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Foreword

Modern technologies have provided unexpected new dimensions of data in size and
variety with a strongly increasing tendency. Their processing and analysis is one
of the basic challenges in our era of digitalization. However, most conventional data
analysis techniques were designed for much smaller data sets. Wavelets are one
of the most important exceptions; they have a very strong potential for applications
to big data even when the data are non-stationary, noisy and high-dimensional.
Wavelets have been very successfully applied to solve various scientific and
engineering problems in which conventional methods, as correlation and spectral
techniques, are ineffective or even fail. In recent decades, wavelet analysis has
become one of the most successful and widespread tools for analyzing and syn-
thesizing multivariate and spatio-temporal measurements, performing efficient
image processing, compressing large amounts of data, or recognizing patterns, etc.

There is a huge and rapidly growing amount of publications devoted to wavelet
techniques and their application to various fields. Therefore, it is hard for new-
comers or interested users from other disciplines to understand important modern
methodological directions and learn how to use wavelet tools appropriate for their
specific problems. In this monography, a group of outstanding and very active
Russian scientists presents the second edition on modern wavelet techniques and
their application to urgent problems in neuroscience. Modern neuroscience is
characterized by a rapidly increasing amount of measurements. Making this great
potential accessible for the study of the brain and even for clinical practice is indeed
a challenging problem of highest actuality. It is clearly demonstrated here that
wavelets are very appropriate for this task.

This book gives first a clear and concise mathematical introduction to wavelet
theory and secondly discusses how to use wavelets efficiently in neuroscience. In
this second edition, the selected neuroscientific problems are well subdivided into
exemplary and basic topics from single neurons to real-time classification of EEG
patterns. Based on their manifold experience with such data, the authors provide an
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excellent guidance how to treat such problems. This monography is a very useful
introduction for starters in the field, but it provides also important information and
suggestions for researchers applying advanced signal processing techniques in
neuroscience as well as also for users from other fields.

Berlin/Potsdam, Germany Jirgen Kurths



Preface

If people do not believe that mathematics is simple,
it is only because they do not realize
how complicated life is

John von Neumann

More than 30 years ago, Jean Morlet introduced for the first time the notion of a
wavelet as a soliton-like function. At the beginning, he applied this function to the
analysis of backscattered seismic signals, but soon he realized that wavelets have a
significantly broader field of possible applications. In 1981, Alexander Grossmann
interpreted wavelets as coherent states and gave an elegant proof of Morlet’s
reconstruction algorithm. Since then this technique has witnessed explosive growth
and it now represents a universal mathematical tool with useful applications in
many scientific and engineering studies.

Originally wavelets emerged as an alternative to the classical spectral analysis
based on the Fourier transform, such as windowed Fourier analysis or the Gabor
transform. In order to improve processing of transient components in complex
signals, Morlet decided to replace Gabor functions, which have a fixed duration, by
new building blocks or time—frequency atoms, which can have an arbitrarily small
duration. Later this concept led to new insights and a mathematically rigorous
foundation.

Nowadays, there is no doubt that the introduction of wavelets theory was one
of the most important events in mathematics over the past few decades. This is
probably the only concept that has been applied in practically all the fields of basic
science. Moreover, wavelets are widely used for image recognition and compres-
sion, for analysis and synthesis of complex signals, in studies of turbulent flows and
feature extraction from biological and medical data, etc.

This book is devoted to application of wavelet-based methods in neuroscience.
We have attempted to illustrate how wavelets may provide new insight into the
complex behavior of neural systems at different levels: from the microscopic
dynamics of individual cells (e.g., analysis of intracellular recordings) to the
macroscopic level of widespread neuronal networks (e.g., analysis of EEG and
MEG recordings). Our main aim has been to show how and where wavelet-based
tools can gain an advantage over classical approaches traditionally used in

vii
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neuroscience. We hope that the logical structure of the book as regards content
(from micro to macro scale) represents a new approach to experiential data analysis
and could be helpful in everyday use. The book describes several examples
obtained by the authors in experimental neuroscience.

In the second edition of the monograph, we added new results of the develop-
ment of wavelet-based methods for online processing of epileptic EEG for the
creation system for prediction and prevention of epileptic events, which has been
used for the closed-loop brain-computer interface to epilepsy control. We also
considered, in the revised monograph, several new wavelet applications to analyze
various neurophysiological processes associated with the processing of visual
sensory information and the real and imaginary motor activity executions in
humans. We mainly focus in the second edition on our results, which were obtained
in the past few years on the study of multi-channel EEG. We consider the results
obtained with the help of wavelets and leading to a deeper understanding of the
human brain’s processes during acts of sensorimotor integration. Moreover, we
apply the discovered brain activity patterns to create brain-computer interfaces to
monitor and improve a subjects’ performance (brain-computer interface operators)
under routine tasks (for example, prolonged classifying visual stimuli, increasing
attention level, etc.)

Innopolis, Russia Alexander E. Hramov
Saratov, Russia Alexey A. Koronovskii
Madrid, Spain Valeri A. Makarov
Innopolis, Russia Vladimir A. Maksimenko
Saratov, Russia Alexey N. Pavlov

Moscow, Russia Evgenia Sitnikova
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Chapter 1 ®)
Mathematical Methods of Signal oo
Processing in Neuroscience

Abstract This chapter offers a brief introduction to the novel advanced mathemat-
ical methods of analysis and processing of neurophysiological data. First, we give
the rationale for the development of specific mathematical approaches for decoding
information from non-stationary neurophysiological processes with time-varying
features. Second, we focus on the development of mathematical methods for auto-
matic processing and analysis of neurophysiological signals, more specifically, in the
development of brain-computer interfaces (BCIs). Finally, we give an overview of
the main applications of wavelet analysis in neuroscience, from the microlevel (the
dynamics of individual cells or intracellular processes) to the macrolevel (dynamics
of large-scale neuronal networks in the brain as a whole, ascertained by analyzing
electro- and magnetoencephalograms).

1.1 General Remarks

Neurodynamics is a contemporary branch of interdisciplinary neuroscience that
examines mechanisms of the central nervous system based on the mutual experi-
ence of chemists, biologists, physicists, mathematicians, and specialists in the non-
linear theory of oscillations, waves, and dynamical chaos [1-6]. Practical applica-
tions of modern methods in neuroscience facilitate an interdisciplinary approach
to brain functions and attract experts in experimental and theoretical neurobiology,
psychophysiology, cognitive neuroscience, biophysics, physics, nonlinear dynam-
ics, etc. This interdisciplinary collaboration provides unique methods for analyzing
the functional activity of the central nervous system (CNS) that focus on the basic
principles of the neuronal dynamics of individual cells and neural networks.
Recent progress in understanding molecular and ionic mechanisms of neuronal
activity [7] encourages further investigation of certain key problems in modern
physics, such as exploration of the functional properties and principles of infor-
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mation coding, as well as its representation and the processing of sensory data in the
central nervous system. Perception and information processing are important func-
tions of the CNS. Visual, acoustic, tactile, and gustatory stimuli are transformed by
the sensory receptors of the first order neurons into a sequence of electrical pulses.
These first-order sensory neurons are therefore involved in primary processing of
sensory information [8—12]. Sensory information is then passed through relay sta-
tions (brain stem and thalamic nuclei) that transform and convolve the information
code, until finally it reaches the cerebral cortex which shapes the “fingerprint” of
the external world [13—-15]. At each subsequent stage, the processes of information
transfer become increasingly difficult to study. The question of how the totality of
nervous impulses (action potentials or spikes) generated by single neurons can reflect
the full complexity and diversity of the external world remains one of the biggest
challenges in fundamental science [13, 16-18].

Experimental methods have recently been developed for registering the neuronal
activity underlying processes of information encoding-decoding at different levels
of the nervous system—from molecular changes in membrane properties of recep-
tor cells to changes in the local (electrical) field potentials in the cerebral cortex.
Traditional and noninvasive methods for registering electrical brain activity, such
as electroencephalography (EEG) with electrodes arranged on the skin of the head,
offer several advantages, and this method is still commonly used in neurophysiology
and medicine. EEG is often used in various studies of brain functions in humans and
animals [19, 20]. There are also invasive methods using implanted electrodes which
provide better spatial resolution, and these are advantageous when examining neu-
ronal activity in small groups of neurons in superficial (cortex) and deep (subcortical)
structures. Another advantage of invasive recording techniques is that implanted elec-
trodes can also be used for electrical stimulation with different research purposes,
e.g., suppression of epileptic discharges [21-23]. The relatively new noninvasive
recording technique known as magnetic encephalography (MEG) has become more
popular over the last few years, because it provides better spatial resolution than EEG
and better quality of signals reflecting brain activity [24-26].

1.2 Nonstationarity of Neurophysiological Data

Despite technical progress in developing new methods of data acquisition in experi-
mental neurophysiology, mathematical methods of experimental data analysis could
not be readily applied, and this may impede further progress. In the vast major-
ity of experimental studies in neuroscience, only a few statistical methods of data
analysis are used, e.g., calculation of the mean spike frequency, construction of var-
ious correlation characteristics and distribution functions, etc. Traditional methods
of statistical analysis are undoubtedly useful, but most of them unable to evaluate the
relevant information regarding complex processes in the CNS. In order to illustrate
this fact, we give an example that demonstrates the response of a sensory neuron to
periodic stimulation. From a mechanical point of view, the response of the neuron
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to a sequence of equal external stimuli could be identical, so periodic stimulation of
a neuron with a series of impulses could elicit a periodic sequence of spikes (action
potentials, for example, 2 or 3 spikes per stimulus). However, in the experimental
situation, we often obtain time- and activity-dependent variations in the neuron’s
response (the neuron does not demonstrate an equal response to repeated identi-
cal stimuli) which reflect neuronal plasticity. The phenomenon of synaptic neuronal
plasticity (the basic mechanism underlying memory and learning) reflects adaptation
to external afferent activity modified by the internal characteristics of individual cells
and the global dynamics of the wider neuronal network interactions [27, 28]. It is
known that a neuron can even stop responding to the next stimulus from a certain
moment.

Figure 1.1 illustrates the adaptive response of a neuron of the trigeminal complex
to periodic stimulation. Maximum neuron activity (27 spikes/s) is observed at the
onset of stimulation; it falls to an average of 10 spikes/s within a few seconds and
varies thereafter, exhibiting a slow negative drift. On the one hand, such behavior of a
living cell makes it extremely difficult to define characteristic forms/patterns of neural
activity associated with the peculiar properties of a given stimulus. On the other hand,
such complexity in neuronal activity encourages the development of more relevant
(complex) methods of data analysis, in addition to the simple description of statistical
characteristics of neuronal responses that is one of the tasks of neurodynamics. We
conclude that more specific mathematical methods must be applied, such as wavelets

Stimuluﬁ_, L

Neuron

Response
30

Spikes/s
[\
S

—_
=)

0 5 10 15 20 25

Time, s

Fig. 1.1 Illustration of adaptation reaction of neuronal firing activity to a repeated stimulation.
This neuron was recorded in a rat in the trigeminal sensory nuclear complex which receives tactile
information from vibrissae. Stimulation was performed by periodic mechanical deflection of one
whisker by a series of short directed air puffs (duration of each air pulse 5 ms). From top to bottom:
start and end of stimulation by the sequence of periodic impulses, firing activity of a single neuron
(train of spikes), and dynamics of the mean spike frequency (averaging over a sliding time window
of 500 ms duration)
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[29-31], the Hilbert—Huang transform [32—34], and the Wigner—Ville transform [35-
37], which are more suitable for decoding information about non-stationary processes
with time-varying features.

1.3 Wavelets in Basic Sciences and Neuroscience

Wavelet analysis [29, 38—41] is unique in the sense that even the first practical
application to neurophysiological data analysis produced prominent results [30, 42—
46]. For this reason, it is considered a very powerful analytical tool for studying the
dynamics of neural systems.

Wavelet terminology was introduced in the 1980s [38, 47, 48]. This mathematical
approach was initially proposed as an alternative to classical spectral analysis based
on the Fourier transform. Wavelet theory is considered to be one of the most important
events in mathematics of the past decades. Indeed, it appears to be the sole new
mathematical concept that was immediately recognized as a tool in practically all
branches of basic science (first and foremost, in physics and related disciplines) and
many technical fields [31, 49-56]. In fact, introduction of the wavelet theory itself was
not entirely unexpected. It was developed to meet the very real needs of experimental
investigations, particularly in geophysics and seismology. Contemporary wavelet
analysis combines various pre-existing ideas and methods. For example, fast wavelet
transform algorithms are based on the subband coding ideology known from radio
and electric engineering [57]. Some ideas were borrowed from physics (coherent
states [58], etc.) and mathematics (studies on Caldéron—Zygmund integral operators
[59]). Wavelet analysis is logically related to the theory of diffusion differential
equations [60].

Today, wavelets are widely used for the analysis and synthesis of various signals,
image processing and recognition, compression of large volumes of information,
digital filtration, the study of fully developed turbulence, and the solution of cer-
tain differential equations. This list can certainly be extended [55, 60—68]. The new
theory aroused great interest from the very beginning. According to well-known esti-
mates [49], since the 1990s, the number of publications using wavelets in physics has
been growing continuously. The number of references to Internet sources containing
the term “wavelet” has reached several million. In fundamental science, this math-
ematical approach is mostly applied to study complex temporally non-stationary or
spatially nonhomogeneous nonlinear processes. Wavelet analysis is well adapted for
studying the complex structure of signals from living systems, since other tradi-
tional computation techniques can be applied only to processes with time (or space)-
constant parameters (i.e., stationary in time or spatially homogeneous). Despite the
fact that wavelet analysis has long been regarded as a standard tool for studying com-
plex processes and practical application of this method in neuroscience and medicine
is just beginning, prognoses for its successful application are rather optimistic. In this
monograph we highlight recent advances made by practical application of wavelet
in neurodynamics and neurophysiology.
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1.4 Automatic Processing of Experimental Data in
Neuroscience

An important field of wavelet applications in neurophysiology and neuroscience is
the development of methods for automatic processing and analysis of brain signals.
Electrical signals that can be recorded from the brain (EEG) represent a linear mix-
ture of coexisting oscillatory components, i.e., nonlinear effects do not complicate
the process of recognition. The development of expert systems for automatic EEG
analysis is of particular interest for both fundamental neuroscience and clinical prac-
tice due to a wide spectrum of possible applications (classified in Fig.1.2). One
must distinguish between on-line and off-line analysis. Automatic (i.e., without the
attention and control of an operator) analysis of pre-recorded EEG signals (off-line
diagnostics) aims to reduce routine work, for example, to suppress artifacts in the
recorded EEG. EEG analysis in real time (on-line) aims at fast detection of certain
EEG events and the organization of closed-loop control systems. Clinically-oriented
applications are the most effective field of on-line analysis of neurophysiological
signals, including EEG monitoring with predictive diagnostic purposes, e.g., for the
suppression of epileptic activity, the so-called spike-wave discharges [21].
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Fig. 1.2 Wavelet-based methods of automatic EEG diagnostics, processing, and analysis
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1.5 Brain-Computer Interfaces

One of the most exciting applications of wavelets is to use it for mental control of brain
functions, which, as a matter of fact, is a new form of human-computer interaction [69,
70]. The specific dynamics of electrical brain activity characterizes mental activity
that includes compilation of imaginary commands (“mental action”). This “mental
action” is associated with specific changes in the time—frequency characteristics and
spatial structure of EEG [71-74]. In the brain-computer interface, mental control
systems must perform the following steps (see Fig. 1.3):

e Recognize and select characteristic changes in the EEG (event-related oscillatory
patterns).

e Decrypt their meaning (associated with a specific operation).

e Convert this meaning into commands for hardware control.

Mental control systems should be able to solve two main problems. First, the tech-
nical problem of precise recognition of an EEG pattern, subsequent formulation of a
“command”, and transmission to control. Second, cognitive and psychological tasks
in which the operator (a person) should learn to keep specific mental states that can
be recognized from analysis of the spatial-temporal structure of his/her EEG. An
additional problem is that the system should work in real time. Earlier control sys-
tems were suggested to use information about complex physical activity expressed as

Recording multi-
channel EEG

Processing & analysis
of EEG in real-time

Formation of control
command

W YES
B NO

Feedback

External Device

Fig.1.3 General scheme of a simple brain-computer interface. Modern IBC is a system that registers
and analyzes signals of electrical brain activity (usually EEG) from the user and “converts” them
into a “machine” command for external device control. The central point of such a system is
the development of algorithms for real-time recognition of EEG patterns corresponding to certain
cogitative operations. Note the importance of the feedback loop in the BCI. This is necessary to
adapt the aforementioned algorithms to recognize the specific patterns of electrical brain activity
based on EEG features. Also the operator (user) must learn to evoke and control the relevant mental
state, which is impossible without the use of feedback
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body movements of the operator, e.g., the trajectory when moving a hand in the pro-
cess of equipment handling. These interfaces encountered many problems, including
registration of complex information, isolation of relevant information from the gen-
eral data stream, and correct interpretation. Besides that, such interfaces require a
system of sensors for registration of motor activity and a wireless device for data
transmission from operator to computer. Therefore, simple brain-computer interfaces
(BCI) are of particular interest, such as interfaces that are able to monitor electrical
brain activity and detect the mental intentions of the operator. For example, simple
stimulus-symbol interfaces conceived by the operator [75, 76] open up new prospects
for resolving the problem of mental control.

Thus, algorithms of automatic EEG pattern recognition associated with specific
cogitative operations in real time help to effectively perform the first step (pat-
tern recognition) in brain-computer interfaces. Wavelet-based methods are perfectly
suited to pattern recognition tasks [77-80].

Note that brain-computer interfaces have already been used as an alternative to
traditional devices for inputting information into the computer. So for certain cat-
egories of users, for example, people with motor function disabilities, this way of
interacting with the computer can improve their quality of life, at least partly, opening
the way to a full-fledged life in society [8§1-84]. One of the first successfully worked
BCIs was developed at Emory University by Roy Bakay and Phillip Kennedy, who
used implanted depth electrodes in the brain motor center of a paralyzed 53-year-old
patient, who was able to move the cursor on a computer screen, and thus communicate
with doctors (writing several simple sentences) [85]. Rapid progress in neuroscience
and technology suggests that brain-computer interfaces could be widely used for
control of artificial limbs, manipulators, and robot technical devices (for example,
wheelchairs), and also in the gaming industry [86—89].

1.6 Topics to Consider

A mathematically rigorous description of wavelet analysis can be found in numerous
textbooks and monographs (see, for example, [29, 54, 56, 61, 90-94]) as well as in
reviews in scientific journals [17, 52, 53, 95]. This book focuses on the new pos-
sibilities provided by the wavelet approach for decoding information from signals
recorded on the level of individual neurons and groups of neurons, as well as neu-
ral network activity. A large number of the aforementioned scientific publications
aimed to identify the most important problems in the field of wavelet applications
to neurodynamics and neurophysiology. On this topic, we distinguish the following
three areas of wavelet applications in neuroscience:

e Microlevel (cellular/intracellular)—wavelet analysis of the dynamics of individual
cells or intracellular processes.

e Mesolevel (groups of cells)—analysis of information processes in small neuronal
ensembles.
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e Macrolevel (brain activity)—analysis of macrodynamics in widespread neural
networks (EEG/MEG, neuroimaging data).

This monograph discusses the progress made on each of these levels in a consistent
manner. The book contains eight chapters:

e Chapter?2 provides a mathematical introduction to wavelet analysis, including the
basic concepts and definitions of wavelet theory, and considers practically signif-
icant questions related to the effective numerical implementation of the wavelet
transform (both discrete and continuous). Special attention is paid to the impor-
tance of the relationship between wavelet and Fourier analysis. This chapter explic-
itly addresses those readers who are not familiar with the mathematical concepts
of complex signal processing.

The next two chapters describe methods for wavelet investigation of neurophysio-
logical systems.

e Chapter3 discusses the application of wavelets to analyze cellular dynamics at
the microscopic level (individual cells or intracellular processes). This chapter
also presents the principles for analyzing the information from a single cell using
electrical signals of individual neurons.

e Chapter4 describes the main aspects of the wavelet analysis of the impulse shapes
of individual neurons (action potentials) obtained by extracellular recordings
of single-unit activity. We consider different approaches to classifying neuronal
spikes, some based solely on wavelets and others involving combined methods,
such as wavelet neural networks.

e Chapter5 provides an introduction to the analysis of local field potentials (LFPs).
LFPs are generated by synaptic currents excited by presynaptic neuronal assem-
blies in target cells. Thus, their study can shed light on the information processing
on the circuit level. However, the multi-source nature of LFPs significantly com-
plicates the analysis and requires advanced mathematical methods. We discuss
how ongoing LFP activity can be disentangled into pathway-specific contribu-
tions. Then, we present wavelet-based methods that enable the identification and
quantification of gamma waves (rhythmic patterns) generated by the CA3-CA1
pathways in the hippocampus while the compound LFPs are irregular.

The last four chapters of the book consider the macrodynamics of neuronal networks
using wavelet analysis of electroencephalograms (EEGs).

e Chapter 6 considers the main definitions and principles of electroencephalography
that are required for a better understanding of Chaps. 7, 8 and 9. We describe general
physical and mathematical approaches to time—frequency analysis of rhythmic
EEG activity using continuous wavelet transforms. We also review some recent
achievements of wavelet-based studies of electrical brain activity, including (i)
time—frequency analysis of EEG structure, (ii) automatic detection of oscillatory
patterns in pre-recorded EEG, (iii) classification of oscillatory patterns, (iv) real-
time detection of oscillatory patterns in EEG, (v) detection of synchronous states
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of electrical brain activity, (vi) artifact suppression/rejection in multichannel EEG,
and (vii) the study of cognitive processes.

e Chapter7 considers basic problems of automatic diagnostics and processing of
epileptic EEG. We discuss the wavelet-based techniques in order to fully autom-
atize routine operations, such as visual inspection of EEG. In addition to that, we
exemplify some practical applications of wavelet methods for automatic analysis
of pre-recorded signals of neuronal activity (off-line diagnostics), and also some
examples of wavelet-based EEG analysis in real-time (on-line). We also discuss
principles of fast and precise detection of transient events in EEG and organization
of close-loop control systems that can be used in brain-computer interface (BCI).

e Chapter 8 considers using wavelet analysis to study mechanisms of visual per-
ception. First, we introduce an ambiguous visual stimulus, the Necker cube, a
useful visual perception analysis tool. Second, we demonstrate how the wavelet-
based methods reveal the local and network properties of the percept-related brain
activity. Then, we considered the effect of the human condition (motivation and
alertness) on the perceptive process. Finally, we review the basic principles of the
BClIs that use the wavelet-based algorithm to evaluate the human state in visual
perception tasks.

e Chapter9 describes wavelet analysis of the motor-related cortical activity. First,
this chapter introduced real and mental motor activity in the young and the middle-
aged healthy subjects. The real motor acts, or motor execution (ME), enables
interaction with the environment and induces the motor-related changes in 8-
12 Hz and 15-30 Hz wavelet power in the motor cortex. The mental motor acts,
or motor imagery (MI), did not include muscle control but may have a motor-
planning stage, similar to ME. Detecting the ME and MI brain states underlies
the BCI for motor control. Second, we described two types of motor imagery:
kinesthetic and visual. Visual imagery corresponds to the self-visualization of the
subject moving a limb that does not require special training. Kinesthetic imagery
is the feeling of muscle movement that can only be realized by athletes or specially
trained persons. Finally, we considered how the ME brain states change with age
representing criteria for an objective assessment of the motor abilities in elderly
adults.

This book is based primarily on the fundamental results in neurodynamics obtained
recently by the authors—physicists, mathematicians, and biologists in close col-
laboration with specialists in experimental neurophysiology. At the same time, the
book contains a relatively complete bibliography (over 400 sources) characterizing
the application of wavelets in neurophysiological research. In general, this book
overviews theoretical and practical knowledge and, in our opinion, demonstrates the
advantages of powerful analytical tools and novel mathematical methods of signal
processing and nonlinear dynamics in order to address neurophysiological problems.
Moreover, wavelet analysis helps to reveal important information and facilitates
a deeper understanding of the investigated phenomena. More intensive studies in
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this area can contribute to interdisciplinary interactions between physics, nonlinear
dynamics, applied mathematics, and neurophysiology and promote further mutual
research in these areas.
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Chapter 2 ®)
Brief Tour of Wavelet Theory e

Abstract In this chapter, the main definitions of wavelet theory are given. To explain
the basic ideas of the continuous wavelet transform, we describe a transition from
Fourier analysis to wavelets. Mother functions and numerical techniques for imple-
menting the wavelet transform are described. The problem of visualising the results
is considered. Finally, features of the discrete wavelet transform are discussed.

As already mentioned in Chap. 1, wavelet analysis constitutes a powerful tool for
studying the nonstationary dynamics of nonlinear systems. Although it arose not
so long ago [1-3], researchers are already widely using wavelets in different areas
of modern science. At present, there are many monographs and reviews devoted to
wavelets and their applications in different areas of science and technology, e.g., in
physics, biophysics, biology, medicine, economics, meteorology, etc. [4—11]. Thus,
wavelet analysis has become an essential mathematical tool, providing effective solu-
tion for various problems related to the study and diagnostics of complex nonlinear
processes, as well as digital signal processing. Over the past few decades, wavelet
analysis has been widely considered as an interdisciplinary technique. One of the
most impressive examples of such interdisciplinary cooperation is the application of
wavelets to neurodynamics and neurophysiology, where wavelet analysis is increas-
ingly used to examine neurophysiological data as well as to diagnose both normal
and pathological processes in neural systems.

In the present chapter, we give a brief mathematical introduction to the wavelet
theory. Here we try to explain the main principles of the wavelet transform (for both,
the continuous and the discrete form), a method for numerical implementations of
the transform, and the potential of wavelets for investigating complex signals asso-
ciated with physiological processes. With a view to providing easier explanations,
we restrict the discussion to simple mathematical examples and models.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 15
A. E. Hramov et al., Wavelets in Neuroscience, Springer Series in Synergetics,
https://doi.org/10.1007/978-3-030-75992-6_2
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Fig. 2.1 Signals (2.1) and (2.2) and the corresponding Fourier spectra (a) and (b), respectively

2.1 From Fourier Analysis to Wavelets

We begin our considerations with the well-known Fourier transform [5, 12], which
to some extent provides the background for the wavelet theory. As a first example, let
us consider a signal representing the sum of two harmonic functions with different
angular frequencies w; and w,, viz.,

x(t) = cos(wit) + cos(wnrt) . 2.1)

The Fourier spectrum of this signal (see Fig.2.1) is characterized by two sharp peaks
corresponding to the frequencies' @; and w,. If both components exist permanently,
the Fourier spectrum detects their frequencies, providing the researcher with full
information about the signal under investigation.

Further, we consider another signal in which the harmonics appear and disappear
with time:

x(t) =[1 = H(®)] cos(wi1) + H(1) cos(wat) , 2.2)
where
0, t<0,
Hoy={1/2,1=0,
1, t>0

Note that hereafter we will consider only the positive range of frequencies, since the negative
frequency region is the “mirror image” of the positive one and does not provide any additional
useful information.
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Fig. 2.2 Signal x(¢) = cos[w(¢)t] with linearly increasing frequency w(t) = w; + a(wy — w)t
and its Fourier spectrum. Having examined only the spectrum |S(w)|, one can suppose that the
signal contains all frequencies in the range [w1, 2w2 — w1]

is the Heaviside function.

Comparing the Fourier spectra® |S(w)| of the considered signals (2.1) and (2.2),
one can see that they are quite similar (see Fig.2.1a and b). In other words, the
Fourier spectrum is unable to provide enough information about frequencies that
can be recognized in the analyzed signal at a given moment of time. The spectrum
|S(w)| of the signal does not allow one to say whether the signal is a superposition
of two harmonic functions or whether it consists of two distinct components existing
during clearly different time intervals. In other words, spectral analysis reveals the
occurrence of different harmonic components, but it does not provide information
related to their time localization. Nevertheless, the Fourier transform is a powerful
tool for examining time series produced by systems with constant parameters. The
spectral composition of such signals remains unchanged during the whole observa-
tion period. On the other hand, if the frequency components appear and disappear
with time or if the frequency changes smoothly (see, e.g., Fig.2.2), another spectral
technique is required.

This circumstance is brought about by the core mechanism of the Fourier trans-
form, which performs integration over the whole available signal. From the mathe-
matical point of view, the time interval of integration is infinite?:

+00

S(w) = / x(H)e ' dr | (2.3)

—00

and each frequency component makes a contribution to the spectrum. Thus, using
spectral analysis, we can detect characteristic rthythms in the signal, but we are
unable to reveal their time localization. In other words, infinite oscillating harmonic
functions sine and cosine used within the Fourier transform cannot be applied for
localized spectral analysis [13, 14].

2More precisely, amplitude spectra of the Fourier transform.

30f course, in the case of experimental signals or data from numerical simulation, researchers deal
with finite time series.
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As a consequence, if we are going to localize the frequency components in time,
we have to pass from integration over the infinite time interval (—oo, +00) to a
certain time “window”* with duration 27, viz., [, — T, to + T'], where £, is the time
at which we are (locally) defining frequency components in the signal:

to+T
S(w, 1) = / x(r)e ' dr . (2.4)

to—T

To evaluate the dynamics of the frequency components over time, we must shift the
observation window along the time series. In this case we obtain the instantaneous
spectrum depending on fy. This spectrum changes as the observation window is
moved along the time axis. Since #; is a variable in (2.4), the spectrum S(w, t;)
should be considered as a two-dimensional function (Fig.2.3).

However, this approach with the rectangular window, known as the short-time
Fourier transform, also has several limitations [15]. Indeed, the spectrum of a har-
monic signal is the §-function only in the case when the signal is infinite and the
integration is performed over the whole infinite time interval. If the signal is finite (or
if the integration is performed over a finite time interval), the spectral image of the
signal is characterized by the finite width, and the shorter the duration of the signal,
the broader its image in the Fourier space. So, using the short-time Fourier transform,
one has to operate with the shortest length 27 of the observation window to localize
the appearance (or disappearance) of the frequency components of the signal more
precisely. On the other hand, however, this decreases the resolution of the method in
the frequency domain. In other words, the more precisely we define the frequency
of the spectral components, the less exactly we can localize this component in time,
and vice versa.

If we wish to maintain the possibility of tracing the modifications of the signal with
time, but also to reduce the lack of precision in frequency detection, the transform
(2.4) needs to be modified. Note also that the short-time Fourier transform performed
only once does not give full information about the signal under consideration. A set
of transformations performed for the same signal and different widths 27 of the
observation window is more informative. Indeed, the transformation with a narrow
window may be used to localize modifications of the signal in the time domain,
whereas the transformation with a broad window can provide information about the
frequencies. Of course, this approach is inconvenient, since one has to consider a
function S(w, #y, T) depending on three variables instead of two, w and 7y, and this
requires representation in a space of at least four dimensions.

To reduce the number of the variables, one can link the frequency w of the harmonic
filling with the length of the observation window T, e.g., for each value of T’ one can
use w = w, = 2wn/T, where n € N is the number of filling periods fitted into the
window length. Then, the short-time Fourier transform may be written in the form

“Here, for simplicity, a rectangular window is used. In a more general case (known as the Gabor
transform), we use a window function g(¢) that is localized in both the time and frequency domains.
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Fig. 2.4 Surface o defined
in the 3D space

2 =(w,19,T)
(frequency—time—length of
observation window)

to+T
2mn
S(T, ty) = / x(1) exp (—1Tt> dt, n>0. (2.5)

to—T

In fact, in the 3D space (w, ty, T'), where the function S(w, 9, T') is defined, a surface
o is introduced and further consideration is carried out at the points belonging to this
surface. Obviously, some information is lost in this case, but the remaining data allow
us to understand the particularity of the time series under study, since the surface o
covers both the frequency and the time domain (see Fig.2.4).

Moreover, the length of observation window that is optimal to detect different
frequency components of the signal is defined by the corresponding time scales.
To pick out the low-frequency components, a longer part of the time series should
be used than for analysis of high-frequency oscillations. The relation w, = 27wn/T
provides a reasonable ratio between the analyzed frequency and the length of the
observation window.

Transforming (2.5) for the time series x () = sin(wt) results in

2T sin(wT) . i > To

S(T, ty) = m[wT sin(wto) — i27n cos(wio) | exp (—1 T
(2.6)
As for the spectral analysis, the result of this transformation is characterized by both
real and imagine parts. By analogy with the Fourier transform, there is a reason for

considering the square of the absolute value of S, i.e.,

AT? sin*(wT
IS(T, 10)|? = %[szz sin®(wto) + 470> cosz(a)to)] Q)
w — 4a4mT“n

One can see that in this case the quantity of |S(T, tp)|* takes its maximal value
47°n?Jw? for Ty, = 27n/w (Fig.2.5), i.e., as for the Fourier transform, the transfor-
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Fig. 2.5 Transformation (2.5) of the signal x(¢) = sin(wt) (w =w,t9 =0)foran =2,bn =4

mation (2.5) allows detection of the time scale T, (related to the frequency w of the
signal) corresponding to the main rhythm of the analyzed signal.

There are several important points to be made here. Firstly, for the same signal
x(t) = sin(wt) and different values of the parameter n (which is determined as the
number of periods of the harmonic function with the corresponding frequency that
would fill the integration window of length 27'), the values T, corresponding to the
maximal magnitude of |S(T, #y) | are different (see Fig.2.5a and b). This becomes
clear when one takes into account the fact that the quantity |S(7, #y)|*> reaches its
maximum when the harmonic filling is characterized by the same frequency w as
the main frequency of the signal under study x(z) (Fig.2.6). In other words, the
quantity |S(T, t5)|? is maximal when T = T, = 2mwn/w, where w is the frequency
of the signal x (¢) under investigation. In fact, the same situation is also observed for
Fourier analysis. Note that the value of T, (when the quantity |S(7, 1o)|> becomes
maximal) depends on the integration window and, in general, does not coincide with
the corresponding time scale of the signal. Note also that the more periods are consid-
ered within the integration window, the more clearly the corresponding harmonic in
|S(T, ty)|? is defined (compare Fig.2.5a and b). Nevertheless, as a consequence, the
length of the integration window corresponding to the maximal value of |S(T, ty)|?
also increases with the growth of the period number n. As mentioned above, this
results in the deterioration of the resolution of the transformation (2.5) in the time
domain.

Secondly, one should note that the quantity S(7, #y) that results from the trans-
formation (2.5) is a function of two variables, i.e., T and #y. The parameter 7" defines
the time interval used for the integration and the frequency of the harmonic filling.
So the frequency of the analyzing harmonic filling is closely related to the length
2T of the window. The variable 7, determines the time moment associated with the
transformation. In fact, it defines a shift of the integration window along the time
axis. At the same time, the harmonic filling remains fixed when the integration win-
dow is shifted (see Fig.2.6d and e). In other words, the phase of the filling changes
continuously when the integration window is moved along the time axis. To avoid
this problem the filling phase should be fixed relative to the observation window by
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the integration window by the value determined by the second variable #

means of the following modification of (2.5):

ot 2mn
S(T, ty) = / x(t) exp |:—1T(t — to)] dr . (2.8)

to—T

Clearly, changes in the phase of the harmonic filling do not influence the value of
|S(T, ty)|?. For the harmonic signal x(#) = sin(wt), the transform (2.8) gives

2T sin(wT)

S(T, 1) = m[a)T sin(wiy) — i27n cos(a)to)] . (2.9)
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It is easy to see that the difference between (2.6) and (2.9) consists only of the factor
exp(—i2rnty/T).

Thirdly, one has to take into account the fact that different frequency components
of the signal with equal amplitude are detected by the transformation (2.8) in different
ways. The corresponding maxima are characterized by different magnitudes. The
squares of these maxima are related to each other by

2 2
I51] :(ﬂ> , (2.10)

1S212 o)

which may be obtained directly from (2.7). In other words, the lower the frequency,
the larger its contribution to the signal spectrum, under the condition that the ampli-
tudes of the considered spectral components are equal (see Fig.2.7). This means that,
if there are two or more components in the signal whose frequencies differ sufficiently
from each other, the components with higher frequencies may be missed.

Equation (2.8) may be written in the more general form

“+00

S(T, 1) = /x(t)l/f*(t_Tm)dt, @2.11)

—00

where 1 () is the analyzing function (see Fig.2.8)
V(&) =[HE+1) - HE - D], (2.12)

and the star hereafter indicates complex conjugation. In fact, (2.11) may already be
considered (with some corrections) as the wavelet transform. So we have gone in
stages from the Fourier transform to the wavelet analysis.

The transformation (2.11) consists in the expansion and shift of the function vy (§)
as described above and shown in Fig.2.6. In this case the quantity T describes the
expansion of the analysing function v (£), whereas the variable ¢, corresponds to the
shift of ¥ (&) along the time axis. The function ¥ (£) is known as the mother wavelet,
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and all other functions ¥ ((f — #p)/T) used for other time scales are obtained from
it by expansions and shifts. For convenience, a normalization condition is imposed
on the mother wavelet:

172

+00
Wl = /wsw*(s)ds ~1. 2.13)

Taking into account the requirement (2.13), the mother wavelet (2.12), denoted by
Yo, should be written in the form

H(§+1)—H(5—1)eizns
7 )

The wavelet functions o ((t — #p)/ T') obtained for other time scales by means of the
expansion and shift of the mother wavelet 1y do not satisfy the requirement (2.13).
To satisfy the normalization condition for every time scale T, a normalization factor
depending on the time scale T should be introduced. Then the function ¥ (&) with
normalization coefficient 7~!/2 should be used instead of ¥ (£) in (2.11):

Yo(§) = (2.14)

= f—h 2.15
Wr,zo()—ﬁllfo( T > (2.15)

Finally, (2.11) takes the form

1 o «[fT— 1
S(T, 1) = i f x(OVg <T) dr . (2.16)

Equation (2.16) is the standard form of the continuous wavelet transform introduced
in the scientific literature [7, 12, 14, 16-20]. At the end of this section we need also
to compare the notation in this section with the one used traditionally in the literature.
For the continuous wavelet transform, the time scale is traditionally denoted by s (so
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in the above consideration, T = s, whereas for the wavelet surface that results from
the transformation, the symbol W is used, i.e.,

1 o «[T— 1
W) = —= / OV (T) dr . 2.17)

Often, the notion of “frequency” f is considered instead of the “time scale” s since it
is more suitable in many studies. In fact, the frequency f used in the wavelet analysis
carries the same meaning as the frequency of the Fourier transform. In particular,
this approach is commonly used in neuroscience and neurophysiology. At the same
time, researchers have to be very careful using the term “frequency” for wavelets,
since in general the relationship between the time scale s of the wavelet analysis and
the frequency f of the Fourier transform differs from the equation f = 1/s, which
becomes correct only for special choices of the mother wavelet and its parameters.

So we have moved gradually from the Fourier transform to the wavelet analysis,
aiming to expose the underlying ideas of wavelets. By analogy with the Fourier
transform, the wavelet analysis expands the given signal x(¢) in terms of a certain
functional basis. At the same time, the functional bases used for the Fourier and
wavelet transforms are not the same. While the infinite-in-time harmonic functions
sine and cosine are used in classical spectral analysis, functions v, that are well-
localized in both time and frequency (obtained by expansion and shift of the mother
wavelet 1) are used in wavelet analysis. These localized functions (wavelets) allow
us to examine processes with statistical characteristics that vary in time (or in space),
and provide a two-dimensional representation of the signal x(¢#) when the time and
frequency are interpreted as independent variables.

We shall refer to the mother wavelet (2.14) obtained by the gradual transition from
the Fourier transform shown in Fig.2.8 as the sine wavelet. The sine wavelet is not
widely used in practical applications (in particular, due to the low level of localization
in the frequency domain), but it brings out the main ideas and methodology of
continuous wavelet analysis. An important particularity of the wavelet transform is
the possibility of using an arbitrary function satisfying certain conditions (which will
be discussed in Sect.2.2) as the mother wavelet.

Finally, note that, besides the continuous wavelet transform, the discrete wavelet
transform is also used in many applied problems. General information concerning
these two counterparts of the wavelet transform is given below.
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2.2 Continuous Wavelet Transform

2.2.1 Main Definitions. Properties of the Continuous Wavelet
Transform

In the following, we restrict the class of mother functions to f € L?(R). The function
space L? contains signals with limited energy, i.e., with finite norm || f| ;2. The
continuous wavelet transform (CWT) is performed by convolution of the examined
function f(¢) with the two parameter wavelet function s ,, (¢), viz.,

+00

W(s, t9) = / fOY;, de . (2.18)

—00

The wavelet function is obtained from the mother wavelet ¥ (¢) by means of an
expansion and a shift:

_ t—h 2.19
Ws,ro(f)—ﬁlﬁo( B ) (2.19)

The parameter s, known as the time scale of the wavelet transform (s € R™), deter-
mines the width of the wavelet in the time domain, whereas the parameter 7y € R
specifies the wavelet location on the time axis. The factor 1/4/s in (2.19) provides
the constant unit norm of the wavelets in the function space L2(R), i.e.,

1Vs.lle = ol =1, (2.20)

where the norm in the space L?(R) is defined by
1/2

+o0
I flle = /If(x)lzdx . 221)

Below, we will use the following notation for the wavelet functions:

e 1 for the mother wavelet.

e 1, ;, for the wavelet function obtained from the mother wavelet vy by (2.19).

e  for the wavelet function obtained from the mother wavelet v, for which the
normalizing factor is not yet defined, i.e., ¥ = a, where a is unknown.

e U for the wavelet function used in the calculation of the wavelet surface using the
fast Fourier transform.

By the Parseval formula, the condition (2.20) implies that
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-
— / W@ do =1, (2.22)
2
—0Q

where ﬁo(a)) is the Fourier image of the mother wavelet function

oo
~ 1 .
Yo(w) = —= f Yo(r)e " dr . (2.23)
\/271_00
Analogously,
+00
1 N
oy / Vs (@)*do =1, (2.24)
"4
—00

where 12\/5’10 () is the Fourier image of the wavelet function  ,, ().
So the continuous wavelet transform maps the space of one-dimensional functions
into the two-dimensional (in general, complex) space.

W L*(R) > C(R x R"),

and as a consequence, information contained in the wavelet coefficients is abundant.
This fact results, e.g., in the presence of a correlation in the wavelet spectrum of a
random signal (noise), although this correlation is not actually present in the signal
(so this is a consequence of the wavelet transform). This may be considered as a
significant disadvantage of the wavelet transform that must be taken into account
when wavelet spectra are interpreted.

The mother wavelet can be chosen rather arbitrarily, e.g., as in Sect.2.1, but it
must fulfill several requirements. First of all, we should mention the boundedness
condition

+00
/ [Wo(r)|?dr < 00 . (2.25)

Then there is the localization condition, according to which the mother wavelet func-
tion Yo must be localized in both the time and frequency domains. This condition
is satisfied if the function vy decreases rapidly and is quite regular. As an esti-
mate for good localization and boundedness, the conditions |yo(¢)| < 1/(1 + |¢|")
or |1ﬁ0 (w)] < 1/(1 4+ | — wp|™) may be used, where wy is the dominant frequency
of the wavelet and the parameter n should be as large as possible [21].

According to the admissibility condition, the Fourier image 1/70 (w) of the mother
wavelet ¥y (#) must obey the condition
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+oo L 5
w
Cy = / de < 00. (2.26)
w
—00

Since in practice only positive frequencies are usually considered, (2.26) can often

be replaced by
+00

@) o)

f Who@I”, ~_ / W=V )« . 2.27)
w

0

w
0

Note also that, for practical purposes, the condition (2.26) is analogous to the con-
dition of zero mean as a consequence of (2.22):

+00
/ Yo(t)dt =0, (2.28)

or A
Yo(0) =0, (2.29)

whence the mother wavelet vy (#) must be an oscillatory function.
Sometimes this requirement may be important not only for the zero moment
(2.28), but also for the m first moments, i.e.,

+00

/tkl//o(t)dtzo, k=0,1,....,m. (2.30)

—00

Such m th order wavelets may be used to analyse small-scale fluctuations and high
order features by ignoring quite regular (polynomial) components. Indeed, expanding
the function f(¢) in (2.18) in a Taylor series at £y, one obtains

1 o «fT—1
W(s, 1) = x[f(to) / Yo (T) ds

+00
+ f'(to) /(r — 1) (f _S t°> dr

+00
(n) —
_|_..._|_f '(IO)/(t—to)”lp(’)“(tsto>dt+~--:|. (2.31)

n
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By (2.30), the first m terms of (2.31) vanish, and as a consequence, they do not
contribute to W (s, #p). Note that it may be enough for practical purposes if (2.30) is
approximately satisfied.

If the admissibility condition (2.26) is satisfied, the inverse wavelet transform
exists (see, e.g., [22] for details):

f(r)—ifo as [ " ( )W(s 10)d (2.32)
- \/— 0 0 0 - .

By analogy with the Fourier power spectrum P(w) = | f (w)|?, the distribution of
instantaneous energy over the time scales of the wavelet transform can be introduced
by

E(s,10) = [W(s, 10) , (2.33)

along with the time-averaged integral wavelet spectrum or scalogram

(E(s)) = /|W(s to)>dry . (2.34)

Since the distribution of the wavelet energy is related to the Fourier power spectrum
[16] by

(E(s)) ~ Sf P(@)[fo(sw)* do , (2.35)

this means that (E (s)) is a smoothed Fourier power spectrum, defined by the Fourier
image 12/0 of the mother wavelet .

One important point is the ability of the wavelets to pick out information con-
cerning local properties of a signal. As discussed above (Sect.2.1), in order to obtain
precise information about high-frequency components with good temporal resolu-
tion, rather short time intervals must be used. However, extracting information about
low-frequency spectral components requires relatively long fragments of time series.

Figure 2.9 illustrates the ability of different transformations to extract localized
information. Figure2.9a shows a segmentation of the time ¢-frequency w space for
discrete samples of the signal values, when the §-function plays the role of the basis
function (Shannon transform). One can see that this transform provides excellent
time resolution, but no frequency information at all can be extracted. In contrast, the
Fourier transform is characterized by perfect frequency resolution, but there is no
localization in time (see Fig.2.9b). Figure 2.9¢ corresponds to the short-time Fourier
transform, where the resolution on short and long time scales is determined by the
length of the integration window. In the case of the wavelet transform (Fig.2.9d),
the time resolution determined by the width of the wavelet (¢ /s) decreases with
the growth of the time scale s, whereas the frequency resolution determined by the
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width of the Fourier image of the wavelet ¥ (sw) increases. It provides good time
localization for small scales and good frequency resolution for large scales (see
Fig.2.9d).

So the main feature of the wavelet transform which is extremely important when
analyzing complex nonstationary processes is the ability to respect the locality of
the signal representation, and as a consequence, the ability to reconstruct the signal
locally. Importantly, the continuous wavelet transform allows us to determine the
contribution of a certain scale at a given moment of time. It also provides the possi-
bility to reconstruct only a part of the signal. In fact, there is a relationship between
local properties of the signal and local behavior of the wavelet surface related to this
signal. This means that, in order to reconstruct a part of the signal, one has to use
the values of the wavelet surface W (s, t) belonging to a certain region called the
influence angle (see Fig.2.10a).

When the wavelet function g is well localized in the time interval AT for the
time scale s = 1, the values of the wavelet spectrum corresponding to the time #; are
contained in the influence cone bounded by the straight lines s = 2(f; — y) /AT and
s = 2(fy — 1)/ AT . At the same time, the value W (s’, ;) at point (¢, s’) depends on
the fragment of the time series contained in the same influence cone (see Fig.2.10b).
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The longer the analyzed time scale s, the longer the fragment of time series, i.e.,
high-frequency (or, what comes to the same, short-scale) information is determined
by short fragments of the time series, whereas longer fragments of time series should
be used for low-frequency components. If the wavelet function vy provides good
localization in the Fourier space, i.e., the Fourier image 1&0 of the mother function is
concentrated in the frequency band A$2 around the dominant frequency w, for time
scale s = 1, the values of the wavelet transform corresponding to the frequency o’
are located in the range of time scales s € [(a)o — AR2/2)/, (wo + A.Q/Z)/w’]. If
f(t) is a locally smooth function, the corresponding values of the wavelet surface
are fairly small. When f(¢) has a singularity, the magnitude of the wavelet surface
increases in its vicinity. Note also that, if the wavelet surface contains artifacts at
certain points, they are influenced on the reconstructed signal only locally, in the
vicinity of these positions, whereas the inverse Fourier transform spreads these errors
over the whole reconstructed signal.

2.2.2 Mother Wavelets

One important problem when using the wavelet transform is the choice of appropriate
mother wavelet ¥ for analysis of the signal. This choice depends on both the aim of
the study and the characteristics of the analyzed signal. Thus, to detect phases of an
oscillatory process by means of the wavelet transform, complex wavelets are used.
In contrast, to reveal self-similarity on different time scales, there is a good reason
to use real wavelets. Existing traditions as well as intuition and the experience of the
researcher may also play an important role when choosing the mother wavelet. This
section discusses the main wavelets used in practical applications.

The actual choice of mother wavelet depends on what information is to be extracted
from the analyzed signal. Each wavelet function v is characterized by different
properties that allow us to reveal distinct features of the signal f(¢). Figure2.11
shows the most commonly used wavelets (1), together with their Fourier images
1/30 (n). Important characteristics of these wavelets (discussed in detail later) are given
in Table?2.1.

One of the most popular complex wavelets used to reveal the time—frequency
structure of signals is the Morlet wavelet [3] (see Fig.2.11)

Yo(n) =~ /* (e“““” — et/ 2) e (2.36)

where w is the wavelet parameter (often taken as wy ~ 27). The second term in
the brackets performs a correction of the wavelet transform for signals with nonzero
mean values. When wq > 0, the term e=/2 may be neglected, whereas the central
frequency (the global maximum of the Fourier image of the wavelet) is conventionally
taken to be wy.
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Fig. 2.11 Most commonly used wavelets (left) and their Fourier images (right). The real part of
each wavelet function is shown by a solid line, while the dashed line illustrates the imaginary part.
a Morlet wavelet with main frequency wo = 27. b Morlet wavelet with wy = 16. ¢ MHAT wavelet
(DOG wavelet with m = 2). d Paul wavelet with m = 4. e FHAT wavelet
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Table2.1 Commonly used wavelets and their main properties. Here H (x) is the Heaviside function,
f is the frequency of the Fourier transform, f; is the frequency of the wavelet transform ( f; = 1/s),
and t; is the width of the region of boundary effects

Wavelet| 1o (17) Yo (sw) 7 flfs
i +/2+ w}
Morlet | 7—1/4¢ioong—n>/2 214 (@)elso—00)? /2 N u
T
2Mmim om 2m + 1
Paul L (1 — iy~ (mtD) __ sw)Me—S® /2
a N T = @ Ge)e SN2 i
(—pymt] " 2, i" s /2 Vm+172
DOG ﬁdnme n</ ﬁ@w)me (sw)°/2| /25 e
Pl )
1, Inl<1/3, . (3
FHAT 12, 1/3< <1, 3H (sw) [M - Sl"(‘“‘))] V2s 3/4
sw 3sw
0, Inl>1

In fact, the Morlet wavelet is an analog of the sine wavelet described in Sect. 2.1.
Indeed, the Morlet wavelet is a plane wave modulated by a Gaussian function,
whereas the sine wavelet is the same plane wave modulated by a rectangular impulse.
The functional set obtained on the basis of the Morlet wavelet is well localized in
both the time and frequency domains. With growing value of the parameter wy, the
resolution in Fourier space increases, whereas the time localization is reduced. This
is easily seen from the comparison of Fourier images of the Morlet wavelet obtained
for wy = 27 and wy = 16 (see Fig.2.11a and b). For wy = 16, the Fourier image is
narrower, attesting to the better resolution in the frequency domain. However, the
time resolution decreases for wy = 16.

Another example of a complex wavelet is the Paul wavelet [23] (Fig.2.11d)

mim .|

Yo(n) = \/ﬁ

where m is the wavelet order corresponding to the number of zero moments.

Among real wavelet functions, the DOG wavelets are widely used (DOG stands
for difference of Gaussians) [24]. DOG wavelets are constructed on the basis of
derivatives of the Gaussian function (see Fig.2.11c):

(1 —ip~ (2.37)

-1 m+1 dm 2
Yolp) = — )1 - chp(T”). (2.38)
F(m—l-E)

The mother wavelet corresponding to m = 1 is called the WAVE wavelet, viz.,
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Yo(n) = ne "%, (2.39)

while m = 2 corresponds to the MHAT (Mexican hat) wavelet, viz.,
Yon) = (1 —n*)e /2. (2.40)

Another real mother wavelet is the discrete FHAT (French hat) wavelet shown in
Fig.2.11e, viz.,

L, nl<1/3,
Yo =4 —1/2, 1/3<Inl =1, (2.41)
0, Inl>1.

The simplest discrete wavelet used in many technical applications is the Haar wavelet
[25]
1, 0<n<1/2,
Yo =4 -1, 1/2<n<1, (2.42)
0, n<0,n=1,

which will be discussed in detail in Sect. 2.3 on the discrete wavelet transform.

The set of mother wavelets is not restricted to the functions considered here.
Other functions are also applied in practice and successfully used in various areas of
research. The reader can find additional examples of the mother wavelets as well as
ways to construct them, e.g., in [16, 26-30]. In the following chapters of this book,
we shall discuss examples of wavelets constructed especially to analyze neurophys-
iological signals.

2.2.3 Numerical Implementation of the Continuous Wavelet
Transform

Since the analytical form of wavelet spectra can be obtained only for the simplest
cases such as, e.g., f(t) = a sin(wt), analysis of experimental time requires numer-
ical implementation of the wavelet transform.

When we carry out numerical analysis, we are dealing with time series of a variable
x(t) whose values are known only at specified time moments. Typically, the values
of x(t) are recorded with equal time span.® Therefore, we shall further consider a
time series {x,}, where each value x, is acquired with an equal time interval 4, i.e.,
Xp =x(hn),n =0,... N — 1, where N is the number data points in the time series.

S5This is the most typical case in experimental studies. However, data can be acquired in such a
way that each data point is related to an arbitrary instant of time. This happens, e.g., for point
processes represented by RR intervals of the electrocardiogram [31, 32]. In such a case, the relevant
algorithms must be modified [31, 32].
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The continuous wavelet transform of the sequence {x,} is defined as the discrete
counterpart of the convolution of the analyzed signal and the basis function ¥ ()
(2.18) which is normalized by the corresponding time scale s and shifted along the
time axis by the interval nA. One can then write

= (n' — n)h

Wn,s) =Y xyy* (—) : (2.43)
n'=0 §

where the normalization coefficient for the discrete analogue of the continuous

wavelet transform will be discussed later [see (2.59)]. Changing the scale coeffi-

cient and the time shift nk, one can localize the dynamics of any particularities of

the process {x} in the time domain s.

2.2.3.1 Effective Numerical Method for the Continuous Wavelet
Transform

Direct calculation of the wavelet transform using (2.43) is not optimal. The simplest
and most universal way to optimize the numerical procedure of the wavelet transform
is to consider the local nature of the wavelet function (see Fig.2.10). Indeed, the
wavelet function v ,, is localized within the time interval t € [ty — T'(s), to + T (s)].
As the function v, is normalized for different time scales, the time localization
interval 27 (s) depends on the time scale s. Since the wavelet function is supposed
to be close to zero with high precision outside this interval, (2.18) may be replaced
by

10+T (s)

W(s, ty) =~ / fOvs, @dr . (2.44)
10—T (s)

The quantity 7 (s), which also depends on the selected mother wavelet, can be found
experimentally for the preassigned precision of numerical calculations. Of course,
the higher the value of 7', the more accurate the result of the wavelet transform.
For the Morlet wavelet, for instance, the optimal length of the time interval related
to a reasonable compromise between time duration and accuracy of the performed
calculations is estimated as 7 (s) = 4s.

In the discrete form, (2.44) should be rewritten as

n+[T(s)/h] (I’l/ . n)h
Wn.s)= Y xpy* <—> ) (2.45)

n'=n—[T(s)/h] S

One can see that, for arbitrary values of the analyzed discrete sequence {x, }, the values
of the wavelet function are invariable for all time moments n, and as a consequence,
they can be calculated once and for all in the interval [—T (s), T (s)] with time span
h as
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Vsn = Y* (ﬂ) , (2.46)

s

keeping this thereafter as the matrix.
So the problem of calculating the wavelet transform is reduced to multiplying two

matrixes, viz.,
[T(s)/h]

W)= D Xuyivei (2.47)
i=—[T(s)/h]

which may be done rather quickly.

To perform direct numerical realization of the wavelet transform using (2.43), the
sum should be estimated N times for every time scale s, where N is the number of data
points. Assuming that {x, } is a complex sequence and the wavelet function has already
been calculated in the whole region of possible values, M = . x 8N+ O(N) arith-
metic iterations must be carried out, where .Z is the number of time scales s for
which the wavelet transformation is applied. Indeed, according to (2.43), N complex
multiplications (6 arithmetic operations) and N — 1 complex additions (2 arithmetic
operations) must be performed at each point of the discrete space with dimension
N x 2.

Using (2.47) considerably reduces the required operations, since only

[Smax/A*y]
M=8Nx Y [T(iAs/h)]+O(N) (2.48)

i=[$min/As]

operations must be carried out, where s, and sp.x are the minimal and maximal
boundaries of the analyzed time scales, and As is the discretization step. If T'(s)/ h <
N, a considerable efficiency gain is obtained. For the Morlet wavelet, the number of
required iterations is estimated as

[Smax/As]
M =64Nx > (iAs/h)+O(N). (2.49)

i=[smin/As]

2.2.3.2 Numerical Method for the Continuous Wavelet Transform
Based on the Fast Fourier Transform

Considering the Fourier images for the initial signal x; and wavelet V¥ also reduces
the number of required operations [8, 16]. By the convolution theorem, one can
simultaneously compute all values of W(n,s) (n =0,..., N — 1) in the Fourier
space for the fixed time scale s using the discrete Fourier transform.

For the sequence {x,}, the discrete Fourier transform is estimated as follows
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N-1
Re=)  xpe TN, (2.50)
n=0

where k/(Nh) C (0, ...(N — 1)/(Nh)) forms the frequency set of initial signal x,
given by the sequence consisting of N points with the time step .

With a known Fourier image @0 (w) of the mother wavelet () [see (2.23)], one
can easily compute the Fourier image of the function v (¢ /s):

{wm — (), 2.51)
Y(t/s) > Y(sw), ’

i.e., renormalization of the wavelet function in the Fourier space is taken into account
by multiplying the frequency by the scale factor s.
Similarly, using the discrete Fourier transform® one can obtain

N-1
W (ap) = Y W(nhye
n=0
(2.52)
N—1
¥ (say) = Z W (nh/s)e senh/s
n=0
where the frequence wy is given by
2rk
o = % . (2.53)

In the Fourier space, the wavelet transform is written as a simple multiplication of
the Fourier image of the signal X by the complex conjugated Fourier image ¥* of
the wavelet function. The wavelet surface W (n, s) is obtained by the inverse Fourier

transform
N—1

1 n .
Wn,s) = ¥ Z F* (swp)e (2.54)
k=0

When using the approach based on the Fourier images {x} and I/} , the wavelet function
Y should be renormalized for each time scale s to correctly compare the wavelet
spectra of different signals (and, moreover, the same signal for different time scales
s). The aim of this renormalization is to provide the unit energy at each time scale:

N 172 .
B (sawy) = (}S—l) B (seop) . (2.55)

SNotice the difference between v, 1& and ¥, ¥ used for the continuous and discrete transforms,
respectively.
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Finally, the equation for the wavelet surface W (n, s) is written as

N-1

12 1 R .
a ) 3 &l (s (2.56)
k=0

v~ ()"

Fourier images of different wavelet functions (1) are shown in Fig.2.11 and
Table?2.1. Constant factors for each function are chosen according to the normal-
ization condition (the condition of the unit energy)

o]

/ )Iﬁo(w)‘z do=1. (2.57)

—0Q

The analogous condition for the discrete form is

U(sap)| =N, (2.58)

where N is the number of data points.
If (2.43) is used, the normalization of the wavelet function for the time scale s

takes the form
' —n)h n\'? (' —n)h
V(=)= 0) (). e
S s s

where v(n) is the wavelet function obeying the condition || ||z2r) = 1, i.e., the
wavelet function 1y is also characterized by unit energy. Taking into account (2.59),
Eq. (2.43) should be written in the final form

1/2N-1 ;o
Wn,s) = (g) R <M> . (2.60)
n'=0

Taking into account (2.56), one can simultaneously obtain the results of the wavelet
transform W (n, s) for the fixed value of s and all n, using the fast Fourier trans-
form (FFT) to determine all sums in (2.50) and (2.56). Since the FFT requires only
N log, N iterations [33] to calculate the sums (2.50) or (2.56), the whole wavelet
surface W (n, s) (for all considered time scales s) is computed with . x N log, N
iterations.” For a large number of points N, it gives sufficient gain in comparison
with the use of (2.60).

An important aspect of the wavelet transform is the set of time scales {s} used
to calculate the wavelet spectrum (2.56). If the mother function represents one from
orthogonal wavelets [19, 34], this set of time scales is strongly restricted, whereas

"Here we do not consider iterations for calculation of the Fourier image of the signal %, since this
transform should be performed only once.
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for nonorthogonal wavelets the set {s} can be arbitrarily chosen in order to acquire
more detailed information about the signal. When the FFT procedure is used, the set
of time scales is typically considered to be some power of 2:

_ log,(Nh/so)

s =824, 1=0,....¢, ¥
As

2.61)

Here sy is the minimal time scale distinguished when the wavelet transform is applied
and .7 is the maximal number of time scales used to calculate the wavelet spectrum.
The minimal time scale sy should be used in such a way that the Fourier period
corresponding to this time scale is about 2/ (see below). The optimal value of As
is determined mainly by the width A2 of the Fourier image of the mother wavelet
lflo. If As exceeds AS2/(2wy — AS2), the scale resolution of the wavelet transform
decreases, since some time scales are excluded from consideration. On the other hand,
the choice of a small As does not provide essential improvements in the resolution of
the wavelet transform (due to the finite width of the wavelet function in the Fourier
space). However, it does increase the time required for the calculation.

In the case of the Morlet wavelet with wy = 27, the maximal value of (As)max
allowing acceptable resolution is about 0.5, whereas for other wavelet functions, e.g.,
the Paul wavelet, the maximal value of As may increase, e.g., (AS)max ~ 1.0 for the
Paul wavelet.

The FFT procedure used for the continuous wavelet transform in (2.50) and (2.56)
also constrains the length of the considered time series {x,}, since for the FFT pro-
cedure the number of points in the time series must obey the requirement N = 27,
where p is a natural number. Typically, it is not too difficult to obtain time series
with the required number of points. Nevertheless, in several cases, the number of
data points is limited and cannot be easily enlarged (e.g., in the case of climatic or
geological data).

If the length of such time series is roughly (but less than) 27, the properties of the
wavelet transform allow one to effectively analyze this data using 27 points instead
of 27~!. This may be done by forming a surrogate time series in which the first and
last (27 — N)/2 points are set equal to constant values, e.g., mean values of the initial
time series (x = )_, x,/N) or zeros. In this case the region of edge effects on the
plane (7, s) becomes broader (see next section).

2.2.3.3 Influence of Edge Effects

When a finite time series is used to obtain the wavelet spectrum, the errors in W (n, s)
appear near the boundaries of the time axis (i.e.,nearn = O andn = N — 1) and this
results in a distortion of the time—frequency representation of the signal. Firstly, this
is due to the fact that, for the considered time scale s, the wavelet function shifted
along the time axis starts going beyond the analysed time series. As a consequence,
the W (n, s) values in the vicinity of the time series boundaries become incorrect.
Obviously, the region of influence of edge effects becomes broader for longer time
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scales s (smaller frequencies). Secondly, use of the FFT procedure supposes that the
analysed data {x} is periodic with period N#, whereas the considered time series
does not usually have this property.

The width 7, of the edge effect region is determined by the time interval T (s)
introduced earlier [see (2.44)]. For the Morlet wavelet, the width of the region where
edge effects influence the results of the wavelet transform is given by

T, = T(s) = 4s . (2.62)

There are different ways to suppress unwanted edge effects [8, 16, 35]. One of the
most effective solutions of this problem is the formation of a surrogate time series {x;,}
with length 2N in which the first N points are taken from the initial time series {x,},
whereas the next N points starting from n = N are filled by zeros. The resulting
surrogate time series {x/,} is further used for the wavelet transform (2.56). Since
N =27, the FFT procedure can be applied, but for a time series with length 27+
This approach reduces the influence of edge effects, and in addition, it is rather fast
due to the use of the FFT procedure.®

The use of a surrogate time series {x,,} results in the appearance of a large hetero-
geneity on the boundary of the initial time series x,,. Nevertheless, because half of
the surrogate time series consists of constant values (e.g., zeros), the perturbations
induced this heterogeneity are in the region of very long time scales, whereas the
spectrum of the initial heterogeneity (being sufficiently less than added one from
the formal point of view) connected with the influence of the boundaries of the time
series is related to the region of time scales of the signal. As a consequence, intro-
ducing this kind of heterogeneity results in a decrease in the amplitude |W| of the
wavelet spectrum in the vicinity of the boundaries of the time series. Obviously, the
longer the part of the surrogate time series filled by zeros, the less the influence of
edge effects. The use of surrogate time series with equal lengths of fragments filled
by initial values and zeros seems to be an optimal solution in terms of the balance
between speed of calculation, internal memory consumption, and accuracy of the
wavelet transform in the vicinity of the boundaries of the initial time series x,, [8,
16].

The region of the wavelet spectrum W (n, s) on the plane (n, s) where edge effects
are important and cannot be neglected will be referred to as the region of influence of
edge effects. According to [8], the region of influence of edge effects can be defined
using the effective width t, of the autocorrelation function, which is calculated for
the wavelet power at each time scale s. The value of t; is equal to the shift relative
to the boundary when the power of the wavelet transform of a time series with edge
heterogeneity is halved on the logarithmic scale, i.e., on a linear scale, it corresponds
to a power decrease by a factor of e2. Such a choice for the boundary of the region
associated with edge effects guarantees that these effects can be neglected for times
nh, where (N — n)h > 1, and nh > t, for the corresponding scales s.

8For time series with length N, only .2 x 2N (1 + log, N) arithmetic operations are needed to
obtain the wavelet surface with the described technique for reducing edge effects.
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Estimates of the widths 7 for different mother wavelets are given in Table 2.1 when
using the technique of surrogate time series. Comparing the value of t; obtained for
the Morlet wavelet with the widths of the region of influence of edge effects obtained
for the case when these effects have not been suppressed (2.62), one finds that this
approach is reasonably effective, allowing effective suppression of the influence of
edge effects.

Note also that the value of 7, characterizing the region of edge effects determines
the characteristic time of influence of an isolated peak of large amplitude in the time
series on the form of the wavelet power spectrum. Considering the width of the peak
in the power spectrum, one can separate, e.g., large-amplitude artifacts in the time
series from a permanent harmonic component with the same period.

2.2.3.4 Time Scales of the Continuous Wavelet Transform Versus
Frequencies of Fourier Analysis

From Fig.2.11 one can see that maximum of the Fourier image 1/Af(sa)) of ¥ (sw)
does not correspond to the frequency w; = 2n f; (where f; = 1/s). In other words,
there is no equivalence between frequencies of the Fourier transform (f) and those
of the wavelet transform ( f;). Moreover, each mother wavelet is characterized by its
own relationship between f and f; (see Table2.1). Thus, the Morlet wavelet with
wo = 2w is characterized by f = f;, and in this case the time scale of the wavelet
transform is almost equivalent to the Fourier period. At the same time, for wy = 16,
the frequencies f and f; are already related to each other by f/f; = 2.5527. A
similar situation occurs for the MHAT wavelet (f/f; = 0.2518) and the Paul wavelet
withm = 4 (f/f; = 0.7166). So these relations must be taken into account when the
results of the wavelet analysis are compared with the results of the Fourier transform.
This is also very important when the wavelet power spectra obtained for different
mother wavelets are compared with each other.

A relationship between the frequencies f; and f may easily be obtained either
analytically by substituting the Fourier image of a harmonic signal with known
frequency wy, i.e., §(w — wy) into (2.54) and determining the corresponding time
scale s (which may be found as a maximum of the wavelet power spectrum), or
numerically, with only one difference, namely that the power spectrum in this case
must be calculated with the technique described earlier.

2.2.3.5 Normalization of Wavelet Spectrum

In the framework of classical Fourier analysis, the total power of oscillations is equal
to the area under the curve of spectral density |S(f)|?, while the magnitude of the
peak can be used to determine the amplitude of oscillations with the corresponding
frequency. For wavelet analysis, this situation is more complicated. When the total
power of the wavelet spectrum is considered, the amplitude cannot be estimated cor-
rectly and vice versa. Therefore, depending on the quantity to be obtained, different
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Fig. 2.12 Spectra of two harmonic functions with unit amplitudes and different frequencies, cal-
culated using the Morlet wavelet with v = 27

normalizations of the wavelet spectrum should be used. To illustrate this point, we
consider the evaluation of the wavelet spectrum of a harmonic function for different
frequencies of oscillation (see Fig.2.12, where the Morlet wavelet with wy = 27 is
used). One can see that the peak in the wavelet spectrum becomes “blurred” with
increasing frequency, while its magnitude decreases.

If one needs to calculate the energy associated with a certain frequency band, this
effect is not significant, since the increased width of the peak is accompanied by
contraction of its amplitude, and the total power of oscillations, i.e., the area under
the curve E(f) (see Fig.2.12), remains unchanged. At the same time, estimating
the amplitudes of each sine curve as the square root of the power related to the con-
sidered frequency gives different results, and the amplitude decreases with growing
frequency f (see also Fig.2.7 and the corresponding discussion in Sect.2.1).

To estimate correctly the relationship between the amplitudes of oscillations, a
special normalization should be used. For this purpose, the factor 1/4/s in (2.19)
should be replaced by 1/s. This allows us to determine correct amplitudes for rhyth-
mic processes with different periods (with a certain constant factor as compared with
Fourier analysis), although energy characteristics are preserved. Below (in Fig.2.15¢
and d), both normalizations of the wavelet spectrum are given. We thus conclude
that the power in a certain frequency band and the amplitudes of characteristic peaks
should be considered separately using appropriate normalizations.
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2.2.3.6 Signal Reconstruction Based on Wavelet Spectrum

The wavelet transform (2.18) or (2.43) can be considered as a band-pass filter with
known frequency characteristic (wavelet function ). Therefore, the initial signal
can be reconstructed from the wavelet spectrum W (n, s) either through inversion of
the convolution product (2.18) or by designing the inverse filter. Such manipulations
are relatively easy when one deals with an orthogonal wavelet transform. However,
for the continuous wavelet transform, reconstruction of the initial signal x(¢) is
a serious problem due to the redundancy of information contained in the wavelet
surface W (s, t). A simple procedure for signal reconstruction based on knowledge
of the wavelet surface for a certain function (the simplest case is the §-function) is
described in [24, 36]. In this case, the time series x, can be represented by the sum
of all coefficients of the wavelet transform on all considered time scales [8, 16]:

Ash W(n, s;)
Z

, 2.63
Kso(0) = /s (269

Xp =

where the coefficients ¢(0) and 1/./s are introduced to obtain the unit energy on
each time scale s. For a real signal {x,} C R, the inversion formula (2.63) takes the
form

. — Asvh Re (W (n, s,)} 2.64)

Ks0(0) = Vi

The coefficient K; in (2.63) and (2.64) is estimated from the reconstruction of §-
function obtained from its wavelet spectrum, which has been calculated with the
mother wavelet (n). To obtain K5 one has to construct the time series x,, = §,0.
In this case, the amplitudes of harmonics in the Fourier spectra are constant for all
k, Xy = 1/N. Having substituted X; into (2.54), one finds that the wavelet spectrum
at n = 0 takes the form

| -
Wa(s) =+ D i (sex) (2.65)
k=0

In this case, the relation for K5 follows from the inverse formula (2.64)

(2.66)

Asf Re{W(n s}
~ %o(0) Z '

Therefore, the parameter K5 does not depend on the time scale s and remains constant
for each mother function . The values of K; for commonly used mother wavelets
Yo are given in Table 2.2.

Obviously, the total energy of the signal must remain unchanged after the direct
and inverse wavelet transforms. This requirement results in an analogue of Parseval’s
theorem for the wavelet transform, which (in the discrete form) can be written as
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Table 2.2 Characteristics of mother wavelets for the reconstruction of the initial signal from its
wavelet spectrum

Wavelet Ks ¥ (0)
Morlet (wy = 27) 0.776 g 1/4
Paul (m = 4) 1.132 1.079
DOG (m = 2) 3.541 0.867
DOG (m = 6) 1.966 0.884
_ Ash & |W(n s,)|2
= XN Z ; , (2.67)

where o2 is the standard deviation of the time series. The §-function is used in (2.67)
to reconstruct the initial signal.

Equations (2.63) and (2.67) can be applied to check upon the accuracy of the
numerical realization of the wavelet transform. Having obtained information about
the accuracy of the numerical calculation of the wavelet spectrum, the minimal time
scale and the step along the time axis can be selected to achieve the required accuracy
of analysis.

2.2.4 Visualisation of Wavelet Spectra. Wavelet Spectra of
Model Signals

In general, the wavelet spectrum W (ty, f;) = |W (o, s)|[e"¥w @) of a 1D signal
x(t) can be considered as two surfaces, viz., the surfaces of amplitudes |W(z, s)|
and phases @ (¢, s) of the wavelet transform, in the three-dimensional space of
time—time scale s/frequency f-amplitude |W|/phase ¢y . In the case where both the
mother wavelet and the analysed signal, are real functions, the wavelet spectrum is
also a real function. In this section we shall consider only the amplitude spectrum of
the wavelet transform | W (7, s)|, while questions related to the phase of the wavelet
transform will be considered in the next.

As the simplest model, let us consider the harmonic function x(z) = sin(2w ft),
with all calculations performed with the MHAT wavelet. For simplicity, the frequency
of the signal is fixed as f = 10. The wavelet transform of this function is shown in
Fig.2.13.

In Fig.2.13a, the wavelet spectrum is shown in the form of a three-dimensional
surface. However, this kind of visualization is not often used due to the poor clarity
and complicated qualitative interpretation of the results. It is more typical to represent
the amplitude wavelet spectrum as the projection of the wavelet surface on the plane
(to, s) [or (%o, f;)] either in the form of contour curves or with shades of gray (see
Fig.2.13b and c, respectively).



2.2 Continuous Wavelet Transform 45

0.3

0 50 100 150 200 ) : )
S ‘

Fig. 2.13 Methods for visualising wavelet spectra. Results of the wavelet transform of a harmonic
signal with frequency f = 10 for the MHAT wavelet. a Three-dimensional representation, b pro-
jection, and ¢ contour curves of the wavelet surface W ( fs, t). d Distribution of the total energy
(E(fy)) over the wavelet frequencies f;

The distribution of the energy (E) (2.34) over the time scales s (or over the
wavelet frequencies f;) is also very informative. This distribution (E (f;)) is shown
for the considered harmonic function x(¢) in Fig.2.13d. Note that the maximum
of the distribution corresponds to f; =~ 40, which is in good agreement with the
relationship (see Sect.2.2.3) between the frequency f of the Fourier transform and
the wavelet frequency f; for the MHAT wavelet.

Visual analysis of the wavelet surface provides detailed information concerning
the particularities of the signal structure. There is only one characteristic time scale
which is constant during the whole time of observation. For multiple-frequency and
non-stationary signals, analysis of wavelet surfaces becomes more complicated. The
alternation of light and dark spots in the vicinity of each local maximum or minimum
overloads the wavelet spectrum by a large number of details which may be insufficient
for understanding the time—frequency structure of the signal under study.

The results are analogous to those shown in Fig.2.13 and can be obtained with
the help of other mother wavelets. For clarity of analysis, complex wavelet functions
are preferable [besides eliminating phase information by considering the modulus
of the wavelet surface |W (¢, s)|]. In particular, the complex Morlet wavelet (2.33)
is very useful for analyzing multiple-frequency and non-stationary signals.

Different representations of the corresponding wavelet spectrum of the harmonic
signal with the same frequency f = 10 are shown in Fig. 2.14. One can see that use of
the Morlet mother wavelet gives a clearer wavelet surface than would real wavelets.
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Fig.2.14 Wavelet transform of the harmonic signal with frequency f = 10 for the Morlet wavelet.
a Three-dimensional representation, b projection, and ¢ skeleton of the amplitude surface | W ( f;, t)|.
d Distribution of the total energy (E (fs)) over the wavelet frequencies f;

Indeed, the maximum of the wavelet surface corresponds to the unique rhythm of the
signal with frequency f = 10. Obviously, contour curves are not convenient in this
case. An alternative way of visualizing the wavelet surface, the so-called skeleton,
may then be used.

The skeleton is a way to vizualize results of the wavelet transform by local maxima
or minima of the wavelet surface at each time moment. In other words, the skeleton
is the plane (7, s) [or (¢, fi)] containing only the peaks of the wavelet energy distri-
bution. This form of information representation is clearer than the 3D representation.
For the considered sinusoidal signal, the skeleton gives the time dependence of the
instantaneous frequency shown in Fig.2.14c. Thus, using the approach described
above, one can move from consideration of initial signals to study of the instan-
taneous frequencies (or time scales) and the instantaneous amplitudes of rhythmic
processes, and we shall show in the following chapters that this facilitates analysis
of neurophysiological signals.

Note also that the ordinate axis (s or f; = 1/s) is usually shown on a logarithmic
scale to represent the data over a wide range of time scales or frequencies.

Since the simple example considered here does not allow us to demonstrate con-
clusively all the advantages of wavelet analysis, we shall consider in the next few
sections several examples of nonstationary signals which are characterized by fea-
tures that are typical of real neurophysiological signals.
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2.2.4.1 Signals with Frequency Switchings

Analysis of oscillations with a frequency of about 0.01 Hz is important when study-
ing the complex dynamics of many physiological processes in living systems. Many
rhythms in biology and medicine correspond to the range 107>—~10~" Hz, and special
methods allowing the detailed analysis of signal structure are important, especially
for diagnosing the state from experimental data. As mentioned in Sect. 2.1, classical
spectral analysis based on the Fourier transform allows us to detect the presence of
different rhythms. However, it is impossible to track the time evolution of instanta-
neous characteristics of these rhythmic processes. Wavelet analysis provides various
ways to examine the local properties of signals, including the case of fast changes
in the instantaneous frequencies of rhythmic processes. This kind of behavior is
typical, e.g., for electroencephalograms, which are characterized by the fast occur-
rence/disappearance of different rhythms.

A model signal for which the frequency of oscillations changes suddenly is shown
in Fig.2.15. Note that the amplitude of the harmonic function is equal to unity, both
before and after switching. Wavelet analysis with the Morlet mother function allows
us (with good enough accuracy) to localize time moments when the signal structure
is altered. Figure 2.15c¢ and d illustrate the instantaneous distributions of the wavelet
energy, both before and after the frequency switches. The maximum of the wavelet
power spectrum is shifted after the signal frequency has changed.

Figures2.15¢ and d differ only in the type of normalization. The “classical”
wavelet transform (Fig.2.15c) fixes the energy E(f;) = |W(f;,t = tix)|?, whereas
the normalization used in Fig.2.15d ensures the equivalence of the amplitudes in the
wavelet power spectrum |W (f;, t = tg,)|%/s if the harmonics are characterized by
equal amplitudes. For a detailed discussion of this aspect see the previous section
and Fig.2.11.

Wavelet analysis allows us to correctly localize the moments of switching for
series with rather fast frequency variation. Figure2.16 shows the case when the
frequency changes twice during one period of oscillation.

2.2.4.2 Signals with Varying Frequency (Chirps)

When we consider neurophysiological signals, frequency variations are typically
smooth (in contrast to the sudden frequency switchings of Sect.2.2.4.1). As a model
example, let us consider a chirp signal, i.e., a signal whose frequency changes linearly
or, more generally, monotonically in time. Figure 2.17a illustrates the results of the
wavelet transform (with the Morlet mother wavelet) of the signal consisting of two
“parallel” chirps, viz.,

x(1) = sin 27 (fi + Afit/2)t] + sin[27(fo + Afat /2)1] |

where f; = f,/2 =0.02, Af, = Af, = 1.33 x 10~*. For clarity, only the signal
x (t) and the corresponding skeleton of the wavelet surface are shown. As one can see,
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Fig. 2.15 Analysis of a signal with frequency switchings. a Projection of the wavelet spectrum
obtained using the Morlet mother wavelet. b Skeleton (time dependence of the instantaneous
frequency). ¢ and d Instantaneous distributions of the wavelet power spectrum (compare with
Fig.2.11) for time moments shown by the arrows A and B, for a normalization that fixes the
energy E(fs) = |W(fs,t = tix) |2 and a normalization ensuring equivalence of the amplitudes in
the wavelet power spectrum |W ( f;, t = t55)|%/s, respectively
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Fig. 2.17 Analysis of chirps. a Two parallel chirps. b A chirp whose frequency is approximately
doubled during one period of oscillation. Only the skeletons of the wavelet surfaces are shown

the variations of the instantaneous frequencies described by the linear dependence
can easily be identified using the wavelet transform. Thus, wavelet analysis can obtain
information concerning the structure of the given signal. This analysis reveals the
presence of two chirps in this example.

Although the complex wavelet basis makes it possible to perform local spectral
analysis, all characteristics are evaluated within a certain time range corresponding to
the wavelet function v, ,, (¢). This means that these characteristics are not found abso-
lutely locally, but are obtained as a result of some averaging. Indeed, the averaging
procedure leads to decreased accuracy in the estimated instantaneous characteristics,
and this accuracy will be less for fast frequency variations. Nevertheless, even for
fast variation of the signal properties, the wavelet analysis provides correct results.
To illustrate this aspect, a chirp whose frequency is approximately doubled during
one period of oscillation is considered in Fig.2.17b. As one can see, the wavelet
analysis with the Morlet wavelet resolves this extremal case with good precision.

2.2.4.3 Processes with Complex Spectral Structure

Wavelet analysis is also a powerful tool for studying complex multiple-frequency
signals [16]. To illustrate this aspect of the wavelet transform, we consider a signal
representing a multiple-frequency process. Results of the wavelet transform (with
the Morlet wavelet) for such a (sawtooth) signal are shown in Fig.2.18a. The period
of the impulses is 7 = 0.1 s. The spectrum of this signal is characterized by higher
harmonics of the main frequency, as can be seen from Fig.2.19.

The wavelet transform nicely reveals the higher harmonics of the main frequency.
Indeed, the wavelet spectrum has several stripes corresponding to the frequencies 10,
20,30 Hz, etc. The skeleton can represent the structure of the signal in a more obvious
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Fig. 2.18 Analysis of signals with complex spectral structure. Model of a sawtooth signal. Wavelet
surface and its skeleton for the signal with constant main frequency f = 10GHz (a) and main
frequency varying from 10 to 5GHz (b)
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Fig. 2.19 Fourier spectrum of the sawtooth signal shown in Fig.2.18. One can clearly see the
harmonics nf (where n = 2, 3,4, ...) of the main frequency f = 1/7 = 10Hz

way, since only the first harmonics can be clearly seen by considering the wavelet
surface. Starting from a certain number 7, one cannot distinguish higher harmonics
of the signals that are caused by their decreasing magnitudes. This example perfectly
illustrates differences in the frequency resolution between the Fourier and wavelet
analysis. As one can see, Fourier analysis is a more sensitive tool than wavelet
analysis for frequencies with small amplitudes.

Note also the growth in the magnitude of the wavelet surface in the region of
higher frequencies at times when the initial signal is changing quickly. This kind of
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behavior is typical and so can be used to localize and select different artifacts of the
experimental data. The application of this feature of wavelet analysis to neurophys-
iological data will be discussed in detail in the following chapters.

Figure 2.18b illustrates the application of the wavelet analysis to a more compli-
cated case where the period of the sawtooth signal grows with time. As one can see
from the skeleton estimated for this case, the dynamics of both the main frequency
and its higher harmonics can also be precisely estimated. As the main frequency
of the sawtooth signal decreases, the skeleton lines come closer together with time.
Alternatively, if the main frequency increases, the skeleton lines diverge. These par-
ticularities of the wavelet spectra must be taken into account when experimental data
are examined.

2.2.5 Phase of the Wavelet Transform

In Sect.2.2.4, attention was focused on the amplitude and power characteristics of
the wavelet spectra. At the same time, if complex wavelets are used, the wavelet
surface is also complex, and the quantity W (s, ) is therefore characterized by both
the amplitude and the phase

p(s, 1) = arg (W(s, 1)) . (2.68)

Typically, the phase of the wavelet surface is eliminated from consideration and
only the amplitude |W (s, 1)| is taken into account, in the same way as was done in
Sect.2.2.4. Nevertheless, the phase contains important information about the signal
and, roughly speaking, the phase dynamics involves approximately half the informa-
tion contained in the signal, with phase information being different from information
about the amplitude part of the wavelet spectrum.

Indeed, it is more customary to use the amplitude and it is more convenient to deal
with, allowing a simple and clear interpretation. Moreover, for many tasks, analysis
of amplitudes is quite sufficient to solve research problems. At the same time, this
does not mean that the phase does not play an important role, i.e., that it does not
deserve attention. There are a broad range of problems in which phase dynamics is
extremely important, e.g., problems involving synchronization phenomena. In this
section, we consider the phase and discuss problems where phase analysis can prove
useful. We begin our considerations with the phase of the Fourier transform (2.3), in
the same way as when the wavelet transform was introduced in Sect.2.1.

2.2.5.1 Phase of the Fourier Transform

Let us imagine, that the signal under study f(¢) is shifted along the time axis by
some time interval f}(¢) = f (¢ + 7). In this case the result of the Fourier transform
of new signal fi(¢) is
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+00 +o0
Sl(w)=/f1(t)e_i“”dt=/f(f—i—r)e_i“”dt

+00
= el / F®eT ¥ de = S(w)e, (2.69

where S(w) is the Fourier transform (2.3) of the initial signal f(¢) and ¢ (®) = wr.
One can see that the same signal in other reference systems is characterized by
Fourier images that are related to each other by (2.69). The amplitudes of these
Fourier images are identical, i.e., | S(w)| = |S1(w)|, but the phases are different:

p1(w) = p(w) + ot , (2.70)

where p(w) = arg S(w), ¢1(w) = arg S (w). Thus, the phase of the signal contains
information about the positioning of the signal relative to the time axis, while infor-
mation about the presence of a certain harmonic and its intensity is completely
included in the amplitude part of the Fourier spectrum.

Since the characteristics of the signal are the main subject of interest (but not its
position on the time axis), the amplitude part of the Fourier spectrum is used for this
kind of task. On the other hand, the question of the position of the signal relative to
the coordinate origin of the time axis is very specific and seldom arises in practice.

The situation changes radically when one begins to consider interactions between
systems. Since in this case the states of the systems should be considered relative to
each other (but not relative to the coordinate origin), the phase difference Ap(w) of
the Fourier spectra must be used rather than the phases:

Ag(w) = ¢p1(®) — p2(w) . 2.71)

Consideration of the phase difference has been proposed to study synchronization of
chaotic oscillators [37—40]. The phase difference between spectral components can
be found either directly (see, e.g., [37]) or using the cross-spectrum [41].

2.2.5.2 Phase Synchronization

The wavelet transform with a complex mother function becomes a more useful and
effective tool for studying the phase dynamics of the given systems. Besides giving
access to the spectral composition of the signal, this approach allows one to track
the phase evolution with time. Note that the phase of the oscillations can be obtained
without the wavelet transform. For periodic oscillations, the definition of the phase is
quite obvious (see, e.g., [42]). But for chaotic oscillations, the definition of the phase
becomes more complicated. The concept of chaotic phase synchronization involves
consideration of the phases of chaotic interacting systems and we shall discuss it
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here, since it is closely related to the analysis of phases introduced using wavelet
analysis and will be considered below.

Oscillating chaotic systems are widespread in nature [43, 44], but they are char-
acterized by complicated irregular behavior that makes it difficult to study them.
Neurophysiological systems are also characterized by intricate dynamics whose char-
acteristics often coincide with, or at least resemble, the characteristics of chaotic sys-
tems. Although it is impossible in general to prove that neurophysiological systems
are deterministic with chaotic dynamics (moreover stochastic or random behavior
must be taken into account), the prospects for studying them from the standpoint
of dynamical chaos look quite promising. A wide range of phenomena typical of
chaotic oscillators are observed in neurophysiological systems.

One of the most widespread phenomena is the synchronous dynamics of inter-
acting systems. When the systems under study are chaotic, this type of behavior is
called chaotic synchronization. The concept of the chaotic synchronization is fun-
damental and deals with different types of synchronous behavior. Several types of
chaotic synchronization are known: complete synchronization [45], lag synchoniza-
tion [46], generalized synchronization [47], noise induced synchronization [48—50],
phase synchronization [42], time scale synchronization [51-54], synchronization of
spectral components [40], etc.

One of the most important and commonly occurring types of synchronous dynam-
ics is phase synchronization. As pointed above, phase synchronization is based on the
concept of the instantaneous phase ¢(¢) of a chaotic signal [42, 55-57]. In addition,
the instantaneous phase is also used to detect the coupling direction of interacting
oscillators, which is useful for neurophysiological systems. Note, however, that there
is no universal method for defining the phase of a chaotic signal which would be
correct for every dynamical system.

The concept of the attractor plays an important role in the phase definition.
Typically, the oscillating behavior of the system under study is presented in the form
of a time series when the observable quantity is shown as a time function. There is
another way to represent the oscillating dynamics when the variables characterizing
the system state are plotted as coordinates along axes in a certain space called the
phase space,” while the time is not shown at all. Although this type of representation
of the system dynamics is unusual in biological studies, it is quite useful for solving
certain tasks. Each point in the phase space corresponds to a specific state of the
system under study and vice versa, with a one-to-one correspondence between the
system state and the point in the phase space. The point corresponding to the current
state of the system is referred to as the representation point and the curve along
which the representation point moves is called the phase trajectory. A set attracting
the representation points as time goes to infinity is an attractor of the dynamical
system. When the system dynamics is represented in the plane, one speaks of the

9The dimension of the phase space is equal to the number of quantities required to fully characterize
the state of the system under study.
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Fig. 2.20 Projections of phase coherent (a) and phase incoherent (b) attractors on the plane (x, y).
The dynamics of the chaotic Rossler system is shown

projection of the phase space (the phase trajectory, attractor) on the corresponding
plane.'” Examples of the projections of chaotic attractors are shown in Fig.2.20.

There are various ways of defining the phase of a chaotic signal. All these ways can
be effectively used when the chaotic attractor of the system has simple topology. Such
systems are called systems with well-defined phase or systems with phase coherent
attractor. The chaotic attractor for these systems is characterized by the topology
when the projection of the phase trajectory on a certain plane of states, e.g., (x, y),
winds around the coordinate origin but does not cross and envelop it (see Fig.2.20a).
In this case the phase ¢(¢) of the chaotic signal may be defined as the angle in the
polar coordinate system (x, y) [46, 58], whence

tan p(t) = )% . (2.72)

Since the projection of the phase trajectory does not cross and envelop the coordinate
origin, the mean frequency £2 of the chaotic signal, defined as the mean frequency
of the phase variation

2 = lim Tt = ($()) . @2.73)

coincides with the main frequency of the Fourier spectrum S( f) of the system oscil-
lations. If the projection of the phase trajectory envelops or crosses the coordinate
origin at certain times, the origin of the coordinate plane is smeared by pieces of the
phase trajectory. This kind of chaotic attractor is said to be phase incoherent and the
system is referred to as a system with ill-defined phase (see Fig.2.20b).

100f course, if one deals with a system dimension of 3 or higher.
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Another way to define the phase of a chaotic signal is to construct the analytical
signal [42, 55] '
() = x(t) +ik(t) = A()e'?? | (2.74)

where the function X (¢) is the Hilbert transform of x(¢), viz.,

+00

i) = lPV/ *® 4 (2.75)
T I —7T

and PV indicates that the integral is taken in the sense of the Cauchy principal value.
The instantaneous phase ¢ (¢) is defined from (2.74) and (2.75).
The third way to define the instantaneous phase of a chaotic signal is the Poincaré
secant surface [42, 55]
t —

Iy
(1) = 2”ﬁ +2nn, t, <t <ty, (2.76)
n+1 — in

where ¢, is the time of the n th crossing of the secant surface by the trajectory.
Finally, the phase of a chaotic time series can be introduced by means of the con-
tinuous wavelet transform [59], but an appropriate wavelet function and parameters
must be chosen [60].
The regime of phase synchronization of two coupled chaotic oscillators means
that the difference between the instantaneous phases ¢ (¢) of chaotic signals x; »(¢)
is bounded by some constant, i.e.,

|§1(r) — ¢2(1)| < const. (2.77)

As mentioned above, it is possible to define a mean frequency (2.73), which should
be the same for both coupled chaotic systems, i.e., phase locking leads to frequency
entrainment. Indeed, according to (2.77) and (2.73), the main frequencies of the
synchronized chaotic oscillators must coincide with each other.

Note that, independently of the method used to define it, the phase of a chaotic
signal may be located in both the region ¢ € (—o00, c0) and a band of width 2, e.g.,
¢ €[—m, ) or ¢ € [0,27). To examine the phase-locking condition (2.77), the
values ¢(—x,00) € (—00, 00) are more useful. However, in certain circumstances,
the bounded phases, e.g., ¢[0,27) € [0, 27), can be used. The two cases are related
by

®10.27) = P(~00,00) » Mod 27 . (2.78)

All these approaches provide correct and similar results for “good” systems with
well-defined phase [58]. Indeed, the behavior of the instantaneous phase for the
methods (2.72) and (2.76) is very similar within any time range that is less than the
characteristic recurrence time. Furthermore, the instantaneous phase defined using
the Hilbert transform (2.75) is known to behave for the phase coherent attractor in
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just the same way as the phases introduced by (2.72) and (2.76) (see, e.g., [58]).
These methods involve certain restrictions [61], in particular, for oscillators with
ill-defined phase (see, e.g., [61, 62]).11

Obviously, if the examined system is characterized by a well-defined main fre-
quency in the Fourier spectrum and by low background noise, the phase of the signal
introduced using one of the above methods will be close to the phase of the corre-
sponding harmonic signal. This is the case when good results can be achieved using
the approach of chaotic phase synchronization. If the spectral composition of the
signal becomes more complicated, e.g., there are several spectral components with
similar amplitudes, the dynamics of the system cannot be correctly described by
means of only one phase. In such cases, an approach based on continuous wavelet
analysis and the associated concept of time-scale synchronization [52, 53, 65] can
be used.

2.2.5.3 Phase of the Wavelet Transform
Since the wavelet surface is complex (if a complex mother wavelet is used), so that
W (s, o) = |W (s, o)), (2.79)

and since it characterizes the system behavior at each time scale s at the arbitrary time
ty, the instantaneous phase of the wavelet transform is also automatically defined at
each time scale s by

o(s,t) =arg W(s, 1) . (2.80)

In other words, the behavior of each time scale s can be described by means of its
own phase ¢ (s, ), this being a continuous function of the time scale s and the time
t. Thus, a set of phases ¢ (s, ) characterizes the dynamics of the system and can be
used to study its behavior.

As in the case of a chaotic signal, the phase defined through the wavelet transform
can also be presented in both the range ¢ € (—00, 0o) and a band of width 27, viz.,
¢ € [—m, ) or ¢ € [0,2m). When (2.80) is used, the phase takes values in the 2
band, but there is no problem representing the phase in the infinite range of values.

We begin our considerations of the wavelet phase with a simple signal of the form
f () = sin(wt + ¢) and transforming it using the Morlet wavelet. In this case the
wavelet surface is given by

W(s, 1) = V2ms7 /4 sin(ot + ¢ — iwwgs)e™ 7@ +e0)/2

~ n,1/4\/ge—(ws—wo)z/Zei(wt+¢—n/2) , 2.81)

1Nevertheless, the phase synchronization of such systems can usually be detected by means of
indirect indications [58, 63] and measurements [64].



2.2 Continuous Wavelet Transform 57

(a) (b) )
5 W] o IW s, !
/ !
1 /\ 1
A \
AN
[
AV
0L A \ 0
0 1 2 3 4 S 0 1 2 3 4 S

Fig. 2.21 Modulus of the wavelet spectrum for each component of the signal (2.82), showing them
separately (a) and for the whole signal (b). The wavelet spectrum of the harmonic function with
frequency w; = 7 is shown in a by the dashed line, and the function with frequency w, = 27 by
the dotted line

where ¢(s, t) = wt + ¢ — /2. As one can see from (2.81), the phase of the wavelet
transform does not depend on the time scale and repeats the phase of the initial
harmonic signal (s, = wt + ¢) with time lag —m /2. Note that, in the case of a
harmonic signal, the evolution of the phase ¢(s, t) is the same for all time scales.
As for the Fourier spectrum, shifting the signal relative to the time reference point
changes the phase ¢(s, 7).

Consider now a signal consisting of two harmonic functions

f(t) =sinwt + sinwst , (2.82)

where w; is assumed to be w and w, = 27 (see Fig.2.21). Due to the linearity of the
wavelet transform, the wavelet spectrum of the signal (2.82) is defined by

W(s,t) = V2asa /4 sin(wt — ico1a)os)e_(SZ“’H‘“‘%)/2
/2757 4 sin(wat — iwpwgs)e” (@ ten)/2 (2.83)

~ 7T1/4\/§ I:ef(wls7w0)2/2ei(w1t771/2) +ef(wzs7w0)2/26i(w2t77r/2)] ’

and this spectrum is obviously more complicated.

Figure 2.21a shows the absolute value of the wavelet spectrum of each component
of the signal (2.82) separately, while Fig.2.21b shows the modulus of the wavelet
surface of the whole signal (2.82). One can see that each frequency component
is characterized by its own maximum of the wavelet surface |W (s, t)|, and that the
amplitudes of these maxima are different due to the factors discussed in Sect.2.2.3.5,
despite the equivalence of the amplitudes of the sinusoidal functions.

It is intuitively clear that the presence of several spectral components results in
the time dependence of the phase dynamics on the time scale of the observation. This
statement is illustrated by Fig.2.22, where the time dependence of the phase ¢(s, t)
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Fig. 2.22 Time dependence of the phase ¢ (s, t) of the wavelet surface W (s, ¢) for different time
scaless:as; =2.0,bs =1.35,¢s5, =1.325,ds» =1.0

of the wavelet surface W (s, t) is shown for different time scales s. Figure2.22a
illustrates the time dependence of the phase ¢(s, ¢) for the time scale s; = 2.0 (see
also Fig.2.21b) corresponding to the lower frequency @w; = m. Similar dynamics (but
with different frequency) is observed for the second time scale s, = 1.0, correspond-
ing to the second frequency w, (Fig.2.22d). Obviously, for intermediate time scales
from the range s € (s;, 51), a transition from the behavior shown in Fig.2.22d to the
dynamics shown in Fig.2.22a should be observed.

This transition is shown in Fig.2.22b and c. One can see that the amplitude of the
wavelet surface decreases with decreasing time scale, namely, in the transition from
the time scale s; corresponding to the main frequency w; to the time scale s, corre-
sponding to the frequency w,. The time dependence of the phase exhibits decreasing
segments (Fig.2.22b) due to the influence of the second harmonic of the signal f(¢)
(with frequency w;), but the harmonic with frequency w; plays the dominant role
as before. The time scale s, separates regions where the phase dynamics is deter-
mined by the harmonic with frequency w; or w,, and as a consequence, on this time
scale s*, both harmonics provide equivalent contributions to the phase dynamics (see
Fig.2.22c). Finally, in the range of time scales s € (s1, s4), the phase dynamics is
determined by the harmonic with frequency ;.

Thus, considering the phase of the wavelet transform, we have to keep in mind
the following:

e For each time scale s of the signal under study, the time-dependent instantaneous
phase (2.80) is naturally defined.

e For the selected time scale s’, the dynamics of the phase is defined not only by the
frequency component corresponding to this time scale, but also by other harmonics



2.2 Continuous Wavelet Transform 59

located nearby in the spectrum of the signal and characterized by a large enough
amplitude. In other words, on the fixed time scale s’, the phase dynamics can
be determined by several components of the Fourier spectrum from a certain
frequency band.

It is important to note that one can detect the presence of several frequency com-
ponents by considering only the amplitude spectrum |W (s, ¢)| of the wavelet trans-
form, and then defining these frequencies as well (see Fig.2.21b). However, there
are several cases where this cannot be done. Indeed, the wavelet spectrum of the
two-frequency signal

f(@) = Ay sinwit + Ay sinwot (2.84)

where A; = 0.5, w; = 0.97, A, = 1.25, and w; = 7, is characterized by a single
maximum exactly in the case of a signal with a single frequency (Fig.2.23a). This
form of the wavelet spectrum is caused by (i) the finite resolution of the wavelet
transform in the time space and (ii) the closeness of the coexisting frequency compo-
nents in the Fourier spectrum of the signal (2.84), as well as the difference between
their amplitudes.

Consideration of the phase dynamics allows rather easy detection of nonharmonic
dynamics since, in the time scale ranges s < s, and s > s,, the phase dynamics is
different (see Fig.2.23b). On the time scale s, = 2, this phenomenon is connected
with the dominance of the spectral component with frequency w, (dashed line in
Fig.2.23b) (the phase dynamics thus corresponds here to this component), whereas
on the time scale s; = 3, the main role is played by the spectral component with
frequency w; (which thus determines the behavior of the phase in this case).
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Fig. 2.23 a The moduli of the wavelet spectra for each component of the signal (2.84) are shown
separately (the wavelet spectrum of the sinusoidal function with frequency w; = 0.97 is shown
by the dotted line, and that of the function with frequency w, = 7 by the dashed line) and for the
whole signal (solid line). b Time dependences of the phase ¢ (s, t) for the time scales s; = 3 (dotted
line) and s, = 2 (dashed line)
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2.2.54 Time-Scale Synchronization

To end this section let us briefly discuss the concept of time scale synchronization
[51-54], based on the examination of the phase dynamics of interacting systems on
different time scales. An important feature of the concept of time-scale synchro-
nization is the unification of all types of synchronous behavior of chaotic systems,
since all known types of chaotic synchronization (phase synchronization, generalized
synchronization, lag synchronization, complete synchronization) can be considered
from a unified point of view.

Let us consider the dynamics of two coupled oscillators with complex dynamics.
If the time series X »(#) generated by these systems contain the range sy, < s < s;
of time scales s for which the condition of phase locking

|d(s1,t) — p(sa2,t)| < const. (2.85)

is satisfied, and if also a part of the wavelet spectrum energy within this range is not

equal to zero, viz.,
Sb

Egne = /(E(s)) ds >0, (2.86)

Sm

we say that time-scale synchronization (TSS) takes place between the oscillators.

It is obvious that the classical synchronization of coupled periodic oscillators
corresponds to TSS because all time scales in this case are synchronized accord-
ing to the time scale s, instantaneous phase ¢;(¢), and TSS definitions. The case
of chaotic oscillations is more complicated. Nevertheless, if two chaotic oscillators
demonstrate any type of synchronized behavior, the time series X; »(#) generated
by these systems contain time scales s which are correlated with each other for
which the phase-locking condition (2.85) and the energy condition (2.86) are satis-
fied. Therefore, time-scale synchronization is also realized. In other words, complete
synchronization, lag synchronization, phase synchronization, and generalized syn-
chronization are particular cases of time-scale synchronization. To detect time-scale
synchronization, one can examine the conditions (2.85) and (2.86), both of which
should be satisfied for synchronized time scales.

Note that the phase-locking condition (2.85) may be generalized to the case of
m : n synchronization. To study this kind of regime, the more general relation

|m<p1(sn1, t) — ngy(Sma, t)| < const. (2.87)

should be examined in different ranges of time scales s,; € I} = [s;, < s;5] and
Sm2 € I, = [s21, < spn] instead of Eq.(2.85). For (m : n) synchronization, the time
scale s,,1 of the first system and correspondingly the time scale s,, of the second
system must obey the relation s,,/s,1 = m/n. The energy condition (2.86) remains
unchanged, but different ranges of time scales /; and I, should be used.
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Finally, synchronous dynamics may take place on a time scale changing with
time. In this case one, has to check for fulfillment of the condition

lo1(s(@), 1) — @2 (s (1), 1)| < const. (2.88)

This problem is important when investigating systems whose main rhythm changes
with time. In particular, this kind of behavior is typical for physiological systems
(see, e.g., [31, 32] where the human cardiovascular system was considered).

A measure of synchronization can also be introduced. This measure y (¢) can be
defined as that part of the wavelet energy associated with the synchronized time

scales:
Esync (t)

—
/ E(s,t)ds
0

where the numerator is the energy corresponding to the synchronous time scales
and the denominator is the total energy of the wavelet spectrum. The value of this
measure y = 100% corresponds to regimes of complete and lag synchronization,
while y = 0 is evidence of completely asynchronous dynamics. Intermediate values
of y are manifestations of phase synchronous dynamics in a certain range of time
scales, when the amplitudes of oscillations may remain uncorrelated. Increasing y
values attest to the expansion of ranges related to synchronous time scales. Thus, the
synchronization measure y can be used, not only to distinguish between synchro-
nized and nonsynchronized oscillations, but also to characterize the degree of TSS
synchronization. Since the synchronization measure depends on time, it can be used
to analyze processes leading into or out of the synchronous state.

As a consequence, besides the amplitudes of the wavelet spectrum, the phases (on
different time scales) also inform us about the behavior of these complex systems.
However, detailed consideration of synchronization theory (in particular, time-scale
synchronization based on the continuous wavelet transform) is beyond the scope of
this book. The reader can find a detailed description of different aspects of synchro-
nization theory and its applications in [31, 32, 40, 51-54, 65-70].

y(t) = x 100% | (2.89)

2.3 Discrete Wavelet Transform

2.3.1 Comparison of the Discrete and Continuous Wavelet
Transforms

Section2.2 focused on the continuous wavelet transform, which allows a clear
visual representation of the results of signal processing. In contrast to scientific
research, many technical applications deal mainly with the discrete wavelet trans-
form. Although it is inferior to the continuous wavelet transform from the viewpoint
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of visualizing results, the discrete wavelet transform has considerable advantages,
such as computational speed, a simpler procedure for the inverse transform, etc. It
is important to keep in mind that the discrete wavelet transform is not the discretiza-
tion of the formula for the continuous wavelet transform (in contrast to the discrete
Fourier transform). Differences between the continuous and the discrete wavelet
transforms are sufficient to consider them as two different ways for for analyzing
signal structure.

In the context of the continuous wavelet transform, infinitely differentiable func-
tions represented in analytical form are considered as mother wavelets.'” As a con-
sequence, these functions are characterized by exponential decay at infinity, and the
basis constructed from these wavelets is not orthonormal. Therefore, the continu-
ous wavelet transform provides excessive information, and the values of the wavelet
coefficients are correlated. Nevertheless, in several cases, this feature plays a positive
role, allowing one to obtain a clearer interpretation of the results, e.g., in the form of
skeletons or contour curves [13]. Information obtained from the continuous wavelet
transform are more easily analyzed than other ways of studying non-stationary pro-
cesses (see, e.g., [12, 72]).

Using complex functions, the continuous wavelet transform can be used to study
the evolution of such characteristics as the instantaneous amplitude, frequency, and
phase of rhythmic processes identified in the signal structure. One may also consider
the set of phases corresponding to different spectral components of the signal [51-
53, 65]. For these reasons, the continuous wavelet transform is a promising tool for
solving many neurophysiological problems. Thus, the continuous wavelet transform
is useful in the case when analyzing the synchronous dynamics between neurons or
groups of neurons, or diagnosing the presence/absence of rhythmic components in
the activity of a neuron group [73].

Although the discrete wavelet transform can use non-orthogonal basis functions
(e.g., frames) [19], orthogonal (or almost orthogonal) bases are most commonly used
since this allows one to represent the signal more precisely and simplifies the inverse
transformation. In contrast to the continuous wavelet transform, the wavelets used
in the framework of the discrete wavelet transform have no analytical expression,
with the exception of the Haar wavelet (2.42) [18]. The wavelets are specified in
the form of matrix coefficients obtained by solving certain equations. In practice,
the concrete form of the wavelet function in the explicit form is not considered, and
only sets of coefficients are used to define the wavelet. This results in a series of
elementary operations that allow the realization of fast algorithms for the discrete
wavelet transform. The basis is created using an iterative algorithm that varies the
scale and shifts the single function. However, the detailed description of the essential
differences between the discrete and continuous wavelet transforms is a mathematical
problem that goes beyond the subject of our book, and is discussed, e.g., in [74].

The absence of an analytical expression for wavelets used in the discrete wavelet
transform leads to a certain inconvenience with the discrete wavelet transforma-

12For practical purposes, mother wavelets can also be constructed from tabulated segments of time
series (see [30, 71]).
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tion. However, this inconvenience is compensated by many useful properties of the
discrete wavelet transform. For example, it provides the possibility of using fast algo-
rithms (see, e.g., [75]), which is important for practical purposes, e.g., for coding and
transmitting information, or for compressing data. The discrete wavelet transform
is used, for instance, in the framework of the JPEG graphic format and the MPEG4
video format, in computer graphics for editing three-dimensional images, etc. The
algorithms of the fast discrete transform are applied when processing experimental
data.

An important feature of the wavelet transform is shift invariance. This means that,
if the signal is shifted along the time axis, the wavelet coefficients are also shifted
and, after relabeling, one can find a relationship between the new coefficients and
those prior to the shift. This feature is easily illustrated for the continuous wavelet
transform, but the relationship between the coefficients on different time scales is
more complicated for the discrete wavelet transform. Estimating the wavelet coef-
ficients provides a way to solve the problem of image identification. More efficient
algorithms can also be created using a combination of wavelet analysis and neural
networks.

The majority of wavelet functions used in the framework of the discrete wavelet
transform are irregular. For practical purposes, such properties as the regularity, the
number of zero moments, and the number of wavelet coefficients exceeding a cer-
tain value are important when selecting the wavelet function. A large number of
zero moments makes it possible to realize effective data compression, since wavelet
coefficients at small scales tend to be zero at those points where the function is
rather smooth, and as a consequence, these coefficients may be neglected without
significant loss of information. In this case, however, the wavelet function becomes
broader and this results in a decreased speed of computing. Thus, the choice of basis
function is determined by specific features of the problem to be solved. Typically, the
discrete wavelet transform is used to solve technical problems (signal coding, com-
puter graphics, image recognition, etc.), whereas the continuous wavelet transform
is applied in scientific studies related to the analysis of complex signals.

Wavelet analysis, as applied to neurodynamics and neurophysiology tasks, pro-
vides many possibilities for effective recognition (or identification) of signal shapes.
Additionally, wavelets are able to filter noise, artifacts, and random distortions from
experimental data. Indeed, neurophysiological data often contain artifacts such as
rapid changes in the amplitude and other local variations of the signal, which may
be caused by the neurophysiological processes themselves or by equipment failures,
external factors, etc. Filters based on the Fourier transform are useless for elimi-
nating artifacts, since information about them is contained in all coefficients of the
transform. Filtration with wavelets is more effective, since it is possible (perhaps in
automatic regime) to detect, localize, identify, and eliminate artifacts, having ana-
lyzed the wavelet coefficients on small scales. Digital filtration based on wavelets
can be used to clear noisy signals from experimental data at the preprocessing stage.
Wavelets are also widely used to recognize signals with similar shapes in the pres-
ence of noise. In neurophysiology, such problems arise in the tasks of EEG pattern
recognition, identification of impulse activity of single neurons from extracellular
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recordings of electric potentials, etc. In other words, the reason for the active use of
wavelets in modern studies is that similar problems arise in the digital processing of
different signals.

2.3.2 General Properties

The continuous wavelet transform discussed in Sect. 2.2 deals with the expansion of
the signal f(#) when the basis is obtained from a soliton-like function ¥ (¢). In this
approach, the scale transformation is carried out for only one function (the mother
wavelet). The multi-scale analysis is based on a different concept. It uses orthonor-
malized wavelet bases to characterize the ‘increment of information’ required for the
transition from the rough description to the more detailed one [18]. This approach
was used for the first time in problems relating to image analysis. It provides suc-
cessive approximations of the given signal f(¢) at different scales. In fact, the signal
is approximated for certain intervals, and deviations from the approximating func-
tions are analyzed. The approximating functions are related to each other on different
scales and orthogonal to each other with the shift along the time axis. This means that
only specific functions can be used for the approximation. To explain the ideology of
multi-scale analysis, we introduce the necessary definitions using the Haar wavelet
as the most simple example.

To analyze the successive approximations for the signal on different scales,
the approximating functions should be chosen to satisfy an additional requirement
imposed by the relationship between the approximating functions on different scales.
In the ideal case, it is better to use a single function ¢(#) to approximate the signal on
both the large and small scales. Further, the detailed analysis of the signal structure is
carried out at the selected scale with the wavelet 1/ (¢). The function ¢(#) is called the
scaling function or father wavelet. For the scaling function, the following property
is fulfilled:

/"0 p(ndr =1, (2.90)

[e¢]

i.e., its mean value is not equal to zero as for the mother wavelet ¥ (¢). The functions
@(t) and ¥ (¢) of the Haar wavelet are shown in Fig. 2.24. Scaling of the functions
@(t) and ¥ (¢) results in the equations

() =2 + Q2 — 1),

291
() = p20) — g2t — 1), 9D
from which the difference between these functions is clear. When the signal is ana-
lyzed, the functions ¢(¢) and ¥ (¢) play the role of high-pass and low-pass filters,
respectively.
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Fig. 2.24 Scaling function
and Haar wavelet (p W

-1

By analogy with the basis of the continuous wavelet transform, we introduce the
notation

1 t
@ix(t) = mw <E — k) . (2.92)

For the given values of the scale and shift, characterized by the parameters j and &,
the approximation coefficients of the signal x(¢) are

Sjk = / x();k(t)dr . (2.93)

For the selected scale the resulting coefficients are referred to as the discrete approx-
imation of the signal on the scale j. Summing the scaling functions with the corre-
sponding coefficients provides the so-called continuous approximation of the signal
x(t) at the selected scale [76]:

o0

Xt =Y sjxpiilt) . (2.94)

k=—00

On small scales, this continuous approximation is very close to the initial signal x (¢).

As an illustration, let us consider the approximation of one period of the har-
monic function shown in Fig.2.25. Using the Haar scaling function means that on
different scales the signal is replaced by the averaged values. For large j, it results
in a very rough representation of the harmonic function, but for the maximum pos-
sible resolution level j = O (determined by the discretization step), the continuous
approximation tends to the initial signal x ().

Using the Haar wavelet, we thus have a simple illustration of the main idea of
multi-scale analysis, namely the construction of a set of approximating function
spaces. In fact, we are dealing with the histogram approximation of the signal,
with the orthogonal complements adding more details on the smallest scales [76].
Figure 2.26 shows examples of the calculation of two successive approximations and
the complement to the second of these.
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j=0

Jj=0

Fig. 2.25 Approximation of the harmonic function on different levels of resolution j

Fig.2.26 Approximations of a half period of the harmonic function on the scales j = 2 and j = 3,
together with the complement to the approximation on the scale j = 3, allowing one to move to the
next scale
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Fig. 2.27 Scaling function 2.0

(solid line) and the

Daubechies wavelet D* 15F /l
(dashed line) -

Wavelets and the corresponding scaling functions used in practice are usually
characterized by a more complicated form (see, e.g., Fig.2.27). However, all equa-
tions written for Haar wavelets remain applicable with other bases. We thus pursue
our discussion of the simplest case, assuming that the results can be extended to other
wavelets.

The concept of continuous approximation can reveal a trend in the analysed pro-
cess at the selected scale, with further detailed wavelet-based analysis of fluctuations
relative to this trend. On a certain arbitrary scale, any function x(¢) € L*(R) can be
expanded in a series

X() =Y 8k + Y Y disia0) (2.95)
k J<in k
where
djx= / x();x(t)de (2.96)

are the wavelet coefficients. The first sum is the approximation of x (#), whereas the
second sum provides the details of this function on different scales.
For the selected scale j,, one can write

x(t) =x;,(0) + > pi0) (2.97)

J=<Jn

whereas the function
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i) ="y djitrjx(t) (2.98)
k

characterizes the detailed structure of the signal on the scale j. According to (2.97),
one obtains

X1 (0) = x50 + (1) (2.99)

i.e., if the detailing function w; (t) of the signal is added to the approximation on the
selected scale j (this characterizes fluctuations relative to the approximated trend),
the approximation on the next, more precise level of resolution (j — 1) is obtained.
This is the main idea of multi-scale analysis.

In general, the relationship between the functions ¢(¢) and v (¢) and their scaled
and shifted modifications can be written in the form

2M—1
9() =2 ot —k),

k=0 (2.100)

() =2 ) &t —k),

k=0

where the factor +/2 is connected with the traditional form of the fast algorithms and
normalization of the functions ¢; ;(¢) and ¥ (¢), whereas the parameter M deter-
mines the wavelet length, e.g., M = 1 for the Haar wavelet. Note also the relationship
between the coefficients i and g; [76]:

gk = (=D*hay—i1 . (2.101)

These coefficients are determined from general properties of the scaling functions
and wavelets.

As an example, let us consider calculation of the coefficients for the case M = 2.
Since the relatively shifted scaling functions are orthogonal, we have

/oo et — Ddr = 3 - (2.102)

oo

Using (2.100), a first restriction on the coefficients /4 is obtained:

Z hihiior = Sor - (2.103)
k
The condition
o0
/ t"Y(@)dt =0, (2.104)
—00
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excluding slow nonstationarity (the polynomial trend) forn =0, ..., M — 1 gives
D kg =) (D" =0. (2.105)
k k

Finally, from the normalization condition (2.90), one obtains

S he=v2. (2.106)
k

In the particular case (M = 2), the last 3 equations written in explicit form result in
the system
hohy +hih; =0,
ho—hi+hy—h3=0,

—hi +2hy —3h3 =0, (2.107)
h0+h1 +h2+hg :ﬁ
Solution of these equations [74] gives the coefficients
ho = — (1++/3)
0= G ,
1
hy = m@ ++/3),
(2.108)

1
hy=——0B-+3),
2 4\/5( V3)

1
hy; = ——(1 —+3),
3 4«/5( V3)

which determine the Daubechies wavelet D* (the upper index corresponds to the
number of coefficients /). For wavelets of higher order, the coefficients hj; can
be obtained only numerically, but with any required accuracy. The resulting set of
coefficients is typically represented in the form of a vector. As already mentioned, in
practice, the functions ¢(¢) and v (¢) are not considered in the explicit form. With the
pyramidal expansion algorithm and the vector £, it is easy to estimate the coefficients
sjrand dj.

The procedure of the pyramidal algorithm is shown in Fig. 2.28. In the case of the
Daubechies wavelet D*, the discrete wavelet transform with time series x (i) may
be represented as multiplication of the vector of the analyzed data by the matrix
constructed from the vector ki, by its translations, viz.,
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Fig. 2.28 Schematic |
representation of the

S
pyramidal expansion / \
algorithm

[ ]

s d
Che hy hy hs 7
h3y —hy hy —hy
ho hy hy hs
h3 —hy hy —hy
N , (2.109)
ho hy hy hs
h3 —hy hy —hg
l’lz I’l3 hO hl
| 71 —ho h3 —h; |

where empty matrix elements correspond to zero values.
For the sequence x (i) consisting of 8 elements, the pyramidal expansion is imple-
mented as follows. First, after multiplying the vector

[x1 X2 X3 X4 X5 X¢ X7 Xg ]T (2.110)

corresponding to the scale j = 0 by the 8 x 8 matrix (2.109), the set of coefficients
s and d are obtained:

[s11 dit 12 dia 513 dis s1a dis ] (2.111)

The coefficients d; ; are not used in the following transformations and they should
therefore be separated by reorganizing the vector elements

[s11 812 513 514 | di1 dia dis d14]T . (2.112)

Secondly, the 4 x 4 matrix (2.109) multiplies the vector of s-coefficients to give the
vector

[ 521 da1 522 doy | diy di di3 dig ]T . (2.113)
Rearranging the coefficients, one obtains

[ 521 522 | day doa | diy dip dy3 d14]T . (2.114)
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Thus, the wavelet coefficients characterizing the signal at different scales are sepa-
rated. The resulting coefficients can be used for signal recognition, e.g., to recognize
the impulse activity of single neurons from the common activity of the neuron ensem-
ble which is considered in the next chapter.
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Chapter 3 ®)
Analysis of Single Neuron Recordings e

Abstract In this chapter, we consider several problems where wavelets provide
information about the dynamics of neuronal systems that cannot be obtained with
ordinary frequency or time domain methods. We discuss the possibility of studying
intracellular dynamics and information encoding by individual neurons. We charac-
terize the dynamical stability of the neuronal response and propose an approach to
quantify wavelet coherence.

3.1 Introduction

The central nervous system (CNS) of living beings processes a large amount of
sensory information that is received through interaction with the external world. A
study of how this information is encoded, represented, and processed is one of the
most important problems in the natural sciences.

Visual, auditory, tactile, gustatory, and olfactory stimuli are encoded by the cor-
responding receptors into sequences of electrical pulses (spikes) that are transferred
to the first neurons, i.e. to the areas of the CNS that carry out preprocessing. Sen-
sory information passes through several other processing stages before reaching the
cortex, where an internal representation (or image) of the external world is formed.

The complexity of experimental studies of the corresponding processes increases
significantly with each subsequent stage. Though the molecular and ionic mecha-
nisms underlying encoding are rather well understood [1, 2], the properties of spike
trains as information carriers remain less clear: How do these trains reflect the enor-
mous complexity and variety of the external world? There are many open questions
regarding the principles of information encoding by individual neurons and their
networks, even at the initial information processing stage.

In Chap. 2 we provided a short introduction to the theory and practice of wavelet
analysis. Let us now apply this knowledge to several problems in which wavelets can
offer information about the dynamics of neuronal systems that would be inaccessible
to ordinary frequency or time domain methods.

In general, these problems can be separated into groups depending on the chosen
mathematical approach, i.e., either the continuous or the discrete wavelet transform.
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However, as already mentioned, both approaches can provide useful information
about the object under study, although this information may differ. Therefore, a
better choice is to separate tasks according to the subject of research. In our case it is
reasonable to sort out problems according to the spatial scale and complexity of the
analyzed signals. In this chapter we deal with single neuron recordings, i.e., signals
recorded from one neuron, even if it is a part of a network. We also consider different
types of recording: in studies of intracellular dynamics we analyze continuous signals
(data from interference microscopy), whereas for the investigation of information
processing we use spike trains (point processes) extracted from extracellular single
unit recordings.

3.2 Wavelet Analysis of Intracellular Dynamics

At the single neuron level, cell activity includes a large number of biochemical pro-
cesses that occur on different time scales in the membrane and in the cell cytoplasma.
Traditional experimental approaches such as, e.g., fluorescent microscopy, intracel-
Iular recordings of the membrane potential, and patch-clamping provide ways to
analyze features of biochemical, metabolic, and electrical processes. Often, how-
ever, they are highly invasive and may have a significant impact on the intracellular
dynamics.

Since intracellular dynamics can be extremely rich and manifests itself on different
time scales, the wavelet approach is very useful. It can provide information about the
interplay between different processes and help to achieve a deeper understanding of
intracellular regulatory mechanisms. In this section we discuss a study of intracellular
dynamics using interference microscopy and wavelet-based techniques.

3.2.1 Interference Microscopy and Subcellular Dynamics

Interference microscopy measures the optical path difference between the beam
transmitted through an object and a reference beam [3, 4]. The resulting value is
normalized to the wavelength to estimate the so-called phase height of the object,
which is given by
d = i @y, (3.1)
2r 2

where ¢y is the initial phase, ¢ is the phase shift that occurs after the laser beam
is transmitted through the analyzed object, A is the laser wavelength, and @ is a
constant shift of the phase height depending on the selected reference point.

For inhomogeneous objects characterized by a refractive index that varies along
the vertical direction z, the phase height is estimated as
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(a) (b)

Fig. 3.1 Isolated pond snail neuron. a Optical photograph of the neuron. b Phase height landscape
of the same neuron obtained by interference microscopy (wavelength A = 532 nm). Bars in the x
and y directions correspond to 10 jum, and the bar in the z direction corresponds to a phase height
of 200 nm (for details, see [5])

z
@(_x’ y) = /(; [nobj(-x7 v, Z) - ns]dz - ¢07 (32)

where 7, is the constant refractive index of the physiological saline and nqp;i(x, y, 2)
is the refractive index of the cell at a point (x, y, z) placed at the distance z from the
mirror. The integration limit Z is selected to be above the whole object.

By scanning a cell in the horizontal (x, y) plane, the interference microscope mea-
sures the phase height landscape @ (x, y). Figure 3.1 shows side-by-side an example
of an optical photograph and a phase height landscape of an isolated pond snail
neuron. Movements of, e.g., organelles in the cell change nq;(x, y, z), and hence
the phase height in the corresponding place. By scanning a cell many times with
constant time interval, we can obtain frames as in a movie. The resulting dynamics
of the phase height @(x, y, f) can then be used to monitor different intracellular
processes.

Here we consider results obtained from experiments performed with isolated
neurons from the buccal ganglia of the pond snail L. stagnalis. We measured the
phase height at a single point (x, y) inside the cell. Figure3.2a shows the power
spectrum of such a signal. It exhibits a number of characteristic frequencies near
0.1, 0.3, 0.6, 1.2, and 3.0Hz. These rhythms are caused by movements of protein
macromolecules, changes in ion concentration near the membrane, fluctuations in
the membrane potential, etc. Many of these intracellular processes interact with one
other.
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Fig.3.2 Analysis of the phase height dynamics reflecting intracellular processes. a Energy spectrum
exhibiting several peaks. Frequency peaks correspond to different rhythmic components in the
intracellular dynamics. b Extracted ridges of the wavelet coefficients, obtained after the wavelet
transform of the phase height

3.2.2 Modulation of High Frequency Oscillation by Low
Frequency Processes

To reveal possible interactions between different rhythmic components, we applied
the continuous wavelet transform with the Morlet mother function to the phase height
signal. Then we identified instantaneous frequencies and amplitudes of rhythmic
contributions.

Figure 3.2b illustrates a typical example of the dynamics of instantaneous fre-
quencies. Rhythmic components in the range from 0.1 to 0.3 Hz have almost constant
frequency, while instantaneous frequencies of rhythms near 1 and 3 Hz show slow
oscillations [5, 6]. Thus, the processes characterized by long time scales modulate
high-frequency oscillations of the phase height. This type of modulation is a known
phenomenon in living systems. As an example, we can mention the modulation of
the heart rate by breathing. The duration of beat-to-beat intervals varies at different
stages of the breathing process.

There exist several types of low frequency modulation of a high-frequency pro-
cess. During modulation, the amplitude A(¢) and/or the frequency w(t) of a fast
oscillation x (¢) can vary with the frequency of a slow process z().

In the case of so-called amplitude modulation (AM), we can write

At) = Ap+ AAz(1), (3.3)
where Ay is the base-line amplitude of the fast oscillation and A A is the maximal
deviation of the amplitude (for convenience, we assume that |z(7)| < 1). A single-

tone modulated signal (with single frequency wy) is given by

x(t) = A(t) cos(wot + ¢o) = Ao[l + maz(t)] cos(wot + ¢o), 3.4)
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where m, = AA/Ay is called the amplitude modulation index or the modulation
depth, and ¢ is the initial phase. The modulation depth is a bounded constant with
m, € [0, 1]. If m, = 0, then no modulation exists, whereas m, = 1 corresponds to
maximal modulation.

Frequency modulation (FM) is another type of modulation. In this case the instan-
taneous frequency of the signal x(#) can be written as

w(t) = wy+ Awz(t) 3.5)

where wy is the base frequency and Aw is the maximal deviation of the frequency.
Then an FM signal can be written as

x(1) = Agcos [ (1) + g0, W) = / w(s)ds, (3.6)
0

or using (3.5),

x(t) = Agcos |:a)0t + o + Aw/ z(s)ds:| . (3.7
0

In the case of a single-tone FM-signal z(¢) = cos(§2¢ + &) and therefore
x(1) = Ag cos [wot + @o + my sin(21 + Do), (3.8)

where my = Aw/$2 is the frequency modulation index, which characterizes the depth
of modulation of the FM signal, which can take values exceeding 1.

In terms of modulation, slowly varying frequency ridges shown in Fig.3.2b can
be classified as FM processes.

3.2.3 Double Wavelet Transform and Analysis of Modulation

The nonstationary dynamics which is frequently observed in living systems always
has multi-tone oscillations. Then the equations describing modulated processes
become complicated and the values used to compute modulation indexes become
time-dependent. To describe such phenomena and their structure, a double wavelet
transform has been proposed [7].

First, we apply an ordinary wavelet transform to the analyzed signal. Then the
second wavelet transform is applied to signals constructed from instantaneous fre-
quencies (or amplitudes) of modulated rhythmic processes. Again, as in the first
wavelet transform, CWT coefficients are estimated and the ridges of the wavelet
energy are identified. Since the wavelet transform is applied twice, this method has
been called the double-wavelet analysis [7]. A similar idea called the secondary
wavelet transform has been proposed independently by Addison and Watson [8, 9].
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Fig. 3.3 Double wavelet analysis of the phase height dynamics of single cells. a Frequency modu-
lation of 1 and 2—4 Hz rhythmic components by slow processes. Modulation depth vs frequency of
the slow process. b The same as in (a), but for amplitude modulation. ¢ Typical normalized spectra
of the modulation processes

This approach allows one to obtain a time series for such characteristics as the ampli-
tude (or frequency) deviation, time-varying modulation indexes, and local spectra of
modulation [10].

In addition to the FM process shown in Fig.3.2b, analysis of the phase height
dynamics can reveal modulation of the amplitude of high-frequency oscillations by
slower dynamics. To obtain statistical information about features of AM and FM phe-
nomena in the dynamics of intracellular processes, we repeated the above described
experiments 200 times [5]. Then for each measurement we estimated the modulation
frequencies and modulation indexes (modulation depths) using the double-wavelet
technique.

Figure 3.3a and b illustrate the distributions of the modulation indexes for FM and
AM, respectively. In the FM case, there is clear difference between the two rhythms.
The modulation depth is higher for the 2—4 Hz oscillation. In the AM case the 2-4 Hz
rhythm generally has a higher modulation frequency. Figure3.3c shows a typical
example of the power spectra of the modulation processes for each rhythm. Thus,
the rhythmic components near 1 and 3Hz are modulated by different intracellular
processes. The rhythm near 1 Hz is mainly modulated by a process with ultralow
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frequency around 0.1 Hz, while the 3 Hz rhythm is modulated by a higher-frequency
dynamics.

In conclusion, the double wavelet analysis revealed the presence of an interac-
tion between slow and fast rhythmic intracellular processes. This interaction occurs
in the form of modulation. We associate low-frequency dynamics with processes
occurring in the plasma membrane, while high-frequency processes are associated
with cytoplasmic events. Evidence for such an assumption is discussed in [11].
Thus, low-frequency oscillations are significantly more pronounced in the mem-
brane region than in the centre of neurons, while the 20-25 Hz rhythms display the
opposite behaviour [6]. Moreover, independent experiments on the same type of
neurons demonstrated the existence of thythmic dynamics. In particular, it has been
established [12] that frequencies in the range of 0.2-0.4 Hz depend on the activity
of Ca?*t channels. It has also been found [13] that neurons in invertebrates possess
intrinsic electrical activity with frequencies 1 and 1.5-3 Hz. The suggestion about the
origin of high frequencies (20-25Hz) from cytoplasm processes accords with exper-
imental data on vesicle movements in neurons (8—40 Hz) obtained by light-scattering
measurements [14].

The double-wavelet approach allows a better understanding of neuron functions
and features of intracellular dynamics, both under normal conditions and under differ-
ent external influences. This approach provides quantitative measures characterizing
the interplay among intracellular processes and allows one to diagnose changes in
this interplay when there are external stimuli (see, e.g., [6]).

3.2.4 Modulation of Spike Trains by Intrinsic Neuron
Dynamics

Neurons encode and exchange information in the form of spike trains. Figure 3.4a
shows a typical example of the extracellular potential recorded in the vicinity of a
projecting neuron in the gracilis nucleus. The trace has a number of spikes (short
pulses) that are clearly distinguishable over the background activity. In Chap. 4, we
will discuss the problem of spike identification and sorting in more detail. Here
we just cross-check that all spikes belong to the same cell. This can be done by
superposing spikes (Fig.3.4b). We can verify that all of them have a similar shape
and hence can be classified as emitted by only one neuron.

The first part of the recording corresponds to spontaneous neuron dynamics (no
external stimulation), while the second represents the neuron response to stimuli
(a slight pricking of the rat foreleg with frequency of 1Hz). We observe that the
stimulation drastically changes the firing rate of the neuron. Moreover, the structure of
neural firing shows some signs of modulation. The analysis of modulation phenomena
discussed in Sect. 3.2.3 can also be applied to this spike train. In general, this approach
can lead to a deeper understanding of the information encoding used by neurons.
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(b)

0 L, sec 220 t

Fig. 3.4 Experimental recording of spiking activity in a single neuron. a Extracellular potential
with spikes generated by only one projecting neuron in the gracilis nucleus of a rat. The arrow
marks the beginning of external (tactile) stimulus. b Superposed spikes exhibit the same shape,
which confirms that they belong to the same neuron

The structure of interspike intervals without external stimulation is quite irregu-
lar, whereas under stimulation a well pronounced rhythm appears at the frequency
of the external stimulation (Fig.3.5a, b). To reveal the time dynamics of different
rhythms in the spike train, we apply the wavelet transform (with the Morlet mother
wavelet) to interspike intervals. The spontaneous neuron dynamics exhibits several
rhythms. The two most powerful of these correspond to 8 and 20 s interspike intervals
(Fig.3.5a, c, peaks at 0.05 and 0.125Hz). Under stimulation, a clear peak appears
in the power spectrum at the driving frequency of 1 Hz and the ultralow frequency
(0.05Hz) disappears. However, the low-frequency dynamics observed under spon-
taneous conditions remains in the spectrum (Fig. 3.5b).

Figure 3.5¢, d show the time—frequency spectrograms. Under control conditions
(spontaneous firing), there are several rhythms whose frequencies “float” around
certain mean values. The sensory stimulus excites a new oscillation at 1 Hz, which
again shows some oscillations. Thus, the neuron has some intrinsic dynamics even
under stimulation. This provides evidence for a nonlinear interaction between the
rhythmic components in neuron dynamics and raises an open question: Is it possible
to describe the process of information encoding in terms of frequency modulation?

Indeed, one possible interpretation of the oscillation observed in the main 1 Hz
rhythm (Fig.3.5d) can be given in terms of frequency modulation. The idea is that
the intrinsic slow dynamics of the neuron modulates the stimulus driven frequency.
Therefore, information encoding by this neuron is not trivial, but includes additional
features describing the neuronal state, feedbacks, and even some temporal history of
oscillations. On the basis of this hypothesis, modulation features such as the central
frequency, depth index, etc., can be estimated using the double-wavelet technique
(Sect.3.2.3).

The instantaneous external frequency 1 Hz is considered as a new signal for the
CWT. As a result, all thythms occurring in the modulation will be revealed and
the depth of modulation can be estimated separately for each rhythm. Figure 3.6
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shows that the structure of low-frequency modulating signals is quite similar to
the spontaneous dynamics of the neuron. This indirectly confirms the hypothesis.
However, physiological interpretation of the observed phenomena and direct ways
of testing the hypothesis require more detailed analysis.
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3.3 Information Encoding by Individual Neurons

In Sect.3.2.4, we saw that neurons can encode sensory stimuli in a rather complex
way. Besides extrinsic stimuli, some intrinsic neuronal dynamics enters the output
spike train transmitted to further relay stations of the central nervous system. Let us
now consider information encoding in more detail.

3.3.1 Vibrissae Somatosensory Pathway

The rodent vibrissae system is one of the most widely used experimental models for
the study of sensory information handling. The rat perceives the main information
by means of the vibrissal pad or “whiskers” (Fig.3.7a). This is a highly specialized
and sensitive piece of apparatus that conveys tactile signals via the trigeminal system
to the animal’s brain (Fig.3.7b) [15].

The four longest vibrissae, called straddlers, are labeled by the letters «, 8, y, and
8. The other vibrissae are placed on the upper lip in five rows labeled by letters A, B,
C, D, and E. In each row, the vibrissae are numbered, e.g., A|, Ay, etc. The length of
the vibrissae varies from 30-50 to 4-5 mm, thus providing simultaneous contact of
their tips with a tangible surface of an object during whisker movements. The different
lengths and widths of wibrissae provide them with different oscillatory features. This
allows them to cover the wide range of frequencies required for effective perception
of objects with different tactile characteristics.

Rats actively use their whiskers to detect and localize objects, and also to dis-
criminate surface textures. By sweeping the whiskers at rates between 5-20 Hz, they
can localize and identify objects within a few whisking cycles or even with a single
vibrissa [16]. Thus relatively short temporal, but not spatial mechanical information,
dominates in the object detection.

Mechanical encoding of different textures is attributed to the whisker resonance.
The vibration amplitude across the whisker array codifies the texture (see, e.g., [17]).
It occurs also in awake rats and shapes natural whisker vibration. However, it seems
that textures are not encoded by the differential resonance. Instead, slip-stick events
contribute to a kinetic signature for texture in the whisker system, which suggests
the presence of temporal structure in neural spike trains under these experimental
conditions [18]. Thus the efficacy of the sensory information transmission and pro-
cessing in the time domain resides in the possibility for multiple cells to generate
coherent responses to a stimulus, which constitutes the neural code.

Although there has been much discussion about what type of neural code is
employed by each individual neuron or neuron group, growing experimental evi-
dence shows that the same neuron may use different coding schemes (see reviews in
[19, 20]). The temporal correlation of multiple cell discharges has also been found
important for information transmission to the cortex and its modulation by corticofu-
gal feedback (see, e.g., [21-23]).
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Fig. 3.7 Rat vibrissae system. a Illustration of vibrissae and their labeling. b Sketch of the main
steps in the pathway of tactile information processing

Somatosensory information from the whiskers arrives at the trigeminal complex,
organized into one motor and three sensory nuclei, including the principal nucleus or
principalis (Pr5), the spinal nucleus (Sp5), and the mesencephalic nucleus (Fig. 3.7b).
In turn, Sp5 consists of three subnuclei called oralis (Sp50), interpolaris (Sp5i), and
caudalis (Sp5c). Information from Pr5 and Sp5 goes to the contralateral thalamus
(VPm) and then to the primary somatosensory (SI) cortex. There is also a feed-
back monosynaptic projection with an extremely precise somatotopy from SI to the
trigeminal nuclei.

Over the whole pathway, primary afferents and neurons form spatial structures
called barrelettes, berreloids, and barrels in the trigeminal complex, VPm, and SI,
respectively. These spatial structures replicate the patterned arrangement of the
whisker follicles on the snout (for details see, e.g., [24-27]).
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3.3.2 Classification of Neurons by Firing Patterns

In electrophysiological studies, the classification of neurons according to their firing
patterns for spontaneous activity and under stimulation is widely accepted. Neu-
rons can be divided into three groups according to their mean firing rate (MFR)
under spontaneous conditions: silent neurons (SN) with MFR < 0.1 spikes/s, low-
frequency (LF) neurons with 0.1 < MFR < 1.5 spikes/s, and high-frequency (HF)
neurons with MFR > 1.5 spikes/s.

For tactile whisker stimulation, short air puffs directed toward a single vibrissa are
usually used. This kind of stimulation produces vibrations of the individual whisker
similar to real behavioral conditions. In experiments, the duration of air puffs can
be varied. We used three values: short 10 ms, intermediate 50 ms, and long 100 ms
pulses. Trigeminal neurons fired from 1 to 8§ spikes in response to each onset of tactile
stimulation of 10 and 50 ms duration. For the long (100 ms) stimulus, some of the
neurons produced from 20 to 40 spikes.

Taking into account the neural responses to the 100 ms stimuli, we can classify
all neurons into tonic and phasic [28]. Figure 3.8 shows an example of each neuronal
type. Phasic neurons (PhN) generate a few spikes under a change of stimulus phase,
i.e., at the beginning and/or the end of the stimulus (Fig. 3.8a, c¢). Tonic neurons (TN)
produce large spike trains lasting for the whole stimulation period (Fig. 3.8b, d).

According to the standard electrophysiological analysis, the three nuclei have a
quite different percentage of SN, LF, and HF cells (Fig.3.9a). There is also some
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Fig. 3.8 Classification of neurons into phasic and tonic types, according to their response to a long
stimulus. a Typical response of a phasic neuron to a single stimulus. The extracellular potential
recorded in the trigeminal nucleus is shown. The upper bar corresponds to the duration of the
stimulus. ¢ Peristimulus histogram of a phasic neuron made over 50 identical stimuli (2 ms bin). b
and d The same as in (a) and (c), but for a tonic neuron



3.3 Information Encoding by Individual Neurons 87

(@) (b)
HF e LFmm S S—neurons LF-neurons HF-neurons
100 0.08 1.6 20
80 = 16
P B 0.06 1.2
S 60 < z Z12
El Zo04 Zos 2
=40 & g 28
S
20 0.02 I 0.4 i i 4
0 ’ 0 0 0
Pr5 Sp5o Sp5i Pr5 Sp5o Sp5i Pr5 Sp5o Sp5i Pr5 Sp5o Sp5i
(0 (d)
Ph =T Total Ph-neurons T-neurons
100 5 6 0.5
80 4 0.4
] 4
S60 z3 d 203
3 = = =
; 40 ) = 5 202
20 I I 1 0.1 I
, [ | , 0 m 0 m , 1]

Pr5 Sp5o Sp5i Pr5 Sp5o Sp5i Pr5 Sp5o Sp5i Pr5 Sp5o Sp5i

Fig. 3.9 Statistical properties of neurons in Pr5, Sp5i, and Sp5o trigeminal nuclei. a Distribution
of neurons according to spontaneous activity: SN silent, LF low frequency, and HF high-frequency
neurons. b Mean spiking frequencies of S, LF, and HF cells. ¢ Distribution of neurons according
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deviation in the mean firing frequencies among the nuclei (Fig. 3.9b). Thus there is
a difference in the spontaneous neural activity among the nuclei.

The three nuclei have similar percentages of tonic and phasic cells (Fig. 3.9c), and
hence no conclusions about dissimilarities among them can be drawn solely on the
basis of the type of response to stimulation.

Nevertheless, the Sp5i nucleus appears to be different from the Pr5 and SpSo,
which in turn have some degree of similarity. Indeed, analysis of the firing rate
reveals:

e Similarly low spiking frequency among neurons from Pr5 and Sp5o compared
with Sp5i neurons for all (S, LF, and HF) groups (Fig.3.9b).

e Ph cells from Pr5 and Sp50 nuclei have 2-3 times lower frequency than those from
Sp5i (Fig. 3.9d). The opposite behavior is observed for T neurons.

3.3.3 Drawbacks of the Traditional Approach to Information
Processing

In Fig. 1.1, we already gave an example of the firing dynamics of a Pr5 neuron
under periodic stimulation of a vibrissa in its receptive field. Even under the con-
dition of a completely repeatable stimulus, the neuronal response is far from being
constant. During the first few seconds, the neuron exhibits a maximal firing rate
(about 27 spikes/s), but the rate then quickly falls to about 10 spikes/s, and further
fluctuates for more than 20s. The neuron behavior is thus essentially nonstationary.
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However, most traditional approaches, such as peristimulus histograms, ignore this
observation.

Traditional analysis of neural spike trains has often been performed assuming
that segments of the experimental time series are approximately stationary and that
such segments can be studied by means of statistical techniques such as correlation
measures or Fourier analysis (see, e.g., [29-31]). This approach is obviously useful if
the nonstationarity has a time scale longer than the rhythms of interest. However, this
is not always the case. Instantaneous frequencies of various rhythmic components can
exhibit complex irregular fluctuations, that is, the nonstationarity may be associated
with higher frequencies as well. Previous results [21] have shown that Fourier analysis
is hardly applicable in such conditions. An alternative is to use the wavelet technique,
which can be successfully applied to analyze the temporal structure of neuronal
spiking over a wide range of time scales [10, 21].

3.3.4 Wavelet Transform of Spike Trains

For information processing it is reasonable to assume that neurons produce and
exchange stereotypical events or spikes. Thus, only the timings of the spike occur-
rences carry a message. Consequently, before applying any analysis, spikes in exper-
imental data should be identified and sorted among different neurons. This procedure
will be discussed in detail in Chap. 4. Here we assume that this problem has already
been solved.

Figure3.10a illustrates a typical example of a high-pass filtered extracellular
recording (fee = 300Hz) made in a Pr5 nucleus. Four spikes coming from a single
cell can be seen by the naked eye. However, in more complex situations, advanced
spike sorting techniques must be used, including those based on the wavelet trans-
form. The results of data preprocessing given in this section are based on the wavelet
shape-accounting classifier (WSAC) (see Sect.4.4).

Once spikes of a single cell have been identified, they can be represented as a
series of §-functions,viz.,

n(t) = Za(t —1), (3.9)

where {#;} is a set of time instants corresponding to spike firing (Fig.3.10a). Then
we can apply the continuous wavelet transform to the signal (3.9).

Let us consider the CWT with the Morlet function. The timescale s plays the role
of the period of the rhythmic component. Given a characteristic timescale (e.g., the
period) s, the resolution of the wavelet in the time and frequency domains is given
by

c

8t = ckos, Sw = —, (3.10)
koS

where c is a constant of the order of unity. There is a trade-off between the frequency
and time resolutions: small values of k( provide better time resolution, whereas large
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Fig. 3.10 Wavelet analysis of a spike train. a Conversion of extracellular recording into a spike
train n(t). b Energy density E(f, t) of the spike train (color from blue to red corresponds to the
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cannot be neglected. ¢ Time evolution of spectral “ridges” Fj(t). The thick curve corresponds to
the main (most prominent and stable) ridge, whose central frequency oscillates in time at around
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values of ko improve frequency resolution. The commonly adopted value is kg = 1
and the limit ky — oo corresponds to the Fourier transform. Sometimes, especially
for the analysis of spike trains, ko = 2 can be more suitable.

Equation (3.9) allows us to estimate the wavelet coefficients analytically:

1 .
W(s, tp) = NG > e i2m(ti—10)/s o= (1i=10)*/2kGs” (3.11)

i

Using the wavelet transform (3.11), we can perform the time—frequency analysis
of rthythmic components hidden in the spike train. The wavelet coefficients can be
considered as a parameterized function W, (), where #, plays the role of time. It is
convenient to introduce the following normalization of the energy density:

E(s, to) = W (s, )%, (3.12)

1
JTrkos
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where r is the mean firing rate (the normalization of the energy spectrum per spike
simplifies comparison of neurons with different firing rates). For biophysical conve-
nience, instead of (3.12), its frequency counterpart E( f, t) is often considered. This
is obtained by substituting s = 1/f (ko = 1).

E(f,t) represents a surface in 3D space whose sections at fixed times provide
information about the local energy spectra. Figure 3.10b is a 2D plot of the energy
density of the spike train shown in Fig. 3.10a. Each spike produces a broad frequency
spectrum. The existence of rhythms in the spike train leads to the appearance of
“ridges” in the 3D energy surface, associated with the rhythmic contributions. These
ridges, oriented along the time axis, identify the spectral content of the spike train at
any given time moment.

Thus the dynamics of rhythmic components hidden in a spike train is reflected in
the time evolution of spectral ridges. To construct spectral ridges, a search for local
maxima of the energy spectrum E(f, t°) at time ¢° is performed (Fig.3.10a), thus
obtaining a set of 2D functions of time Fj(¢), where the subindex corresponds to the
number of the ridge (Fig. 3.10c).

Spectral ridges can appear and disappear in time, and they can also oscillate
(Fig.3.10c). Oscillations indicate the presence of a given rhythm in the spiking
dynamics of a neuron and its modulation by other rhythms (e.g., due to a high
frequency jitter in the spike timings). If a neuron generates a stereotypic response to
periodic stimulation (i.e., the same pattern for each stimulus event), then its instan-
taneous frequency associated with the stimulus rhythm remains constant. We thus
obtain a “perfect” (continuous and straight) spectral ridge at the stimulus frequency.

Deviation from the stereotypic response associated with “missing” or “extra”
spikes, or with changes in the interspike intervals, causes temporal variations in
the instantaneous frequency and even disappearance of the ridge, as happens in
Fig. 3.10c. Moreover, the greater the fluctuation of the instantaneous frequency, the
more significant the differences in the neuronal response. Thus, following the time
evolution of the instantaneous frequency of spectral peaks (i.e., the spectral ridge)
enables one to study the stability and stationarity of neuronal responses to a tonic
stimulus.

To quantify the stability of the neuronal response, the following measure can be
considered:

St=—, (3.13)
0o

where oy is the standard deviation of the time evolution of the main spectral ridge
Fy(¢) found in the vicinity of the stimulus frequency.

To evaluate St for a spike train, its energy density (3.12) is estimated. Then for
a fixed time ¢° (changed with a 5ms time bin), we search for the energy maximum
in the frequency range fiim & 5%. The resulting frequency is assigned as Fy(z°).
Finally, the standard deviation of Fj yields St.
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3.3.5 Dynamical Stability of the Neuronal Response

In this section we test the methodology proposed in Sect. 3.3.4 on simulated neuronal
responses to external stimuli. To do so, we consider three neurons embedded in a
network and receiving the same periodic (1 Hz) sequence of 50 stimuli. Depending
on the current network state and its dynamics, the neuronal responses may have
different variability, i.e., the firing patterns provoked by each stimulus event may
have different degrees of repeatability.

We simulated neuronal responses under three different conditions:

e N1: Constant in time strong variability. The neuron responds to each stimulus
by generating 3-5 phasic spikes (3.9 £ 1.2 std) with fluctuating spike timings
(8 ms std).

e N2: Changing (small) variability. The neuron generates a spike train similar to N1,
but the firing rate decays linearly (from 5 spikes per stimulus at the beginning to
about 2.5 at the end).

e N3: Increasing (intermediate) variability. The spike train is similar to N2, but the
fluctuation in spike timings increases from O at the beginning to about 40 ms std
at the end.

The response pattern of the first neuron has a stationary distribution, whereas those of
the second and third neurons are similar to the experimentally observed adaptability
to the stimulus (Fig. 1.1). Their firing rates decay in time. The difference between
the neurons N2 and N3 is in the variability of the spike timings. The neuron N2 has
constant fluctuations, whereas the magnitude of the fluctuations for N3 increases
with time.

Figure 3.11ashows a5 s epoch of the stimulus and spike trains of the three neurons.
Applying the traditional peristimulus time interval analysis, we obtain roughly the
same peristimulus time histograms (PSTHs). All histograms have three peaks at
latencies 20, 50, and 90 ms, corresponding to the neuronal phasic response to the
stimulus, and are hardly distinguishable. Thus, PSTH fails to quantify the differences
in behavior exhibited by the neurons, as expected. Not much additional information
is provided by the raster plot (not shown).

The wavelet energy spectrum of the first spike train differs significantly from
the spectra of N2 and N3, which are very similar (Fig.3.11b). Fluctuations in the
spectral magnitude of the 1 Hz rhythm reflect changes in the strength of the neuronal
response at that frequency. Loosely speaking, it is proportional to the number of
spikes generated per stimulus. The spectral magnitude of the train N1 fluctuates
around the mean value, which agrees with the stationary nature of the firing patterns
of this neuron. The energy magnitude of N2 and N3 decays in time, again as expected
from the decaying firing rate of these neurons.

Figure 3.12a shows the time evolution of the main spectral ridges Fy(¢) (corre-
sponding to fyim = 1Hz) for the three neurons. This provides information about
the phase (temporal) relationships between spikes in the firing patterns and reveals
differences in the three cases. The instantaneous frequency of N1 displays large
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Fig. 3.11 Quantification of the dynamical stability of the stimulus response patterns for three
neurons. a Stimulus and spike trains of three neurons (only 5s epoch is shown). The three neurons
have almost the same PSTHs, but their firing dynamics is significantly different (see the main text).
b Wavelet energy spectra of the spike trains in the stimulus frequency band (color from blue to red
corresponds to the spectrum magnitude)

stationary deviations from 1 Hz due to the constant variability of spike timings and
“missing” spikes. The ridge of N2 has smaller deviations, especially in the first half
of the recording, where the neuronal response was more consistent (in the number
of generated spikes). N3 shows the smallest ridge variability (close to zero by con-
struction) at the beginning of the stimulation, but growing progressively toward the
end. The difference with N2 is explained by the temporally increasing variability of
the N3 spike timings.

It is noteworthy that the time evolution of the spectral magnitude (Fig.3.11b) and
the ridge dynamics (Fig. 3.12a) provides complementary information about the firing
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Fig. 3.12 Quantification of the dynamical stability of the stimulus response patterns for three
neurons. a Time evolution of the main spectral ridges for the three spike trains. Shaded areas
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patterns. Indeed, a strong neuronal response with a similar number of spikes produces
a quite stable, high magnitude spectral ridge. If the variability of spike timings is
much lower than the reciprocal of the ridge frequency (interstimulus intervals), then it
makes little contribution to the ridge height. However, this high-frequency dynamics
will affect the instantaneous ridge frequency and, consequently, will be visible in the
Fy(t) plot.

Let us now check the different measures of the response stability of the neurons
N1-N3 that can be derived from the spike trains and their wavelet analysis. First, the
standard deviations of the number of spikes elicited by each stimulus were calculated.
Similar characteristics have been used for quantification of the frequency-dependent
response in VPm and SIneurons [32]. Figure 3.12b (left inset) shows that the recipro-
cal of the standard deviation (i.e., 1/std number of spikes) is the same for all neurons,
whence this measure cannot distinguish dynamical differences in their responses.

Figure3.12b (middle inset) shows the reciprocal of the standard deviation of
the magnitude of the energy density (corresponding to Fig.3.11b) at the stimulus
frequency. This measure differentiates the responses of N1 from those of N2 and N3.
The lower value for N2 and N3 is mostly due to the trend in the energy magnitude
in these cases. Detrending the energy density functions raises the measure to 74 for
N2 and N3 and does not affect its value for N1. Thus the energy magnitude-based
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measure can be a good predictor of a neural rate code, but it cannot pick up the
variability in the spike timings.

Finally, Fig. 3.12b (right inset) shows the dynamical stability measure (3.13) eval-
uated for the three neurons. This measure correctly quantifies the differences in
stability of the firing patterns among all three neurons.

3.3.6 Stimulus Responses of Trigeminal Neurons

The examples described in this section are based on experiments performed on anes-
thetized (urethane, 1.5 g/lkg) Wistar rats of either sex weighing 200-250 g. The exper-
imental procedure is similar to that described in the work by Moreno et al. [33]. Ani-
mals were placed in a stereotaxic device that allowed easy access to the vibrissae.
Recordings were obtained using tungsten microelectrodes directed vertically into the
Pr5, Sp5i, and Sp50 nuclei.

Once an electrode had been put in place, the vibrissae were manually stimulated
by means of a thin brush to determine their receptive fields. The vibrissa maximally
activating a neuron near the electrode was further used for mechanical stimulation.
Free whisker movements were generated by air puffs directed at one vibrissa only
and signals were not recorded when other vibrissae exhibited any vibration. Air
pulses were generated by a pneumatic pressure pump (Picospritzer III, Parker Inst.
TX) and delivered via a silicon tube of diameter 0.5 mm, positioned at 10-12 mm
perpendicularly to the vibrissa:

e Stimulus protocol S1: Three separate sequences of 50 air puffs lasting 10, 50, or
100ms each with 1s interpuff intervals were delivered at the neuron’s receptive
fields.

e Stimulus protocol S2: Air puffs of fixed duration (10 ms), but with different stimu-
lation frequency, ranging from 1 to 30 Hz, were delivered at the neuron’s receptive
fields. During the course of individual experiments, the frequency was randomly
changed. The whole duration of stimulation at a given frequency was 50s.

The extracellular potential was amplified, sampled at 20kHz, passed through the
band-pass filter (0.3-3.0kHz), and then analyzed using the special software Spike 2
and custom packages written in Matlab. For the wavelet analysis, we selected only
those neurons whose extracellularly recorded spikes were well isolated from the
activity of the other neurons.

3.3.6.1 Effect of Stimulus Duration (Protocol S1)

The stability parameter St was calculated for all selected neurons and the three
stimulus durations. In addition, we determined the stimulus duration (10, 50, or
100 ms) that provides the maximally stable response pattern for each neuron. To
describe quantitative changes in the stability parameter when the stimulus duration
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Fig. 3.13 Population analysis of the dynamical stability of the neuronal response patterns under
variation of the air puff duration (stimulus protocol S1). a Percentage of cells showing maximal
stability for 10, 50, or 100 ms stimuli. Neurons from Pr5 and Sp5i “prefer” 50 ms, whereas Sp5o0
shows better stability for shorter (10 ms) stimuli. b Percentage of neurons showing an increase (/eft)
or decrease (right) in the response stability under increasing stimulus duration

Table 3.1 Comparative analysis of the stability of neural response patterns evoked by tactile
whisker stimulation by air puffs of different duration (10, 50, and 100 ms) for neurons from Pr5,
Sp5i, and Sp5o nuclei

Maximal S (%) Increase in S | Decrease in S
(%) (%)
10ms 50ms 100 ms (S50 > Sl()) (Ss() > Sl()())
Pr5 20 53 27 73 73
Sp5i 8 67 25 92 75
Sp5o 50 17 33 33 67

increases (10 — 50 — 100 ms), the neurons satisfying the conditions Stsy > Sty
and Stsp < Stjgp were counted. Figure 3.13 and Table 3.1 summarize the results.

In the case of Pr5 neurons, the stability parameter St is likely to be maximal for the
middle stimulus duration (50ms, Fig.3.13a). The most stable response is observed
for 53% of all cells with the 50ms stimulus. The remaining 27 and 20% of cells
respond stably to 100 and 10 ms stimuli, respectively.

Quite similar behavior occurs for Sp5i neurons. Here even more cells (67%)
“prefer” stimuli of intermediate duration. This is achieved mostly by decreasing the
cell population showing a better response to the shortest 10 ms stimuli (8%).

Sp5o0 neurons typically behave differently. The maximally stable response pattern
for 50 ms stimulation was observed for only 17% of the cells. Meanwhile, half of the
neurons showed better stability for the shortest stimulation (10 ms). The proportion
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of the cells with better response to the 100ms stimuli was about 33%, a little bit
higher than for Pr5 and Sp5i neurons.

Figure 3.13b shows differential stability characteristics. For 73% of Pr5 neurons,
responses to 50 ms stimulation are more stable than those to air puffs of 10ms dura-
tion. In the case of Sp5i neurons, the value of Stincreases at the transition 10 — 50 ms
for about 92% of cells. Thus, Pr5 and Sp5i neurons are characterized by a rather simi-
lar type of reaction to variation of the stimulus duration. However, different behavior
is observed for Sp50 neurons. Only for 33% of cells did St increase with the stimulus
duration (from 10 to 50 ms). If the stimulus duration increases further (50 — 100 ms),
about 70% of neurons from all nuclei display a decrease in their response stability.

Thus the protocol S1 allowed us to conclude that:

e The stability of response patterns depends on the stimulus duration, that is, neurons
process stimuli of different duration in different ways.

e There exist significant changes in the types of responses for Pr5, Sp5i, and Sp5o
neurons. The most reliable responses are achieved in Pr5 and Sp5i for 50ms
stimulus and in Sp5o for 10ms.

3.3.6.2 Effect of Stimulus Frequency (Protocol S2)

Let us now discuss effects of the stimulation frequency (protocol S2). It has been
found that all trigeminal neurons can be subdivided into three groups by their type
of response to the frequency content of the stimulus. Figure 3.14 shows the stability
measure as a function of the stimulus frequency St( fyim) for three representative
cells. By analogy with the filter terminology, we will refer to the three basic types of
neuronal response as low-pass, band-pass, and no dependence.

In all nuclei, band-pass is the most frequent cell behavior. It occurs in 58, 59,
and 53% of neurons in Pr5, Sp5i, and Sp5o, respectively (Fig.3.15a). The low-pass
reaction is observed for 33, 31, and 35% of neurons from Pr5, Sp5i, and Sp5o, respec-
tively. Finally, 9, 10, and 12% of cells in the corresponding nuclei are characterized
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Fig. 3.14 Three main types of behavior of the dynamical stability of neuronal responses to the
frequency of a tonic stimulus St( fim): low-pass (a), band-pass (b), and no dependence (c)
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Fig. 3.15 Population analysis of the dynamical stability of neuronal responses under variation of
the stimulus frequency (stimulus protocol S2). a Percentage of cells showing different “filtering”
characteristics in Pr5, Sp5i, and Sp5o nuclei. b Mean central frequencies of band-pass neurons

by the no-dependence reaction. Thus, there are small population distinctions in the
frequency filtering properties of Pr5, Sp5i, and Sp50 nuclei.

For band-pass type responses, the mean central frequency was determined (mean
+s.e.):5.1 £0.9Hz(Pr5),5.2 £ 0.8 Hz (Sp5i),and 4.0 £ 1.3 Hz (SpSo) (Fig. 3.15b).
Thus, neurons in Pr5 and Sp5i nuclei have the same central frequency, whereas cells
in Sp5o typically show a smaller value of the stabilization frequency.

3.3.6.3 Biophysical Interpretation

For effective stimulus perception, information specific to the object should be invari-
ant to the details of the whisking motion. Therefore, flexibility and adaptability in the
processing of the whisker vibrations are required. Experiments in vitro [34] demon-
strated that neurons in the barrel cortex do indeed adapt their input-output function,
in such a way that the gain rescales, depending on the range of the current stimu-
lus distribution. In this section, it has been shown that in vivo accommodation of
firing patterns to stimulus characteristics can be quantified by the stability measure
St, which was used to study neuronal responses in the trigeminal nuclei evoked by
tactile whisker stimulation.

Analysis of the time evolution of frequency ridges in the wavelet space can be used
to identify the variable frequency content in a neural spike train under essentially
nonstationary conditions of sensory information processing. The method allows an
integral quantification of the variability in the number of phasic spikes and in the
spike timings. It takes into account changes at the stimulus time scale and also at
significantly shorter time scales. The validity of the method has been cross-checked
using simulated spike trains resembling properties of real recordings (Fig.3.11).
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A fundamental issue in neural coding is the role of variation of spike timings in
information processing. Indirectly, this can be tested by an artificial jittering of the
spike timings and its influence on the derived measures (see, e.g., [35, 36]). The
stability measure St can be used to provide a direct answer to the question: how
stable or repeatable are the firing patterns produced by a neuron for each stimulation.
If the stability measure is high, then the spike patterns are highly repeatable during
the whole recording, and consequently, such a neuron is likely to be using a kind
of temporal code. Conversely, low stability suggests high variability in the spike
patterns and points to a rate code or the presence of a complex dynamics, for example,
involving local and global feedback and fast adaptation.

Recent results [35] demonstrate that the trigeminal ganglion neurons use temporal
code. Here, using the dynamical stability measure, it has been shown that neurons in
Pr5, Sp5i, and SpSo nuclei can vary their response stability according to the stimulus
characteristics, for example, the stimulus duration (Fig.3.13). Thus the trigeminal
neurons adapt their coding scheme to the stimulus characteristics, and there is a
continuous oscillation between the two extremes, the temporal and rate codes. This
conclusion is indirectly supported by the presence of an extensive network locally
connecting neurons in the trigeminal nuclei and the global corticofugal projections,
so that the global network dynamics can modify the stimulus-evoked patterns of each
individual neuron.

It is known that the frequency of whisker movements plays an important role in
effective perception (see, e.g., [37, 38]). Previous results showed the presence of
resonance properties in the firing of thalamic and cortical neurons (see the review
in [17]). Indeed, the stimulation of a vibrissa at a given frequency can be related to
its vibration during perception. Then the surface discrimination requires fine-tuning
of the system and a series of impulses deflecting the vibrissa can be considered as a
single entity. Therefore, we expect an effective band-pass amplification (or filtration)
of the stimuli in a given frequency band by some cells. It was found that more than
half (about 57%) of neurons in the trigeminal nuclei have this property. Finally, the
remaining 10% of cells have no pronounced dependence on the stimulus frequency,
and these neurons probably perform a different task, not directly linked to stimulus
codification and transmission. Besides, their stability factors are usually extremely
low (e.g., in Fig.3.14, Stioy A 500, Stpang A~ 150, whereas Styo4ep A 18), which also
suggests that stimulus processing is not their primary role.

The percentage of neurons showing low-pass, band-pass, and no-dependence
behavior is quite similar across different nuclei (Fig.3.15a). This suggests that the
number of neurons specializing in different tasks (e.g., border or texture detection)
is also similar in Pr5, Sp5i, and Sp5o nuclei. The mean “optimal” stimulation fre-
quencies of the band-pass neurons is about 5 Hz for Pr5 and Sp5i and about 4 Hz in
Sp5o. These frequencies are close to the lower end of the frequency scale for whisker
movements in active exploration (4—-12Hz) [39]. These results correlate with stud-
ies of the amplitude of averaged neuronal responses in the somatosensory cortex,
where similar filtration properties have been found [32]. Thus, we can suppose that
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at least some the filtration properties observed for neurons in the somatosensory cor-
tex can be influenced by analogous responses generated by neurons in the trigeminal
complex.

3.4 Wavelet Coherence for Spike Trains: A Way to
Quantify Functional Connectivity

A very common method to track temporal coupling or functional association between
stimulus and neural response is the peristimulus time histogram, which characterizes
the cross-correlation between two point processes, i.e., stimulus events and the neural
spike train [29]. On the one hand, the PSTH examines temporal changes in the amount
of generated spikes triggered by the stimulus. On the other, analyses in the frequency
domain can provide a more concise description of the temporal correlation of the
oscillatory patterns in spike trains.

In the frequency domain, spectral coherence is a well-established standard tool
to analyze the linear relationship between two (usually continuous) signals by deter-
mining the correlation between their spectra. A high spectral coherence suggests
the presence of a functional association between, e.g., the stimulus and the neural
response in the corresponding frequency band. Starting from this concept, several
modifications of the coherence measure have been suggested (see e.g., [40—42]).

Although the above-mentioned measures have been shown to be very useful for
different problems in neuroscience, they suffer from the assumption of stationarity
of the neural response and do not account for dynamical changes in associations
(coupling) between stimulus and neural response. Indeed, any analysis based entirely
on time averaging (PSTH) or on the Fourier transform (spectral coherence) ignores all
temporal variations in the functional coupling between tactile stimulation and neural
response. An additional temporal resolution is essential and demands replacement
of the classical Fourier (spectral) coherence by other methods. There have been
successful attempts to adapt Fourier-based methods to short time signals, for example,
by means of orthonormal sliding windows [43—45], which are similar to the classical
Gabor transform [46].

Wavelet analysis is a significantly more powerful tool that offers a reasonable
compromise between temporal and frequency resolutions. The wavelet transform
has been used to analyze brain signals from the very beginning in neuroscience.
Most of its applications have been to electroencephalographic recordings (see, e.g.,
[47-54]).

The first studies of wavelet coherence go back to the beginning of this century
[55-58]. In a similar way to spectral coherence, wavelet coherence informs about
the functional coupling between, e.g., the stimulus and neural response, but it also
provides the temporal structure of the coupling. The use of the wavelet transform for
analysis of neural spike trains recorded in the trigeminal nuclei under tactile whisker
stimulation is illustrated in [10, 59].
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In this section, we quantify the wavelet coherence (i.e., functional association) of
the gracile neural response to tactile stimulation, and show that activation of the SI
cortex leads to a dynamical (i.e., time-varying) alteration of the neuronal response
characteristics mediated by the corticofugal pathway. For this purpose, we shall
consider how wavelet coherence can be used to investigate the dynamical properties
of neural spike trains and to evaluate dynamical changes in the neural response to
tactile stimulation in the gracilis nucleus provoked by activation of the corticofugal
feedback from the SI cortex.

3.4.1 Wavelet Coherence of Two Point Processes

PSTH and ordinary spectral coherence usually provide little information about the
time—frequency contents of a spike train. Some insight can be obtained by the tradi-
tional dot-raster display. Although the raster display can capture important temporal
characteristics of the neural stimulus response, it is merely a visual tool, i.e., no mea-
sure of stability of the neural response can be derived directly. Moreover, a correct
comparison of raster displays generated by several neurons with essentially different
firing rates is difficult, if not impossible. This leads eventually to a problem in gener-
alizing results over the neuronal population. Meanwhile, the wavelet technique offers
a natural way to study the temporal structure of neural stimulus response coherence.

A spectral representation of a spike train can generally be obtained by the Fourier
transform. However, this transformation is known to have difficulties in dealing with
point processes [30]. To overcome some of these difficulties, the multitaper Fourier
transform has been advocated in the literature [31]. Although the multitaper transform
usually provides a good estimate of the power spectrum, in the case of excessively
periodic spike trains (e.g., under experimental conditions of periodic stimulation), it
may fail to represent the spectral density consistently. The wavelet transform can be
used as an alternative way to perform spectral analysis.

As we saw in Sect.3.3.4, a spike train can be represented as a sum of delta
functions (3.9). Then the wavelet power spectrum of the spike train can be defined
by (3.11) and (3.12). The global wavelet spectrum can be obtained from (3.12) by
time-averaging the local (time-dependent) spectrum:

T
Eg(s) = %/0 E (s, to)dto, (3.14)

where T is the time length of the spike train. The global spectrum (3.14) provides
an unbiased and consistent estimate of the true power spectrum [60].

This approach ensures that the mean energy in a random spike train is homo-
geneously distributed over all interspike intervals Eg(s) = 1. This is similar to the
spectrum of white noise. Consequently, we quantify the power distribution in the
train under study in units of the power of the random spike train with the same mean
firing rate. Energy below (above) 1 means that the probability of spike patterns with
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the given scale s is below (above) the probability of such a pattern in the random
spike train.

When dealing with two spike trains N and M, by analogy with the Fourier cross-
spectrum, we can introduce the following wavelet cross-spectrum:

Wy Wy,
k()4 JTTVNTY M ’
where Wy and W), are the wavelet transforms of the trains N and M, respectively.

Then a normalized measure of association between the two spike trains is the wavelet
coherence [55]

Wim(s, i) = (3.15)

2
‘S[WNM(Sa to)/s]‘
En(s,10)/s|S[En(s, 10)/s]

Cym (s, 10) = G (3.16)

where S is a smoothing operator (for details see [55, 61]). The coherence defini-
tion (3.16) may give artificially high values for the coherence in the case of infinites-
imally small values of the power spectrum of either signal or both signals, i.e., when
E(s*, t}) ~ 0. To avoid this problem in numerical calculations, a thresholding pro-
cedure can be used, setting the coherence to zero when either of the power values is
below a certain threshold.

3.4.2 Measure of Functional Coupling Between Stimulus
and Neuronal Response

3.4.2.1 Coherence in the Stimulus Frequency Band

To study the functional coupling between the stimulus and the neuronal response
we can use (3.16) with N the train of stimulus events and M the neuronal spike
train. Because we are interested in studying the functional coupling with stimulus
events, which are periodic, we will focus on the frequency band corresponding to the
stimulus frequency, i.e., on f = 1 Hz, which is associated with the scale s = 1. To
successfully resolve the stimulus-induced frequency contents in the neural response
with minimal loss in time resolution, we set ky = 2. Then from (3.10), §w &~ 1/2 and
8t = 2. Although the wavelet transform uses the time scale (period) s as a parameter,
to address the frequency contents, we shall use the frequency as the parameter, defined
formally by f = 1/s.

To quantify the variation of the functional coupling among stimuli and neural
response, we average the neural stimulus coherence over scales in a narrow band
around the stimulus frequency. An estimate of the band limits can be obtained from
3.10),viz., f € [(1 —c/2mky), (1 + c/27rk0)],whichgives 0.83-1.16 Hzforc = 2.
We shall refer to this frequency band as the stimulus frequency band. Obtained this
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way, the coherence is a function of time

C@t) =

/ Cyu (s, 1)ds, (3.17)

§2 =81 Jg

which is then used to evaluate the power spectrum by the conventional Fourier trans-
form.

3.4.2.2 Statistical Significance

Two linearly independent spike trains have insignificant coherence Cy (s, tp) =~ 0,
whereas Cyy (s, tp) = 1 indicates a perfect linear relationship between the spike
trains at the scale s and localization f.

Although a large coherence amplitude usually indicates the presence of a consis-
tent phase relationship (coupling) between two spike trains in a given time interval, it
is also possible that this is a random variation in the spike trains. One should therefore
cross-check the statistical significance of the observed coherence.

The statistical significance of the wavelet coherence can be assessed relative to
the null hypotheses that the two spike trains generated by independent stationary
processes with given distributions of interspike intervals (ISIs) are not coherent. To
evaluate the significance level, we use a surrogate data test [62, 63] with Monte
Carlo simulation to establish a 95% confidence interval. The surrogate spike trains
are obtained from the original one by randomizing phase relations, keeping other
first-order characteristics intact. We shuffle the ISIs and evaluate coherence among
the surrogate spike trains. To conclude positively about the connectivity between the
stimulus train and the neuronal response, their coherence should be higher than the
resulting significance level.

3.4.2.3 Mean Characteristics Describing Effects of Cortical Stimulation

To examine the effect of cortical stimulation on the coherence of neural response to
stimulus, we average the local coherences over time and the stimulus frequency band

Cone = (Canr (), Chisc = (Carsc (), (3.18)

where Cepn (1) and Cagsc (¢) are the coherences in the stimulus frequency band in the
control and after the SI cortex stimulation conditions, respectively. For convenience
we also introduce the overall mean coherence C™ = (Ciggc + Co)/2. First, we
recall that C.p () and Cagsc(¢) are bounded functions of time and thus the maximal
increment SC™ = Clggc — Conyr depends on the overall mean coherence and cannot

exceed the value 2(1 — C™). Thus the higher the overall mean coherence, the lower
the coherence increment can be. Then we guess a linear model
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[BC™"| =a(l —C™), (3.19)

where o is a constant to be identified from the data.

Then for a given value of the wavelet coherence, by using (3.19) we can evaluate
the expectation of the absolute value of the coherence increment. If the observed
increment is much smaller than the expectation, we can question its significance
(i.e., no effect). To decide positively on the presence of an effect on the stimulus
coherence provoked by the SI cortex stimulation, we require the experimentally
observed increment §C™ to be at least 50% of the expectation value, i.e., |§C™| >
0.5a(1 — C™). Then we have a coherence increase or I-effect for positive §C™ and
a decrease or D-effect for negative values.

3.4.3 Functional Connectivity of Gracilis Neurons to Tactile
Stimulus

The analyzed data set consisted of 29 extracellular recordings (spike trains) of unitary
neuronal activity from the gracilis nucleus measured at three different epochs:

e Spontaneous firing.

e Responses to periodic stimulation (1 Hz rate) of the neuronal receptive field (con-
trol conditions).

e Responses to periodic stimulation (1 Hz rate) of the neuronal receptive field after
electrical stimulation of the SI cortex (AESC conditions).

All neurons were identified as projecting to the thalamus [21]. The analyzed neurons
showed a low spontaneous activity with mean firing rate 1.1 4= 0.4 spikes/s (range
0-10spikes/s) whose pattern coincided with the firing characteristics of projecting
neurons described previously [64, 65].

3.4.3.1 Example of Wavelet Analysis

First, let us illustrate the wavelet analysis of a representative neural spike train.
Figure 3.16a shows the spike train during three different experimental epochs (for
illustration purposes, we selected a neuron with a considerable spontaneous activity).
Under spontaneous conditions, the neuron exhibits an irregular spiking pattern with
a slight peak at 70 ms, manifested in the autocorrelation histogram (ACH, Fig. 3.16b,
left). Mechanical stimulation under the control conditions elicited a well-pronounced
neuron response with 25 ms peak latency, followed by a weakly rhythmic firing with
120ms period (Fig. 3.16b, middle). Electrical stimulation of the SI cortex facilitated
the neural response to the tactile stimulation. The response in the PSTH became
more prominent (Fig.3.16b, right). However, neither the response latency nor the
mean firing rate (21.1 vs. 23.7 spike/s) varied much relative to the control conditions.
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Fig. 3.16 Wavelet spectral and coherence analysis of experimental spike trains. a Stimulus events
and neural spike trains during three experimental epochs: spontaneous activity, control 32 s tactile
stimulation delivered to the neuron receptive field at 1 Hz rate, and the same tactile stimulation
repeated after electrical stimulation of the somatosensory (SI) cortex (AESC). b Autocorrelation
(ACH) and peristimulus time histograms (PSTHs) for the corresponding epochs. ¢ Wavelet power
spectra of the neural spike train for the corresponding epochs. The x-axis corresponds to the local-
ization z (time), whereas the oscillation frequency from 0.5 to 15 Hz is plotted along the y-axis on
a logarithmic scale. Gray intensity is equivalent to wavelet spectral power. Dashed lines define the
cone of influence and horizontal dotted lines delimit the stimulus frequency band 0.83-1.16 Hz.
d Level of statistical significance for the wavelet coherence obtained by the surrogate data test.
Coherence above the curve is deemed significant. The gray region is the frequency band of interest
(around the stimulus frequency). e Wavelet coherence of the neural spike train to tactile stimulation
events for the control epoch and after SI cortex stimulation. Solid black lines delimit islands of
statistically significant coherence (the stripe between two dotted lines is of interest). Gray intensity
corresponds to the strength of the stimulus coherence of the neural response

Furthermore, the weak oscillatory behavior observed in the tail of the PSTH under
control conditions disappeared.

The wavelet power spectrum (Fig. 3.16¢, left) confirms the irregularity of spon-
taneous firing observed in the ACH. There are many oscillatory rthythms localized
in both the time and frequency domains with essentially erratic distribution. Thus
spiking activity has no well-defined dominant periodic activity (although there is
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a feeble and not-persistent-in-time power peak at 14 Hz). The distribution of the
power under control conditions (Fig.3.16c, middle) shows a consistent peak in the
stimulus frequency band (from 0.83 to 1.16 Hz, between the two dotted horizontal
lines). This peak indicates the presence of the stimulus-evoked rhythm in the neural
firing. We also note that the peak amplitude (power) is not persistent in time, but
instead exhibits a low-frequency oscillation (<0.3 Hz). This oscillation of the spec-
tral power suggests that the neural response to the same tactile stimulation is not
stable (identical) throughout time, but instead has some variability, i.e., the neuron
fires essentially different numbers of spikes with different ISIs in response to the
same stimulus events during the stimulation epoch. We also observe some increase
in the spectral power around 8 Hz, consistent with the oscillations (120 ms period)
observed in the corresponding PSTH (Fig. 3.16b, middle). In accordance with the
stimulus response facilitation observed in the PSTH after electrical cortex stimula-
tion, the power peak at the stimulus frequency band became even more pronounced
(Fig. 3.16c¢, right). Now we have a continuous practically black island going through
the whole stimulation epoch in the stimulus frequency band. Notice, however, that
the ultralow-frequency oscillation of the power is weaker, but still exists. Besides,
there is a significant increase in the power of harmonics of the 1 Hz rhythm and, on
average, a greater presence of oscillations in the domain of higher frequencies.

To quantify how coherent (reliable) the neural response to the stimulus events is,
we evaluated the wavelet coherence of the neural spike train and stimulus events.
To decide on the statistical significance of the observed coherence level, i.e., on
the presence of functional associations (coupling) between the stimulus and neural
response, we performed a surrogate data test by randomizing phase relationships
between two signals. Figure3.16d shows a statistical significance curve (P value
0.05) for the frequency range observed in the neural spike train. Coherence above
the curve is deemed statistically significant, although if the area of the significant
islands is small enough (5%), then the conclusion regarding the coherent response
should be made carefully.

Figure 3.16e illustrates the wavelet coherence of the tactile stimulus events and
evoked neural response. Because the tactile stimulation is periodic (i.e., has only
one frequency), we shall refer to the stimulus frequency band only (delimited by
dotted lines in Fig. 3.16e) when speaking about the response coherence. During the
control stimulation epoch, we observe three islands of significant coherence in the
stimulus frequency band (Fig. 3.16e, left). This provides evidence for the presence of
the stimulus—response association previously observed in the corresponding PSTH.
However, we also find that the association or stimulus response coupling is not
constant, but an oscillatory function of time. Notice also that the neural power spec-
trum in the corresponding frequency band was not very strong (Fig.3.16c, middle).
However, the coherence clearly reveals the functional coupling between the neural
firing dynamics and stimulus events. The stimulus coherence of the neural response
becomes stronger after electrical stimulation of the somatosensory cortex (Fig. 3.16e,
right). As we observed earlier in the wavelet power spectra (Fig.3.16¢, middle and
right), the stimulus coherence also suffers from ultralow-frequency oscillations.

Thus for a given neuron we observed two phenomena:



106 3 Analysis of Single Neuron Recordings

e The strength of the functional stimulus—neural response coupling is amplified by
the electrical stimulation of the SI cortex.

e The coupling strength is a dynamical quantity, slowly oscillating in time, that can
temporarily fall below the significant level.

The latter implies that the stimulus—response association may be temporarily lost for
a single neuron.

3.4.3.2 Pitfalls of Fourier Spectrum and Wavelet Spectral Analysis

To illustrate possible pitfalls in the interpretation of the Fourier power spectrum, we
first evaluated the power spectrum through the multitaper Fourier transform of the
neural spike train shown in Fig.3.16a. In accordance with the irregularity of firings
under spontaneous conditions, the Fourier spectrum (Fig.3.17a) is essentially flat
with a peak at 14 Hz corresponding to the periodicity observed earlier in the ACH
(Fig.3.16b, left). However, for the control stimulation epoch, the overall spectral
distribution is quite similar to that of the spontaneous spectrum, and it lacks a peak
at 1 Hz corresponding to the neuron response at the stimulus frequency. In contrast,
due to the excessive periodicity of the neural response, after the electrical stimulation
of the SI cortex, we observed an unreasonably wide peak around 1 Hz, followed by
many strong harmonics contaminating the high-frequency range. Thus the Fourier
transform of a spike train may fail to consistently represent its spectral density.

We then used the wavelet transform as an alternative way to perform spectral
analysis. Figure 3.17b shows the global wavelet power spectra of the neuron-firing
counterpart to the Fourier spectra. The wavelet spectra are much more consistent
with the oscillatory rhythms suggested by the previous analysis of spike trains by
the ACH and PSTHs. According to the normalization used in (3.12), the unit power
density corresponds to the power spectrum of a spike train with randomly distributed
ISIs, which we refer to briefly as a random spike train. Then a spectral power above
(or below) unity indicates the presence (or absence) of the corresponding rhythm in
the spike train with statistical power higher than just a random ratio.

During spontaneous activity, the power spectrum of the neuron firing only slightly
deviates from the spectrum of the random train across all frequency bands (Fig. 3.17b,
dotted line). In agreement with the weak rhythm observed in the ACH (Fig.3.16b,
left), the global wavelet spectrum also has a small peak at 14 Hz. We also detected
peaks at about 0.7 and 1.9Hz. Going back to the complete wavelet spectrum
(Fig.3.16c¢, left), we find that the latter peaks are due to strong episodic events
localized between 4 and 7s and between 10 and 16s from the beginning, respec-
tively. Thus spontaneous firing can be characterized as random, showing no strong
persistent specific frequencies. Under the control tactile stimulation, we observed
a dramatic peak in the stimulus frequency band (Fig.3.17b, solid line). Note that
the peak is quite narrow and has a harmonic at 2 Hz. Stimulation of the SI cortex
boosts the amplitude of the power peak in the stimulus frequency band, and we also
observed an important enhancement of the power in the band ranging from about 5
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Fig. 3.17 Spectral analysis (a)
of spike train (corresponding 10
to Fig.3.16a) for three
different epochs:
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to 15Hz. For higher frequencies (>15Hz), there is no significant deviation of the
power density from 1, whereas for the range <5 Hz, the harmonics of the stimulus
frequency rhythm are manifested in the power spectrum. Accordingly, we define
the second frequency band of interest (5—15Hz), which we shall refer to briefly as
the alpha frequency band. Thus at the single-neuron level used in this study, we
found that the frequency band corresponding to the evoked neural spiking activity is
localized in the stimulus and alpha frequency bands.

3.4.3.3 Population Properties of Spectral Power

To assess statistical properties of the observed changes in the spectral power of the
neuronal firing, we compared the global wavelet power spectra under spontaneous
conditions and under tactile stimulation in the control and after the SI cortex stimu-
lation conditions. Figure 3.18 summarizes the results.

The overall mean power under spontaneous conditions corresponds to the power of
the random spike train, in both the stimulus and the alpha frequency bands (Fig. 3.18a,
b, spontaneous). This confirms that the firing pattern of projecting neurons in the
gracilis nucleus is essentially random. Stimulation of the neuron receptive fields
boosts the mean power concentrated in both the alpha and the stimulus frequency
bands (Fig.3.18a, b, control), although the increase in the stimulus band is much
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Fig. 3.18 Spectral characteristics of gracile projecting neurons in the stimulus and alpha frequency
bands. a Mean power of the global wavelet spectrum and its SE in the stimulus frequency band
for spontaneous conditions and during response to tactile stimulation under control conditions and
after electrical stimulation of the SI cortex (AESC). b Same as a, but for the alpha frequency band. ¢
Statistics of the types of spectral effect of the electrical stimulation of the SI cortex for 2 frequency
bands. I, No, and D stand for increase, no effect, and decrease in the spectral power, respectively.
Black and gray bars correspond to the stimulus and alpha frequency bands, respectively

stronger (7 vs. 2.5 times). Electrical stimulation of the SI cortex raises the power
concentrated in these frequency bands even higher (Fig.3.18a, b, AESC). However,
on average, the latter enhancement is not so drastic. The effect of electrical stimulation
lasted between 15 and 30 min, after which the neurons recovered their activity.

A balanced one-way ANOVA ensures that the mean spectral powers in three
different epochs are significantly different with o values 2.5E—5 for the stimulus
frequency band and 2.7E—5 for the alpha band. A multiple-comparison test shows
that the values of the power during tactile stimulation under control conditions and
after SI cortex stimulation conditions differ significantly from the power of sponta-
neous firing in both frequency bands, and that they are statistically indistinguishable
from each other.

Although the mean spectral power across both frequency bands does not differ
significantly between tactile stimulations under control conditions and after electrical
stimulation of the SI cortex (Fig. 3.18a, b), in the majority of experiments we observed
an increase in the power provoked by cortex stimulation. This result agrees with
the previously reported facilitation of the stimulus response provoked by SI cortex
stimulation [66—69]. To quantify the percentage of neurons exhibiting different types
of effects of stimulation of the SI cortex, we evaluated the number of increases in the
spectral power (I-effects), the number of cases when the difference was negligible
(no-effects), and the number of decreases (D-effects). To decide on the type of the
effect we used the relative increment of the power in the given frequency band, viz.,
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Exgsc — Ecnye

AE = ,
(Eagsc + Ecne) /2

(3.20)

where E . and Eagsc are the spectral power under control conditions and after
SI cortex stimulation conditions. If the absolute increment was <5%, we assigned
no-effect, otherwise, according to the sign of the increment, we decided on an I- or
D-effect.

Figure 3.18c shows that, after stimulation of the SI cortex, in the majority of cases
(66 and 69% for the stimulus and alpha frequency bands, respectively), the power
of firing does indeed increase in both frequency bands, i.e., we have an I-effect of
cortex stimulation. In 17% of cases for the stimulus band and 14% for the alpha band,
cortex stimulation had no effect on the spectral characteristics of the neural response.
Finally, in 17% of cases, for both bands, the spectral effect of cortex stimulation was
negative, i.e., the power diminished.

Thus tactile stimulation leads to a significant enhancement of the power of neuron
firing, in both the alpha and the stimulus frequency bands. In addition, electrical
stimulation of the SI cortex amplifies the spectral power in these bands for about two
thirds of the neurons in the gracilis nucleus. We also conclude that facilitation of the
neural response by the corticofugal pathway occurs not only through an increase in
the number of spikes elicited by the stimulus, but also through the ordering of the
response pattern.

3.4.3.4 Effect of Cortex Stimulation on Response Coherence

Let us recall that coherence is a normalized measure of the cross-spectrum of two
signals. It thus has meaning in the frequency bands presented in both the neural spike
train and the stimulus. The latter has the fixed frequency of 1 Hz (up to small variations
due to the experimental setup). Accordingly, we study the wavelet coherence of the
neural response to tactile stimulation in the stimulus frequency band only, whose
limits were set to 0.83—1.16 Hz.

To study the effect of cortex stimulation on the neural response coherence in the
gracilis nucleus, we evaluate the mean stimulus coherences in the control C3. and
after electrical stimulation of the SI cortex Cigc. Figure 3.19a shows the absolute
value of the coherence increment [§C™| = |Ciggsc — C&:| as a function of the mean
overall coherence C™ = (Cipsc + Con)/2 for the experimental data set. Not sur-
prisingly, the plot shows a strong linear tendency of the coherence increment to be
smaller for higher values of the overall mean coherence. By fitting the model (3.19)
to the data in the least-squares sense, we obtain o = 0.41 (solid straight line in
Fig.3.19a). Thus for a given value of the wavelet coherence, by using (3.19), we can
evaluate the expectation of the absolute value of the coherence increment and define
the effect (No, I, or D) provoked by cortical stimulation (Fig.3.19a).

Figure 3.19b shows the percentage of different types of effects of electrical stim-
ulation of the SI cortex on the tactile stimulus coherence of neuron firing in gracile
projecting neurons. In the majority of cases (59%), electrical stimulation of the SI
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Fig. 3.19 Effect of the electrical activation of the SI cortex on the wavelet coherence (reliability)
of the response of projecting neurons in the gracilis nucleus to tactile stimulation of their receptive
fields (RFs). a The absolute value of the coherence increment §C™ as a function of the mean overall
coherence C™ shows a strong linear tendency. The solid straight line is the best fit of the data to the
model (3.19). The gray region delimits the no-effect region (data points shown by triangles), where
the experimentally observed value of the coherence increment is <50% of the expectation. Circles
and squares correspond to I (increase) and D (decrease) effects of electrical cortex stimulation on
the stimulus response coherence. b Percentage of neurons exhibiting I, No, and D types of effect.
¢ Relative changes (increase or decrease) in the coherence for I and D effects

cortex facilitates a more reliable (higher coherence) neural response to the tactile
stimulus. In 24 and 17% of cases, we had no effect or a decrease in coherence,
respectively. The observed relative increment of the coherence value for I- and D-
effects was about the same, namely, 13 and 15%, respectively (Fig.3.19c).

We note that the positive increment in the coherence (reliability of the neuron
response to tactile stimulation) was observed in a slightly lower number of cases
than the increment of power in the stimulus frequency band (59% in Fig.3.19b vs.
66% in Fig.3.18c), which confirms the statement made earlier that an increase in
the spectral power is not necessarily accompanied by an increase in the coherence.
Moreover, this suggests possible subtle changes occurring in the stimulus response
pattern due to the corticofugal pathway, instead of a simple increase in the firing rate.

To cross-check whether the increment in the wavelet stimulus coherence correlates
with conventional characteristics of neural activity, we plotted an increment in the
mean firing rate § FR = F Ragsc — F Renyr and an increment in the amplitude of the
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Fig. 3.20 Increment in the mean neural firing rate (a) and the amplitude of the PSTH peak (b)
vs. the increment in the neural stimulus response coherence. Quadrants I and III correspond to
positive correlation between two characteristics (i.e., increase or decrease of one characteristic is
accompanied by the same effect in the other), whereas quadrants II and IV correspond to negative
or anticorrelation (i.e., when the effect in one characteristic is contrary to the effect in the other).
Dashed straight lines and gray regions containing them show the best linear fits of the data and
their 95% confidence limits. The direction and position of the fits imply the absence of correlation
between the firing rate and coherence measures, and a positive correlation of the amplitude of the
PSTH peak and coherence measures. However, note the presence of cases where changes in the
PSTH amplitude do not correspond to changes in the coherence

response peak in the PSTH A Apsty = Aagsc — Acnee Versus sC™ (Fig. 3.20). In these
plots, a data point belonging to quadrant I or quadrant III corresponds to a positive
correlation between the corresponding measures, i.e., an increase or decrease in
coherence is associated with an analogous effect in the other characteristic, whereas
quadrants II and IV establish the contrary effect or anticorrelation. According to
the above-described findings, we expected that an enhancement of the reliability of
the neural response to tactile stimulation (i.e., SC™ > 0) would not necessarily be
reflected in the neuron firing rate, but it seems reasonable to expect a better peaking
of the PSTH and consequently A Apsty > O.

Indeed, Fig. 3.20a shows that the data points in the case of the mean firing rate are
distributed quite arbitrarily over the plane—the linear fit of the data confirms this.
The straight line and its 95% confidence interval are essentially horizontal, showing
no significant correlation between the measures. A different picture is observed for
the increment in the amplitude of the PSTH peak (Fig.3.20b). The best-fit line and
its 95% confidence interval have a notably positive slope. Thus, as expected, we
have a positive correlation for the changes provoked by electrical stimulation of the
SI cortex between the coherence and the amplitude of the PSTH peak. However,
we note that an enhancement (or reduction) of the stimulus coherence is not always
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accompanied by an increase (or decrease) in the PSTH amplitude. This means that,
for a considerable number of experiments the PSTH measure fails to predict the
effect of changes in the coherence of the neural response to the tactile stimulus.

3.4.3.5 Variable Functional Coupling to Stimulus

In Fig.3.16e, we observed qualitatively that tactile stimulus coherence oscillates
slowly in time, both for the control experimental conditions and after electrical stim-
ulation of the SI cortex. Let us now quantify these oscillations and study their possible
functional role.

Figure3.21a shows two strips cut out of the corresponding coherence functions
in the stimulus frequency band that is shown in Fig.3.16e between two horizontal
dotted lines. To examine the mean coherence and its modulation in time, we average
the local coherence over the stimulus frequency band. The resulting time series for
the control C.n(#) and after SI cortex stimulation Cagsc(#) give a measure of the
reliability of the neuron response to stimulation events throughout the corresponding
stimulation epoch (Fig. 3.21a, bottom). At the beginning of the stimulation epochs (up
to ~20s), the stimulus response coherence is higher after electrical cortex stimulation
than under the control conditions. The two characteristics then both exhibit some
decay (i.e., the neuron firing becomes less stimulus coherent) and no substantial
difference between the coherence values is observed. Over all the stimulation epochs,
we observed a slow oscillation of relatively large amplitude. We note that the period
of slow oscillation is much longer than the wavelet temporal resolution (about 10-15
vs. 2s), which ensures correct identification of the coherence oscillatory behavior.

The observed oscillation may have a functional role. Indeed, for the control stimu-
lation epoch the coherence falls temporarily below the significance level (Fig. 3.16e,
left and Fig. 3.21a, bottom). We can thus define time windows (segments) with coher-
ence above or below the level of statistical significance. In Fig. 3.21a, these windows
are shown by white and gray boxes, so that the total length of the significant and
nonsignificant segments is the same. Obviously, in windows with high coherence,
the neuron should exhibit a strong functional stimulus—response relationship. How-
ever, when the stimulus coherence is not significant, this functional association may
be lost. The “raw” PSTH (Fig.3.16b, middle) does not provide evidence for this
phenomenon. However, by splitting the spike train into two parts according to the
significance of the observed coherence, we do indeed observe an essential difference
in the PSTHs (Fig. 3.21b). In regions with significant coherence, the neuron exhibits
a well-pronounced stimulus response (Fig.3.21b, left), whereas its firing becomes
practically uncorrelated with the stimulus in the time windows of nonsignificant
coherence (Fig.3.21b, right). We can interpret this behavior as a temporal loss of
functional connectivity between the tactile stimulus and the neuron. We also note
that electrical stimulation of the SI cortex increases the stimulus—response coherence
and that it stays above the level of significance during practically the whole stimula-
tion epoch. Only after about 27 s does the coherence become nonsignificant. In such
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Fig.3.21 Oscillatory behavior of the wavelet coherence of the neural response to tactile stimulation
events in the stimulus frequency band. a Top strips show coherences evaluated in the stimulus fre-
quency band 0.83-1.16 Hz (corresponding to those shown in Fig.3.16e between horizontal dotted
lines) for the control and after electrical stimulation of the SI cortex (AESC) for the representative
neuron. Gray intensity corresponds to the local coherence value. Zero on the time axis corresponds
to the beginning of each epoch. Bottom: Thick curves show the integral (averaged over the stimulus
frequency band) wavelet stimulus coherence of the neuron response throughout the stimulation
epochs. The thin dash-dotted horizontal line defines the level of statistical significance for coher-
ence under control stimulation conditions. According to the statistical significance, we define time
windows of significant (gray boxes) and nonsignificant (white boxes) coherence. b PSTHs of the
neural response under control conditions, evaluated over time windows with coherence above (left)
and below (right) the significance level. In the windows of coherent response, the neuron shows
a pronounced peak, whereas it loses the stimulus correlation outside the coherence windows. ¢
Fourier power spectra of the oscillation of the wavelet coherences under control conditions and
after SI cortex stimulation (AESC)
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Fig. 3.22 Statistical properties of the ultraslow oscillations of the stimulus response coherence of
projecting neurons in the gracilis nucleus under control conditions and after electrical stimulation
of the SI cortex (AESC). a Mean oscillation frequency. b Mean oscillation power

an “alerted” state, the neuron maintains functional coupling to the sensory stimulus,
sending coherent spikes to the thalamus.

Figure3.21c shows Fourier power spectral densities for the ultralow-frequency
oscillation of the stimulus coherence in the control and after cortex stimulation. In
the first case, the spectrum has a peak at 0.09 Hz, whereas after SI cortex stimulation,
the peak shifts to a lower frequency (0.06 Hz) and becomes smaller.

Figure 3.22 shows the mean frequency and power of the coherence oscillations
averaged over the neuron population during tactile stimulation under control con-
ditions and after electrical cortex stimulation. The mean frequency under control
conditions was 0.065Hz, which is slightly lower than the oscillation frequency of
0.068 Hz after cortex stimulation. However, there is no statistically confirmed sig-
nificant difference between the two means. Similarly, the mean oscillation power
is slightly (but not significantly) higher in the case of tactile stimulation preceded
by electrical stimulation of the SI cortex. The mean frequency and amplitude of the
ultralow-frequency oscillations averaged over the neural population are not affected
by the electrical stimulation of the SI cortex.

Thus, the possibility of studying the temporal structure of the stimulus—response
coherence allowed us to describe ultraslow fluctuations in the tactile responses of
single projecting neurons. We note that such oscillations are not directly observable
either in the Fourier spectrum or in the PSTH of the neural response. Instead, they
represent slow modulation of the coherence (or reliability) of the neural response
to the tactile stimulation over a long timescale, i.e., the neuron fires essentially a
different number of spikes with different ISIs for the same stimulus events during
the stimulation epoch. Besides observing a facilitation of the tactile stimulus—neural
response functional coupling by the electrical stimulation of the SI cortex, we have
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provided evidence that the functional coupling between the sensory stimulus input
and neural response oscillates slowly in time. During this oscillation, the stimu-
lus coherence can temporarily fall below the significant level. This means that the
stimulus—response association may be temporarily lost for a single neuron. This phe-
nomenon suggests that information processing in the gracilis nucleus occurs on the
network level, which may be “energetically” beneficial for the system. The mean
frequency of the observed coherence oscillation was about 0.07 Hz. Oscillations in
the same frequency band (0.02-0.2 Hz) have been reported in studies of human EEG
[70]. The authors showed that large-scale ultraslow oscillations in widespread cor-
tical regions may represent a cyclic modulation of cortical gross excitability. This
ultraslow oscillation of cortical activity might be transferred to the gracilis nucleus
through the corticofugal projections, thus modulating tactile responses.
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Chapter 4 ®
Classification of Neuronal Spikes from oo
Extracellular Recordings

Abstract In this chapter, we consider the problem of spike separation from extracel-
lularly recorded action potentials, which is important when studying the dynamics of
small groups of neurons. We discuss general principles of spike sorting and propose
several wavelet-based techniques to improve the quality of spike separation, includ-
ing an approach for optimal sorting with wavelets and filtering techniques. Finally,
we consider the application of artificial neural networks to solve this problem.

4.1 Introduction

Most of the neurons in the brain communicate by sending and receiving short-lasting
electrical pulses, so-called action potentials or spikes. When analyzing the coopera-
tive behavior of a neuronal ensemble or studying the neural code, spikes are thought
to be stereotypical events. Hence it is not the shape of each spike waveform but the
precise timing of spike firing that matters for this analysis. Then we can speak about
spike trains generated by neurons as of a multivariate binary process. Many contem-
porary studies of neuronal activity rely on the analysis of spike trains. One may seek
different correlations among neurons or behavioral correlates, spatial and temporal
patterns, firing synchronization phenomena, etc. For example, this is especially rel-
evant for the analysis of neuronal responses in the first relay stations of the brain to
external tactile stimuli, i.e., the way neurons process different external inputs and the
temporal sequences of spikes they generate [1, 2]. In particular, it has been shown
that spiking of single neurons in the gracilis nucleus in response to a stimulus may
not always be faithful, while the neuronal group does reliably transmit the stimulus
to the next neural nuclei.

Spiking activity can be recorded by a single microelectrode or microelectrode
array immersed in a nervous tissue. The vast majority of in vivo electrophysiologi-
cal experiments use so-called extracellular recordings, i.e., an electrode (inside the
nervous tissue) detects electrical activity of neurons from a distance. Then several
neurons near the electrode tip can produce spikes of different amplitude and shape
(for more detail see, e.g., [3]). Consequently, one experimental recording (extracellu-
lar electric potential) may contain a mixture of spikes generated by different neurons.
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Then the experimentalist must identify and sort or separate spikes due to different
neurons. Ideally all spikes produced by a single neuron should be assigned to one
group or cluster. Errors occur when spikes belonging to other neurons are grouped
together with the spikes of the target neuron (so-called false positives) or when some
spikes emitted by that neuron are not included in its group (false negatives).

Finally, the quality and reliability of any subsequent analysis of spike trains,
cooperative neuronal behavior, or single neuron activity depends on the quality of
solution of the spike sorting problem. It has been shown that the quality of spike sort-
ing by a human operator is significantly below the estimated optimum [4]. Besides,
the amount of data generated by modern experimental setups is truly enormous and
continues to grow. In a typical experiment one can easily get more than 10* spikes
recorded by a single electrode tip. Modern multielectrode arrays can have hundreds
of tips, which multiplies the amount of information to be processed. For all these
reasons, there is a growing demand to develop automatic techniques for spike sorting.

It is typically assumed that each neuron generates spikes of the same shape and
amplitude, while signals from different cells have some individual peculiarities (even
though their signatures may be quite similar). Although this assumption may be
significantly compromised (e.g., in a burst, each subsequent spike is usually smaller
than the previous one), it is reasonably reliable for many practical cases and we shall
accept it throughout this chapter.

Nowadays, there exist a number of numerical tools for spike sorting (see, e.g., [3,
5, 6, 8-14], and references therein). In this chapter we shall provide a brief overview,
while paying attention to methods involving the wavelet transform and comparing
them to the standard techniques most widely used in experimental labs. Although
existing methods show good performance on preselected data sets [15-22], the best
procedure for spike feature extraction is still a challenging issue.

4.2 General Principles of Spike Sorting

Figure4.1a sketches a typical setup with a linear multi-electrode lowered to the rat
hippocampus along the main axis of the pyramidal neurons. The electrode spans
several hippocampal subfields, including CA1 and CA3 regions. As we mentioned
above, in vivo electrophysiological experiments usually provide recordings of the
extracellular field potential that contains multi-unitary activity coming from nearby
neurons. This activity, besides spikes, contains low-frequency oscillations (<1 kHz),
so-called local field potentials (LFPs) produced by synaptic currents in principal
cells (Fig.4.1b). LFPs can have significantly higher amplitude than the spikes. These
oscillations can be considered as a noise from the standpoint of spike sorting. How-
ever, LFPs have great importance when studying information processing (see, e.g.,
[23, 24] and references therein). Figure 4. 1¢ shows a short epoch of a recording where
we see low-frequency oscillations and fast spikes. LFPs generally have a broad-band
spectrum, which significantly overlaps with the spectrum of a typical spike. How-
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Fig. 4.1 Example of extracellular recordings in the CA1-CA3 regions of the rat hippocampus. a
Sketch of the recording setup. A linear micro-electrode with 16 tips is lowered into the hippocampus
along the main cell axis. b Epoch of electrical potentials recorded by the electrode (16 traces). ¢
Zoomed trace from the electrode tip #14. Several neuronal spikes can be observed with the naked
eye (arrows)

Fig. 4.2 Common steps in
spike sorting STEP I: Filtering extracellularly recorded potential
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STEP II: Detection of spiking events
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STEP llI: Extraction of discriminative features of spike waveforms
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STEP IV: Delimitation of clusters of spikes in the feature space
and their association with different neurons

ever, even with the naked eye, we can distinguish at least high amplitude spikes and
conclude that they may not be the same.

Although details of different spike sorting techniques may differ significantly,
the vast majority of known methods go through a number of common steps. These
steps can be independent, or some of them can be included in a single procedure
for improving the quality of spike sorting. Some methods can also skip some steps.
However, to obtain a good understanding of the problem of spike sorting, it is useful
to separate it into four steps (Fig.4.2).
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Steps I) and III) are the most challenging. In Sect.4.10, these two problems will
be solved together. Concerning step III, there are two types of method: empirical
and model-based. In step IV, the researcher should determine the number of different
groups (neurons) and the membership of the spikes in these groups.

There are also many clustering algorithms (see, e.g., [25, 26]) showing different
performances on different data sets. As a matter of fact, the final performance of spike
sorting is largely defined by the quality of the extracted spike features. Currently
available methods for feature extraction may be divided into groups, including:

e Naive, threshold based.
e Principal component analysis (PCA).
e Wavelet transform (WT).

The first two methods are the most widely used now, but the third technique has been
shown to be superior and is becoming more popular [10-12].

4.3 Spike Detection Over a Broadband Frequency Activity

In the spike sorting procedure mentioned above (Fig.4.2), step I (filtering the extra-
cellular potential) is usually intended to suppress noise and facilitate step II (detection
of spiking events). A straightforward way to identify spikes is then to apply a high-
pass filter (HPF) to the raw recording. However, this may significantly distort spike
waveforms and create additional difficulties for the ensuing spike sorting. Besides,
the operator must set the cutoff frequency, which is not always obvious (we shall
discuss this problem in detail in Sects.4.9 and 4.10). Figure4.3a, b, and ¢ show an
example application of HPF with different cutoff frequencies to a recording contain-
ing high amplitude low frequency activity. Obviously, filtering reduces the noise:
the more aggressive the filter, the lower the noise. However, the spike amplitude is
also reduced, so we may even decrease the signal-to-noise ratio (Fig.4.3c). More
importantly, the spike shape may be significantly distorted.

A better choice in the case of linear multi-electrode recordings (Fig.4.1) may be
the so-called current source density (CSD) analysis. This is based on modeling the
field potential using Maxwell’s equations [27]. In its simplest form, the CSD can be
written as

J(t,x) = —oV?V(t, x), 4.1)

where V (¢, x) is the extracellular (recorded) potential, o is the (ohmic) conductivity
of the extracellular space, and J (¢, x) is the CSD. Since spikes are local events, while
LFPs usually have large spatial extent, evaluation of the CSD from experimental data
can spotlight spikes over LFPs.

For practical reasons we can approximate the second spatial derivative in (4.1)
at the jth electrode by finite differences (this is especially useful in laminar brain
structures like the hippocampus):
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Fig. 4.3 Attenuation of low-frequency oscillations in extracellular recordings. a Original electric
potential with strong low-frequency oscillation (red dashed curve). b High-pass filtering with cutoff
frequency Foy = 300 Hz. Spiking activity stands out above the noise. However, spike amplitudes
decrease and spike shapes are distorted. ¢ Same as in b, but with more aggressive filtering, Foy =
800 Hz. d CSD-based method emphasizing local currents corresponding to spikes without disturbing
their shapes

Ji(t) = =V () +2Vi(t) = Vi1 (1), (4.2)

where V;(¢) is the voltage recorded at the jth electrode [without loss of generality,
we assumed o = 1 in (4.2)]. Then f j can be used for spike detection and sorting.
Figure 4.3d shows the currents produced by spiking activity. Note that we now avoid
the need to adjust any filter parameters and obtain the true shape of the spikes, but
in terms of the CSD.

Let x(¢) be the preprocessed signal containing spikes [either high-pass filtered
V (t) or CSD-like J (t), Fig.4.3]. Once x(¢) has been obtained, we have to select
events corresponding to spikes. In other words, we aim to distinguish spikes from
the background activity. This is often done by amplitude thresholding. If x (¢) crosses
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Fig. 4.4 Detection of spikes
by thresholding. Events that
go through the threshold (red
dashed line) are marked as
spikes (xign = —30y). The
detected spikes are then used
for sorting

a threshold xy, (in one selected direction), we mark this event as a spike. More
complex detection algorithms are sometimes applied. For example, power detection,
in contrast to x(¢), uses the quadratic quantity

y(1) :/H(t—t)xz(t)dt, 4.3)

where H is some smoothing kernel [in the simplest case H () = §(¢)].

Changing the threshold level xy, allows us to regulate the trend between missed
spikes (so-called false negatives, going undetected) and the number of events occur-
ring due to random fluctuations (false positives, which are non-existent spikes).
Ideally, the threshold should be selected in such a way as to minimize the total error.
As arule of thumb x4, & —30,, where o, is the standard deviation of x (¢) (Fig.4.4).

Finally, we obtain a set of spikes:

Q= {(tj,xj(t))‘ t €ty tj+ T]] , (4.4)

where ¢; are the times of the spikes and 7" is a time window or duration of spikes
(usually T =~ 1-2 ms). For correct spike sorting, all spikes should be aligned in the
set £2. This is usually done in such a way that the maxima (or minima) of all spike
waveforms are at the same distance from the beginning of the corresponding spike.

In experimental recordings, each spike waveform x;(¢) is discretized with the
time step At = 1/ F;, where Fj is the sampling rate. For adequate spike sampling, F;
should be sufficiently high. F; = 20 kHz is usually acceptable. Then the discretized
spikes can be considered as vectors in an m-dimensional space:

Xj= (X1, ey Xjm)' €R™, (4.5)

where m = T /At is the length of the spikes. Finally, we can construct a data matrix
X=[xix ... xy]l € Muxn{R) (4.6)

containing all spikes. Each column of X describes one spike waveform and the

column number corresponds to the number of the spike in the set £2. Hence we can
work with the set
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Q={x. (.} . 4.7

4.4 Naive Spike Sorting

Once a set of events (spikes) £2 (4.7) has been obtained, we must decide how many
classes (neurons) there are and separate spikes between them. Comparing spike
waveforms, one can resolve this problem with some degree of reliability. However,
in practice, spike sorting represents a complicated task due to the high level of back-
ground noise, variability of spike waveforms, the fact that distinctions between spikes
of different neurons are frequently not well-pronounced, and so on. For example, in
Fig.4.5, at least two groups of spikes are observable by the naked eye, but a reliable
inference needs more careful investigation.

Mathematically speaking, each spike is a point in an m-dimensional space (4.4).
Since m is quite big (usually m = 30-70), the curse of dimensionality is the major
obstacle for clustering spikes in such a multidimensional space. Hence some method
is required to reduce the dimension of the representation space. In this section,
we describe the simplest (but sometimes very useful) approach to the dimension
reduction problem.

Extracellularly recorded signals can be treated as a mixture of spikes produced by
several neurons and different sources of fluctuations or noise. Figure 4.6 illustrates a
model of this process. The recorded signal is then given by

N K
V()= )+ Y &) . (4.8)
n=1 k=1

The simplest approach to the problem of spike sorting is amplitude thresholding.
The amplitude is one of the most important characteristics of spikes. It is assumed
a priori that each neuron generates signals of the same shape, and that this shape
does not change significantly over time. If the electrode is placed near one neuron,

Fig. 4.5 A typical example
of the extracellular potential
recorded from the rodent
hippocampus. The simplest
way to sort spikes (marked
by arrows) is by amplitude
thresholding (two dashed
lines)
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Fig. 4.6 An illustration of
the spike sorting problem. "
The extracellularly recorded
signal is a sum of spikes
generated by neurons 1-3
and fluctuations produced by
noise sources &1, ..., £k

Fig. 4.7 Controlling the
quality of spike sorting by
spike superposition. a Good
separation. Spikes of only
one class (shape) appear in
the plot. b Bad separation.
Spikes of two different
classes are merged

then its spikes will be significantly higher than spikes of distant neural cells and
the background activity. In this case it becomes possible to identify at least one
type of spike with amplitude thresholding (e.g., spikes B in Fig.4.5). Spikes of
different heights can be separated by selecting different thresholds (spikes A and
B in Fig.4.5). The advantage of this method is that it requires minimal equipment
and can be implemented on-line during recordings. In some cases this approach
provides quite precise information, adequate for the research at hand, and no further
improvements are required. One obvious disadvantage is that the amplitude is not the
only feature of a spike. Spikes of different neurons may have similar amplitudes but,
e.g., different widths. Then the quality of spike sorting by amplitude thresholding
decays drastically.

To test the quality of spike sorting one can use a superimposed plot of all spikes
belonging to a single cluster (Fig.4.7). If the spikes belonging to one class have
basically the same form (up to small variations induced by noise), then we can
conclude that the sorting is good enough (Fig.4.7a). The existence of a spike class
with clearly different spike shapes (Fig. 4.7b) means that the method is unable to
accurately resolve spikes and other techniques should be applied. However, this
method usually works when the number of spikes is relatively small. In the case of
big data sets (thousands of spikes), other methods based on electrophysiological and
anatomical criteria should be applied (for details see, e.g., [7]).

Besides the background noise, which can be considered as a normally distributed
process (or sometimes a Poisson distribution), the amplitude can vary due to possi-
ble overlapping if two different neurons fire simultaneously or within a small time
window. When the maximum of one spike coincides with the minimum (or, more
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Fig. 4.8 Spike sorting errors a
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generally, with the negative phase) of another spike, then the resulting signal may
not reach the threshold (Fig.4.8a). The number of such events can be estimated
approximately as follows:

Nmissed ~VTo, (49)

where v is the mean firing rate of neurons and 7~ is the mean duration of the negative
phase.

Another possible error occurs when two independent spikes with small amplitudes
add together and the threshold is crossed by the resulting signal (Fig. 4.8b). Denoting
the firing rates of spikes as v; and v,, we can estimate the error rate in this case as

Nwrong ~ VW TIT2 , (4.10)

where 71, 1, are the spike durations.

These two types of error are typical for amplitude thresholding. Besides the pos-
sibility of doubled spikes, one can also consider noisy events with high enough
amplitudes to affect the amplitude of spikes. The shape-accounting techniques dis-
cussed in the remaining part of this chapter are more robust against these errors.
Nevertheless, false positive and false negative errors appear for any spike-sorting
technique, but their number is typically much lower than for amplitude thresholding.

In order to perform a more detailed description of spike features, besides ampli-
tude, additional characteristics such as duration, height of local extrema, etc., can
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also be used. Such an ad hoc approach based on the geometrical description of spikes
was widely used in spike-sorting techniques developed early on [28-30]. As a rule,
the more characteristics are employed for spike description, the better the spike
sorting that can be achieved. However, these techniques are subjective and usually
provide suboptimal spike sorting. In the following sections, we discuss spike-sorting
techniques based on an integral analysis of spike waveforms.

4.5 Principal Component Analysis as Spike-Feature
Extractor

Principal component analysis (PCA) is a simple but significantly more powerful tool
for spike sorting [31-35]. This approach can be considered as a particular case of
factor analysis [36]. Itis widely used for image recognition [37], noise reduction [38],
reduction of dimensions in dynamical models without significant loss of information,
e.g., for mathematical description of turbulent flows [39], and so on.

4.5.1 How It Works

PCA estimates a set of orthogonal vectors for the matrix (4.6), the so-called principal
components {c,-}f\’= 1- These are eigenvectors of the covariance matrix constructed
from the data ¢; = (¢;1, ..., cim)" € R™. Then each spike x ; can be represented as
a weighted sum of the principal component vectors with the corresponding weights
or scale factors, so called scores S;;, which are evaluated by the scalar product

Sij = (c]. xj) = Zcikxjk . 4.11)
k

Thus we decompose each spike into an orthogonal set of principal components:

N
X; =Zsijci. (4.12)
i=1

Then the scores S;; can be considered as features describing the jth spike.

To illustrate the use of PCA for spike sorting, we generated an artificial set of spikes
that consisted of a series of 3 repeated waveforms extracted from experimental data
(with random order of the waveforms), corrupted by noise with Poisson distribution.
By analogy with Lewicki [3], we consider the standard deviation of the scores in
the direction of each principal component (Fig.4.9). If A, A,, ... are the variances
in the directions of the principal components, we can estimate the percentage of the
data variation that is accounted for by the first kK components as 100(A; + A, + - - - +
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Fig. 4.9 Principal component analysis of spikes of three different classes. a Standard deviations
of the scores versus the number of the principal component. b Plane of the first two principal
components. Three clusters are easily distinguishable

M)/ Zi A;. Figure4.9 illustrates the standard deviation of scores versus the number
of the principal component. The first three components characterize the main changes
in the spike shapes. They account for about 80% of the variance in the data. This
suggests that, for reasonably faithful description of spikes, one can use just the first
few principal components.

There are different approaches for selecting the number of principal components
to retain, i.e., deciding which components are important and which can be excluded
without losing important information (see, e.g., [40, 41]. For instance, the method
proposed by Cattel [41] examines the explained variance (Fig. 4.9a) and searches for
the point where the decrease in the standard deviation versus the number of the prin-
cipal component becomes the slowest (the so-called elbow criterion). Components
to the right of this point can be excluded without loss of important information.

In practice, using the first two [N = 2 in (4.12)] or sometimes three components
turns out to be optimal. These components have eigenvalues larger than the back-
ground noise. Consequently, they account for the most important information about
the shapes of the action potentials, while higher components are usually very noisy
and provide no information about the shape of the spikes. Other components provide
either an insignificant improvement or even decrease the accuracy of spike sorting.
The score of the first two components typically enables acceptable spike sorting
with much better performance than the method of amplitude thresholding (or at least
equivalent). For instance, in the case shown in Fig.4.9b, the performance of the
method is 100%, i.e., all ‘recorded’ spikes are correctly assigned to three neurons.
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Fig. 4.10 Original spike Set #1
waveforms used to generate
two data sets (sets #1 and
#2). We use three clearly
different waveforms (WFs
1-3) and two similar
waveforms (WFs 4 and 5).
The difference between the
similar WFs appears on short
time scales for set #1 and on
longer time scales for set #2 Set #2

WFs 1-3 WFs 4.5

WFs 1-3 WFs 4.5

4.5.2 Possible Pitfalls

In contrast to the amplitude approach, disadvantages with the PCA-based method are
less obvious and can be revealed only in comparative analysis of different techniques
for spike sorting. For illustrative purposes, we generated two semi-simulated data sets
(Fig.4.10), both consisting of 500 spikes of five different waveforms. The original
spike waveforms where selected from electrophysiological recordings. The two sets
have three clearly different waveforms (WFs 1-3) and two similar ones (WFs 4,
5). Similar waveforms in set #1 exhibit differences only on short time scales, while
WFs 4 and 5 in set #2 show a more pronounced difference on longer time scales.
To simulate the noisy background, we mixed a colored noise, band-pass (300 Hz—
3.0 kHz) filtered Poisson process, with the noise-free spike waveforms.

Spike sorting of set #1 by PCA reveals four different clusters (Fig.4.11a). Three
clusters correspond to spikes of WFs 1-3, thereby confirming the potential of the
PCA approach. However, the fourth cluster contains a mixture of spikes of the two
similar waveforms (WFs 4 and 5). Analysis of the first principal components proves
that the difference between WFs 4 and 5 is not reflected by them. Thus a problem
with the PCA method may occur when, among different spike waveforms, there are
two types with similar shapes and clearly expressed distinctions appearing only on
small time scales (set #1 in Fig.4.10). Such distinctions are not usually reflected in
the first principal components, and consequently the method fails to separate such
spikes.

In order to confirm this conclusion, we considered the other test data set, i.e., data
set #3, consisting of 500 spikes of five different waveforms (Fig. 4.12a) corrupted by
noise. Application of the PCA to this data set again reveals four different clusters.
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Fig.4.11 Sorting of the data sets shown in Fig. 4.10 by PCA and wavelet techniques. a The wavelet-
based approach outperforms the spike separation by PCA for set #1. In the PCA feature space, the
spikes of WFs 1-3 are clearly clustered, but WFs 4 and 5 (open and solid circles, respectively)
are mixed together. The wavelet space provides five well separated clusters for all spikes (WFs
1-5). b The PCA method provides better separation of set #2, than the WSC method. The chosen
suboptimal wavelet coefficients exhibit multi-modal distributions allowing separation of clearly
different spikes (WFs 1-3), but not similar WFs 4 and 5

First, three clusters correspond to spikes of the WFs 1-3, thereby demonstrating the
potential of the PCA approach. However, the fourth cluster contains a mixture of
spikes of two similar waveforms: WFs 4 and 5 (Fig.4.12b). Analysis of the principal
components confirms that the difference between WFs 4 and 5 is not reflected in the
first of them. Thus PCA-based methods may fail to separate spikes with differences
appearing on small scales.
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Fig. 4.12 An example where the wavelet-based approach outperforms the spike separation by the
PCA. a Original spike waveforms used for generation of the data set (set #3). We use three clearly
different waveforms (WF 1-3) and two similar waveforms (WF 4 and 5). The difference between the
two similar WFs appears on small time scales. b Feature space of the first two principal components.
A zoomed region corresponding to the fourth cluster is shown. Spikes of two waveforms (open and
solid circles for WFs 4 and 5, respectively) are mixed, and an acceptable separation is impossible. ¢
The “Wave”, i.e., the function chosen for wavelet analysis. d Zoomed region corresponding to the
fourth and fifth clusters (WFs 4 and 5) in the wavelet space. Two clearly distinct clouds are formed,
and separation is possible with high fidelity

4.6 Wavelet Transform as Spike-Feature Extractor

The wavelet approach [10-12] represents the spike waveform x; () by coefficients
of the WT. In the case of the continuous wavelet transform [13, 14], the coefficients
are associated with selected values of the time localization #y and the scale s. In its
most general form, the continuous WT of a spike waveform reads

1 T
Wi(s, 1) = ﬁ/o xj (Vs () dr (4.13)

where T is the spike duration (typically 1-3 ms), and
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is a translated and scaled mother wavelet.

The main wavelet-based techniques for spike sorting (e.g., [10-12]) use the dis-
crete wavelet transform, since this provides a quick decomposition of a spike with
fewer coefficients. Let us consider, e.g., an approach proposed by Letelier and Weber
[10].

4.6.1 Wavelet Spike Classifier

The WT of a spike can be considered as a set of filters with different bandwidth. Then
the value of the energy found in a specific frequency band for each spike is considered
as its feature. This idea was first adopted in the framework of the wavelet-based spike
classifier (WSC) [10]. This approach is based on the standard pyramidal expansion
algorithm (see Fig. 2.28, Sect. 2.3). The coefficients of the spike decomposition in
the basis of Daubechies wavelets are used as features for spike sorting.

For illustrative purposes, we can consider a more general case, namely, applica-
tion of both the continuous and the discrete wavelet transform, depending on the
researcher’s choice. We shall consider here the continuous WT, because it is simpler
and allows for a detailed representation of the results. In particular, it becomes pos-
sible to discuss the problem of optimization of spike features in terms of a surface
of the wavelet coefficients, which is a more illustrative approach.

With the tuning parameter s in (4.13), one can successfully resolve the multi-scale
structure of the data sets #1 (Fig.4.10a) and #3 (Fig.4.12a). Indeed, the WSC tech-
nique finds all five clusters, including those corresponding to WFs 4 and 5 (Figs.4.11a
and 4.12d).

In the case where spike waveforms have a multi-scale structure with significant
characteristics appearing on small scales, as in the data sets #1 and #3 used in
Figs.4.10a and 4.12a, the wavelets are able to resolve these features. Indeed, appli-
cation of the wavelet technique to the data set of Fig. 4.11a shows that this approach
finds all five clusters. Figure 4.12d also illustrates a good separation of WFs 4 and 5
into two clusters, where the PCA had difficulties (Fig.4.12b).

4.6.2 Potential Problems

Although the WT is potentially more powerful than PCA, there are a number of
inherent problems restricting its broader application for spike sorting. Here we dis-
cuss the main ones among them: an arbitrary choice of mother wavelet and selection
of the best wavelet coefficients:
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e Apparently, the results of the analysis, e.g., the wavelet coefficients, depend on
the mother wavelet 1. Generally, there is no standard answer about how to choose
the mother wavelet in a particular case. Thus the performance of the method for
a given mother wavelet may vary considerably from one data set to another. For
spike separation, different mother wavelets have been advocated: Daubechies [10],
Coiflet [11], and Haar [12]. Possible advantages of one or the other depend on the
particular spike waveforms of the analyzed data set, and no a priori recommen-
dation can be given about which mother wavelet will perform better. Successful
classification can be achieved by selecting a mother wavelet similar in shape to
the spike waveforms. For instance, in the example shown in Fig.4.12, to obtain
a good separation, we used the Wave wavelet (Fig.4.12c), which is visually very
similar to WFs 4 and 5 (Fig.4.12a).

e Let us assume that the mother wavelet has been selected somehow. Then the WT
of spike waveforms is performed, thus obtaining a number of different wavelet
coefficients for each spike (usually 64 in the case of the DWT and even more for the
CWT). In contrast to PCA, these coefficients are not ordered, and making the right
choice among them for spike sorting is a challenging problem. Different authors
have suggested different procedures for coefficient selection. Among others, we
can list: large standard deviation, large mean values, and multi-modal distribution
[10]. There is also a more complicated, but at the same time mathematically better
justified method based on information theory [11]. However, there is no single
universal approach for the choice of WT features capable of providing the best
classification in every case, and a counterexample can always be found. Difficulties
occur especially when the analyzed data contains spiking activity of many neurons,
and among them there are both clearly different and rather similar types of spike
waveforms.

To illustrate the kind of problems that may be encountered, we again generated
test data sets #2 and #4 (Figs.4.10b and 4.13a) with more pronounced differences
between the WFs 4 and 5 and with no clear distinctions on small scales. This helps the
PCA to separate all spike groups, including those of similar waveforms (Figs.4.11b
and 4.13a). According to one of the wavelet coefficient selection procedures [10],
the features used for classification should show a multi-modal distribution. However,
in many practical cases, a multi-modal distribution is obtained for many different
wavelet coefficients and there is no clue about how to perform an automatic compari-
son in order to select the most informative ones. An example of such a quasi-arbitrary
(unsuccessful) choice of coefficients is illustrated in Fig. 4.13b. Although the chosen
wavelet coefficients have multi-modal distributions (Fig.4.13d), allowing separation
of the first three clearly different spike waveforms, the wavelet approach gives a
worse classification of two similar waveforms than the one provided by the PCA
(Fig.4.13a and c).
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Fig. 4.13 A case where the PCA provides better separation than the wavelet technique. As in
Fig.4.12, we use a data set with spikes of three clearly different and two similar waveforms.
However, the difference between similar spikes is not so pronounced now, and is not on small scales
(set#4). a Principal components show a good separation of spikes of WF4 and WF5 (open and solid
circles, respectively). b Wavelet classification. The chosen wavelet coefficients exhibit multi-modal
distributions allowing separation of clearly different spikes. However, separation of WF4 and 5 is
not achieved. ¢ and d Histogram of spike density along the first component score (¢) and one of the
wavelet coefficients (d). The wavelet coefficient exhibits a multi-modal distribution, but the number
of peaks [four in (d)] corresponding to clusters is less than in the PCA case [five in (¢)]

4.7 Wavelet Shape-Accounting Classifier

With a view to improving the wavelet-based extraction of discriminative spike fea-
tures, let us consider a three-step approach based on a combination of the PCA and
wavelet techniques [13, 14]. This algorithm, which we shall refer to as the wavelet
shape-accounting classifier (WSAC), works as follows:

e Find representative waveforms (rWFs).

e Search for wavelet parameters (s, fp) maximizing the distances between the rWFs
in the wavelet space.

e Evaluate the wavelet coefficients for the resulting parameter sets for all neuronal
spikes W;(s*, 15).

To demonstrate the method we start with a typical situation frequently encountered
when processing real electrophysiological recordings. A conventional method of
spike feature extraction, e.g., PCA, gives two poorly separated overlapping clouds
(Fig.4.14a). For the sake of simplicity, we suppose that these clouds consist of spikes
of two neurons (or spikes of one neuron and other possibly noisy spike-like pulses).
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Fig.4.14 Working principle of the WSAC method. a Two overlapping clouds correspond to spikes
of different types on the PCA plane. Insets show representative spike waveforms obtained by
averaging over neighborhoods of the cloud centers. b Difference between wavelet coefficients for
the representative spikes as a function of scale. Circles mark the coefficient pairs (s = 4.8, 1y = 18
ands = 7.1, o = 32) that correspond to the most prominent distinctions between rWF1 and rWF2. ¢
New spike feature space. The resulting coefficients are used. d Spike density along the clouds. Peaks
correspond to the centers of the clouds. The dashed line corresponds to the PCA space and the solid
line shows the results obtained in the wavelet space. The later distribution shows better separated
and more prominent peaks resulting in a better localization of spikes of different waveforms in
feature space [compare the clouds in (a) and (c)]

Our goal is to improve the separability of the two clouds and hence to reduce the
number of wrongly classified spikes.

First, we localize the cloud centers Sy (k = 1, 2), i.e., the positions of the spike
density maxima in the PCA space (step 1). Then we average the spike waveforms
over spikes falling in a small neighborhood of each cloud center (insets in Fig. 4.14a):

YWk = Xjew, @={j€[l,N]: |IS; — Sl <¢e}. (4.14)

The mean or representative waveforms (rWFs) thus obtained approximate noise-free
spike waveforms of the two neurons. Here we assume that each neuron emits spikes
of the same shape that are linearly mixed with noise at the electrode, so that the noise
impact near the cloud centers is minimal and gets canceled by averaging.



4.7 Wavelet Shape-Accounting Classifier 137

Second, we apply the WT to x,wr1, Xrwr2 and search for a set of parameters (s*, ;)
that maximizes the distance |Wywri(s*, 15) — Wewra(s*, £5)] (step 2). Figure4.14b
shows the distance between rWFs in the wavelet space as a function of the scale s for
different values of #y. Frequently, crucial differences between spike waveforms occur
at the beginning and the end of firing. To better account for the spike morphology,
we search separately for the maximal distance in the first and second halves of the
spike time window. Circles in Fig. 4.14b mark two points (one for each half window)
where the distance between the representative waveforms is maximal.

Third, we apply the WT for all spikes x, using the parameter sets (s*, #;) found
above (step 3). The resulting coefficients are the new spike features (Fig.4.14c).
Visually, the clouds corresponding to two neurons are better delimited in the wavelet
plane than in the PCA space (compare Fig.4.14a and c). Indeed, the histogram of
the distribution of spike features in the wavelet spaces (WSAC method) exhibits
significantly more pronounced peaks than the PCA method (Fig. 4.14d). This means
that one can now better delimit clouds and considerably reduce classification errors
arising from misclassification of spikes in the overlapping part of the clouds.

4.8 Performance of PCA Versus WT for Feature Extraction

We tested the proposed approach on three different data sets (S1, S2, and S3). Each
data set is obtained in the following way. We take two experimental electrophys-
iological recordings. One of the recordings is selected in such a way that spikes
of one type can be easily separated from the rest by the conventional thresholding
method (Sect. 4.4). These spikes are then mixed with another experimental recording
displaying complex spiking activity. On the one hand, this procedure allows one to
keep all characteristics essential to a real electrophysiological experiment (level and
type of noise, spike waveform variation, etc.), and on the other hand, we possess a
priori information about the membership of spikes for one target cluster formed by
the “additional” spikes. Hence, we can estimate the classification error for the given
cluster.

The generated data sets were used as an input to three feature extraction algorithms
discussed above: PCA, WSC, and WSAC. Then clustering was performed using
the superparamagnetic method [42], and the number of misclassified spikes was
estimated.

Figure4.15 illustrates results obtained for the data set S1 consisting of 16568
spike waveforms, including 3069 ‘“additional” spikes. The PCA gives 2 clusters
(Fig.4.15a) shown in black and gray, corresponding to the additional (targeting) and
the original action potentials, respectively. Squares mark unclassified spikes that
are not related to either of the clusters. Classification of spikes by the three first PCs
gives 290 misclassified spikes: 24 false negative and 266 false positive, i.e., 0.8% and
8.6% of the total number of spikes in this cluster. The histograms of spike densities
for each coordinate in the feature space show a bimodal distribution for the PC1,
and a unimodal distribution for the PC2. The former allows separation of different
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Fig. 4.15 Results of spike separation by different methods for the data set S1. a Projection of the
feature space for the PCA onto its first two components, and corresponding histograms of spike
densities. Black points correspond to spikes classified as belonging to the targeting cluster. b The
same as in a, but for the WSC method. ¢ The same as in a, but for the WSAC method. d Number
of misclassified spikes for the different methods and for different spike feature subsets used for
classification

waveforms into two clusters, while the latter does not actually provide additional
information for spike classification.

Figure 4.15b illustrates the results of spike sorting performed by the WSC method
[10]. Following the authors’ recommendations, we chose for classification the
wavelet coefficients showing the largest standard deviations, the largest values,
and the bimodal distributions. Note that, in contrast to the PCA, the histograms
in Fig.4.15b are both bimodal, so they actually provide useful information for spike
sorting. However, for the considered example, we obtain a higher classification error:
410 misclassified spikes (5.2% of false negative and 8.1% of false positive). Thus a
quasi-arbitrary choice of wavelet coefficients satisfying the given recommendations
did not lead to an improvement in spike sorting as compared with the PCA method.

Figure 4.15c shows the results of the spike classification obtained using the WSAC
method. We found that three pairs of coefficients (s*, t*), namely, (6.8, 31), (8.6, 51),
and (6.2, 20), maximize the difference between the characteristic spike shapes. These
sets were used for spike sorting, which provided the best results: 185 or 2.8% of false
negatives and 3.1% of false positives.
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Table 4.1 Classification error rates for all data sets and different methods (percentage of misclas-
sified spikes out of the total number of spikes in the cluster). FN and FP denote false negative and
false positive errors

S1 S2 S3
FN |FP Sum FN FP Sum |[FN |FP Sum
PCA 0.8 |86 |9 0.5 |416 |11 0.8 |534 (0.1 |26 |2 0.7
WSC 52 |8.1 13 03 [342 |13 0.8 [48.0 |67 |29 |9 0.6
WMSPC 7.5 |89 16 04 |287 |0 0.8 |295 |95 |44 |13 0.9
WSAC 2.8 |3.1 5 09 |264 |8 02 |346 (1.8 |03 |2 0.1

Figure4.15d shows the results of spike classification using the three methods for
different combinations of features used in each particular technique. For instance,
classification performed using the first two principal components gives 364 errors
(first bar in Fig.4.15d), whereas the same done with PC1 and PC3 results in 296
errors. This means that, in this case, PC3 describes the variation in the data set
better than PC2. Using all three components slightly improves the classification,
resulting in 290 errors. Considering WSC, we note that each coefficient improves
the results of classifications, but the overall performance is the worst among all the
methods. On average, the WSAC approach gives the minimal classification error for
any combination of spike features.

Table4.1 summarizes the results obtained for all data sets. We also include clas-
sification errors obtained by the WMSPC method based on the approach proposed
by Quian Quiroga et al. [12]. This approach performs considerably better for the set
S2, while showing poor performance for S1 and S3.

Hence, regarding the question of when wavelet-based methods outperform the
PCA, we have shown that the main advantage of WT techniques reveals itself when
dealing with the detailed structure of experimental signals over a broad range of
scales. Considering the WT approach as a mathematical microscope, the following
interpretation can be given: wavelets can resolve fine details of a signal structure, but
we need to choose the focal point and resolution of this “microscope” appropriately.
From the mathematical viewpoint, this means that the selection of wavelet parameters
responsible for resolution and focusing is of crucial importance. If they are selected
successfully, the “microscope” can elucidate the differences in spike waveforms.

This is why the problem of selecting the optimal wavelet coefficients is an impor-
tant trend in the problem of spike separation. In contrast to PCA-based methods,
where the first principal component scores are used as spike features due to their
natural order, optimal selection of features within the framework of WT techniques
is a significantly more complicated procedure.

There are at least two cases where wavelet-based techniques are potentially prefer-
able to PCA:

e When there is small-scale structure in the waveforms that is not reflected in the
first principal components.
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e When there is strong enough low-frequency noise, since this significantly dimin-
ishes the performance of the PCA method, whereas noise statistics are less critical
for wavelets.

In other situations, the considered WT-based approaches give comparable results to
PCA.

4.9 Sensitivity of Spike Sorting to Noise

Sensitivity of spike sorting to noise statistics is an important problem for any
approach. Extracellular recordings of neural activity contain different kinds of noise,
from Johnson noise in the electrode and electronics, through the background activity
of distant neurons and electrode micromovement, to variation of action potentials
due to physiological processes in the cell dynamics.

Obviously, the quality of the spike separation is degraded by increasing noise
intensity, although robustness against the noise level may be different for different
methods. Another, more important question we address here is how the efficacy of the
method depends on the frequency band of the noise. Indeed, when the noise frequency
band lies far outside the frequency band of a spike spectrum (about 300-3000 Hz),
the noise can be easily filtered out by applying high-pass and/or low-pass filters, thus
eliminating the impact of the noise on spike separation. However, when the noise
frequency band overlaps with the spike spectrum, the use of filters becomes worthless,
and the advantages of one or another method can become significant. This kind of
overlap can happen, for example, when recording certain neurons from a densely
populated brain region and spikes from more distant neurons (far enough away and
consequently of low enough amplitude to be included as spikes for separation, but
close enough that their effect is noticeable) are confused with noise.

In this section, we study and compare the performance of the PCA and the wavelet
technique with regard to the noise statistics, assuming an overlap between the spike
spectrum and the noise frequency band. We discuss how the quality of spike separa-
tion depends on the frequency band of the experimental noise.

4.9.1 Impact of High/Low Frequency Noise on PCA and WT

Quantities used as features for spike separation in the PCA and WT techniques are
often related to rather different time scales. This suggests that PCA and WT may
show different degrees of robustness against noise with different statistics.

The wavelet coefficients W (s, ty) used for spike classification are typically related
to rather small values of the scale parameter s. Therefore we expect the coefficients
to be distorted mainly by fluctuations in the frequency band associated with the scale
parameter value. Relatively slower or faster fluctuations should not have an essential
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Fig. 4.16 PCA feature space of spike waveforms contaminated by noise. a Low-frequency noise,
Jhoise = 500 Hz. b High-frequency noise, fhoise = 2500 Hz

influence (in the case of additive noise). The latter means that separation of several
types of spikes by the WT approach should have a maximal classification error for
noise with high-frequency dynamics.

Another situation is expected for PCA. This approach quantifies spike features
on large scales for entire waveforms. The low-frequency noise appearing on the
time scales of the first principal components disperses spikes in the PCA feature
space. The high-frequency noise mainly affects high principal components that are
not considered for spike separation. As a result, the PCA method should exhibit an
error that decreases with the frequency band of the presented fluctuations.

To check these conjectures, we generated data sets consisting of 2000 spikes of
two different types (two neurons). Then we mixed spike waveforms with colored
noise of a certain frequency band, and finally we performed spike sorting on the
resulting data sets.

The colored noise was obtained by band-pass filtering of a Poisson random pro-
cess. Choosing different values of the central frequency fioise Of the band-pass filter,
which defines the base noise frequency, and fixing the filter width (A f,ise = 700 Hz),
we estimated the classification error for each spike-sorting technique. Noise with base
frequency lower than the main frequency of the spike spectrum (about 1kHz) was
considered to be low frequency, while fluctuations with fise > 1 kHz were consid-
ered to be the high-frequency noise. For wavelet sorting, we used the WSC method
[10], but other methods show qualitatively similar results.

Figure4.16 shows that the presence of slow fluctuations is more critical for PCA
than the high-frequency dynamics. In the case of high-frequency noise, clusters are
well distinguished ( fnoise = 2500 Hz, Fig.4.16b), whereas they are less pronounced
for a slower random process ( foise = 500 Hz, Fig.4.16a). In contrast, spike sorting
using the wavelet technique shows good performance in the case of low-frequency
noise (Fig.4.17a, fhise = 500 Hz), but performance is diminished for high-frequency
noise (Fig.4.17b, fioise = 2500 Hz).
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Fig. 4.17 WT feature space of spike waveforms contaminated by noise. a Low-frequency noise,
Jnoise = 500 Hz. b High-frequency noise, fhoise = 2500 Hz
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Fig. 4.18 Classification error versus base noise frequency for PCA (a) and the WT technique (b)

We repeated spike sorting for a different base noise frequency. Figure 4.18 summa-
rizes our results. The error of spike sorting using PCA clearly decreases with the base
noise frequency (Fig.4.18a). Spike separation using the wavelet technique shows a
bell-like resonance curve. The worst classification is achieved for an intermediate
noise frequency (around 2 kHz). Thus, the spike classification error is sensitive to
the noise statistics.

4.9.2 Proper Noise Filtering May Improve Spike Sorting

The results shown in Fig.4.18 provide a clue that the quality of spike sorting may
be increased by smart data preprocessing, i.e., noise filtering. In particular, when
the noise frequency band lies far outside the frequency band of the spike spectrum,
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the noise can be easily filtered out by applying high- and/or low-pass filters, thereby
eliminating the noise impact on the spike separation. Figure4.19a illustrates this
simple situation.

In order to choose an optimal value for the filter cutoff frequency, one must
estimate the power spectra of noise and spikes. But in order to provide a better
separation of action potentials, rather than the latter spectrum, it seems to be even
more useful to evaluate the spectrum of the difference between the typical (averaged)
spike waveforms. Choosing the cutoff frequency of the high-pass filter higher than
the range of fluctuations, we obtain clear spike sorting (Fig.4.19a). Note that the
classification error remains the same here, even when the cutoff frequency lies inside
the spike spectrum: the filtering changes the waveform shapes, but these changes are
the same for each type of spike, so the waveforms can be well separated. Similar
results can be obtained if the frequency band of the noise is higher than the frequency
band of the spike dynamics. The noise intensity does not have a crucial impact on
the selection of the optimal cutoff frequency here.

In practice, however, a significantly more complicated situation is typically
encountered. Usually the noise spectrum overlaps significantly with the spike spec-
trum and the choice of filter parameters becomes less obvious.

In order to seek for the best filtering strategy, we filtered waveforms using elliptic
IIR zero-phase filter. Figure4.19b illustrates an example of how the classification
results depend on the cutoff frequency of a high-pass filter for overlapping power
spectra. In contrast to the previous case (Fig.4.19a), we cannot take bigger values of
the cutoff frequency here due to the increasing classification error. An optimal value
of the given frequency probably depends on both the noise intensity and the strength
of spectrum overlap. In particular, this optimum may not be well expressed for rather
low noise intensity (Fig.4.20a), while the choice of filter parameters becomes more
critical in the case of intense noise. According to Fig. 4.20b, a cutoff frequency around
400 Hz provides the best spike separation here.
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Fig. 4.20 a Classification error of the PCA and WT techniques versus the cutoff frequency of a
high-pass filter in the case of overlapping power spectra of noise and spikes (low noise intensity).
b The same, but for low-pass filtered spikes

Let us now consider how the use of a low-pass filter influences the quality of
spike sorting. Figure4.20b shows the dependence of the total classification error
on the cutoff frequency of the low-pass filter. Indeed, the classification error for
the WT technique has a minimum at frequencies around 2.2 kHz and then rapidly
increases. For the PCA, the error first decreases gradually to 2 kHz, then remains
almost constant. This suggests that low-pass filtering of spikes is worthless for PCA,
and is essential for the WT, where to be on the safe side we recommend a cutoff
frequency in the range 2.5-3 kHz.

4.10 Optimal Sorting of Spikes with Wavelets and Adaptive
Filtering

In the vast majority of spike sorting methods, experimental noise is reduced by
a standard filtering prior to extraction of spike features. This procedure does not
account for the noise statistics, nor for the spike signatures. Standard techniques like
amplitude thresholding and PCA have a long history, and well established recipes for
optimal filtering. Their performance usually reaches a maximum for a high-pass filter
at 0.3—1 kHz. However, this may not be the case for the WT technique (Fig.4.20).
Then a different filtering approach may be superior.

As we shall see in this section, the performance of the WT method can be sig-
nificantly improved by incorporating the filtering step into the problem of selecting
the optimal feature set. In other words, signal filtering and spike feature extraction
can be done in a single step. The parametric wavelet sorting with advanced filtering
(PWAF) approach was proposed to exploit this idea [43].
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4.10.1 Noise Statistics and Spike Sorting

To illustrate how the noise statistics affects the spike-sorting performance, we gen-
erated semi-artificial data sets. Each data set consisted of (1000+1000) spikes of
two different neurons. The original spike waveforms where selected from electro-
physiological recordings in the hippocampus. To simulate the effect of the noisy
background, we mixed colored noise (a band-pass filtered Poisson process) of a
certain frequency band with spike waveforms. We used these data sets for spike
sorting and then estimated the performance through the error rate, i.e., the ratio of
misclassified spikes to the total number of spikes.

Figure4.21a shows the error rate as a function of the base noise frequency. In
accordance with previous results (Sect.4.9), the PCA method gives a high error
rate for low-frequency noise and then progressively increases performance for high-
frequency noise.

As a representative approach for wavelet-based methods, we use the WSC tech-
nique. This method exhibits significantly different behavior. The error rate has a
well-pronounced peak at an intermediate noise frequency (about 2 kHz). Compared
with PCA, the wavelet technique is a better option for sorting spikes contaminated
by low-frequency noise ( fpoise < 800 Hz).

In order to find the best filtering strategy, we filter waveforms, varying the cutoff
frequency of the LPF, and then perform spike classification on the filtered data. Here
we use white noise passed through the LPF with a varying cutoff frequency. Filter-
ing generally reduces the error rate. However, it affects the PCA and WT methods
differently (Fig.4.21a). Indeed, the classification error for the WT technique has a
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minimum at a filter frequency around 2.2 kHz and then increases rapidly. For PCA,
the error begins by gradually decreasing to 2 kHz and then remains practically con-
stant. This suggests that low-pass filtering of spikes is worthless for PCA, but it may
be essential for WT methods, where the cutoff frequency should be appropriately
selected.

4.10.2 Parametric Wavelet Sorting with Advanced Filtering

We now discuss the details of optimal spike sorting using the wavelet technique.

4.10.2.1 Derivation of PWAF Method

We start from a data set of N + M spikes of two different neurons, contaminated
by noise. Denoting the original noise-free spike waveforms by wy4 (¢) and wg (¢), the
recorded spikes can be written as

60 =g+ | T TT L2 (4.15)
I wg(®), j=N+1,....N+M. ’

where we have assumed without loss of generality that the spikes are ordered. Here,
{&;} are colored noise sources, mutually uncorrelated and with the same statistics
(i.e., spectrum).

Applying the WT (4.13) to the spike waveform x;(¢) for a selected parameter set
(s, ty), we obtain

S wasi=t2 N, @16
(s, 1) =n; 5
PSS ENI T e N4, N+M,

where we have put

1 T
s = 2 /O £ di @.17)
1 T
Wa (s, ty) = x/ Wa,B Vs, df . (4.18)
0

In (4.16), the n; (s, tp) represent a kind of measurement noise and Wy p are the WT
coefficients of the corresponding noise-free spikes.

The coefficients W; can now be used for sorting. The aim is to separate them
blindly into two clusters or groups with the lowest possible error rate. In our case, the
sorting is achieved by selecting a threshold Wy, and assigning spikes with W; < Wy,
to neuron A, and the others to neuron B (Fig.4.22). This makes sense if the {W;}
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Fig. 4.22 a Histogram of cluster 1 : cluster 2
the distribution of the WT
coefficients W; describing
noisy spikes of two neurons.
Dashed curves depict the
histograms of single
neurons. Classification errors
appear in the overlap region.
b Minimal error rate given
by (4.22) as a function of the w, i
discriminability for several
different values of y
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have a bimodal distribution, otherwise when, e.g., the noise is too strong or the
parameters (s, fp) are not optimal and no bimodal distribution exists, spike sorting is
meaningless.

Let us now assume that the measurement noise is approximately Gaussian with
standard deviation o. We denote the half distance between the noise-free spikes in
the wavelet space by

= Ve —Wa ! fT( Wy, dt (4.19)
= = wWp — W s . .
2 2S5 o BT AT

Without loss of generality, we can shift the origin and set W = Wy = —W,. Then
the probability density distribution of {W;} reads

w2 2

202 202

h(W) = M
N \/ﬂ o
where y = N /M is the ratio of the numbers of spikes emitted by the neurons. Then
the minimum of the total number of misclassified spikes is attained for

0.2
Wi=_=lny. 421

Note that the optimal threshold value (y # 1) does not generally correspond to the
position of the minimum in the histogram. Finally, the theoretical minimum of the
error rate is given by
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Iny Iny
fcl A+ — fe | A — —-
yerc( +4A>+e c< 4A)

Rmin = , 4.22
where erfc is the complimentary error function, and
W
A (4.23)

T V2o

is the discriminability coefficient. Accordingly, the error rate is a two-parameter
function of y and A that decays with an increase in A (Fig.4.22b). The ratio y
of the spike numbers is fixed by experiment, so the only remaining freedom is the
discriminability A.

Let us now explore ways to improve the discriminability. Selecting (s, #p) appro-
priately, we can maximize the value of W which, for constant o, increases A. How-
ever, as we shall show, the scaling parameter s has a nontrivial effect on the standard
deviation o of the noise, and consequently also on A.

The experimental noise £(¢) of a limited frequency band £2,isc can be represented
by a sum of harmonics:

& =Y Alw)cos(axt + dy) . (4.24)

$noise

where w; and ¢y; are the frequency and random phase of the corresponding harmonic,
and A(w) defines the noise amplitude spectrum. Using the Haar wavelet (advocated
for spike sorting in [12]), we obtain the WT of the experimental noise (4.24):

Swy

4 A(wy) . .
nj= _ﬁ Xk: sin ¢ sin? Ve (4.25)

W

Note that the statistical properties of 7 do not depend on the localization parameter
to. Then the standard deviation of the measurement noise reads:

8 A% (wp) Swy,
2 -4
(8, Pnoise) = . Xk: " sin® —~ . (4.26)

Thus the discriminability may depend nontrivially on the parameters (s, y), the spike
waveforms, and the spectral characteristics of the experimental noise. A natural way
to change the noise spectrum is to filter the signal. Denoting the cutoff frequency of
the filter by f:, we finally reduce the problem of optimal spike sorting to searching
for the parameter set (s, ty, f.) which maximizes the discriminability:

o~

w
arg max

s,t0, fe \/50‘ ’

4.27)
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Note that our problem statement is more general than conventional methods relying
on a search for the best parameter set for the WT alone. By including spike filtering
in the problem of optimal spike sorting, we account for the specific noise of the
individual experiment and potentially provide the best possible spike classification.
Moreover, other methods of WT parameter selection are based on empirical analysis
of the experimental distribution of the WT coefficients, while the PWAF method is
parametric.

4.10.2.2 Implementation of the PWAF Method

Under experimental conditions, we have no a priori knowledge of the noise-free
spikes, nor the spectrum of the experimental noise. To estimate these and optimally
sort spikes, we propose the following algorithm:

1. Estimate the noise-free spike waveforms. Applying a conventional algorithm,
e.g., PCA, we find peaks in the distribution of spike features and average spike
waveforms in the vicinity of each peak, thus estimating wy4 p.

2. Estimate the spectrum of the experimental noise P (). A good approximation
is the spectrum of the whole extracellular signal.

3. Find an optimal parameter set (s*, 77, /) maximizing the discriminability.
For a given (s, ty, f.):

o Filter the signal representing the waveform difference (wp — w,) and evaluate
W.
e Evaluate
A*(0) = P(0)H?(0) ,

where H is the filter magnitude response, and then o'
e Evaluate the discriminability, W /+/20.

Find the maximum
(s*, 1y, f1) = arg max A(s, to, fe) .
85005 J¢

4. Filter spikes with £ and calculate W;(s*, 77).
5. Sort spikes according to the coefficients W;.

Note that the proposed method can be very efficient for large data sets. Steps 1-3 do
not depend on the number of spikes and the WT of the whole data set is evaluated
only once. Moreover, the algorithm allows the use of more than one feature set for
sorting. At step 3, we can obtain more than one extremum, and then perform step
4 for all of them. In this way, we describe each spike with more than one feature
(wavelet coefficient) and can use them together for spike sorting in step 5.



150 4 Classification of Neuronal Spikes from Extracellular Recordings

Fig. 4.23 Sorting of data set
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For the maximal A = 2.39,
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4.10.2.3 Algorithm Performance

To test the algorithm, we employ simulated data sets differing by noise statistics and
spike waveforms. Figure 4.23 shows an application of the algorithm to the data set #1.
The discriminability has a strong peak at a surprisingly low frequency f. = 100 Hz
(Fig.4.23a). With such aggressive filtering, the difference W between the noise-free
spikes in the wavelet space is small, but at the same time, we almost completely filter
out the noise, thereby gaining in performance.

Figure4.23b shows histograms of the distribution of spike features (see also
Fig.4.22a). The PCA method involves a significant overlap of the spikes of two
neurons and the resulting error rate is 5.5%. To find the best possible classification
with the conventional WT, we search exhaustively through all pairs (s, fy) for a set
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Table 4.2 Error rate for spike sorting by different algorithms with simulated and experimental data
sets

Data set PCA Exhaustive PWAF (%)
wavelet (%)

Simulated #1 5 0.5% 4.5 0.7

Simulated #2 28 0.0% 5.5 1.7

Experiment #1 11 0.1% 7.0 34

Experiment #2 12 0.2% 7.3 6.8

minimizing the error rate. Note that this is not possible in any real situation without a
priori knowledge of the spike clusters. This procedure yields the absolute minimum
of classification errors that can be achieved by any empirical WT-based method. The
exhaustive wavelet gives a bit better classification than PCA, achieving a 4.5% error
(Fig.4.23b).

The PWAF method is significantly superior, with an error rate of 0.7%, which is
quite close to the theoretical minimum. This confirms the hypothesis that intelligent
filtering is essential for wavelet methods.

We performed the same procedure for another data set (Table 4.2) that was selected
to exhibit differences between noise-free spikes at small time scales. This is a case
where the wavelet technique has an advantage over the PCA method. Indeed exhaus-
tive wavelet and PWAF yield a much better classification than PCA.

We now test the PWAF method on real measurements. Extracellular recordings
were made using tetrode electrodes. Their design permits recording of the same
neuron by two electrode tips (for details see [4]). In rare cases, two electrode tips
captured high-amplitude spikes generated by a single neuron in addition to simul-
taneous multi-neuronal activity. Among many experimental recordings, we selected
two data sets where these conditions were satisfied. For these data sets relating
voltage traces of the two channels, we sort spikes manually with high fidelity. Then
using this information, we estimate the error rate of the automatic methods. Table 4.2
summarizes the results, showing once again that the PWAF method is superior.

4.11 Spike Sorting by Artificial Neural Networks

‘We now discuss applications of artificial neural networks [44—48] for spike sorting,
including combined approaches based on wavelets and neural networks.
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Fig. 4.24 Multilevel decomposition of a typical spike waveform using the D* wavelet

4.11.1 General Approach

Here we use the wavelet multiscale decomposition of spikes as an input to a neural
network. For spike decomposition, the discrete wavelet transform is used as a tool
to characterize the structure of complex signals over a broad range of time scales.
Figure4.24 depicts an example of a three-level DWT of a typical spike waveform
x(t). The series of coefficients s;—s3 correspond to the approximation of x (¢) at three
levels, whereas d|—d; represent details. Then the set [s3, d1, d», d3], used as inputto a
neural network, uniquely represents the original spike waveform x (¢) in the wavelet
space.

In general, DWT provides quite a large number of coefficient features for each
spike (equal to the spike length, e.g., 64). Not all of them are relevant for spike
sorting, others may contain duplicated information. Thus for efficient spike sorting,
a dimension reduction is required, and for this purpose we use neural networks.

Let us assume that some multilayer feedforward neural network receives as
input spike waveform features extracted by the wavelet technique described above
(Fig.4.25). The network should be trained in such a way that, at the output, we can
read out a few compound features best discriminating the spikes [44]. Then the prob-
lem of spike sorting becomes trivial and simple clustering algorithms, e.g., k-means,
can be used. We thus formulate the following algorithm for spike sorting:

e Detect spikes that exceed the level of experimental noise by thresholding the
high-pass-filtered recorded potential [Fig. 4.5, f.,« = 100-300 Hz, Vy, = 3xMAD
(mean absolute deviation)].
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Fig. 4.25 General scheme for spike sorting using the wavelet transform and neural networks.
Different spikes are wavelet transformed and the resulting coefficient features are fed into a network
which finally represents the spikes in a low-dimensional space. The network should be trained in
such a way that spikes of different neurons are grouped into clusters located far away from each
other

e Apply DWT to the selected waveforms (Fig. 4.24). We assume that each waveform
has 64 data points and use the D* orthonormal Daubechies wavelet, performing a
pyramidal decomposition of the waveforms.

e Remove wavelet coefficients fluctuating around zero mean value, since these coef-
ficients are strongly influenced by noise.

e Process the remaining wavelet coefficients by a 3-layer feedforward neural net-
work.

After applying the algorithm, we expect to obtain several clusters grouping spikes in
the low-dimensional feature space (Fig.4.25). The most challenging problem in this
algorithm is how to select an appropriate network and how to train it [45—48].

In general, training algorithms can be subdivided into two groups: supervised
and unsupervised learning. Supervised learning, i.e., with a “teacher”, usually gives
better results. However, within this framework, the learning procedure requires a
priori knowledge of all standard spikes, i.e., denoised typical spikes generated by all
neurons, which is hardly going to be available in a real experiment.

At the present time, there exist different algorithms for unsupervised learning
(without a “teacher”) [46, 47]. These algorithms have been shown to be successful
in image recognition, but their reliability depends significantly on the noise level and
the data set. Consequently, their use for spike sorting may not be effective. In the
present approach, we thus use a kind of supervised learning algorithm, which we
shall describe later.

Setting the network structure for a recognition problem is often simply a matter
of experience on the part of the researcher. The selected three-layer network in
Fig.4.25 is just one among many. However, several circumstances should be taken
into account. The feedforward network representing a multilayer perceptron [49]
is one of the most studied in the literature. The choice of the number of layers
and units in each layer is a compromise between network stability and plasticity.
More complex networks possess better adaptation, but they may be unstable in the
recognition process. Concerning the number of units (neurons), we use 64, 32, and
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Fig. 4.26 Block diagram for the proposed method of spike sorting

2 units in the first, second, and third layers, respectively. The number of units in the
first layer is fixed by the number of data points available for each waveform, whereas
the output layer has only two units, corresponding to the lowest useful dimension
for clustering (clustering in 1D usually has much lower performance) (Fig.4.26).

4.11.2 Artificial Neural Networks

Following on from the brief sketch givenin Sect. 4.11.1, let us now discuss approaches
based on ANN in more detail. We continue to use a 3-layer perceptron (Fig.4.27). In
the theory of ANNSs, neuron nodes are typically described by the McCulloch—Pitts
equations [50]. The state of the neuron j in layer &, denoted by yj, is given by

My
Yk =Fwp),  vir=Y gy —0i, jeLNI, (428
i=1
Fig. 4.27 Aurtificial neural RC
network in the form of a }

3-layer perceptron
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where F'(x) is the activation function, and in fact, usually F(x) = « tanh(Bx), while
w;ji are the synaptic weights defining connections of the neuron with other neurons
in the previous layer, and 6 is the threshold for activation of the neuron. Finally,
M) and N are the numbers of synapses and neurons, respectively, in layer k.

The learning of such a multilayer structure assumes an appropriate tuning of the
thresholds {6;;} and synaptic coefficients {w;,t}, in such a way that input vectors x°
would be mapped to predefined output vectors y*. As the learning technique, we shall
consider algorithms based on the backward propagation of errors. This approach uses
minimization of the error functional over the parameters w;j; and 6y, viz.,

Ny
1 2
E= Zl(yjk -7, (4.29)
Jj=

where y;3 represents the vector of output values obtained in the process of recog-
nition of the input vector x* using the neural network, and y* is the known vec-
tor. The minimization procedure is based on the convex property of E. In order
to reach a minimum of the function, one can move against the gradient of E. Let
P={..wji...;...0ji...} bethe vector whose components are the synaptic coeffi-
cients and threshold levels of the neural network. Then we have to find arg minp E (P).
This can be done by the following iterative procedure:

JEPO)

PV =P —¢;n (4.30)
o
P

where 1 > 01is a small constant known as the learning rate (the learning is performed
for one component at a time). Then the minimum of the scalar error function (4.29),
using all components {w; i}, {0z}, corresponds to

OE _ OF dyp dvi _

Owijk  Oyjx Ovjk dwjjk '
OE  OE dy; v
vjx = atanh(Bvjy) .

=0, 4.31)

The coefficients of the neural network (Fig.4.27) are corrected using (4.28), (4.29),
and (4.31):
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4.11.3 Training the Artificial Neural Network

Let us now describe the supervised network training. We denote the input and output
vectors by w and y, respectively. In our particular case w € R% represents a spike
waveform in the DWT space and y € R? is the reduced set of discriminating spike
features. We then construct a set of vector pairs (w;, y;), (j =1, ..., n) for n spikes,
and say that the network is trained if, when presenting vector w; at the input, we
receive y; at the output for any j € [1, n]. To achieve this we have to adjust the
synaptic weights of the interneuron couplings.

4.11.3.1 Delta Rule

The simplest learning algorithm for a two-layer network consists in several steps and
uses iterative adjustment of weights for each neuron in the network. In the first step
all weights are randomly initialized. In the second step we present a vector w; to the
input of the network and receive some vector z; at the output. Then the error of the
network response is
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8;=y;—2zj- (4.33)

In the third step the coupling weights are modified proportionally to the obtained
error. We employ the following delta-rule learning:

Vigr = Vi +ow;sT (4.34)

where V; is the weight vector at the learning step # and v > 0 is a small constant
defining the learning rate. The learning is performed until convergence is achieved.
The learning contains several epochs and is deemed finished if either (a) the weights
do not change, or (b) the full absolute error (a sum over all vectors) becomes less
than some fixed value.

4.11.3.2 Back Propagation of Errors

When training a multilayer network, the delta-rule described above is not applicable,
since the outputs of the internal layers are unknown. In this case the method of back
propagation of errors is usually used. This method allows one to obtain the errors
for the internal layers. In the learning process, information is passed from the input
layer to the output layer, while the error propagates in the opposite direction.

The method estimates the gradient of the error within the network and performs
a correction on the coupling weights. It consists of two stages. In the first stage,
forward propagation of the input signal is performed to estimate output activations.
Then, differences between output activations and the teacher output are estimated to
obtain deltas for all neurons in the hidden layers. In the second stage, the gradient
for each weight is computed by multiplying its output delta and input activation.
Further, the weight is reduced by analogy with (4.34).

Details of the method are given in [44-48]. We shall illustrate this approach for
different examples of neural networks.

4.11.4 Algorithm for Spike Sorting Using Neural Networks

When sorting experimental spikes, the main problem is lack of information about the
number of clusters and about the noise-free standard spikes. Thus we cannot apply
the above algorithm for network training directly. To overcome this difficulty, we use
the algorithm for finding representative waveforms discussed in Sect. 4.7. Finally, the
spike-sorting algorithm is as follows (Fig.4.26):

e Detect spikes that exceed the level of experimental noise.
e Obtain information about the noise statistics and perform preliminary spike sorting
using PCA or the wavelet transform.
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Select regions in the feature space with a high density of spikes and obtain the
mean spike shapes.

Apply the wavelet transform to the mean spike waveforms.

e Train the neural network using the wavelet coefficients computed in the previous
step.

Sort the experimental spikes with the resulting network parameters.

Thus for network training, we use spike waveforms corresponding to the centers of
the clusters obtained using preliminary spike clustering by a conventional method,
e.g., PCA or wavelet transform. As the standard output of the network, we use vectors
obtained in the feature space of the mean waveforms [51].

In order to test the spike-sorting abilities of this approach, we created a semi-
simulated data set. Two different but rather similar spike waveforms (Fig. 4.25, spikes
A and B) were selected from a real extracellular recording. We then generated a series
consisting of 946 spikes for each repeated waveform and added colored noise to the
data. The noise characteristics were similar to those observed experimentally. As a
result, we obtain a signal similar to a real extracellular recording, but with a priori
knowledge about the membership of each spike in one or the other group.

The use of preselected standard spikes without experimental noise enables the
simplest supervised learning using the back propagation of errors algorithm. We used
64 wavelet coefficients as the learning sequence w; for the first spike waveform and
the same number for the second spike waveform. As a result, the learning algorithm
contained 64 epochs. As mentioned above, the network should provide the most
effective spike clustering, so the standard output vectors y; associated with the two
waveforms should be markedly different. They can be appropriately chosen. Here
we used y; = [0.1,0.1] and y, = [0.5, 0.5]. Once the learning procedure has been
finished, the network can be used to separate noisy data. DWTs of all spike waveforms
are used as input to the trained network, thus providing pairs (y;, y») for each spike.
For the final data clustering, we used the k-means algorithm. Then the clustering error
is the number of wrongly classified spikes relative to the total number of spikes.

Figure 4.28 illustrates the performance of the proposed approach for spike sorting
in the presence of color noise with a fixed bandwidth of 500 Hz and varying central
frequency. The classification error grows slightly from 0.7% for low-frequency noise
(fe =250 Hz) to about 1.5% for noise for the central frequency 1 kHz, and then it
remains constant.

We now test the approach with real electrophysiological recordings. Following the
proposed algorithm, we performed preliminary spike sorting using the wavelet spike
classifier. Figure 4.29a illustrates the clustering results in the wavelet space. The data
are organized into three partially overlapping clusters. For each cluster, we selected
50 points located closest to the spike density peaks in the feature plane. Averaging
over 50 spikes provided the representative spike waveforms for three neurons. Using
these waveforms, we trained the neural network. Then the full set of spikes was
passed through the neural network. Figure 4.29b shows the network output, i.e., the
plane (y;, y2). Again all spikes formed three clusters. However, in the network output
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Fig. 4.28 Sorting of semi-simulated spikes. a (y1, y2)-planes representing spikes for different
central noise frequencies. b Classification error vs central noise frequency (noise band 500 Hz)

space, cluster overlapping was significantly reduced. This facilitates clustering (e.g.,
using k-means), and presumably reduces the number of misclassified spikes.

In conclusion, the considered approach combines the wavelet transform and artifi-
cial neural networks. The wavelet analysis allows us to reveal characteristic features
in the shapes of spike waveforms. As we have shown in previous sections, WT is
potentially a more powerful technique than PCA. However, the selection of the most
informative features and rejection of noisy ones in WT approaches is a challenging
problem. The use of neural networks provides an automatic solution to this problem
(through training). The trained network automatically selects appropriate combina-
tions of the most discriminative features from the whole set. It effectively projects
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Fig. 4.29 Clustering of electrophysiological spikes by a conventional wavelet method (a) and by
the proposed combined approach (b)

wavelet coefficients into a low dimensional space (2D in our case), significantly
improving the separability of spikes generated by different neurons.

We tested the proposed approach with semi-simulated and real electrophysiolog-
ical data. We showed that the use of neural networks can significantly improve the
preliminary classification obtained using PCA scores or wavelet coefficients. Relia-
bility of the spike clustering also has been shown for the case of several clusters in
the feature space of wavelet coefficients. The considered examples demonstrate the
superior performance of the present approach over conventional PCA and wavelet
techniques.

4.12 Artificial Wavelet Neural Networks for Spike Sorting

In Sect.4.11, we showed that the approach based on a combination of the wavelet
transform and artificial neural networks can reduce errors in automatic spike sorting.
Howeyver, it also has some limitations.

On the one hand, this approach can outperform standard neural networks because
the integration of a time—frequency representation (using wavelets) into the structure
of the recognition algorithm allows an initial preprocessing of the data used as input
for the neural network. In this context, the wavelets used in the data preprocessing
stage provide a way to select characteristics that can be used by the neural network to
better distinguish signals of different types. On the other hand, this method assumes
no variation of wavelet parameters in the learning phase. For this reason, the efficacy
of the method depends on the initial selection of the parameters, i.e., the results of
the data preprocessing.

In the learning phase, there is a loss of connection with the selection of WT
parameters since, in the approach considered here, these parameters are not adjusted
in the course of the learning procedure. If these parameters are selected sub-optimally,
then the situation cannot be further improved. It has been shown that this circumstance
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strongly influences the final result of image recognition (and consequently of spike
sorting), because the personal experience of a researcher becomes one of the key
factors. In order to reduce the influence of subjective factors, one can extend the
learning phase and include additional tuning of the wavelet parameters, depending
on the quality of recognition. This approach is used with the so-called wavelet neural
networks (WNN) (see, e.g., [52-56]).

4.12.1 Structure of Wavelet Neural Networks

The structure of WNN and its analytic description is similar to standard neural
networks. A WNN can be treated as an extended perceptron that includes two parts:
a wavelet transform for revealing typical features of signals and an artificial neural
network for image recognition using the selected features.

The first part includes wavelet nodes where wavelet functions (e.g., the Morlet
function) are used instead of the classical logistic function. These wavelets reveal fea-
tures of signals on different independent scales. The procedure begun with obtaining
of wavelet coefficients from native data that reflect typical features of the analyzed
signal. These coefficients represent an input for the second part of the algorithm when
final recognition is performed. One feature of WNN is the possibility of selecting
wavelet coefficients in the course of learning, besides correcting the synaptic coef-
ficients. WNNS5s constitute one of the most promising approaches for recognition of
spike waveforms. We shall thus discuss this approach in more detail. Since WNN is
an extension of standard ANN (Fig.4.27), we shall briefly discuss some aspects of
image recognition with different variants of WNNs (Figs.4.30, 4.31 and 4.32).

4.12.2 Wavelet Neural Networks

Figure 4.30 shows the first and simplest variant of WNN. It does not require one to
include the wavelet part of the WNN in the learning process. To obtain a mathematical
description of this WNN, we shall consider discretization of the CWT and the basic
functions WAVE and MHAT.

When computing the continuous wavelet transform of a function x(¢), we shall
use the discrete values of the scale parameter s = 2/ and the WAVE function as
mother wavelet, written in the form

2
M} . (4.35)

Y(p,q,1) = (pt —q)exp [_ _

The process of computing wavelet coefficients will be rewritten as follows:
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<)

Fig. 4.30 First type of WNN

=

Fig. 4.31 Second type of WNN

N-1
Cir=W (2%, 2%) ~ 202 A Zox(nAt)W(pjn —qK), pj=2lAt, qr=kpj.
! (4.36)
The signal decomposition over the wavelet basis can be treated as the formal inclusion
of an additional layer of NN nodes that will contain wavelet coefficients in the
synapses. Thresholds of such nodes are switched off, and the activation function is
a simple linear function. For the neuron / of the first wavelet layer, we obtain
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Fig. 4.32 Third type of WNN

N1
yi=avy—pB, v = E XaWall
n=0

o 2
(p_]n Qk) :I 7 (437)

2

v o1 o [[A]

where y;; is the reaction of neuron / from the first layer after receiving the vector
X, Nt corresponds to the maximal frequency in the power spectrum, and the integer
values j, k quantify the scale and translation parameters. In Eq. 4.37 square and curly
brackets denote the integer and fractional parts of the number, respectively. According
to (4.37), each neuron of the first layer is associated with the given parameters of the
wavelet transform. If the neural network (Fig.4.27) is added to this layer, one of the
simplest variants of the WNN of the first type is obtained (Fig.4.30). This variant
does not require differentiation of the wavelets, and its practical realization is quite
simple.

The second type of WNN (Fig.4.31) assumes a more complex computing algo-
rithm within the framework of which the wavelet function is used in the synaptic
part of the first layer and should satisfy the differentiation condition for including
wavelet nodes in the learning algorithm. Coefficients of the wavelet transform carry
information about the relation between the input vector and a given type of signal,

wut = Y (pjn — qi) = (pjn — qi) €Xp |:—

for
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and this is why an additional layer with wavelet functions integrated into the synaptic
part seems to be useful. According to the model neuron (4.28), mathematical oper-
ations in the synaptic part are analogous to the discretized version of the wavelet
transform (4.36), but the decomposition is provided using another basis of functions.
If the wavelet function v is included in both the recognition and the learning cycles,
then a layer of “wavelet nodes” is obtained, where synaptic coefficients are given by
the translation and scale parameters of the corresponding function .

Let us show how the procedure of learning and recognition will be written for the
WNN shown in Fig. 4.31. The first layer includes a decomposition of the input vector
in the basis of wavelet functions. The following layers are organized according to the
standard scheme shown in Fig.4.27. The additional layer of this WNN is described
by the following equations:

M, (pii _q,)2
yj1 =«atanh | B inwijl —0j1 . wij1 = (pji —qj)exp [—]21} .
i=1

M M3
yj2 = atanh |:/3 (Z)’ilwijz —912):| ., Yj3 =atanh {ﬁ (Z)’izwiﬁ - 9j3):| .
i=1 i=1

(4.38)
Two variants can be considered for the functioning of the wavelet layer, namely, the
cases of linear and nonlinear activation function, where (4.38) corresponds to the
latter. The learning procedure for this WNN assumes correction of the following
parameters: the translation parameter p; and the scale parameter g; of the wavelet
function ¥ (¢) in the first layer, the thresholds 6;; of formal neurons in the first layer,
the synaptic coefficients w; >, w;;3, and the thresholds 0>, 03 of the remaining neural
layers. The learning process follows the scheme

N2 N?
oE 8yj1 8\)/'1 ﬂ 2 2 - ,B 2 2 S
-~ = T im2— (" — m mn3 — (X — n n3 = Ynl >
50, ~ 3o O, E w; 2a( Ym2) E o, za( Y3)(n3 — ¥,)

m=1 n=1

oE o 3yj1 8\)j1

Ny ,3 N3 ,3
2 2 2 2 S
30, = v g, D @i (@ = 350) D o (@ = yi) s = 3

m=1 n=1

E o nk )+ yj1)
A P vty
39j1 a Y1 Y1
N2 ﬁ N3 ﬁ
XD @i (@ = 350) Yo (0 = 31 s = 33
m=1 n=1
IE e

=@y v Yo 0w - e = @t

dw;
ij2 =1
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The values of derivatives (dy;;/0v;1)(0v;1dp;) are estimated depending on the selec-
tion of the activation function and the wavelet. Let us consider the WAVE and MHAT
wavelets as activation functions:

2

t exp (—%) , WAVE ,
Y(t) = 2 (4.40)

t
(1 —1*)exp (-5) ., MHAT.

The general structure of the WNN constructed on the basis of the 3-layer neural
network with the WAVE wavelet in the first layer is shown in Fig.4.31.

The third type of WNN (Fig.4.32) includes the wavelet functions as activation
functions in the first layer. Let us consider a 3-layer neural network with the activation
function v (¢) in the first layer (Fig. 4.32). The coefficients of this WNN are corrected
according to the following equations:

oF ﬂ( ( Yo+ yj3)
=y —(yj3 — ¥ (@ — yj3) (@ + yj3) .
8(1)[/'3 y20l Yj3 =Y Vi3 Yj3
0F ( 1)'3( ( Yo+ yj3)
DB — v ) — v 2.
89‘/‘3 o Yj3 yj Y3 Y3
IE B N B
bons = i1 E(Ol —yj)(a+yj2) E wjnS;(ynS — v — yu3) (@ + yu3) ,

n=1
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The learning rules for all considered WNNSs (Figs. 4.30,4.31 and 4.32) are generalized
as the following computing algorithm:

e Selectinitial values of the synaptic coefficients and thresholds of the neural network
and wavelet coefficients.

e Recognition based on testing data sets that contain signals of several types is
provided for a random sequence of signals of different type. After recognition, the
error is estimated and the coefficients of NN and WNN are corrected.

e Recognition and correction are repeated in several stages (“epochs”). The number
of stages is chosen depending on the features of the recognized objects.

4.12.2.1 Performance of WNNs

To compare the efficacy of different types of WNNs and to analyze spike-sorting
errors, we used two types of waveforms produced by real neurons. Two different
waveforms were extracted from extracellular recordings of electrical activity of neu-
ral ensembles. The quality of spike identification was controlled using tetrode micro-
electrodes that allow registration of extracellular potentials in four closely located
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Fig. 4.33 Fragment of a test signal used to compare the efficiency of different recognition
approaches

Table 4.3 Parameters of the neural network (Fig.4.27)

# Parameter Description
1 Number of layers 3
2 Number of neurons in the Ist layer 16
3 Number of neurons in the 2nd layer 250
4 Number of neurons in the 3rd layer 2
5 Activation function F(x) = atanh(Bx),a = 6.0, 8 = 0.45
6 Number of learning epochs 1000
7 Number of types x spikes 2 x 250
8 Learning step of neurons from layer i h1 = 0.0003, hy = 0.0002, h3 = 0.0001
9 Initial values of coefficients Random values equally distributed in the
range [—0.001, 0.001]
10 Maximal x minimal value of the output —6.0x 5.0
vector

points (about 30 pwm apart) thus providing multichannel recordings of neural activ-
ity. A more detailed description of the experimental data can be found in [14, 43].
Further, test signals were generated, including a random sequence of impulses of
both types with added noise. Figure 4.33 shows an example of the corresponding test
signal. A 3-layer perceptron (Fig.4.27) contained a number of parameters indicated
in Table4.3. Parameters of the WNNs are given in Table 4.4.

In the course of learning, the considered neural networks solved the problem of
signal identification in the presence of fluctuations within different frequency bands.
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Table 4.4 Parameters of the WNNs (Figs.4.30, 4.31 and 4.32)
# Parameter Description
1 Wavelet function V() =1e "2y (r) = (1 — 2)e " /2
2 Type of WNN — WNN of the first type (not including
learning procedure for the wavelet layer)
— WNN of the second type (including
learning procedure for the wavelet layer)
with linear and nonlinear activation
function
— WNN of the third type (including wavelet
function as activation function)
3 Number of layers used for learning (in 3
general case)
4 Number of neurons in the 1st layer 16
5 Number of neurons in the 2nd layer 250
6 Number of neurons in the 3rd layer 2
7 Activation function F(x) = ath(Bx)
8 Number of epochs 1000
9 Number of types x spikes 2 x 250
10 Learning step of neurons from layer i h; € [0.000001, 0.005]
11 Initial values of coefficients Random values equally distributed in the
range [—0.001, 0.001]
12 Maximal x minimal value of the output —6.0x 5.0
vector

As the first test, a narrow-band noise (1/20 from the maximal frequency in the power
spectrum) was applied because, according to Sect. 4.4, the efficiency of techniques
for image recognition strongly depends on the spectral properties of the presented
fluctuations. Experiments were performed using ANN (Fig.4.27) by changing the
frequency band of the presented noise added to the signal (Fig.4.33). The results
are shown in Fig.4.34. According to this figure, the quality of recognition depends
heavily on the frequency band of the fluctuations. The error is maximal for the central
frequency of the noise, viz., 600700 Hz. In general, the classification error takes
larger values in the low-frequency area compared with the central frequency of the
analyzed signal (about 1.0-1.5 kHz) and approaches zero in the high-frequency area.
The test was performed using a series of 3610000 generated spikes (each consisting
of 32 data points) with frequency band 250 Hz.

Another situation is observed for fluctuations in the middle and high frequency
range. The identification error is small and an increase in the noise intensity (at
least, up to the value 0.6 of the signal energy) does not lead to any remarkable
increase in the error. This allows us to conclude that the NN can be treated as a
filter with characteristics that are adjusted in the course of learning. According to
Fig.4.34a, effective filtering and further recognition are able only when fluctuations
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Fig. 4.34 Estimation of the identification error for a standard neural network [(a) and (b)] and
WNN of the second type [(c) and (d)] with the MHAT function and nonlinear activation function
for different values of the ratio of energies Enoise/ Esignal: 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4), 0.5 (5),
0.6 (6). Dependencies of the recognition error [(a) and (¢)] on the central frequency of narrow-band
noise and of the mean error versus the relative intensity of fluctuations [(b) and (d)]

are associated with the middle and higher frequencies as compared with the mean
frequency of the recognized signal. Figure4.34b illustrates an increase in the mean
error (as a result of averaging over the whole range of f.). The mean error increases
for higher noise intensities, but the rate of this increase and absolute values of the
error depend on the type of NN used. Thus, application of WNNs typically improves
recognition accuracy.

Analogous test experiments were performed for WNNs. All variants of wavelet
neural networks (Figs.4.30, 4.30 and 4.32) were analyzed using the two basic func-
tions WAVE and MHAT. Additionally, for WNN of the second type (Fig.4.31), both
linear and nonlinear activation functions were considered (Table4.5). Testing was
performed using the same example (Fig.4.33) to compare the errors of the various
methods under identical conditions.

This investigation showed that results obtained with WNNs correspond to the
results obtained for the classical ANN (Fig.4.27), but that wavelet nodes enable error
recognition in the presence of noise. Let us consider the corresponding results for
the WNN of the second type. Application of the linear activation function within this



170 4 Classification of Neuronal Spikes from Extracellular Recordings

Table 4.5 Neural networks used for spike recognition

Type of the used network

Standard NN

WNN of the first type with WAVE function

WNN of the first type with MHAT function

WNN of the second type with WAVE function and linear activation
WNN of the second type with WAVE function and nonlinear activation

WNN of the second type with MHAT function and linear activation

WNN of the second type with MHAT function and nonlinear activation
WNN of the third type with WAVE function
WNN of the third type with MHAT function

O |0 Q||| W N =] H

Fig. 4.35 Comparison of 1,0 5
efficiency of spike 09 :
recognition with the neural 0.8 = —I
networks. Error is g
normalized to the maximal 0,7
value. Error for the case 0,6 4
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by gray color, and coefficient 0.4
of the increase of error is L
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WNN simplifies computations and does not use thresholds, i.e., it provides a much
quicker learning procedure as compared with the nonlinear activation function. The
more nonlinear elements are included in the WNN, the more time is required for
learning.

According to Fig. 4.34, application of WNNs reduces the maximal error by about
5% (for the case Eyoise/ Esignai=0.6) and the mean error by about 1%. These results
are obtained for the case of narrow-band noise. With an increased frequency band
of fluctuations, the quality of recognition with WNN may be significantly improved,
and the dependence of the error on the frequency band changes. As another test, the
case of noise with a broader frequency band (1 kHz) was considered. This test was
performed using a series of 3040000 generated spikes (each consisting of 32 data
points).

Instead of visual comparison between the graphics (similar to Fig.4.34), we use
two numerical measures: error at fixed signal-to-noise ratio and the coefficient of the
increase in the mean error with the noise intensity. Nine NNs (see Table4.5) were
compared using these measures (Fig.4.35).
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According to the results obtained, we can conclude that the most effective recog-
nition techniques are WNN of the second type with nonlinear activation function
(variants 5 and 7 in Table4.5). Let us note that this conclusion is based on the pro-
cessing of a large number of experiments performed in vivo with the trigeminal
complex of rats. Less effective results are obtained for WNNs 6 and 9. In the latter
case, the accuracy is less than for the standard approach (variant 1). Likewise, for
WNNs 2, 3, 4, and 8, no essential improvement was revealed in the results compared
with the standard NN. This may be explained by the nonlinearity of WNN, which
requires appropriate adjustment using special techniques. The less effective results
for some WNNs (e.g., 6 and 9) confirm that the adjustment of WNNs with linear
activation functions requires special techniques or complicating the NN structure.

We considered in more detail the WNN of the second type, which is typically not
considered in practical applications due to the more complicated learning procedure.
They require a learning process about 7 times larger compared with the standard NN.
However, they provide better recognition in the presence of noise (by about 16%
compared with the classical NN), which easily counterbalances the extra computing
time.
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Chapter 5 ®)
Analysis of Gamma-Waves in e
Multielectrode LFP Recordings

Abstract Neuronal activity in different brain regions is predominantly irregular.
Nevertheless, the coordinated firing in cell assemblies is responsible for at least
part of the information flow at the circuit level. The synchronization of the synaptic
bombardment promotes sizable transmembrane currents in target neurons that give
rise to extracellular local field potentials (LFPs). Thus, LFPs provide convenient
access to information processing at the circuit level. However, the LFP analysis
requires the solution of complex mathematical problems. This chapter offers a brief
introduction to mathematical methods that enables the separation of raw LFPs into
pathway-specific components and their in-depth analysis. In particular, we discuss
two wavelet-based methods for quantifying gamma waves induced in the CA1 region
of the hippocampus by the synchronized firing of functional clusters of CA3 pyrami-
dal cells. We show how gamma waves’ analysis helps establish causal relationships
between the firing of individual CA3 and CA1 cells. We also address the problem
of integrating information parsed by gamma waves in the two bilateral CA3-CA1
circuits.

5.1 Introduction

Information processing and transfer between higher brain nuclei are primarily based
on the coordinated firing of functional groups of neuronal assemblies. Yet, little is
known about how much of the neural code resides in units or assemblies activities
[1, 2]. Although spike trains of single neurons in different brain regions are predom-
inantly irregular, it has been proposed that synchronous activity in cell assemblies is
responsible for at least part of the information flow [3-5].

Thus, many studies have focused on the search for synchronization in an irregular
activity. However, this task applied to the firing of single units is technically demand-
ing [6]. At the circuit level, the synchronous firing of neuron assemblies promotes
the summation of synaptic currents in tissue volume surrounding the target neurons.
These currents may give rise to measurable extracellular local field potentials (LFPs),
which provide a link between neuronal activity and behavior [7-9].
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LFP is a mesoscopic variable. It contains accurate spatiotemporal information of
the synaptic activity generated by converging neuronal populations [10]. LFPs can be
easily monitored by intra-cranial multi-electrode matrices. The multiple presynaptic
origins of LFPs have, however, limited their use to a few macroscopic events and
oscillations mostly in architectonically simple regions as the hippocampus [7].

This chapter discusses a novel approach to extract pathway-specific ongoing
synaptic activity from irregular hippocampal LFPs [11, 12]. The pathway-specific
activity can be used to investigate the ongoing dynamics of one presynaptic popu-
lation, e.g., the CA3 region. We can quantify its contribution to the elaboration of
spike trains in postsynaptic CA1 units. Pyramidal cells in the CA1 region receive
excitatory inputs from several presynaptic nuclei, all of which can themselves initiate
postsynaptic firing when sufficient synchrony occurs (e.g., following electrical stim-
ulation) [13]. Although CA3 pyramidal cells usually fire within functional assemblies
[14, 15], it is unknown whether the degree of synchronization is enough to fire CA1
pyramidal neurons during ongoing activity.

The independent component analysis (ICA) has a spatiotemporal resolution suf-
ficient to separate different generators in irregular LFPs [16]. Hippocampal LFPs are
particularly suited for ICA as the stratification of afferent axons from diverse presy-
naptic populations along principal cell dendrites facilitates spatial discrimination
of the electrical current sources. Recently, a successful decomposition of irregular
hippocampal LFPs into several generators with a subcellular spatial definition has
been obtained [11, 12]. Specifically, we identified the so-called Schaffer generator
corresponding to the ipsilateral input from the CA3 to CAI.

To get a more in-depth insight into synchronization processes, we develop two
wavelet-based methods that allow the identification of separate micro-events in the
ongoing activity of the CA3-CA1 pathways. The low firing rate and functional clus-
tering of CA3 pyramidal cells [17] allows us discriminating elementary synaptic
events in the Schaffer generator, which we term micro-field EPSPs (ufEPSPs).

We use the identified wfEPSP events to find correlated spikes between presy-
naptic and postsynaptic CA3-CA1 pairs of units within long spontaneous epochs.
Paradoxically, during irregular hippocampal LFPs, the Schaffer ufEPSPs constitute
a regular oscillatory succession of excitatory packages involving a variable contri-
bution from individual presynaptic CA3 units. These ufEPSPs appearing at gamma
rate can effectively fire CA1 pyramidal cells revealing the pathway-specific origin
of some spikes as proposed in synfire chains [18]. Further, we study the bilateral
integration of gamma-parsed information in the two hippocampal lobes. First, we
show that under irregular activity, the probability of generating asynchronous (one
side) events is about the same as the probability of synchronous (two sides) events.
On average, the amplitude of the asynchronous left and right events is significantly
smaller than that of synchronous ufEPSPs. Second, synchronous events exhibit vari-
able time lag between left and right lobes. Moreover, the right side leads more often,
and ufEPSP events have significantly higher amplitude on the right side. We show
that initial asynchrony in bilateral events is compensated by adjusting their durations.
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5.2 Disentanglement of Raw LFP Recordings into
Pathway-Specific Generators

This section shows a step-by-step procedure allowing obtaining from LFPs recorded
by a multielectrode array the pathway-specific electrical activity produced in a target
domain by projecting neurons from other brain regions.

5.2.1 LFP Recordings and Current-Source-Density Analysis

For recording LFPs, we used linear multisite silicon probes with 32 recording tips,
lowered into the hippocampus of an anesthetized rat (see cartoon in Fig.5.1a). Sur-
gical and stereotaxic procedures were standard, and their detailed description can be
found elsewhere [19, 20]. For orthodromic activation of the CA1 region, a concentric
bipolar stimulating electrode was used in the ipsilateral CA3 area.

The multi-electrode array recorded the electrical activity in 50 wm steps along
the principal axis of the CA1 pyramidal cells, also spanning the DG/CA3 regions.
The acquisition frequency was 20 kHz, which enables recording both LFPs and
spike waveforms. The firing activities of pyramidal cells and putative interneurons
were isolated, and units were classified (for details on the problem of spike sorting,
see Chap.4). After the spike analysis, the sampling rate was decreased to 2 kHz to
analyze LFPs, which have the frequency band limited from above by 500 Hz.

Our goal is to study the CA3-CA1 pathway, which is represented by the Schaffer
collaterals in the ipsilateral part of the hippocampus (Fig.5.1). Axons from CA3
pyramidal neurons bifurcate and pass through the CAl area in parallel (Fig.5.1b).
Neurons in the CA3 region can form temporal clusters and synchronize their fir-
ing. Thus, a CA1 cell receives spikes from a group of CA3 neurons, whereas each

a electrode b
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Schaffer
collaterals

Fig. 5.1 Schaffer pathway in the hippocampus. a The laminar organization of the CA3 and CA1
areas in the hippocampus facilitates multiple parallel synaptic contacts between neurons in these
areas through Schaffer collaterals. A multi-electrode array can record the LFP activity along the
principal axis of pyramidal neurons. b Axons from CA3 pyramidal neurons bifurcate and pass
through the CA1 area in parallel (left), giving rise to the convergence-divergence of the information
content (right). Multiple CA1 neurons receive multiple synaptic contacts from CA3 neurons



178 5 Analysis of Gamma-Waves in Multielectrode LFP Recordings

c spatial weights d virtual Schaffer LFPs
1p . Schaffer _

recon-
struct.

5t

32‘
Schaffer CSD

I NLL]

LR

time courses
Schaffer

& B

- --.‘&,mw—mmﬂzﬂ‘,\_ﬂ

stimulus

Fig. 5.2 Retrieval of pathway-specific generators from raw LFP recordings. a Right panel: A
typical segment of LFPs (right panel) recorded across the CA1 and CA3 fields (black and gray
traces, respectively). The vertical red line marks the time of a subthreshold stimulus applied to the
ipsilateral CA3. Left panel: Zoom from the right panel corresponding to the evoked Schaffer-specific
field potential. b The current source density plot obtained from the LFPs shown in (a). ¢ ICA of
LFPs provides four LFP-generators, each defined by a curve of spatial weights (top panel) and
a time course (bottom traces). The Schaffer generator (blue curves) captures the Schaffer-evoked
activity (stimulus arrows). d The reconstructed virtual LFPs corresponding to the activity of the
Schaffer pathway taken separately. e The CSD map of the virtual Schaffer LFPs provides the precise
spatiotemporal distribution of inward/outward currents

CA3 neuron has a synaptic contact with multiple CA1 cells, which gives rise to the
convergence-divergence of the information content.

Figure 5.2a (right panel) shows a typical segment of LFPs recorded simultane-
ously along a linear track spanning the CA1 and CA3 fields of the rat hippocampus
(see also Fig.5.1a). The segment consists of a bulk subthreshold stimulation of the
ipsilateral CA3 region. The stimulus produces evoked potentials. Their topographic
analysis allows identifying the electrode’s position up to tens of micrometers and
location of the soma layers [20]. The spontaneous activity (Fig.5.2a, right panel,
after stimulation) exhibits irregular oscillations without strongly correlated rhyth-
mic activity as, e.g., during theta rhythm.

Current source density (CSD) analysis [21, 22] determines the magnitude and
location of the net transmembrane current generated by neuronal elements within
a small tissue region. The transmembrane current i (x, y, z, 7) is a spatiotemporal
function depending on various factors. It is determined by the synaptic currents
produced by the converged inputs from presynaptic neuronal assemblies. Assuming
a purely ohmic conductive medium, the CSD can be related to the field potential [23,
24]:

i(x,y,z,1) =V(c7(x,y,z)Vu(x,y,z,t)), 5.1
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where o is the conductivity tensor of the medium, u is the electric field potential,
i.e., LFPs, and V is the standard gradient operator. For simplicity, we can assume
that the medium is homogeneous and the conductivity is a constant o (x, y,z) = o
(but see discussion in [25]). Therefore, the CSD reduces to

i(x,y,2,t) = —0Au(x,y,z,1), (5.2)

where A is the Laplacian operator.

Next, we observe that the hippocampus consists of monolayer structures with
principal cells oriented along the main (vertical) z-axis. Hence u(x, y, z) has little
variations along x and y directions. Accordingly, to estimate the CSD, we can use
the one-dimensional approach, which evaluates the CSD from the voltage gradients
along the cells axis [26]:

u(x,y, zx)

e (5.3)

ix,y,zk. ) Ri(z, 1) =—0

where z; = zo + kh are the location of electrode tips. The partial derivative along
z-axis can be approximated by 3-point formula:

up—1(t) — 2up(t) + upq1 (1)

2 (5.4)

(2, 1) R ik(t) = —0

where u; (¢) is the LFP recorded at time ¢ by electrode tip k, and 4 is the distance
between recording tips.

Admittedly, the spatial extent of CSD may not be large enough to fulfill the cri-
terion of homogeneous activation in the (x, z)-plane parallel to anatomical strata or
laminae during an asynchronous synaptic bombardment. Thus, tangential currents
may introduce error in the amplitude of sinks and sources [27]. Conveniently, the spa-
tial distortion introduced by unbalanced tangential currents is effectively canceled out
by time averaging of myriads microscopic currents as if they all were synchronously
activated [16]. Thus, the curve of spatial weights for each LFP-generator is accurate
to the subcellular level. Although there is also a notable heterogeneity of tissue resis-
tivity at the level of the stratum pyramidale [28], it introduces a negligible spatial
distortion of depth profiles when active currents are located in distant dendritic loci.
Thus, we can assume homogeneous resistivity and use arbitrary units instead of [A
m~2].

The CSD analysis of the recorded LFPs [employing Eq. (5.3)] shows the standard
Schaffer-specific evoked field potentials (Fig.5.2b, left panel) with the subcellular
spatiotemporal pattern of the transmembrane current along the main axis of pyramidal
cells. As expected [26], active inward synaptic currents or sinks (blue color) are
surrounded by passive outward currents or sources (red color), corresponding to the
CAL1 field EPSP produced by the stimulation of the CA3 region.

However, the CSD map for the ongoing spontaneous LFPs (Fig. 5.2b, right panels,
after the stimulus) shows a poorly informative spatiotemporal mixture of sources and
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sinks induced by the co-activation of several different afferent inputs converging on
principal cells. Thus, in such a spontaneous mixture, we cannot distinguish the activ-
ity produced by different synaptic inputs from different neuronal nuclei, including
from the CA3 region through the Schaffer collaterals. In Sect.5.2.2, we will address
this issue.

5.2.2 Decomposition of LFPs into Pathway-Specific
Generators

5.2.2.1 Independent Component Analysis of Raw LFPs

Independent component analysis (ICA) is routinely used to elucidate functional con-
nectivity either in multisite scalp recordings or in functional magnetic resonance
imaging. It provides spatially stable components of coherent activity [29-32].

The attribution of the independent components to their source populations and
pathways is difficult when recording from a distance (e.g., for EEG). Nevertheless, the
in-source recording of intrahippocampal LFPs allows the thorough spatial inspection
of active neurons down to the subcellular resolution and direct matching with the
evoked potential profiles [12].

A detailed procedure of the ICA of LFPs can be found elsewhere [11, 33]. Both
the mathematical validation and the interpretation of ICA components in laminated
structures, such as, e.g., the hippocampus, were performed using realistic LFP mod-
eling [16]. There is also a freely available Matlab package for performing different
analyses of LFPs, including the decomposition into pathway-specific components
by ICA (Fig.5.3).

Briefly, let u(t) = (u,(¢), us(t), ..., upu(t))T € R be a vector representing M
recorded LFP signals at a discrete-time instant ¢ (r = 1, 2, ..., L). The ICA model
assumes that the observed data matrix U = (u(0)|u(1)|--- |u(L)) € R¥*L can be

represented as the weighted sum of the activities of N neuronal sources or the so-
called LFP-generators:
U=Vs, (5.5)

where V = (v1|vs] - - - [vy) € RV is the mixing matrix composed of the so-called
voltage loadings or spatial distributions of all LFP-generators (v, = (vi,, ..., v )T
is the voltage loading of the nth generator) and S = (s{|s3|- - - [sy)7 € RV*F is the
matrix of time courses of the LFP-generators (s, = (s, (1), ..., s,(L))” is the time
course of the nth generator). Thus, the raw LFP observed at the mth electrode tip
is a linear mixture of the electrical activity of several independent LFP-generators
describing oscillations of the transmembrane currents in principal cells:

N
up(t) = Z VynnSu (1) (5.6)

n=1
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Fig. 5.3 The front panel of the software ICAofLFPs. It shows an example of five LFP-generators:
Top panel: A segment of time courses of the generators; Botfom panels: Spatial distributions of

voltage and CSD loadings (see also Fig.5.2c). The software is freely available at http://www.mat.
ucm.es/~vmakarov/downloads.php

The LFP observed in all electrodes at a time instant ¢ is given by

N
u(t) =Y v, (0). (5.7)

n=1

Then, the CSD is

N
i(t)=—o Z Av,s,(1). (5.8)

n=1

where A represents the discrete second order spatial derivative, which in the simplest

case can be approximated by the 3-point formula (5.3). We can now introduce the
CSD loading (spatial weights) for the nth LFP generator:

j,=—0Av,, (5.9)

and obtain the formula for CSD equivalent to (5.7):

N
i)=Y jusn(). (5.10)

n=1
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As recording sites’ location is known, the curve of spatial weights of the nth LFP
generator v, equals the instant depth profile of voltages recorded during a predomi-
nant activation of the corresponding single pathway. Such a situation happens, e.g.,
during the laminar recording of standard pathway-specific evoked potentials.

5.2.2.2 Technical Considerations on ICA of LFPs

When dealing with ICA of LFPs, some technical considerations should be taken
into account. In general, ICA allows separating up to M LFP-generators, where M
is the number of electrode tips in a multielectrode array. However, usually, only a
few ICA components exhibit significant variance and distinct spatial distributions.
Our experience suggests that 4—7 stable LFP-generators out of possible 32 can be
identified [12, 34].

Such a low number of sizable LFP-generators in raw LFPs permits further opti-
mization of the algorithm by pre-processing raw LFPs before performing the ICA. In
particular, the dimension reduction of the data matrix U by the principal component
analysis (PCA) efficiently diminishes weak, noisy generators [16]. The PCA also
stabilizes and accelerates the subsequent convergence of ICA algorithms [11].

By assuming that U has been previously centered (i.e., row mean values have
been subtracted), we can find the covariance matrix of the data: C = %U UT. Then,
the covariance matrix can be factorized:

C=wDWT, (5.11)

where D = diag(Ay, ..., Apy) is the matrix of eigenvalues sorted in descending
order (A; > Ay > --- iy > 0, note that C is symmetric semi-positive) and W =
(wi]---|wy) is the matrix of the corresponding eigenvectors. When dealing with
LFPs, the eigenvalues decrease rapidly, which means that the effective data dimen-
sion is less than M (about 4—7 compared to M = 32).

We now can project the data matrix U into a reduced PCA space:

Y=WIU, W= - |wy)eR"YN, (5.12)

where N < M is the number of principal components we want to retain. Finally, the
ICA is applied to the reduced data matrix Y, and we get its factorization:

Y =08, (5.13)
where Q € RNV ig the squared matrix of loadings describing the spatial dynamics
and S € RV*L is the matrix of activations describing the time dynamics. We thus

have the following data representation:

U=VS, (5.14)
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where V = WQ is the mixing matrix (or the matrix of voltage loadings) and U
approximates the original data matrix U. We now have to select N in such a way
that the approximation error ||U — U || would be reasonably small.

The optimal choice of N is 2-3 more than the number of components that attain
significant variance in the ICA. We routinely disregard the ICA components with a
total compound variance below 1% (i.e., always keeping 99% of the original LFP
variance) unless their spatial and temporal accuracy can be ensured through other
means. Algorithmically, to select N, we use the following equation:

N = argmin . (5.15)

mel,M

m M
D h =099 4,
n=1

n=1

5.2.2.3 Schaffer LFP-Generator: CA3 Ipsilateral Input to CA1

Figure5.2c shows the results of ICA separation of the ongoing raw LFPs into the
contribution of pathway-specific LFP-generators. The analysis of the component
variance [see Eq.(5.15)] reveals the existence of four significant LFP-generators
with specific spatial patterns and time dynamics (top and bottom panels in Fig.5.2c,
respectively). Thus, these four major LFP-generators contribute to the epoch of LFPs
shown in Fig.5.2a.

Each of the four generators is described by its distribution of spatial weights
along the principal axis of pyramidal cells and by its temporal dynamics, given by
matrices V and § in Eq.(5.14), respectively. The cross-animal stability, pathway
specificity, and quantitative properties of these LFP generators have been described
elsewhere, both experimentally [11, 12, 33] and by using realistic simulations of the
field potentials generated by the multicompartmental model of pyramidal neurons
aggregated in monolayers [16].

One of the generators (colored in dark blue in Fig. 5.2¢) corresponds to the activa-
tion of the Schaffer collaterals conveying packets of spikes from the ipsilateral CA3
region of the hippocampus to CA1 (Fig.5.1). We derive this observation from the fol-
lowing facts: (i) This generator exclusively captures the evoked activity produced by
subthreshold stimulation of CA3 (pulse followed after “stimulus” arrows in the time
course, Fig. 5.2¢); (ii) The characteristic spatial profile matching the Schaffer-evoked
field EPSPs.

Disentanglement of raw LFPs into four LFP-generators enables the reconstruction
of virtual LFPs produced by each pathway taken separately. Figure 5.2d shows the vir-
tual LFPs contributed exclusively by the activity of the Schaffer pathway. Subsequent
CSD analysis of the reconstructed Schaffer-LFPs produces a clean spatiotemporal
map of the transmembrane currents with a characteristic source-sink-source distribu-
tion, both for the evoked and ongoing activities (Fig. 5.2e). We then can compare the
distribution of the CSD maps of evoked potentials over raw LFPs and clean Schaffer
LFPs (Fig.5.2b and e left panels, respectively).
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5.3 Localization and Quantification of Gamma Waves in
the Schaffer-Generator by Wavelet Analysis

In Sect.5.2, we described the method of isolation of a pathway-specific activity
from raw LFPs. In particular, we separated the synaptic contribution induced by the
Schaffer pathway activated by the ipsilateral CA3 input to the CA1 region (Fig.5.2).
More details on the characteristics and pharmacological studies of this pathway
can be found elsewhere [33, 35]. Below, we will study the time course (activation
dynamics) of this LFP-generator.

5.3.1 Method for Detecting Gamma Waves

Figure 5.4 shows a short epoch of the activation of the Schaffer generator. The baseline
activity of this generator is composed of a series of discrete field events excited by
packets of spikes coming from the CA3 region to pyramidal cells in CA1. We term
such elementary synaptic events as micro-field EPSPs or ufEPSPs. Paradoxically,
during irregular hippocampal LFPs, the Schaffer ufEPSP events constitute a rather
regular succession of excitatory packages produced by a variable contribution of
individual presynaptic CA3 units. The rhythmic excitatory packages appear at gamma
frequency, the histogram peaks at 45 Hz. We now aim at detecting and quantifying
individual ufEPSP events. To this end, let us first model a succession of wfEPSP.

time course of Schaffer generator

counts

UfEPSP events
20 40 60 80 100

100 ms event rate (Hz)

Fig. 5.4 The ICA-separated Schaffer generator exhibits typical micro-field EPSP events appearing
at a gamma rate
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5.3.1.1 Model of the Schaffer Generator Time Course

A short packet of spikes reaching pyramidal neurons in CA1l evokes local active
synaptic currents surrounded by passive transmembrane currents (Fig.5.2e). These
currents generate Schaffer LFPs. Figure 5.2c (bottom subplot, left panel, dark blue
trace) shows a typical time course of a single field EPSP in the form of a short pulse.
As discussed above, single ufEPSP events have the same electric nature.

For the description of ufEPSP, we use the alpha function [36]:

a(t) = H(t)re' ™, (5.16)

where H (¢) is the Heaviside step function, which makes «(¢) casual (x(¢) = 0 for
t < 0). This alpha function reaches a maximum at f,,x = 1, and o (fmax) = 1. The
effective duration of the alpha function measured at level e>~¢ & 0.5 is equal to e. The
alpha function describes a change in the conductance of the postsynaptic membrane
with a characteristic time-course.

Then, the time course of the Schaffer generator in a specific time interval can be
modeled as a sum of K individual ufEPSP events:

K
s ==Y A (t ;”) , (5.17)
i=1 !

where #; is the time instant of the beginning of the ith event, A; and t; are the
amplitude and time scale of the event. Figure 5.5a, b (top panels) show examples of
simulated activations of the Schaffer generator consisting of one and five ufEPSP
events with different parameters.

Equation (5.17) describes a direct problem, i.e., how to build the time course of
the Schaffer generator by using a known number of ufEPSP events with known
parameters. However, we are instead interested in the inverse problem: how to infer
on the number of events K and their parameters {A;, 7;, #;} from the time course
s(t). Although in the modeled situations shown in Fig.5.5a, b, this problem can be
resolved by employing a nonlinear curve-fitting method, in experimental conditions
(Fig.5.4) such a direct approach fails. Indeed, even in a short time interval of 1 s,
we have about 45 events, each described by three parameters, and hence, we get an
optimization problem in 135-dimensional space. Then, the curse of dimensionality
makes it untreatable [37]. Besides, inferring on the number of events K is also a big
issue.

5.3.1.2 Wavelet Measure for Identification and Quantification of
MFEPSP Events

To approach the inverse problem, we use the continuous Wavelet Transform of the
Schaffer activation s(¢) (for details, see Chap.2):
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Fig. 5.5 Identification and quantification of ufEPSP events in simulated epochs of the Schaffer
generator. a Top: Single event (alpha function) with unit amplitude and unit time scale. Bottom:
Measure C(a, b) and its maximum (cyan dot) defining the event parameters. b Same as in a but for
five events with different parameters. ¢ Comparison of the parameters of the events shown in (b)
with those found by the wavelet method

1 ° t—>b
W(a,b) = ﬁ/ s(OY <7> dr, (5.18)

where a is the time scale, b is the localization in time, and

1, if-1<r<0
y(@) =4 -1, if0<r<3 (5.19)
0, otherwise

is the Haar mother wavelet function. As we will see below, such a mother wavelet,
in the form of two successive pulses of different polarity, is well suited for detecting
short pulses in a signal.

We then rectify the wavelet coefficients and introduce the following wavelet mea-
sure for quantifying gamma events:

C(a,b) = % max{0, W(a, b)}. (5.20)
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The two-dimensional surface C(a, b) describes the local linear fit of the Schaffer-
specific LFP by the Haar wavelet at scales a and localizations b. Peaks of C(a, b)
correspond to abrupt pulse-like transitions in s (¢). Thus, we can associate such points
in the (b, a)-plane with single pulse-like events. Consequently, we identify the local
maximums of C(a, b) evaluated as global maximums over a set of small enough,
non-overlapping open domains {w; }:

(a;, b;) = argmax{C(a, b)}. 5.21)

a,bew;

As we show below, the time instants of #fEPSPs are given by {b;}, their durations
by {a;}, and amplitudes by {C (a;, b;)}. We also note that the factor \/La in Eq. (5.20)
is essential, since it ensures the existence of local maximums in (5.21).

Let us now study the properties of the surface C (a, b) in more detail. We consider
the signal s() = —a/(t) consisting of a single ufEPSP event generated at t = 0 with
the unit amplitude and time scale (Fig.5.5a, top). We can now apply the wavelet

transform (5.18), (5.19) to the signal and obtain:

0 b< -4
e et —(+b+ et bel[-2,0)

Ja 20+b)—e"—(A+b+%e 2 bel0,%)
2(1 +b)(1 —cosh§) +asinh§ b > 7.

(5.22)

We observe that W, (a, b) € C!. This function attains a global maximum over local-
izations b, given that a is a constant, at

a/?2

—. 2
2e4/? — 1 (523)

bmax =

Assuming that a is big enough, we can approximate by,,x ~ 0, i.e., the maximum of
W(a, b) (and hence of C(a, b)) coincides rather precisely with the time instant of
the event beginning. Nevertheless, in a computer algorithm the correction (5.23) can
be easily taken into account, i.e., ' = ¢ — byax (Amax)-

The maximum of C(a, b) over time scales a satisfies to

(Gmax + 1)? = dem/? — 3, (5.24)

which for a > 0 has a unique solution, although it cannot be written in a closed form.
We note that W (a, b) has no maximums in a.

Figure 5.5a (bottom panel) shows the measure C(a, b) for the simulated event. A
numerical analysis yields:

Amax X 2.94, bmax ~ 0.19, C(amax, bmax) =~ 0.43. (5.25)
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Let us now assume that the event has an arbitrary amplitude and time scale, s(¢) =
—Aa(t/7). Then, the wavelet transform (5.18) of s () and the wavelet measure (5.20)
can be written as:

W(a, b) = JTAWy (@, b)), C(a,b) = ACy(d, b)), (5.26)

where a’ = a/t, b’ = b/t; Wy and Cy are the wavelet transform and the wavelet
measure of the unitary event —a (). Thus, the magnitude of C scales linearly with
A, whereas the time scale and localization a and b scales linearly with t.

Therefore, we can use the constants (5.25) to express the event duration, time
instant, and amplitude:

i bmax C i»bi
- e, ti=b ——a;, A = (@, bi)

d, = _
Amax Amax C (@max> bmax)

(5.27)

where a; and b; are the coordinates of the ith local maximum given by (5.21).

To illustrate the approach, we simulated the activity of the Schaffer generator
consisting of five ufEPSP events (Fig.5.5b). Then, we evaluated C(a, b), found
its maximums, and calculated the parameters of each event by using (5.27). The
number of local maximums in C(a, b) provides the number of ufEPSP events in
the signal K. Figure5.5¢ shows the comparison of the found parameters with the
original characteristics used to generate the signal s(¢). One can observe the good
precision of the detection method.

5.3.2 Elementary Micro-fEPSPs in Ongoing Schaffer Activity

Oscillatory gamma patterns, formed by small pulse-like events of variable amplitude
and duration, dominates the basal activity of the Schaffer generator (Fig.5.4). This
temporal pattern is exclusive for the Schaffer generator, which can also include
occasional sharp-wave events that emerge from the baseline during non-theta epochs
[33].

Figure 5.6a illustrates an epoch of the Schaffer-generator activity isolated by ICA
and a typical spike train of a CA3 pyramidal neuron recorded simultaneously. Some
Schaffer events are time-locked to neuronal spikes. Then, we can assume that this
neuron participates in the firing activity of a cluster of CA3 neurons that provokes
some of the Schaffer events.

To crosscheck this assumption, we evaluated the spike-triggered activity of the
Schaffer generator (Fig. 5.6b). The confidence intervals (dashed red lines) were eval-
uated using surrogate data (spikes in the train were randomly shuffled). The signif-
icance level was set to 0.05, and we also used the Bonferroni correction [38]. The
activity of the Schaffer generator exhibits a statistically significant coupling with the
spiking of the CA3 neuron. Moreover, the coupling is causal, i.e., firing of the neu-
ron, presumably involved in synchronous firing of a cluster of CA3 neurons, causes a



5.3 Localization and Quantification of Gamma Waves in the Schaffer-Generator ... 189

a CA3 spikes
i SPis

Schaffer activity g
S,
= I
> c
€ 2. |
0]l 0.5s e I
° -50 0 50 100
' N —t time lag (ms)
WWAW\/ WW .
(o 0.08
— k<]
230 o
£ 0.04
§20
©
= 10|
3 og ] 20 70
d event duration (ms)

S 0.6 ¢

z bS]

o 0.4 =

3 2

=3

Zo02

Q

£

& o 0 X 04 06
100 ms event amplitude (mV)

Fig. 5.6 Decomposition of Schaffer LFPs into elementary ufEPSPs triggered by CA3 pyramidal
cells. a A representative epoch (6 s out of a 10 min recording and its zoom) of a spike train of a
pyramidal neuron in the CA3 region of the hippocampus (dark red) and the activity of the Schaffer
generator (black and blue traces). b Averaged (over 10 min) Schaffer activity triggered by spikes
of the CA3 pyramidal neuron. Dashed red lines mark the confidence interval (the significance level
of 0.05 and the Bonferroni correction were used). ¢ The wavelet-measure C (a, b) corresponding to
the zoomed region of the Schaffer generator. Cyan dots mark locations of local maximums (see also
Fig.5.5). d Schematic representation of the micro-field EPSPs composing the Schaffer activity. The
width and height of the bars codify the duration and amplitude of the detected «-fEPSP events. e
The distributions of the duration (top) and amplitude (bottom) of the detected u-fEPSP events (10
min recording)

sizable response in the Schaffer generator. Therefore, we assess whether elementary
postsynaptic events from single CA3 principal cells or their functional clusters could
be discriminated in ongoing CA1 LFPs by studying the fine temporal structure of
the Schaffer generator.

When considering an epoch of the Schaffer-specific activity (Fig.5.6a), we
observe a sequence of pulses corresponding to individual uLFP events. To detect
these elementary events, we use the wavelet-based method described in Sect.5.3.1.
Figure5.6¢ shows the wavelet-measure C(a, b) calculated for a short segment of
the activity of the Schaffer generator. The measure has local maximums similar to
those shown in Fig.5.5. The positions of the maximums (cyan dots) correspond to
the time instants and durations of elementary ufEPSPs, while the amplitudes of the
local maximums provide the amplitudes of the elementary ufEPSPs [see Eq. (5.27)].

Figure 5.6d illustrates the identified and quantified single wfEPSP events as rect-
angles of the width and height corresponding to the duration and amplitude of the
events and with the left side located at the beginning of the event. The found events
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exhibit substantial amplitude variability and moderate fluctuations in the event dura-
tions. The rate of the detected events (about 42 Hz) falls within the gamma band.

Figure 5.6e shows histograms of the distribution of the duration and amplitude
of uLFP events identified over a 10 min recording period. Both parameters have a
right-skewed distribution with modes at 11.6 ms (mean 14.5) and 114 pV (mean,
156). These parameters are similar to the spike-averaged Schaffer activity shown in
Fig.5.6b. The absence of the baseline explains the amplitude discrepancy due to the
hardware high-pass filtering of the recordings (AC-recordings, for more details, see
[39]). Note that the wavelet-based method is insensitive to the presence of the DC-
part and hence enables better estimation of the event parameters (the Haar wavelet
canceles the DC part).

5.3.3 Detected Gamma Events Help to Establish Causal
Relations Between CA3 and CA1 Pyramidal Cells

Let us now get a deeper insight into the properties of ufEPSPs. A mufEPSP can be
considered as an intermediate event between spikes of a presynaptic CA3 neuron and
a postsynaptic CA1 cell. Thus, identification of time series of elementary (fEPSPs
permits a detailed study of information transfer from CA3 to CAl. We can test
whether an ongoing input from a single afferent pathway is strong enough to fire
postsynaptic units in the CA1 region.

Figure 5.7a shows spike trains of CA3 and CA1 pyramidal neurons and an inter-
mediate train of ufEPSP events (a point process consisting of the identified starting
time instants #;). Presumably, the CA3 neuron is coupled with the CA1 (Fig.5.7a,
cartoon) and thus can participate in its excitation. However, the cross-correlation
analysis of the spike trains of these neurons shows no significant peaks (Fig.5.7b).
Therefore, we could conclude that the neurons are uncoupled, or at least only a few
spikes of the CA3 cell participate in the excitation of CA1, and hence their contribu-
tion to the histogram is negligible. Nevertheless, we will show how the knowledge
on the ufEPSP events composing the activity of the Schaffer generator helps in
establishing causal relations between the CA3 and CA1 neurons.

Figure 5.7c¢ illustrates the histogram of cross-correlation among wfEPSP events
and firings of the CA3 pyramidal cell. By analogy with the latency of evoked sub-
threshold fEPSPs [26], we consider that ufEPSP events can be monosynaptically
related with firings of the presynaptic unit within a postspike time window of 2—
6 ms. Notably, the obtained latency of 4.9 &+ 2.2 ms (mean = std) falls within this
interval (orange bars in Fig.5.7c, dashed line shows the Holm—Bonferroni statistical
significance interval [40]). Moreover, all CA3 principal cells, which exhibited a cor-
relation with the Schaffer generator, displayed statistically significant peaks within
this time window [33].

We thus separated all spikes of the CA3 pyramidal neurons into two groups: (i)
Spikes time-locked with ufEPSP events (about 50% of spikes fall within a 10 ms time



5.3 Localization and Quantification of Gamma Waves in the Schaffer-Generator ... 191

a
postsynaptic CA1 pyr. neuron
catr 11 ) L ..

\ u-fEPSP (Shaffer) events
Sch. | 1 e 1 I

presynaptic CA3 pyr. neuron

%\ I I I
CA3 T T
05s

-100 -50 0 50 100
latency (ms)

Type I: CA3 - ufEPSP Type II: ufEPSP - CA1 Type Ill: CA3 - ufEPSP - CA1
CA1 Spikes —8 — —|-__ __|_
Sch. Events ——————. _ B —
CA3 Spikes | 25ms - —
800 600 20,
[ Jall
[ signit. ||| | = keeeeeaff=e==ad
700 550 15
[2] on [2]
< < €
g g 8 10
© 600p = === - © 500 ©
5
500
450
100 50 0 50 100 100 50 0 50 100 400 50 0 50 100
latency (ms) latency (ms) latency (ms)

Fig. 5.7 Wavelet analysis reveals functional couplings between spontaneous firing of CA3 pyra-
midal cells and spikes of CA1 neurons. a Left: A cartoon of the information transfer from CA3 to
CALl regions through Schaffer collaterals. Right: A five second epoch showing spikes of a pyrami-
dal presynaptic CA3 neuron (bottom train), ufEPSP events created by Schaffer collaterals (middle
train), and spikes of a pyramidal postsynaptic CA1 neuron (top train). b Direct cross-correlation of
spikes of the CA3 and CAI cells exhibits no temporal relation. Blue dashed line marks the level
of statistical significance. ¢ Step by step identification of the functional CA3-CAl coupling. Left:
Identification of CA3 spikes time-locked to Schaffer ufEPSP events. Orange bars show signifi-
cant correlation, and we thus define Type I spikes in CA3 firing. Middle: Significant correlation of
ufEPSP events and firing of the CA1 cell enables identification of CA1 time-locked spikes. Right:
Correlation of Type I spikes of the CA3 neuron and Type II spikes of the CA1 neuron exhibits a
significant peak (orange bar)

window, orange bars in Fig.5.7c) and (ii) Other remaining spikes. The spike-locked
Schaffer time course constitutes a subpopulation of the monosynaptic ufEPSPs,
which are probably elicited by the CA3 neuron or the functional cluster to which it
belongs.

We then performed cross-correlation analysis of ufEPSPs and spikes of the CA1
neuron. The cross-correlation exhibits a significant peak (Fig. 5.7d) with the latency
2.6 £ 1.5 ms, which corresponds to the time lag between the initiation of a ufEPSP
and firing of the CA1 cell. We note that only 2.3% of ufEPSPs excite the cell, and
about 24% of spikes of the CA1l neuron are time-locked with wfEPSPs. We now
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separate spikes of the CA1 cell into (i) spikes caused by ufEPSP events and (ii) all
the other.

The introduced classification of spikes of the CA1 and CA3 neurons allows us to
identify the following temporal relations:

e Type I: Spikes driving Schaffer. A presynaptic CA3 spike participates in excitation
of a ufEPSP event but no time-locked CA1 spike appears (green ticks in Fig. 5.7c).

o Type II: Shaffer driven spikes. A ufEPSP excites a postsynaptic CA1 spike, but
no CA3 time-locked spike is recorded (blue ticks in Fig.5.7c¢).

e Type lII: Triple coincidences. A presynaptic CA3 spike participates in exciting a
HfEPSP event and, in turn, it excites a CA1 spike (red ticks in Fig.5.7c).

Type I temporal relationships were observed in all CA3 pyramidal cells, although
only about 23% of the spikes had a monosynaptic association to wfEPSPs. This
index is interpreted as the recruitment rate of individual CA3 pyramidal cells into
functional clusters responsible for £fEPSPs. Thus, time-variable clustering of presy-
naptic CA3 neurons is behind sizable ufEPSPs in the CA1 region. This indicates that
CA3 pyramidal neurons can organize into functional clusters to effectively transmit
information to the CA1 output and the cortex.

Statistically significant Type II temporal relationships were found in about 70%
of CA1 pyramidal cells. The cross-correlation histogram of ufEPSP-CA1 shows a
statistically significant peak at a 2 ms time lag, corresponding to the Schaffer-driven
spikes (Fig.5.7c, left). Such spikes constitute about 11% of the firing of CA1 cells.
Thus, a significant share of the CA1 output is driven by the local Schaffer input.

Some spontaneous wfEPSPs fulfill both Types I and II temporal relationships.
We then assume that wfEPSPs can be considered as a selector of time instants when
the information transmission from a CA3 cell to a CA1 neuron is likely. Thus, the
UfEPSP events can be used for searching for functional coupling between individual
CA3 and CAL cells. Figure 5.7c (right) shows such a situation of monosynaptically
connected CA3-CALl cell pairs. The cross-correlation histogram, in this case, was
build by taking into account only spikes of Types I and IT of the CA3 and CA1 neurons,
respectively. We observe a significant peak at the time lag of 7.3 ms (compare to the
raw cross-correlation in Fig.5.7b), which reveals a functional connection between
these neurons, i.e., some spikes fired by a CA3 cell actively participates in the firing
of a CA1 spike.

5.4 Improved Identification of Micro-fEPSP Events

5.4.1 Distortion of Micro-fEPSP Events by Wavelet Method

In Sect.5.3.1, we have introduced the wavelet-based method for the identification
of ufEPSP events in the irregular activity of the Schaffer LFP generator. It enables
computationally efficient isolation and quantification of individual gamma waves
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induced in the CA1 region by firing of pyramidal cells in the CA3 area. However,
we noticed that due to the frequent overlap of successive events, the method could
introduce some distortions in the identified parameters of the ufEPSP events, given
by Eq.(5.27).

To quantify the distortions, we simulated a random sequence of 2000 overlapping
gamma events on a 50 s time interval (mean event rate 40 Hz). The parameters of
gamma events were chosen to reproduce the experimental distributions of the event
duration and amplitude shown in Fig. 5.6e. To do that, we evaluated the experimental
cumulative distribution functions for the amplitudes and durations, F4 (1) and F,(u),
and then generated a set of random event durations and amplitudes by:

di=F; '), Ai=Fi'(), i=1,...,2000, (5.28)

where &; and 7; are independent random variables uniformly distributed on the inter-
val (0, 1). These parameters have been used for simulating Schaffer activation by
using Eq.(5.17). Finally, we added a small (—25 dB) Gaussian white noise to the
obtained signal.

Figure 5.8a shows an epoch of the simulated Schaffer activity composed of a
sequence of randomly chosen gamma events. We then applied the wavelet method
described in Sect.5.3.1, blindly identified the ufEPSP events in the simulated sig-
nal, and determined their parameters: starting times, durations, and amplitudes
(Fig.5.8b). Finally, we quantified the distortions obtained during the identification
of the parameters.

Figure 5.8c shows the histograms of deviations of the event parameters from the
original values. We observe that the wavelet method tends to delay the starting time
of the identified event on average by 1.0 ms, although time lags up to 3 ms have been
detected. The event duration and amplitude could be underestimated by 4.1 ms and
17 wV, respectively. In Sect. 5.4.2, we describe a