t)ξ(t + t0)〉 = δ(t0).

The system of two coupled SFHN neurons, represented by
Eq. (12), operates in an excitable regime similar to that of the
model described in Eq. (11). The key distinction lies in the fact
that when D 6= 0, each SFHN neuron generates spikes based on its
own intrinsic noise and the coupling between them. This model
also demonstrates the phenomenon of coherence resonance; how-
ever, the optimal noise amplitude D is contingent upon the coupling
strength ρ—an increase in ρ corresponds to a higher optimal value
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of D. For numerical solutions of Eq. (12), we employed the EM
method with a time step-size set at 1t = 0.1.

Finally, as an example of a physical system that can also operate
in the excitable regime and demonstrate stochastic dynamics under
the influence of a noise signal, consider the model of a 1560 nm
EDFL with a Fabry–Pérot cavity that has been subjected to noisy
pump modulation of a diode pumping laser proposed in Ref. 51. The
EDFL model equations have the following form in dimensionless
variables:

ẋ = axy − bx + c(y + υ),

ẏ = −dxy − (y + υ) + Pp

{

1 − exp

[

−18

(

1 − y + υ

ρ

)]}

, (13)

where x and y are the intracavity laser power and averaged over
the active fiber length population of the upper level system, respec-
tively, Pp = Pp0(1 + Dξ(t)) is the pump parameter, Pp0 = 506 is the
pump power without modulation (D = 0), and ξ(t) is the zero-
mean white Gaussian noises. The following parameters were used:52

a = 6.6207 × 107, b = 7.4151 × 106, c = 0.0163, d = 4.0763 × 103,
υ = 0.3075, and ρ = 0.6150. These corresponded to experimentally
evaluated parameters of a real EDFL with a 70-cm active erbium-
doped fiber. With the chosen parameters, the deterministic EDFL
(13) operates in a steady-state regime similar to the SFHN neuron
(11). As the noise amplitude is increased, the noise-pumped EDFL
generates noise-induced oscillations of x(t) and y(t) variables. For
numerical solutions of Eq. (13), we employed the EM method with
a time step-size set at 1t = 10−7.

B. RC-based model for prediction of stochastic

system dynamics

1. Architecture of the RC

In Ref. 41, a RC design was proposed for predicting the SFHN
neuron dynamics described by the stochastic differential equation
with a single noise source. Let us generalize this ML-model to pre-
dict the behavior of stochastic systems with a large number of noise
sources.

The RC architecture includes three main components: (i) the
input layer, which receives input data in the form of time series
which visualize temporal dynamics of the predicted system and feeds
the input data to the reservoir layer, (ii) the reservoir layer, which
consists of a large number of artificial neurons connected by ran-
domly generated links, and (iii) the output layer connected to the
neurons of the reservoir layer and whose connection weights are
tuned for prediction based on the information stored and processed
in the reservoir layer.

Figure 2 illustrates the proposed RC configuration. In the case
of modeling a stochastic system, it is necessary to provide reser-
voir inputs that correspond to noise sources that determine the
system dynamics. In the output layer, we should not provide cor-
responding outputs to predict noise processes, which is impossible
due to their nature. Therefore, when predicting the dynamics of
stochastic systems, we always need to know times series of noise
that affects the system behavior in order to build a strong prediction
model. In this case, in the input layer, we have K inputs corre-

sponding to the dynamical variables Xt =
(

X1,t, X2,t, . . . , XK,t

)T
and

M inputs describing either additive or multiplicative random fluctu-

ations
(

ξ1,t, ξ2,t, . . . , ξM,t

)T
. Following the paper,41 a distinctive aspect

of such proposed RC configuration is the complete segregation of
reservoir inputs among different artificial neurons within the hid-
den inner layer. In other words, each neuron in the reservoir layer is
associated with only one input in the input layer. For simplicity, we
can assume that each input is associated with the same number of
neurons in the reservoir layer, namely, with Nh/(K + M), where Nh

is the number of artificial neurons in the reservoir layer.
In general, we may have no information about some number

M0 of noise sources. In this case, our predictive model will include
only (M − M0) inputs with noise, which leads to the question about
the possibility of weak predicting the behavior of the system. At the
same time, we may get a situation where some noise impacts are mis-
takenly considered important in analyzing the system. Then, Me of
erroneous noise sources may appear additionally as inputs, which we
measure in the experiment, but which do not play an essential role in
the dynamics of the stochastic system. We will address this question
further when discussing the results of the prediction analysis.

As a consequence, the input (K + M − M0 + Me)-component
column vector denoted as gt includes (M − M0 + Me) noise compo-
nents and K dynamical variables, namely,

gt =
(

ξ1,t, ξ2,t, . . . , ξM−M0+Me ,t, X1,t, X2,t, . . . , XK,t

)T
, (14)

and the output K-component column vector denoted as rt+1 has
only K components corresponding to predicted dynamical variables,
namely,

rt+1 =
(

r1,t+1, r2,t+1, . . . , rK,t+1

)T
. (15)

Each of Nh neurons of the reservoir layer receives gt sig-
nals from the input layer as well as signals from other neurons
in the reservoir, which are transformed according to the following
equation:41

ht+1 = tanh(Hht + Ggt), (16)

where ht represents the internal hidden state at the time moment t,
allowing for the encoding of temporal dependencies based on past
state history and input data (14). Nh × Nh matrix H is the reservoir’s
adjacency matrix, which sets the weights of connections between
artificial neurons of the reservoir layer. This matrix defines a ran-

dom network characterized by the average node degree k̄ and the
spectral radius λ (absolute value of the largest eigenvalue of the adja-
cency matrix H). (K + M − M0 + Me) × Nh matrix G is the input
matrix defining the coupling of the input to the hidden state h. In
the case of the above condition of complete segregation of reser-
voir inputs among different artificial neurons within the reservoir
layer, it is necessary to choose the number of artificial neurons in
the reservoir layer such that the ratio c = (K + M − M0 + Me)/Nh

is integer, and each resevoir input affects c artificial neurons in
the reservoir layer. Then, we can set the elements of the input
matrix G as Gij = ηi,j if 1 + (j − 1)c ≤ i ≤ jc and Gij = 0 in other
cases, where i = 1, . . . , (K + M − M0 + Me), j = 1, . . . , Nh, ηi,j are
uniformly sampled from interval [−σ , σ ].

The goal of RC in the considered case is to predict the behav-
ior of the stochastic process under study r [see Eq. (15)] based on
the observed signals of dynamical variables and noise sources g [see
Eq. (14)] during time interval δT. Using the matrix R specifying the
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weights of the output layer, we compute the predicted signal r at
time (t + 1) by the following equation:

rt+1 = Rĥt, (17)

where ĥ is the augmented reservoir state represented as an Nh com-
ponent column vector with components hi,t = hi,t if i is odd, and
hi,t = h2

i,t if i is even, i = 1, . . . , Nh
24.

2. Training mode of the RC

In the training mode, we must determine the output layer
matrix R. For this purpose, as shown in Fig. 2(a), the input vector
gt, including both driving noise sources and dynamical variables xt,
is fed to the input of the reservoir and the corresponding output
signal rt+1 is obtained. To find the coefficients of the R matrix, we
minimize L2–error,

L2 =
δT

∑

t=1

‖rt − Xt‖2 + q‖R‖2, (18)

between target state X and predicted state r. The second term in
Eq. (18) is included to prevent the overfitting problem, the regular-
ization parameter is denoted by q = 10−9, and δT is the duration of
the dataset g that was used to train the RC.

3. Predicting mode of the RC

In the predicting mode, we use the RC in which input, inner,
and outer layers are described by Eqs. (16) and (17), where the G
and H matrices are the same as in the training mode, and the matrix
R of the output layer is determined in the training phase by mini-
mizing the L2–error (18). In this mode, we feed the predicted values
of the dynamical variables from the reservoir output to the reservoir
input, as shown in Fig. 2(b); that is, the values of rt+1 are assigned to
the values of Xt+1, which are fed back to the reservoir input. How-
ever, according to our approach, which is illustrated in Fig. 1(c), we
simultaneously feed those noise signals (ξ1, ξ2, . . . , ξM−M0+Me ) that
affect the predicted stochastic system as well. Thus, unlike predict-
ing the behavior of dynamical systems using a RC (see Fig. 1(a)), we
cannot achieve full autonomy of the RC because we need data on
noise sources.

4. Hyperparameter selection

Finally, let us focus on the choice of hyperparameters of the
RC used for prediction. The reservoir layer size was chosen as
Nh = 500 neurons. The reservoir hyperparameters were optimized
by grid search in the following parameter ranges: spectral radius

λ ∈ [0.1, 1.9] and average node degree k̄ ∈ [10, 20]. The strength
parameter of the input links was chosen to be σ = 1.0. After train-

ing, we obtain a set of 209 reservoirs, one for each (σ , k̄) pair. The
reservoirs were trained using time series of length δT = 30 000 for
SFHN neurons (11) and δT = 40 000 for EDFL (13). As a result, the
matrix of output weights R is formed by minimizing the L2-error
function (18).

The standard hyperparameter optimization strategy is to test
all reservoirs on the same test signal and select the combination of
hyperparameters that gives the lowest L2–error. It is this reservoir
that is used to further predict the behavior of the stochastic system.

In this study, we trained the RC using this method to predict the
dynamics of the SFHN model at noise amplitude D0 = 0.2 and the
EDFL model at noise amplitude D0 = 0.4. Following the results of
Ref. 41, we can assume that a reservoir trained at this noise value
will be able to predict the dynamics of a stochastic system at other
values of noise D.

However, in this paper, we added the following modification
to the process of selecting the optimal set of reservoir layer hyper-
parameters. Our goal was to obtain the best prediction not only at
a particular value of noise intensity D0, but also at other values of
noise. Therefore, when searching for the optimal set of hyperparam-
eters, we tested each RC on a set of signals with three different values
of the noise amplitudes, namely, D = {0.05, 0.2, 1.0} for the SFHN
model and D = {0.1, 0.4, 1.2} for the EDFL model. Then, we chose
the combination of hyperparameters that gives the smallest mean
error over all three values of noise amplitudes D. This RC was used
to predict the behavior of the stochastic system because it had the
best generalizability of predicting the system dynamics for different
noise amplitudes.

C. Evaluation of accuracy measures of strong and

weak predictions

To assess the accuracy of the strong prediction, we need to
compare the true trajectory of the system in phase space and the pre-
dicted trajectory made by the RC. First, we normalize the trajectories
of all dynamical variables of both the true x and those r predicted
by the RC as follows: x̄i = (xi − xi,0)/xi,max and r̄i = (ri − ri,0)/ri,max,
where xi,0, ri,0 are the mean values and xi,max, ri,max are the maximum
absolute values of the true and predicted variables over time inter-
val 1T within which the RC prediction was tested. Then, we use
the root mean square error (RMSE), which is calculated along the
normalized phase-space trajectory of the original stochastic system,

RMSE =

√

√

√

√

1

1T

1T
∑

t=1

‖r̄t − x̄t‖2. (19)

The RMSE takes a value from 0 (perfect prediction) to 1 (no predic-
tion at all). As a measure of the accuracy of strong prediction, we use
the value

δ = 1 − RMSE. (20)

As we will see below, it is possible that strong prediction may
not be achieved during the whole time δT, but only in some time
intervals 1T. To investigate time dependence of strong prediction,
we calculate δ(t) in time window [t, t + 1T] through the whole
signal and transform it into a binarized form as follows:

γ (t) =
{

1 if δ(t) > δ0,

0 if δ(t) ≤ δ0.
(21)

Here, δ0 is the threshold value characterizing the required accuracy
of the system trajectory matching. In this study, we have chosen the
threshold δ0 = 0.95. So, γ (t) = 1 corresponds to strong prediction
in time interval [t, t + 1T], while γ (t) = 0 means the lack of strong
prediction on this interval. We will refer to γ (t) as the quality depen-
dence of the strong prediction on time during the RC predicting
mode.
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FIG. 2. Schematic presentation of the reservoir computing architecture for the stochastic systems dynamics prediction. (a) In a training mode, the signals (14) from noise
sources and the signals generated by the stochastic system under study are fed to the input of the reservoir. The matrix of the output weights R is determined based on the
L2-error (18) minimization condition. (b) In a prediction mode, we use the output layer weight matrix found in the training mode, and according to the scheme in Fig. 1(c), we
introduce feedback between the output and input of the RC by simultaneously feeding the signals of noise sources as an external influence on the RC.

To estimate the statistical characteristics of the spike train
produced by the stochastic neuron and the RC-based model, we
calculate the probability density function (PDF) of the duration of
ISI 1Ii = Ii+1 − Ii, where Ii is the time moment of the ith spike
generation.53 To analyze the statistical properties of the EDFL model,
we consider the PDF of the laser power x(t) [see Eq. (13)].

To analyze and compare the PDFs of the true stochastic
dynamics of the SDEs under study and the dynamics predicted by
the RCs, we use the coefficient of variation (CV) defined as the
standard deviation σv of the analyzed variable vi normalized to its
average value 〈v〉,30

CV = σv

〈v〉 , σv =
√

〈

v2
i

〉

− 〈v〉2. (22)

To calculate PDF of the x(t) time series for SFHN and
EDFL models and r1(t) for RC, the length of 500 000 samples
was always generated to obtain both true (xt) and predicted (r1t)
signals.

IV. RESULTS

A. Strong and weak predictions in the SFHN model

We start our consideration with a model of a single stochas-
tic neuron given by Eq. (11), under the influence of a noise source
ξ with amplitude D, which was varied in the range (0.05, 1.0). Let
us begin our consideration by numerically solving Eq. (11) using
the EM numerical method of integration (4)—(5). Recall that, as
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described in Sec. III B, we train the model at noise intensity D = 0.2
and optimize the hyperparameter values by simultaneously using a
set of three noise amplitude values D = {0.05, 0.2, 1.0}. We consider
the simplest situation where we have a single input noise signal, i.e.,
M = 1, and all information about the noise sources is undistorted
M0 = Me = 0. The input vector of stochastic variables has K = 2
components and is formed as follows: X1 = x, X2 = y, where x and
y are described by Eq. (11).

Figure 3 illustrates the results of prediction and their compari-
son with the true stochastic system signals (11) at three values of the
noise amplitude: D1 = 0.2, D2 = 0.6, and D3 = 1.0. Note that the
RC training was performed at D = D1, and each subsequent value of
the noise amplitudes (D2,3) introduces an increasing noise amplitude
parameter mismatch of the true predicted system and the trained
RC-based model. Figures 3(a), 3(d), and 3(g) show the time series of
the predicted r and true x signals, and the dependence of the quality
of the strong prediction γ (21) on time for the noise parameters D1,
D2, and D3, respectively.

An illustrative presentation demonstrating the presence (or
proximity) of strong prediction is the dependence of the predicted
signal r1t on the target true xt signal. The proximity of points to
the diagonal xt = r1t indicates that the RC has reached the regime
of strong prediction of the stochastic system, while the widening
of the diagonal and the appearance of a cloud of points indicate
the destruction of strong prediction. Accordingly, Figs. 3(b), 3(e),
and 3(h) illustrate the dependencies of the predicted signal r1 on the
true target signal x for noise parameters D1, D2, and D3, respectively.
To evaluate the weak prediction, we calculate the PDF of the ISI for
the predicted r1t and target xt signals, which are shown in Figs. 3(c),
3(f), and 3(i) for different noise amplitudes.

From Figs. 3(a)–3(c), we can clearly see that the use of the RC
allows us to realize the strong prediction mode when the SFHN sys-
tem under study (11) and the trained RC [see Fig. 1(c)] are exposed
to D1 = 0.2. We observe a complete repetition of the stochastic
system trajectory by the reservoir model. The prediction is strong
(γ (t) = 1) throughout the RC model testing time. As might be
expected, the PDFs of the ISI times are the same for the true and pre-
dicted stochastic processes. The coefficients of ISI variations (22) are
also very close for the true and predicted processes: CVFHN = 0.298
and CVRC = 0.294.

In prediction behavior of the stochastic system at D = 0.6, we
observe that the intervals of strong prediction characterized by high
prediction quality (γ = 1) alternate with intervals of strong pre-
diction that breaks down (γ = 0). Such a regime is illustrated in
Fig. 3(d), where the switching of the prediction mode is clearly vis-
ible, which is reflected in the switching of the γ (t) function from
1 to 0 and vice versa. The diagonal arrangement of points on the
(xt, r1t) plane, characteristic of strong prediction, breaks down—a
cloud of points appears, which shows that the trajectories of the true
and predicted processes at certain moments of time no longer cor-
respond to each other. At the same time, the shape of the PDFs of
the ISIs of the true and predicted stochastic processes also remains
almost the same [see Fig. 3(f)], as well as the CV values for the
true and predicted processes: CVFHN = 0.347 and CVRC = 0.348.
This corresponds to the weak prediction regime, but neverthe-
less, there are time intervals when the strong prediction regime
is still observed. This mode of irregular switching between strong

and weak prediction is of particular interest and will be discussed
in Sec. IV B.

Finally, at D = 1.0, we do not observe a strong prediction
regime. The prediction quality γ (t) = 0 during the whole analysis
time [see Fig. 3(g)], and on the (xt, r1t) plane, we observe a cloud of
points without a pronounced diagonal (Fig. 3h). However, the ana-
lyzed statistical characteristics of the stochastic processes remain the
same [Fig. 3(i)], including almost the same coefficients of variation:
CVFHN = 0.392 and CVRC = 0.395. According to our classification,
this regime is a typical example of the weak prediction regime when
the RC-based model does not allow us to predict the trajectory of a
stochastic process even with a known stochastic influence on the ini-
tial system, but the model allows us to estimate with high accuracy
the statistical characteristics of the predicted stochastic process.

Now, an interesting question arises: How does the control
parameter, namely, the noise amplitude D affect the predictive abil-
ity of the model? It turns out that the quality of the model prediction
greatly depends on the hyperparameter optimization strategy. We
consider two strategies: (i) a standard strategy with hyperparame-
ter selection only when testing the prediction on the same control
parameter (noise amplitude D0 = 0.2 at which the RC was trained)
and (ii) a modified strategy for selecting optimal hyperparameters
when testing on a set of three noise amplitudes (D = {0.05, 0.2, 1.0}).

In considering these issues, we will also compare the results of
predicting the behavior of a stochastic neuron obtained by using dif-
ferent numerical methods for integrating stochastic equations—the
EM method (4)—(5) and the EH method (6)—(8). Figure 4 illus-
trates the effect of coherence resonance in an SFHN neuron obtained
by using EM and EH methods. As one can see, the only small differ-
ence is observed for D = 0.05 corresponding to a very low noise,
which causes rare spikes generation. For all other noise’s ampli-
tudes, the CVs [see Eq. (22)] are almost the same and do not depend
much on the integration method. This suggests that the integra-
tion method has little or no influence on the observed effects in the
original stochastic system.

Next, we consider the effect of the numerical integration
method of the original stochastic equations on the quality of the RC
prediction. In this case, we use the time series obtained by integrat-
ing Eq. (11) using either the EM method or the EH method to train
the reservoir.

Figure 5 shows the characteristics of the strong prediction
quality—the parameter δ (20)—and the statistical characteristic esti-
mated the weak prediction quality—the CV values and differences
between predicted (CVRC) and true (CVSFHN) values,

1CV = |CVRC − CVSFHN|. (23)

Figure 6 illustrates the dependencies of the predicted signal r1t

on the true target xt signal for different values of the noise amplitude
D obtained with the help of an EM numerical method. The left col-
umn in these figures corresponds to the standard strategy, while the
right column corresponds to the modified strategy of the RC-based
model testing.

The former strategy is characterized by a very accurate strong
prediction of the stochastic system behavior at the noise value D
≈ 0.2 at which the RC was trained. As can be seen from
Fig. 5(a) in the range D ∈ (0.2, 0.3) for the EM method and
D ∈ (0.15, 0.3) for the EH method, we have a value δ > 0.95
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FIG. 3. Examples of strong and weak predictions of SFHN model dynamics. Panels (a), (d), and (g) show the time series of predicted r1t (red) and true target xt (blue) signals,
as well as the quality dependence of the strong prediction on time γ . Panels (b), (e), and (h) show the dependence of predicted r1t on the target xt signal. Panels (c), (f), and
(i) illustrate the PDF of ISI for the predicted and target signals. Noise amplitude values during the testing mode: (a)–(c) D = 0.2, (d)–(f) D = 0.6, and (g)–(i) D = 1.0.

(threshold at which γ = 1 is marked in the figure by a dashed
line), which corresponds to a strong prediction. In the left panel of
Fig. 6(b), we see a well-pronounced diagonal, which also indicates
a strong prediction observation. However, when we start to vary

the noise amplitudes D over a wide range of parameters, the region
of weak prediction turns out to be quite small. This is illustrated
by Figs. 5(c) and 5(e), which show the dependence of CV on the
noise amplitude D in the original stochastic system and the predicted
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FIG. 4. Coherence resonance in an original stochastic neuron. Dependencies of
the coefficients of variations [CV , Eq. (22)] of the SFHN neuron’s signal obtained
by using EM and EH methods of numerical integration of Eq. (11).

RC model. It can be seen that the differences between predicted
and true values 1CV appear small only at weak noise intensities
0.1 ≤ D ≤ 0.3, while at noise intensities D > 0.3, the model stops
predicting the behavior of the stochastic system even in a weak sense.
From Fig. 5(c), it follows that the RC does not predict qualitatively
and quantitatively the effect of coherent resonance in the model of a
noise-excited neuron.

The modified RC testing strategy for hyperparameter selection
proves to be more successful, as shown in Figs. 5(d) and 5(f). In
this case, we have a weak prediction mode of the RC-based model
over the whole analyzed range of the noise amplitude (0.1 ≥ D ≥ 1).
Figure 5(d) shows that the coherent resonance curve is reproduced
with a high degree of accuracy for both EM and EH numerical
methods, and the difference between predicted and true values 1CV
< 0.02 remains very small over the whole range of noise amplitudes.
This is illustrated in Fig. 6 for large noise amplitudes (D > 0.3). On
the left panels for the standard strategy, we have a complete collapse
of the diagonal xt = r1t, while on the right panel, we observe typical
behavior for the weak prediction regime. The strong prediction, as
follows from Fig. 5(b), occurs at 0.25 ≥ D ≥ 0.4 and at D = 0.1 for
the EM method and at 0.2 ≥ D ≥ 0.4 for the EH method. Interest-
ingly, if we use RC trained on data obtained with the EM method, no
strong prediction is observed at D = 0.2 [vertical line in Fig. 5(b)],
the value of the noise intensity at which the reservoir was trained.

The obtained results show that the modified strategy for select-
ing optimal hyperparameters when testing on a set of three noise
amplitudes is more effective in producing a model that better gener-
alizes across different noise characteristics and provides strong and
weak predictions over a wider range of the control parameter. How-
ever, there may be failures in strong prediction at the values of the
control parameters on which the model was trained. At the same
time, if there is a need for accurate prediction of the system at some
fixed set of control parameters, the standard strategy of selecting
hyperparameters of the RC model turns out to be more effective. We
can also conclude that the obtained results do not depend much on
the method of numerical integration of stochastic differential equa-
tions. Therefore, for simplicity of further analysis, we will use the
data obtained with the EM method.

FIG. 5. Characteristics of stochastic neuron dynamics prediction vs the noise
amplitude. Dependencies of (a) and (b) the characteristics δ of the strong predic-
tion quality, (c) and (d) the CV values of predicted (CVRC) and true SFHN (CVSFHN)
stochastic processes, and (e) and (f) the differences 1CV = |CVRC − CVSFHN|
on the noise amplitude D calculated by using EM and EH numerical methods. The
left column with (a), (c), and (e) panels corresponds to optimization at the single
value D0 = 0.2 at which the reservoir was trained and the right column with (b),
(d), and (f) panels—optimization simultaneously at three values of noise amplitude
D = {0.05, 0.2, 1.0}. In panels (a) and (b), the dashed horizontal line corresponds
to the threshold value δ0 = 0.95 [see Eq. (21)]; the vertical solid line corresponds
to the noise value D0 = 0.2 at which the RC was trained. True SFHN’s CV on
panels (c) and (d) was calculated by using the EM method [compare with Fig. 4].

B. Intermittency in strong prediction

Let us focus more on the irregular switching between strong
and weak prediction modes, which was discussed in Sec. IV A.
Indeed, beyond the boundary of strong prediction by noise ampli-
tude at D > 0.3 in the stochastic neuron (11) [see Fig. 3(b)], we
observe an intermittency regime that corresponds to switching
between the strong and weak prediction regimes. This behavior is
depicted in Fig. 7(a), which shows the dependence of γ (t) over a
long time interval at noise amplitude D = 0.6. The switches, whose
duration L varies from event to event, are clearly visible in Fig. 7(a).
Figure 7(b) illustrates the distribution of the durations of the strong
prediction phases, which are plotted in a log–log scale for the same
noise amplitude D = 0.6. A linear regression and a 95% confidence
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FIG. 6. Dependencies of the predicted r1t signal on the true target xt signal for
different values of the noiseD and the optimization strategy of the reservoir hyper-
parameters. The left column corresponds to optimization at the single value D0

= 0.2 at which the reservoir was trained and the right column corresponds to opti-
mization simultaneously at three values of noise amplitude D = {0.05, 0.2, 1.0}.
The noise amplitude values are (a) D = 0.1, (b) D = 0.2, (c) D = 0.4, and
(d) D = 0.8.

interval are also plotted as a solid line in Fig. 7(b). It is clearly seen
that the dependence NL(L) is well approximated by the power law
NL ∝ Lη , where η ≈ −1.5. This dependence of the distribution of
the number of phases NL on their duration L resembles the property

FIG. 7. Intermittent switching between strong and weak prediction phases.
(a) Time dependence of the measure of accuracy of strong prediction γ (t),
illustrating the switching between phases at D = 0.6. (b) Corresponding distri-
bution NL of the durations L of the strong prediction phases (γ (t) = 1) plotted
in a log–log scale. The solid line corresponds to a linear approximation with
slope coefficient η = −1.47, and the blue region is a 95% confidence interval.
(c) The dependencies of the mean duration 〈L〉 of the strong prediction phases
on the RMSE plotted in a log–log scale for three noise amplitudes: D = 0.5,
0.6, and 0.7. Solid lines correspond to the linear approximations with coefficients
(a)−2.35 (p-value = 1.98 ∗ 10−56),−3.04 (p-value = 2.16 ∗ 10−67), and−3.3
(p-value = 2.25 ∗ 10−70), respectively.

of on–off intermittency,54,55 which, in particular, is observed at the
boundaries of generalized synchronization56,57 and noise-induced
synchronization.58

If we consider the scheme shown in Fig. 2(c), which is imple-
mented in the prediction of the trained RC model (see Fig. 2(b) with
a training procedure illustration), we will see a great similarity to the
auxiliary system method, which is implemented in the diagnosis of
generalized synchronization.59 The relationship between generalized
synchronization and the construction of predictive models based on
reservoir computing was also discussed in Ref. 60. Recall that gen-
eralized synchronization is observed in the unidirectionally coupled
nonidentical self-sustained oscillators and assumes the presence of
functional dependence between the drive xd and the response xr

systems,

xr(t) = F(xd(t)). (24)

The functional relationship F(·) is so complex that the diag-
nosing functional dependence is not a trivial task. Therefore, we
usually use the auxiliary system method,59 which involves the intro-
duction of a replica x′

r of a response system, which is identical to the
true response system but starts from other initial conditions. Due to
the presence of functional coupling (24), after some transient, the
regime is established when xr(t) = x′

r(t). It is shown in Ref. 61 that
noise-induced synchronization is a special case of generalized syn-
chronization when the influence of noise ξ(t) dominates over the
influence of dynamical system xd itself. Coming back to Fig. 2(c), we
see, in fact, the scheme of the auxiliary system approach, where the
trained RC-based model acts as a replica of the response system. This
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allows for considering the strong prediction mode, which consists of
the coincidence of the trajectories of the predicted system and the
reservoir x(t) = r(t), as the mode of implementation of the auxiliary
system method when generalized synchronization occurs. In our
case, the coincidence of signals x(t) ≈ r(t) corresponds to the strong
prediction mode, not to generalized synchronization, as in the case
of truly unidirectionally coupled systems. In favor of this concept
is also evidenced by Refs. 62 and 63 in which attempts were made
to replace the auxiliary system with artificial neural networks. The
possibility of predicting the behavior of the response system based
on the signals of the drive system using machine learning means in
fact establishing generalized synchronization.

In Ref. 57, it was shown that on–off intermittency occurs at
the boundary of generalized synchronization, which is characterized
by a power-law distribution of the duration of synchronous phases
with degree exponent η = −1.5 and a power-law distribution of
the average duration of the synchronization regime from the super-
criticality parameter (usually the difference of coupling strengths
(ε − εc), where εc is the boundary of the onset of generalized/noise-
induced synchronization) with the degree exponent β = −1. In our
case, it is easy to check the distribution of durations of strong pre-
diction temporal segments, and they are well described by a power
law with exponent η ≈ −1.5. However, it is not possible to esti-
mate the degree of supercriticality because different RCs exhibit
different prediction accuracy and, hence, different degrees of close-
ness to the mode of strong prediction. However, we can assume
that the measure that characterizes the closeness of some RC pre-
diction to the strong prediction mode is the RMSE value, which
correlates with the prediction accuracy. In other words, the bet-
ter the trained RC model, the smaller the RMSE and the lower the
supercriticality.

Figure 7(c) shows the corresponding dependencies of the aver-
age duration 〈L〉 of the strong prediction phases on the RMSE for
the three noise amplitudes tested. We used the following methodol-
ogy to build the dependencies. We fixed the hyperparameter values,

the average node degree k̄ = 16, and the spectral radius λ = 0.6
obtained during optimization at three values of the noise amplitude
(D = 0.05, 0.2, 1.0), and then 100 Hi (i = 1, . . . , 100) reservoir layer
adjacency matrices with these hyperparameters were randomly gen-
erated. Each of the RCs described by the matrix Hi is trained on the
signal at D = 0.2. Using the trained ith RC, predicted signals r1t,i of
500 000 samples duration were generated at different noise ampli-
tudes D. For each signal, the average duration 〈L〉i of the strong
prediction phases, and the corresponding RMSEi values are calcu-
lated. The corresponding points (RMSEi, 〈L〉i) (i = 1, . . . , 100) are
shown in Fig. 7(c) at D = 0.5, 0.6, and 0.7, respectively. For each D,
a linear regression and a 95% confidence interval are also plotted in
Fig. 7(c).

From Fig. 7(c), we see that the dependence of the average dura-
tion 〈L〉 of the strong prediction phase on RMSE is described by a
power-law dependence with the degree exponent lying in the range
(−2.3, −3.3). The degree exponent decreases with increasing noise
amplitude, i.e., as D is increased, the average duration of the strong
prediction phase decreases with a simultaneous decrease in predic-
tion accuracy estimated by RMSE. This is illustrated in Fig. 8, which
shows the dependence of the average duration of the strong pre-
diction phase and the value of RMSE on the noise amplitude D at

FIG. 8. Characteristics of intermittency and prediction quality under varying noise
amplitudes. The dependencies of (a) the logarithm of the mean duration 〈L〉 of the
strong prediction phase and (b) the mean value of RMSE on the noise amplitude
D. The dots correspond to the mean values over all 100 RC under study and
the whiskers correspond to the standard deviation. Red solid lines correspond to
the linear approximation with coefficients (a)−6.16 (p-value = 2.82 × 10−9) and
(b) −0.19 (p-value = 1.25 × 10−6).

which the RC was tested. The calculation is performed on all 100
RCs that were generated using the procedure described in the para-
graph above. The dots in Fig. 8 show the mean values over all 100
reservoirs, and the whiskers mark the standard deviation. It can be
clearly seen in Fig. 8(a) that the logarithm of the average duration
of the strong prediction phase decreases linearly with increasing
noise intensity, while the spread of this value also increases with
increasing noise intensity, i.e., the amount of detuning of the noise
amplitude D from the D = 0.2 value at which the RC was trained.
The mean RMSE decreases linearly with increasing noise intensity
at D > 0.4 [see Fig. 8(b)], that is, in the region where we observe the
intermittency effect of strong prediction.

From Fig. 8(b), an important conclusion follows. In the region
D ≤ 0.3 of strong prediction, the variation of prediction accuracy
when generating a random configuration of the reservoir layer net-
work with optimally chosen hyperparameters is very small; i.e., by
determining the value of hyperparameters, we can choose actually
any variant of the reservoir layer network. However, the situation
changes in the weak prediction regime. The specific topology of the
reservoir layer network begins to have a strong influence on the pre-
diction accuracy, so it is necessary to generate a certain number of
networks at a given set of hyperparameters and select the best one
from them in terms of prediction quality.

The on–off intermittency effect arises from the limited fore-
casting accuracy of the RC model. As an approximation of the
original system, the RC model operates with minimal but non-zero
prediction error. Both the original system and the RC model func-
tion in a sub-threshold regime, driven by a shared noise source. If
the systems were identical (γ = 0), no forecasting errors or inter-
mittency would occur. However, slight discrepancies between the
systems lead to divergent behaviors under noise: some noise val-
ues result in negligible differences, while others cause significant
trajectory deviations, and as consequence, the emergence of large
difference between them (γ = 1). Due to the characteristic spike
generation regime under low noise, both systems stabilize into a sta-
tionary state, corresponding to accurate predictions. This laminar
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phase persists until noise-induced divergence disrupts the identical
behavior, terminating the accurate prediction phase. The interplay
of these mechanisms generates the observed on–off intermittency in
prediction accuracy.

C. Two coupled stochastic neurons

Let us now consider two coupled stochastic neurons described
by Eq. (12), fed with independent Gaussian noises: D1ξ1 and D2ξ2.
For definiteness, the noise amplitudes are chosen to be the same
for each neuron (D1 = D2 = D). When considering this problem,
we are primarily interested in the influence of the completeness
of the description of noise sources on the prediction quality of
the stochastic system dynamics. Recall that, as we discussed in
Sec. III B 1, the input vector g (14) generally includes (M − M0

+ Me) noise components, where M is the true value of noise sources
that affect the system dynamics (in our case, M = 2), M0 is the
number of noise sources about which we have no information but
which influence the behavior of the stochastic system, and Me is the
number of sources that we mistakenly take into account to describe
the dynamics of the stochastic system while they do not affect its
behavior.

Therefore, we consider three situations that illustrate to some
extent the above situations of incomplete data about noise sources
on a stochastic system. The first situation corresponds to the case
when we train the RC on complete information; i.e., the following
input vector (14) is used in training:

gt =
(

Dξ1,t, Dξ2,t, x1,t, x2,t, y1,t, y2,t,
)T

. (25)

In other words, for the considered system (12), we have M = 2, and
we know all noise sources; i.e., M0 = Me = 0.

In the second situation, we consider the case where we do not
know all information about the noise sources; namely, we do not
have information about one of the noise effects (for certainty Dξ2,t),
that is, M0 = 1 and Me = 0. In this case, the input vector has the
form

gt =
(

Dξ1,t, x1,t, x2,t, y1,t, y2,t,
)T

. (26)

Finally, we consider the third situation when in addition to the
situation of incomplete input information, we mistakenly consider
an additional noise source Dξe with the same statistical characteris-
tics as the first noise source, but not affecting the dynamics of the
original system (12). That is, the input signal in this case is described
by two noise sources, but at the same time, M0 = 1 and also Me = 1:

gt =
(

Dξ1,t, Dξe,t, x1,t, x2,t, y1,t, y2,t,
)T

. (27)

For all three situations, we use the same metrics to analyze the
quality of prediction for each of the coupled neurons.

To determine the modes of strong and weak predictions, we use
γ1,2 [see Eq. (21)] and 1CV [Eq. (23)] features, which are calculated
for each of the two neurons separately. A strong prediction corre-
sponds to γ1,2 = 1, while a weak prediction for each of the neurons
to 1CV1,2 < 0.075.

We investigate the parameter space “noise amplitude
D—coupling strength between neurons ρ.” The corresponding
results are illustrated in Fig. 9, which shows the parameter spaces
for all three situations. Each panel shows four main modes of an RC

prediction: (i) a strong prediction of the dynamics of both stochas-
tic neurons (white area), (ii) a weak prediction of the dynamics
of both stochastic neurons (green area), (iii) a weak prediction of
the dynamics of only one of the neurons (blue area), and (iv) no
prediction (black area).

Given the dependence of the prediction accuracy on the par-
ticular reservoir’s adjancency matrix H, we calculate the averaged
parameter space (D, ρ). To do this, the following procedure is car-
ried out. We start by generating a reservoir’s adjancency matrix
Hs. We then optimize the hyperparameters for this reservoir layer
by enumerating the values of the spectral radius and the aver-
age node degree for the data obtained at D = 2 and selecting the
most optimal pair of hyperparameters at three noise amplitudes D
= {0.05, 0.2, 1.0} in terms of RMSE, as discussed in Sec. III B 4. This
procedure is repeated for all values of coupling strength ρi = i1ρ

(i = 1, . . . , 10, 1ρ = 0.1). Then, for selected values of the hyper-
parameters for each value of ρi, stochastic process predictions for
the entire range of values of the noise amplitude D are carried out
for a fixed value of the coupling strength ρi. As a result, we obtain
a particular parameter space (ρ, D) for which the particular values
of γs(ρ, D) and 1CVs(ρ, D) are known. This procedure is repeated
S = 10 times, with the specific values of the hyperparameters dif-
fering in each calculation due to the randomness of the generated
reservoir’s adjancency matrix. We then average the particular values
of the prediction quality characteristics over the S optimizations and
obtained the average values of 〈γ1,2(D, ρ)〉 and 〈1CV1,2(D, ρ)〉, from
which the averaged parameter space is reconstructed.

The resulting averaged parameter spaces “noise ampli-
tude D—coupling strength between neurons ρ”—are shown in
Figs. 9(a)–9(c) for all three situations of input vector formation
(25)–(27), respectively. The comparison of the parameter spaces for
the three situations shows that the best prediction quality occurs
when we train the RC-based model on the full information set of
a stochastic system with multiple noise sources. It can be seen from
Fig. 9(a) that we have a strong prediction at all coupling strengths
ρ ∈ [0, 1] at noise amplitude D = 0.2 at which the RC was trained.
We also have in almost the entire remaining parameter space a weak
prediction of the behavior of two coupled stochastic neurons. This
is an important result that shows that a RC-based model trained at
one value of a noise amplitude allows for predicting the statistical
characteristics of the dynamics of coupled stochastic neurons when
the noise amplitude is varied.

However, a strong prediction, as in the case of a single stochas-
tic neuron, at noise amplitudes other than D = 0.2, at which the RC
was trained, cannot be achieved. This is probably due to the more
complex nature of the excitation of spikes in each coupled neuron,
which is now determined not only by noise but also by dynamics of
the coupled neurons, making strong prediction for the RC impossi-
ble. This is indirectly confirmed by the fact that at strong noise with
D > 0.6, when spikes are frequently generated and their sequence is
characterized by high CV1,2, at large coupling coefficients ρ > 0.8,
the model loses the ability to provide even weak prediction of the
statistical characteristics of both neurons. In this case, we deal with
either a weak prediction of the stochastic dynamics of only one
neuron or no any prediction.

The other two situations with insufficient or erroneous infor-
mation about the stochastic system that was used to train the

Chaos 35, 033140 (2025); doi: 10.1063/5.0252908 35, 033140-14

Published under an exclusive license by AIP Publishing

 20 M
arch 2025 08:45:47

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 9. Prediction mode areas on the parameter spaces “noise amplitude D—coupling strength ρ” for a different situation of input vector formation. Averaged (top) and
obtained with random adjacency matrix Hs (bottom) parameter space “noise amplitude D—coupling strength ρ between neurons” for a system consisting of two coupled
neurons for three model situations: (a) and (d) two noises, each of which corresponds to real noise, are fed to the input of the RC, fed to each neuron; (b) and (e) only one
noise, which corresponds to real noise, is fed to the input of the reservoir, fed to the first neuron; (c) and (f) two noises are fed to the input of the RC, one of which corresponds
to real noise, fed to the first neuron, and the other is a separately generated noise with the same statistical characteristics but absent in the original system. Here, white color
defines an accurate prediction, green color a weak prediction of both neurons, blue color a weak prediction of only one neuron, and black color absence of strong and weak
predictions of both neurons.

RC show much worse prediction capabilities. In the second sit-
uation, as can be seen in Fig. 9(b), we have the possibility of a
weak prediction only at a small coupling coefficient ρ = 0.1 and at
D = 0.2 (the noise amplitude at which the reservoir was trained).
In this situation, when the neurons practically do not influence
each other, it is enough to feed a single noise into the system to
force both neurons exhibit dynamics whose statistical characteris-
tics would correspond to the original stochastic system. At ρ = 0.1
and other noise values with D > 0.2, we have a situation when
we can predict the statistical characteristics of the dynamics of
only one of the neurons. For larger values of the coupling coeffi-
cient, we cannot predict the behavior of the stochastic system even
in a weak sense. In the third situation, when we add additional
error noise ξe (27), the RC is unable to give even a weak pre-
diction [see Fig. 9(c)]. At small coupling coefficients in the noise
range D ∈ (0.2, 0.8), we can only predict statistical characteristics of
spike generation at the first neuron whose noise exposure is known
to the RC.

It should be noted that the conclusions drawn are valid for
the averaged parameter spaces over S trained RCs with randomly
generated adjacency matrices. If we consider particular sth vari-
ants of RC with some particular random adjacency matrix Hs, then
local improvements are possible for the second and third situations
considered. As an illustration, Figs. 9(d)–9(f) show the particu-
lar parameter spaces obtained by considering a particular RC with
matrix Hs. It is clearly seen that in these situations of input vector
formation [see Eqs. (26) and (27)], it is possible to obtain a weak
prediction for some combinations of parameters D and ρ even in the
absence of all available noise source information [see green regions
in Fig. 9(e)] and with erroneous noise information [see Fig. 9(f)].

The above discussed results suggest that, as already mentioned
in Refs. 12, 60 and 64, the problem of selecting a specific reservoir
adjacency matrix is an unsolved scientific problem, but the effec-
tiveness of a particular RC-based model depends on it. This is largely
determined by the specificity of the RC, which involves training the
coupling weights only in the output layer, but not in the reservoir
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FIG. 10. Examples of strong and weak predictions of EDFL dynamics. (a) and (d) Time series of predicted r1t (red) and true target xt (green) signals. (b) and (e) Dependence
of predicted r1t on the target xt signal. (c) and (f) PDF of the laser power for the predicted r1 (blue) and target x (red) signals. The values of the noise amplitude during testing
mode are (a) and (c) D = 0.3 and (d) and (f) D = 0.7. The RC was trained at noise intensity D0 = 0.4.

layer. As a consequence, it is the specific adjacency matrix of the
reservoir layer that is the factor whose enumeration will allow for an
improvement in the quality of the model. At the same time, it should
be kept in mind that the quality of the RC-based model is improved
in an extensive way when a large number of reservoirs have to be
generated and analyzed to obtain the desired result.

D. Strong and weak predictions in a noise-pumped

erbium-doped fiber laser

Let us now consider the application of the considered approach
to the EDFL model. Consider a reservoir learning situation where
we have a single true noise source (M = 1 and M0 = Me = 0). The
input vector of stochastic variables has K = 2 components and is
formed as follows: X1 = x, X2 = y, where the variables x and y are
described by Eq. (13).

Figure 10 illustrates the abilities of the reservoir trained and
optimized at only one noise value D = 0.4 to strongly and weakly
predict stochastic laser dynamics when varying the intensity of noise
applied to the trained reservoir and, respectively, the SDEs (13). The

hyperparameters of the optimal reservoir were as follows: average
node degree 〈k〉 = 13, spectral radius λ = 0.3. Figures 10(a)–10(c)
obtained at noise D = 0.3 illustrate the effect of the strong predic-
tion of the laser dynamics. It should be noted that RC training and
prediction takes place at different noise intensities (D = 0.4 and
D = 0.3, respectively). We can clearly see that a diagonal line is
observed on the (xt, r1t) plane, which corresponds to the fulfillment
of the condition (9) of a strong prediction mode and means that
the true and predicted trajectories are practically identical: xt ≈ r1t.
Obviously, the distribution functions and the corresponding CV
measures also turn out to be the same (1CV = |CVRC − CVEDFL|
= 0.001), as can be seen in Fig. 10(c).

Increasing variation of the noise intensity with respect to the
noise value at which the RC was trained (D = 0.4) leads to the break-
down of the strong prediction mode, as illustrated in Figs. 10(d)
and 10(e) corresponding to the driven noise intensity D = 0.7. It can
be clearly seen that the time series of the RC and the true SDEs differ,
and the diagonal on the (xt, r1t) plane collapses, indicating that the
strong prediction mode cannot be realized. However, if we analyze
the laser power amplitude PDF at a given noise intensity D = 0.7,
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FIG. 11. Characteristics of EDFL dynamics prediction vs the noise intensity.
(a) Characteristics δ (20) of strong prediction quality and (b) differences 1CV
= |CVRC − CVEDFL| vs noise amplitudeD. The green lines correspond to the opti-
mization at the single value D0 = 0.4 at which the RC was trained. The red lines
correspond to the optimization simultaneously at three values of the noise ampli-
tude D = {0.1, 0.4, 1.2}. In panel (a), the dashed horizontal line corresponds to
the threshold value δ0 = 0.95 [see Eq. (21), which is identical to the one intro-
duced earlier for the stochastic neuron]; the vertical solid line corresponds to the
noise value D0 = 0.4 at which the RC was trained. In panel (b), the dashed hori-
zontal line corresponds to the threshold value1CV = 0.5 that can be considered
a boundary of weak prediction.

we see that these PDFs almost coincide. This refers to the weak pre-
diction mode in the RC at this noise intensity. To evaluate the weak
prediction, we calculate the coefficients of variations (22) of the tar-
get laser xt and predicted RC r1t signals. The CV values were also
very close for the true and predicted processes: CVEDFL = 0.899 and
CVRC = 0.911 (1CV = 0.012).

To analyze the possibility of extending the parameter region
in which strong and weak prediction modes are possible, we com-
pare two hyperparameter optimization strategies, as we did for
the stochastic neuron (compare with Fig. 5 for the SFHN model).
As before, we consider (i) a standard strategy with hyperparame-
ter selection only when testing the prediction on the same control
parameter (noise amplitude D0 = 0.4 at which the RC was trained)
and (ii) a modified strategy for selecting optimal hyperparameters
when testing on a set of three noise amplitudes D = {0.1, 0.4, 1.2}.

Figure 11 shows the characteristics δ (20) of the strong predic-
tion quality and the statistical characteristic estimated the quality of
weak prediction, i.e., the differences 1CV between predicted (CVRC)
and true (CVEDFL) values.

The standard and modified strategies are characterized by a
very accurate strong prediction of the behavior of the stochastic
system at the noise intensities D ∈ [0.1, 0.5]. As can be seen from
Fig. 11(a), in this range of D, we have a value δ > 0.95 (threshold at
which γ = 1 is marked in the figure by a dashed line), which cor-
responds to a strong prediction for both hyperparameter selection

strategies. So, for the considered EDFL system, the hyperparameter
selection strategy does not allow us to extend the region of a strong
prediction in the parameter space.

At the same time, the region of a weak prediction expands sig-
nificantly when using the modified strategy. In Fig. 11(b), we can
clearly see that the difference 1CV between predicted and true val-
ues for the modified strategy (red line) slowly grows up to the noise
value D = 1.1 while remaining limited to 1CV < 0.5 (marked in
the figure by the dashed line). For the standard strategy, we have a
collapse of the weak prediction mode at D > 0.8.

Thus, as in the previous example of a stochastic neuron, a mod-
ified strategy for selecting optimal hyperparameters when testing
on a set of three noise amplitudes is more effective in producing a
model that better generalizes across different noise characteristics
and provides weak predictions over a wider range of control param-
eters. However, unlike the case of the stochastic neuron, we cannot
expand the strong prediction region, but we significantly expand the
weak prediction region of the RC-based model.

V. CONCLUSION

In this paper, we suggested two different modes of predicting
dynamics of stochastic systems using reservoir computing tech-
niques. We proposed an approach to replicate a stochastic system
and forecast its dynamics using reservoir computing driven by noise
sources. We have shown that such RC-based models can generalize
the behavior of the stochastic system within a wide range of control
parameters. However, the quality of the prediction strictly depends
on how we train RC. We introduced two modes for predicting
the behavior of a stochastic system. When the testing parame-
ters of the system are close to the training ones, we can achieve
a strong prediction mode characterized by an almost true replica
with a given accuracy of the stochastic system’s trajectory deter-
mined by the noise influence and initial conditions. By detuning
the parameters, we can only predict the characteristics of the prob-
ability distribution of the stochastic process, which corresponds to
a weak prediction. We tested our approach on the model of a single
stochastic FitzHugh–Nagumo neurons and showed that it was effec-
tive and allowed, within a wide range of noise parameters, to predict
the characteristics of a stochastic system using a RC. Moreover, we
found an intermittency effect when the model exhibited stages of a
strong prediction that were followed by modes of a weak prediction.
This behavior had some features of on–off intermittency, which was
related to the features of establishing a generalized synchroniza-
tion that was close to the strong prediction regime establishment
condition between the predicted stochastic system and the trained
reservoir.

We also analyzed a model of two coupled stochastic neurons,
where we were primarily interested in the effect on the prediction of
the completeness of the information on which the RC was trained.
The lack of information led to a significant reduction in the predic-
tion quality, which can only be made in a weak sense in the region of
control noise parameters close to those at which the RC-based model
was trained. However, there are some variants of the reservoir layer
in which the prediction quality can be increased. This issue requires
further consideration and research.
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In addition, we considered the possibility of using our approach
to analyze a physical system, the model of noise-pumped EDFL. We
have shown that the proposed approach to design reservoir com-
puting for strong and weak predictions of such a system works
perfectly, allowing us to analyze and predict statistical character-
istics of the stochastic laser system in a wide range of parameters.
This allowed us to reach a conclusion about the universality of the
proposed concept and its applicability to a wide range of excitable
systems.

Finally, we addressed the question on prediction accuracy of
stochastic systems we find in real life (financial markets, geophysical
and climatic systems, control systems, etc.) and that are constantly
affected by uncontrolled noise. In the considered scheme for a strong
prediction, we need to collect the noise source data, which are not
always possible, while in the case of weak synchronization, we do
not need to know all the information about the noise, but only its
statistical characteristics, and we can only predict the statistical char-
acteristics of the process, but not its specific trajectory. For many
problems, this is not enough, so it is important for further research
in this direction to improve the quality of prediction models for
stochastic processes and systems.

Our findings provide a powerful framework for solving real-
world problems in neuroscience, laser physics, intelligent systems
for autonomous devices, and other fields. Using these results, it is
possible to design more efficient control systems, improve predic-
tion accuracy, and exploit the role of noise in controlling complex
behavior. For example, a strong or weak prediction of brain activity
is critical for preventing various undesirable effects and diseases, as
well as for applications in brain–machine interfaces.65 A weak pre-
diction, in particular, can help identify modes of neural activity or
build models to study how noise and system parameters contribute
to pathological states.27,66,67 In intelligent systems of brain–computer
interfaces, it is possible to use models with a weak prediction to esti-
mate and predict the characteristics of noise in brain activity signals
and accordingly deal with it effectively to improve the accuracy of
classification of brain activity patterns, and models with a strong
prediction even at small time intervals will allow one to determine
these activity patterns more quickly and consequently increase the
speed of information transfer in neurointerfaces.68

Although this study demonstrates the potential of RC to pre-
dict stochastic system dynamics, a number of limitations should be
recognized. First, the current approach assumes that the stochastic
dynamics is stationary at the prediction horizon. However, many
real systems exhibit non-stationary behavior, such as time-varying
parameters or abrupt regime changes. The RC model may fail to
adapt to such changes without additional online learning or adap-
tation mechanisms. This calls for further research on these issues as
applied to the analysis of systems exhibiting non-stationary behav-
ior. Second, the proposed RC framework performs well on the tested
systems, but its scalability for stochastic systems of high dimen-
sionality remains uncertain. As the system dimensionality increases,
the reservoir layer may require significantly larger sizes, leading to
increased computational complexity and memory requirements. In
particular, it raises the question of the predictability of stochastic
systems described by partial derivatives where the noise source is
distributed in space. Third, despite the empirical success of the RC
in this study, the theoretical basis for its effectiveness for predicting

stochastic systems remains incomplete. A deeper theoretical frame-
work is needed to explain why and how RC captures the underlying
dynamics of stochastic systems. Finally, the results presented in this
study are based on specific stochastic systems. The generalizability of
the approach to a broader class of stochastic systems, such as systems
with large-tailed distributions or long-range correlations, remains to
be confirmed. Further studies on a variety of systems are needed to
establish the broader applicability of the proposed method. In par-
ticular, it is interesting to apply the approach to stochastic systems
exhibiting intrinsic dynamics. This will also be the subject of further
research.
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