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Foreword

Modern technologies have provided unexpected new dimensions of data in size and
variety with a strongly increasing tendency. Their processing and analysis is one
of the basic challenges in our era of digitalization. However, most conventional data
analysis techniques were designed for much smaller data sets. Wavelets are one
of the most important exceptions; they have a very strong potential for applications
to big data even when the data are non-stationary, noisy and high-dimensional.
Wavelets have been very successfully applied to solve various scientific and
engineering problems in which conventional methods, as correlation and spectral
techniques, are ineffective or even fail. In recent decades, wavelet analysis has
become one of the most successful and widespread tools for analyzing and syn-
thesizing multivariate and spatio-temporal measurements, performing efficient
image processing, compressing large amounts of data, or recognizing patterns, etc.

There is a huge and rapidly growing amount of publications devoted to wavelet
techniques and their application to various fields. Therefore, it is hard for new-
comers or interested users from other disciplines to understand important modern
methodological directions and learn how to use wavelet tools appropriate for their
specific problems. In this monography, a group of outstanding and very active
Russian scientists presents the second edition on modern wavelet techniques and
their application to urgent problems in neuroscience. Modern neuroscience is
characterized by a rapidly increasing amount of measurements. Making this great
potential accessible for the study of the brain and even for clinical practice is indeed
a challenging problem of highest actuality. It is clearly demonstrated here that
wavelets are very appropriate for this task.

This book gives first a clear and concise mathematical introduction to wavelet
theory and secondly discusses how to use wavelets efficiently in neuroscience. In
this second edition, the selected neuroscientific problems are well subdivided into
exemplary and basic topics from single neurons to real-time classification of EEG
patterns. Based on their manifold experience with such data, the authors provide an
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excellent guidance how to treat such problems. This monography is a very useful
introduction for starters in the field, but it provides also important information and
suggestions for researchers applying advanced signal processing techniques in
neuroscience as well as also for users from other fields.

Berlin/Potsdam, Germany Jürgen Kurths
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Preface

If people do not believe that mathematics is simple,
it is only because they do not realize
how complicated life is

John von Neumann

More than 30 years ago, Jean Morlet introduced for the first time the notion of a
wavelet as a soliton-like function. At the beginning, he applied this function to the
analysis of backscattered seismic signals, but soon he realized that wavelets have a
significantly broader field of possible applications. In 1981, Alexander Grossmann
interpreted wavelets as coherent states and gave an elegant proof of Morlet’s
reconstruction algorithm. Since then this technique has witnessed explosive growth
and it now represents a universal mathematical tool with useful applications in
many scientific and engineering studies.

Originally wavelets emerged as an alternative to the classical spectral analysis
based on the Fourier transform, such as windowed Fourier analysis or the Gabor
transform. In order to improve processing of transient components in complex
signals, Morlet decided to replace Gabor functions, which have a fixed duration, by
new building blocks or time—frequency atoms, which can have an arbitrarily small
duration. Later this concept led to new insights and a mathematically rigorous
foundation.

Nowadays, there is no doubt that the introduction of wavelets theory was one
of the most important events in mathematics over the past few decades. This is
probably the only concept that has been applied in practically all the fields of basic
science. Moreover, wavelets are widely used for image recognition and compres-
sion, for analysis and synthesis of complex signals, in studies of turbulent flows and
feature extraction from biological and medical data, etc.

This book is devoted to application of wavelet-based methods in neuroscience.
We have attempted to illustrate how wavelets may provide new insight into the
complex behavior of neural systems at different levels: from the microscopic
dynamics of individual cells (e.g., analysis of intracellular recordings) to the
macroscopic level of widespread neuronal networks (e.g., analysis of EEG and
MEG recordings). Our main aim has been to show how and where wavelet-based
tools can gain an advantage over classical approaches traditionally used in
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neuroscience. We hope that the logical structure of the book as regards content
(from micro to macro scale) represents a new approach to experiential data analysis
and could be helpful in everyday use. The book describes several examples
obtained by the authors in experimental neuroscience.

In the second edition of the monograph, we added new results of the develop-
ment of wavelet-based methods for online processing of epileptic EEG for the
creation system for prediction and prevention of epileptic events, which has been
used for the closed-loop brain-computer interface to epilepsy control. We also
considered, in the revised monograph, several new wavelet applications to analyze
various neurophysiological processes associated with the processing of visual
sensory information and the real and imaginary motor activity executions in
humans. We mainly focus in the second edition on our results, which were obtained
in the past few years on the study of multi-channel EEG. We consider the results
obtained with the help of wavelets and leading to a deeper understanding of the
human brain’s processes during acts of sensorimotor integration. Moreover, we
apply the discovered brain activity patterns to create brain-computer interfaces to
monitor and improve a subjects’ performance (brain-computer interface operators)
under routine tasks (for example, prolonged classifying visual stimuli, increasing
attention level, etc.)

Innopolis, Russia Alexander E. Hramov
Saratov, Russia Alexey A. Koronovskii
Madrid, Spain Valeri A. Makarov
Innopolis, Russia Vladimir A. Maksimenko
Saratov, Russia Alexey N. Pavlov
Moscow, Russia Evgenia Sitnikova
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Chapter 1
Mathematical Methods of Signal
Processing in Neuroscience

Abstract This chapter offers a brief introduction to the novel advanced mathemat-
ical methods of analysis and processing of neurophysiological data. First, we give
the rationale for the development of specific mathematical approaches for decoding
information from non-stationary neurophysiological processes with time-varying
features. Second, we focus on the development of mathematical methods for auto-
matic processing and analysis of neurophysiological signals, more specifically, in the
development of brain-computer interfaces (BCIs). Finally, we give an overview of
the main applications of wavelet analysis in neuroscience, from the microlevel (the
dynamics of individual cells or intracellular processes) to the macrolevel (dynamics
of large-scale neuronal networks in the brain as a whole, ascertained by analyzing
electro- and magnetoencephalograms).

1.1 General Remarks

Neurodynamics is a contemporary branch of interdisciplinary neuroscience that
examines mechanisms of the central nervous system based on the mutual experi-
ence of chemists, biologists, physicists, mathematicians, and specialists in the non-
linear theory of oscillations, waves, and dynamical chaos [1–6]. Practical applica-
tions of modern methods in neuroscience facilitate an interdisciplinary approach
to brain functions and attract experts in experimental and theoretical neurobiology,
psychophysiology, cognitive neuroscience, biophysics, physics, nonlinear dynam-
ics, etc. This interdisciplinary collaboration provides unique methods for analyzing
the functional activity of the central nervous system (CNS) that focus on the basic
principles of the neuronal dynamics of individual cells and neural networks.

Recent progress in understanding molecular and ionic mechanisms of neuronal
activity [7] encourages further investigation of certain key problems in modern
physics, such as exploration of the functional properties and principles of infor-
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mation coding, as well as its representation and the processing of sensory data in the
central nervous system. Perception and information processing are important func-
tions of the CNS. Visual, acoustic, tactile, and gustatory stimuli are transformed by
the sensory receptors of the first order neurons into a sequence of electrical pulses.
These first-order sensory neurons are therefore involved in primary processing of
sensory information [8–12]. Sensory information is then passed through relay sta-
tions (brain stem and thalamic nuclei) that transform and convolve the information
code, until finally it reaches the cerebral cortex which shapes the “fingerprint” of
the external world [13–15]. At each subsequent stage, the processes of information
transfer become increasingly difficult to study. The question of how the totality of
nervous impulses (action potentials or spikes) generated by single neurons can reflect
the full complexity and diversity of the external world remains one of the biggest
challenges in fundamental science [13, 16–18].

Experimental methods have recently been developed for registering the neuronal
activity underlying processes of information encoding-decoding at different levels
of the nervous system—from molecular changes in membrane properties of recep-
tor cells to changes in the local (electrical) field potentials in the cerebral cortex.
Traditional and noninvasive methods for registering electrical brain activity, such
as electroencephalography (EEG) with electrodes arranged on the skin of the head,
offer several advantages, and this method is still commonly used in neurophysiology
and medicine. EEG is often used in various studies of brain functions in humans and
animals [19, 20]. There are also invasive methods using implanted electrodes which
provide better spatial resolution, and these are advantageous when examining neu-
ronal activity in small groups of neurons in superficial (cortex) and deep (subcortical)
structures.Another advantage of invasive recording techniques is that implanted elec-
trodes can also be used for electrical stimulation with different research purposes,
e.g., suppression of epileptic discharges [21–23]. The relatively new noninvasive
recording technique known as magnetic encephalography (MEG) has become more
popular over the last few years, because it provides better spatial resolution than EEG
and better quality of signals reflecting brain activity [24–26].

1.2 Nonstationarity of Neurophysiological Data

Despite technical progress in developing new methods of data acquisition in experi-
mental neurophysiology, mathematical methods of experimental data analysis could
not be readily applied, and this may impede further progress. In the vast major-
ity of experimental studies in neuroscience, only a few statistical methods of data
analysis are used, e.g., calculation of the mean spike frequency, construction of var-
ious correlation characteristics and distribution functions, etc. Traditional methods
of statistical analysis are undoubtedly useful, but most of them unable to evaluate the
relevant information regarding complex processes in the CNS. In order to illustrate
this fact, we give an example that demonstrates the response of a sensory neuron to
periodic stimulation. From a mechanical point of view, the response of the neuron
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to a sequence of equal external stimuli could be identical, so periodic stimulation of
a neuron with a series of impulses could elicit a periodic sequence of spikes (action
potentials, for example, 2 or 3 spikes per stimulus). However, in the experimental
situation, we often obtain time- and activity-dependent variations in the neuron’s
response (the neuron does not demonstrate an equal response to repeated identi-
cal stimuli) which reflect neuronal plasticity. The phenomenon of synaptic neuronal
plasticity (the basic mechanism underlying memory and learning) reflects adaptation
to external afferent activity modified by the internal characteristics of individual cells
and the global dynamics of the wider neuronal network interactions [27, 28]. It is
known that a neuron can even stop responding to the next stimulus from a certain
moment.

Figure1.1 illustrates the adaptive response of a neuron of the trigeminal complex
to periodic stimulation. Maximum neuron activity (27 spikes/s) is observed at the
onset of stimulation; it falls to an average of 10 spikes/s within a few seconds and
varies thereafter, exhibiting a slow negative drift. On the one hand, such behavior of a
living cellmakes it extremely difficult to define characteristic forms/patterns of neural
activity associatedwith the peculiar properties of a given stimulus. On the other hand,
such complexity in neuronal activity encourages the development of more relevant
(complex)methods of data analysis, in addition to the simple description of statistical
characteristics of neuronal responses that is one of the tasks of neurodynamics. We
conclude that more specific mathematical methods must be applied, such as wavelets
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Fig. 1.1 Illustration of adaptation reaction of neuronal firing activity to a repeated stimulation.
This neuron was recorded in a rat in the trigeminal sensory nuclear complex which receives tactile
information from vibrissae. Stimulation was performed by periodic mechanical deflection of one
whisker by a series of short directed air puffs (duration of each air pulse 5 ms). From top to bottom:
start and end of stimulation by the sequence of periodic impulses, firing activity of a single neuron
(train of spikes), and dynamics of the mean spike frequency (averaging over a sliding time window
of 500 ms duration)
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[29–31], the Hilbert–Huang transform [32–34], and theWigner–Ville transform [35–
37],which aremore suitable for decoding information about non-stationary processes
with time-varying features.

1.3 Wavelets in Basic Sciences and Neuroscience

Wavelet analysis [29, 38–41] is unique in the sense that even the first practical
application to neurophysiological data analysis produced prominent results [30, 42–
46]. For this reason, it is considered a very powerful analytical tool for studying the
dynamics of neural systems.

Wavelet terminology was introduced in the 1980s [38, 47, 48]. This mathematical
approach was initially proposed as an alternative to classical spectral analysis based
on the Fourier transform.Wavelet theory is considered to be one of themost important
events in mathematics of the past decades. Indeed, it appears to be the sole new
mathematical concept that was immediately recognized as a tool in practically all
branches of basic science (first and foremost, in physics and related disciplines) and
many technical fields [31, 49–56]. In fact, introduction of thewavelet theory itselfwas
not entirely unexpected. It was developed to meet the very real needs of experimental
investigations, particularly in geophysics and seismology. Contemporary wavelet
analysis combines various pre-existing ideas and methods. For example, fast wavelet
transform algorithms are based on the subband coding ideology known from radio
and electric engineering [57]. Some ideas were borrowed from physics (coherent
states [58], etc.) and mathematics (studies on Caldéron–Zygmund integral operators
[59]). Wavelet analysis is logically related to the theory of diffusion differential
equations [60].

Today, wavelets are widely used for the analysis and synthesis of various signals,
image processing and recognition, compression of large volumes of information,
digital filtration, the study of fully developed turbulence, and the solution of cer-
tain differential equations. This list can certainly be extended [55, 60–68]. The new
theory aroused great interest from the very beginning. According to well-known esti-
mates [49], since the 1990s, the number of publications using wavelets in physics has
been growing continuously. The number of references to Internet sources containing
the term “wavelet” has reached several million. In fundamental science, this math-
ematical approach is mostly applied to study complex temporally non-stationary or
spatially nonhomogeneous nonlinear processes. Wavelet analysis is well adapted for
studying the complex structure of signals from living systems, since other tradi-
tional computation techniques can be applied only to processes with time (or space)-
constant parameters (i.e., stationary in time or spatially homogeneous). Despite the
fact that wavelet analysis has long been regarded as a standard tool for studying com-
plex processes and practical application of this method in neuroscience andmedicine
is just beginning, prognoses for its successful application are rather optimistic. In this
monograph we highlight recent advances made by practical application of wavelet
in neurodynamics and neurophysiology.
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1.4 Automatic Processing of Experimental Data in
Neuroscience

An important field of wavelet applications in neurophysiology and neuroscience is
the development of methods for automatic processing and analysis of brain signals.
Electrical signals that can be recorded from the brain (EEG) represent a linear mix-
ture of coexisting oscillatory components, i.e., nonlinear effects do not complicate
the process of recognition. The development of expert systems for automatic EEG
analysis is of particular interest for both fundamental neuroscience and clinical prac-
tice due to a wide spectrum of possible applications (classified in Fig. 1.2). One
must distinguish between on-line and off-line analysis. Automatic (i.e., without the
attention and control of an operator) analysis of pre-recorded EEG signals (off-line
diagnostics) aims to reduce routine work, for example, to suppress artifacts in the
recorded EEG. EEG analysis in real time (on-line) aims at fast detection of certain
EEG events and the organization of closed-loop control systems. Clinically-oriented
applications are the most effective field of on-line analysis of neurophysiological
signals, including EEG monitoring with predictive diagnostic purposes, e.g., for the
suppression of epileptic activity, the so-called spike-wave discharges [21].

Brain-computer 
in terfaces

Analysis in real time

Monitoring system 
of brain activity in 

clinical practice

Analysis in 
pre-recorded EEG

Automatic  analysis 

oscillatory patterns 
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Expert system 
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amount of data

Revelation of dynamical 
regularities of brain 

functional states 
establishing 

Removal of artifacts 
and noise in 
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electrical brain activity

Fig. 1.2 Wavelet-based methods of automatic EEG diagnostics, processing, and analysis
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1.5 Brain-Computer Interfaces

Oneof themost exciting applications ofwavelets is to use it formental control of brain
functions,which, as amatter of fact, is a new formof human-computer interaction [69,
70]. The specific dynamics of electrical brain activity characterizes mental activity
that includes compilation of imaginary commands (“mental action”). This “mental
action” is associated with specific changes in the time–frequency characteristics and
spatial structure of EEG [71–74]. In the brain-computer interface, mental control
systems must perform the following steps (see Fig. 1.3):

• Recognize and select characteristic changes in the EEG (event-related oscillatory
patterns).

• Decrypt their meaning (associated with a specific operation).
• Convert this meaning into commands for hardware control.

Mental control systems should be able to solve two main problems. First, the tech-
nical problem of precise recognition of an EEG pattern, subsequent formulation of a
“command”, and transmission to control. Second, cognitive and psychological tasks
in which the operator (a person) should learn to keep specific mental states that can
be recognized from analysis of the spatial-temporal structure of his/her EEG. An
additional problem is that the system should work in real time. Earlier control sys-
temswere suggested to use information about complex physical activity expressed as

channel EEG 
Processing & analysis 

o

command 

Feedback

External Device

Fig. 1.3 General schemeof a simple brain-computer interface.Modern IBC is a system that registers
and analyzes signals of electrical brain activity (usually EEG) from the user and “converts” them
into a “machine” command for external device control. The central point of such a system is
the development of algorithms for real-time recognition of EEG patterns corresponding to certain
cogitative operations. Note the importance of the feedback loop in the BCI. This is necessary to
adapt the aforementioned algorithms to recognize the specific patterns of electrical brain activity
based on EEG features. Also the operator (user) must learn to evoke and control the relevant mental
state, which is impossible without the use of feedback
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body movements of the operator, e.g., the trajectory when moving a hand in the pro-
cess of equipment handling. These interfaces encountered many problems, including
registration of complex information, isolation of relevant information from the gen-
eral data stream, and correct interpretation. Besides that, such interfaces require a
system of sensors for registration of motor activity and a wireless device for data
transmission fromoperator to computer. Therefore, simple brain-computer interfaces
(BCI) are of particular interest, such as interfaces that are able to monitor electrical
brain activity and detect the mental intentions of the operator. For example, simple
stimulus-symbol interfaces conceived by the operator [75, 76] open up new prospects
for resolving the problem of mental control.

Thus, algorithms of automatic EEG pattern recognition associated with specific
cogitative operations in real time help to effectively perform the first step (pat-
tern recognition) in brain-computer interfaces. Wavelet-based methods are perfectly
suited to pattern recognition tasks [77–80].

Note that brain-computer interfaces have already been used as an alternative to
traditional devices for inputting information into the computer. So for certain cat-
egories of users, for example, people with motor function disabilities, this way of
interactingwith the computer can improve their quality of life, at least partly, opening
the way to a full-fledged life in society [81–84]. One of the first successfully worked
BCIs was developed at Emory University by Roy Bakay and Phillip Kennedy, who
used implanted depth electrodes in the brain motor center of a paralyzed 53-year-old
patient, whowas able tomove the cursor on a computer screen, and thus communicate
with doctors (writing several simple sentences) [85]. Rapid progress in neuroscience
and technology suggests that brain-computer interfaces could be widely used for
control of artificial limbs, manipulators, and robot technical devices (for example,
wheelchairs), and also in the gaming industry [86–89].

1.6 Topics to Consider

Amathematically rigorous description of wavelet analysis can be found in numerous
textbooks and monographs (see, for example, [29, 54, 56, 61, 90–94]) as well as in
reviews in scientific journals [17, 52, 53, 95]. This book focuses on the new pos-
sibilities provided by the wavelet approach for decoding information from signals
recorded on the level of individual neurons and groups of neurons, as well as neu-
ral network activity. A large number of the aforementioned scientific publications
aimed to identify the most important problems in the field of wavelet applications
to neurodynamics and neurophysiology. On this topic, we distinguish the following
three areas of wavelet applications in neuroscience:

• Microlevel (cellular/intracellular)—wavelet analysis of the dynamics of individual
cells or intracellular processes.

• Mesolevel (groups of cells)—analysis of information processes in small neuronal
ensembles.



8 1 Mathematical Methods of Signal Processing in Neuroscience

• Macrolevel (brain activity)—analysis of macrodynamics in widespread neural
networks (EEG/MEG, neuroimaging data).

This monograph discusses the progress made on each of these levels in a consistent
manner. The book contains eight chapters:

• Chapter2 provides a mathematical introduction to wavelet analysis, including the
basic concepts and definitions of wavelet theory, and considers practically signif-
icant questions related to the effective numerical implementation of the wavelet
transform (both discrete and continuous). Special attention is paid to the impor-
tance of the relationship betweenwavelet and Fourier analysis. This chapter explic-
itly addresses those readers who are not familiar with the mathematical concepts
of complex signal processing.

The next two chapters describe methods for wavelet investigation of neurophysio-
logical systems.

• Chapter3 discusses the application of wavelets to analyze cellular dynamics at
the microscopic level (individual cells or intracellular processes). This chapter
also presents the principles for analyzing the information from a single cell using
electrical signals of individual neurons.

• Chapter4 describes the main aspects of the wavelet analysis of the impulse shapes
of individual neurons (action potentials) obtained by extracellular recordings
of single-unit activity. We consider different approaches to classifying neuronal
spikes, some based solely on wavelets and others involving combined methods,
such as wavelet neural networks.

• Chapter5 provides an introduction to the analysis of local field potentials (LFPs).
LFPs are generated by synaptic currents excited by presynaptic neuronal assem-
blies in target cells. Thus, their study can shed light on the information processing
on the circuit level. However, the multi-source nature of LFPs significantly com-
plicates the analysis and requires advanced mathematical methods. We discuss
how ongoing LFP activity can be disentangled into pathway-specific contribu-
tions. Then, we present wavelet-based methods that enable the identification and
quantification of gamma waves (rhythmic patterns) generated by the CA3–CA1
pathways in the hippocampus while the compound LFPs are irregular.

The last four chapters of the book consider the macrodynamics of neuronal networks
using wavelet analysis of electroencephalograms (EEGs).

• Chapter6 considers the main definitions and principles of electroencephalography
that are required for a better understandingofChaps. 7, 8 and9.Wedescribe general
physical and mathematical approaches to time–frequency analysis of rhythmic
EEG activity using continuous wavelet transforms. We also review some recent
achievements of wavelet-based studies of electrical brain activity, including (i)
time–frequency analysis of EEG structure, (ii) automatic detection of oscillatory
patterns in pre-recorded EEG, (iii) classification of oscillatory patterns, (iv) real-
time detection of oscillatory patterns in EEG, (v) detection of synchronous states
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of electrical brain activity, (vi) artifact suppression/rejection in multichannel EEG,
and (vii) the study of cognitive processes.

• Chapter7 considers basic problems of automatic diagnostics and processing of
epileptic EEG. We discuss the wavelet-based techniques in order to fully autom-
atize routine operations, such as visual inspection of EEG. In addition to that, we
exemplify some practical applications of wavelet methods for automatic analysis
of pre-recorded signals of neuronal activity (off-line diagnostics), and also some
examples of wavelet-based EEG analysis in real-time (on-line). We also discuss
principles of fast and precise detection of transient events in EEG and organization
of close-loop control systems that can be used in brain-computer interface (BCI).

• Chapter8 considers using wavelet analysis to study mechanisms of visual per-
ception. First, we introduce an ambiguous visual stimulus, the Necker cube, a
useful visual perception analysis tool. Second, we demonstrate how the wavelet-
based methods reveal the local and network properties of the percept-related brain
activity. Then, we considered the effect of the human condition (motivation and
alertness) on the perceptive process. Finally, we review the basic principles of the
BCIs that use the wavelet-based algorithm to evaluate the human state in visual
perception tasks.

• Chapter9 describes wavelet analysis of the motor-related cortical activity. First,
this chapter introduced real andmental motor activity in the young and themiddle-
aged healthy subjects. The real motor acts, or motor execution (ME), enables
interaction with the environment and induces the motor-related changes in 8–
12 Hz and 15–30 Hz wavelet power in the motor cortex. The mental motor acts,
or motor imagery (MI), did not include muscle control but may have a motor-
planning stage, similar to ME. Detecting the ME and MI brain states underlies
the BCI for motor control. Second, we described two types of motor imagery:
kinesthetic and visual. Visual imagery corresponds to the self-visualization of the
subject moving a limb that does not require special training. Kinesthetic imagery
is the feeling of muscle movement that can only be realized by athletes or specially
trained persons. Finally, we considered how the ME brain states change with age
representing criteria for an objective assessment of the motor abilities in elderly
adults.

This book is based primarily on the fundamental results in neurodynamics obtained
recently by the authors—physicists, mathematicians, and biologists in close col-
laboration with specialists in experimental neurophysiology. At the same time, the
book contains a relatively complete bibliography (over 400 sources) characterizing
the application of wavelets in neurophysiological research. In general, this book
overviews theoretical and practical knowledge and, in our opinion, demonstrates the
advantages of powerful analytical tools and novel mathematical methods of signal
processing and nonlinear dynamics in order to address neurophysiological problems.
Moreover, wavelet analysis helps to reveal important information and facilitates
a deeper understanding of the investigated phenomena. More intensive studies in
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this area can contribute to interdisciplinary interactions between physics, nonlinear
dynamics, applied mathematics, and neurophysiology and promote further mutual
research in these areas.
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Chapter 2
Brief Tour of Wavelet Theory

Abstract In this chapter, themain definitions ofwavelet theory are given. To explain
the basic ideas of the continuous wavelet transform, we describe a transition from
Fourier analysis to wavelets. Mother functions and numerical techniques for imple-
menting the wavelet transform are described. The problem of visualising the results
is considered. Finally, features of the discrete wavelet transform are discussed.

As already mentioned in Chap.1, wavelet analysis constitutes a powerful tool for
studying the nonstationary dynamics of nonlinear systems. Although it arose not
so long ago [1–3], researchers are already widely using wavelets in different areas
of modern science. At present, there are many monographs and reviews devoted to
wavelets and their applications in different areas of science and technology, e.g., in
physics, biophysics, biology, medicine, economics, meteorology, etc. [4–11]. Thus,
wavelet analysis has become an essential mathematical tool, providing effective solu-
tion for various problems related to the study and diagnostics of complex nonlinear
processes, as well as digital signal processing. Over the past few decades, wavelet
analysis has been widely considered as an interdisciplinary technique. One of the
most impressive examples of such interdisciplinary cooperation is the application of
wavelets to neurodynamics and neurophysiology, where wavelet analysis is increas-
ingly used to examine neurophysiological data as well as to diagnose both normal
and pathological processes in neural systems.

In the present chapter, we give a brief mathematical introduction to the wavelet
theory. Here we try to explain the main principles of the wavelet transform (for both,
the continuous and the discrete form), a method for numerical implementations of
the transform, and the potential of wavelets for investigating complex signals asso-
ciated with physiological processes. With a view to providing easier explanations,
we restrict the discussion to simple mathematical examples and models.
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Fig. 2.1 Signals (2.1) and (2.2) and the corresponding Fourier spectra (a) and (b), respectively

2.1 From Fourier Analysis to Wavelets

We begin our considerations with the well-known Fourier transform [5, 12], which
to some extent provides the background for the wavelet theory. As a first example, let
us consider a signal representing the sum of two harmonic functions with different
angular frequencies ω1 and ω2, viz.,

x(t) = cos(ω1t) + cos(ω2t) . (2.1)

The Fourier spectrum of this signal (see Fig. 2.1) is characterized by two sharp peaks
corresponding to the frequencies1 ω1 and ω2. If both components exist permanently,
the Fourier spectrum detects their frequencies, providing the researcher with full
information about the signal under investigation.

Further, we consider another signal in which the harmonics appear and disappear
with time:

x(t) = [1 − H(t)
]
cos(ω1t) + H(t) cos(ω2t) , (2.2)

where

H(t) =
⎧
⎨

⎩

0 , t < 0 ,

1/2 , t = 0 ,

1 , t > 0

1Note that hereafter we will consider only the positive range of frequencies, since the negative
frequency region is the “mirror image” of the positive one and does not provide any additional
useful information.
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Fig. 2.2 Signal x(t) = cos[ω(t)t] with linearly increasing frequency ω(t) = ω1 + a(ω2 − ω1)t
and its Fourier spectrum. Having examined only the spectrum |S(ω)|, one can suppose that the
signal contains all frequencies in the range [ω1, 2ω2 − ω1]

is the Heaviside function.
Comparing the Fourier spectra2 |S(ω)| of the considered signals (2.1) and (2.2),

one can see that they are quite similar (see Fig. 2.1a and b). In other words, the
Fourier spectrum is unable to provide enough information about frequencies that
can be recognized in the analyzed signal at a given moment of time. The spectrum
|S(ω)| of the signal does not allow one to say whether the signal is a superposition
of two harmonic functions or whether it consists of two distinct components existing
during clearly different time intervals. In other words, spectral analysis reveals the
occurrence of different harmonic components, but it does not provide information
related to their time localization. Nevertheless, the Fourier transform is a powerful
tool for examining time series produced by systems with constant parameters. The
spectral composition of such signals remains unchanged during the whole observa-
tion period. On the other hand, if the frequency components appear and disappear
with time or if the frequency changes smoothly (see, e.g., Fig. 2.2), another spectral
technique is required.

This circumstance is brought about by the core mechanism of the Fourier trans-
form, which performs integration over the whole available signal. From the mathe-
matical point of view, the time interval of integration is infinite3:

S(ω) =
+∞∫

−∞
x(t)e−iωt dt , (2.3)

and each frequency component makes a contribution to the spectrum. Thus, using
spectral analysis, we can detect characteristic rhythms in the signal, but we are
unable to reveal their time localization. In other words, infinite oscillating harmonic
functions sine and cosine used within the Fourier transform cannot be applied for
localized spectral analysis [13, 14].

2More precisely, amplitude spectra of the Fourier transform.
3Of course, in the case of experimental signals or data from numerical simulation, researchers deal
with finite time series.
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As a consequence, if we are going to localize the frequency components in time,
we have to pass from integration over the infinite time interval (−∞, +∞) to a
certain time “window”4 with duration 2T , viz., [t0 − T, t0 + T ], where t0 is the time
at which we are (locally) defining frequency components in the signal:

S(ω, t0) =
t0+T∫

t0−T

x(t)e−iωt dt . (2.4)

To evaluate the dynamics of the frequency components over time, we must shift the
observation window along the time series. In this case we obtain the instantaneous
spectrum depending on t0. This spectrum changes as the observation window is
moved along the time axis. Since t0 is a variable in (2.4), the spectrum S(ω, t0)
should be considered as a two-dimensional function (Fig. 2.3).

However, this approach with the rectangular window, known as the short-time
Fourier transform, also has several limitations [15]. Indeed, the spectrum of a har-
monic signal is the δ-function only in the case when the signal is infinite and the
integration is performed over the whole infinite time interval. If the signal is finite (or
if the integration is performed over a finite time interval), the spectral image of the
signal is characterized by the finite width, and the shorter the duration of the signal,
the broader its image in the Fourier space. So, using the short-time Fourier transform,
one has to operate with the shortest length 2T of the observation window to localize
the appearance (or disappearance) of the frequency components of the signal more
precisely. On the other hand, however, this decreases the resolution of the method in
the frequency domain. In other words, the more precisely we define the frequency
of the spectral components, the less exactly we can localize this component in time,
and vice versa.

Ifwewish tomaintain the possibility of tracing themodifications of the signalwith
time, but also to reduce the lack of precision in frequency detection, the transform
(2.4) needs to bemodified. Note also that the short-time Fourier transform performed
only once does not give full information about the signal under consideration. A set
of transformations performed for the same signal and different widths 2T of the
observation window is more informative. Indeed, the transformation with a narrow
window may be used to localize modifications of the signal in the time domain,
whereas the transformation with a broad window can provide information about the
frequencies. Of course, this approach is inconvenient, since one has to consider a
function S(ω, t0, T ) depending on three variables instead of two, ω and t0, and this
requires representation in a space of at least four dimensions.

To reduce the number of the variables, one can link the frequencyω of the harmonic
filling with the length of the observation window T , e.g., for each value of T one can
use ω = ωn = 2πn/T , where n ∈ N is the number of filling periods fitted into the
window length. Then, the short-time Fourier transform may be written in the form

4Here, for simplicity, a rectangular window is used. In a more general case (known as the Gabor
transform), we use a window function g(t) that is localized in both the time and frequency domains.
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nals with the different frequencies ω1 and ω2. Five locations of the observation window (rectangle)
are shown. Shifting the window along the time series results in a transformation of the spectrum
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20 2 Brief Tour of Wavelet Theory

Fig. 2.4 Surface σ defined
in the 3D space
Ω = (ω, t0, T )

(frequency–time–length of
observation window)

T

ω

t
0

σ

S(T, t0) =
t0+T∫

t0−T

x(t) exp

(
−i

2πn

T
t

)
dt , n > 0 . (2.5)

In fact, in the 3D space (ω, t0, T ), where the function S(ω, t0, T ) is defined, a surface
σ is introduced and further consideration is carried out at the points belonging to this
surface. Obviously, some information is lost in this case, but the remaining data allow
us to understand the particularity of the time series under study, since the surface σ

covers both the frequency and the time domain (see Fig. 2.4).
Moreover, the length of observation window that is optimal to detect different

frequency components of the signal is defined by the corresponding time scales.
To pick out the low-frequency components, a longer part of the time series should
be used than for analysis of high-frequency oscillations. The relation ωn = 2πn/T
provides a reasonable ratio between the analyzed frequency and the length of the
observation window.

Transforming (2.5) for the time series x(t) = sin(ωt) results in

S(T, t0) = 2T sin(ωT )

ω2T 2 − 4π2n2

[
ωT sin(ωt0) − i2πn cos(ωt0)

]
exp

(
−i2πn

t0
T

)
.

(2.6)
As for the spectral analysis, the result of this transformation is characterized by both
real and imagine parts. By analogy with the Fourier transform, there is a reason for
considering the square of the absolute value of S, i.e.,

|S(T, t0)|2 = 4T 2 sin2(ωT )

(ω2T 2 − 4π2n2)2

[
ω2T 2 sin2(ωt0) + 4π2n2 cos2(ωt0)

]
. (2.7)

One can see that in this case the quantity of |S(T, t0)|2 takes its maximal value
4π2n2/ω2 for Tm = 2πn/ω (Fig. 2.5), i.e., as for the Fourier transform, the transfor-
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Fig. 2.5 Transformation (2.5) of the signal x(t) = sin(ωt) (ω = π , t0 = 0) for a n = 2, b n = 4

mation (2.5) allows detection of the time scale Tm (related to the frequency ω of the
signal) corresponding to the main rhythm of the analyzed signal.

There are several important points to be made here. Firstly, for the same signal
x(t) = sin(ωt) and different values of the parameter n (which is determined as the
number of periods of the harmonic function with the corresponding frequency that
would fill the integration window of length 2T ), the values Tm corresponding to the
maximal magnitude of |S(T, t0)|2 are different (see Fig. 2.5a and b). This becomes
clear when one takes into account the fact that the quantity |S(T, t0)|2 reaches its
maximum when the harmonic filling is characterized by the same frequency ω as
the main frequency of the signal under study x(t) (Fig. 2.6). In other words, the
quantity |S(T, t0)|2 is maximal when T = Tm = 2πn/ω, where ω is the frequency
of the signal x(t) under investigation. In fact, the same situation is also observed for
Fourier analysis. Note that the value of Tm (when the quantity |S(T, t0)|2 becomes
maximal) depends on the integration window and, in general, does not coincide with
the corresponding time scale of the signal. Note also that themore periods are consid-
ered within the integration window, the more clearly the corresponding harmonic in
|S(T, t0)|2 is defined (compare Fig. 2.5a and b). Nevertheless, as a consequence, the
length of the integration window corresponding to the maximal value of |S(T, t0)|2
also increases with the growth of the period number n. As mentioned above, this
results in the deterioration of the resolution of the transformation (2.5) in the time
domain.

Secondly, one should note that the quantity S(T, t0) that results from the trans-
formation (2.5) is a function of two variables, i.e., T and t0. The parameter T defines
the time interval used for the integration and the frequency of the harmonic filling.
So the frequency of the analyzing harmonic filling is closely related to the length
2T of the window. The variable t0 determines the time moment associated with the
transformation. In fact, it defines a shift of the integration window along the time
axis. At the same time, the harmonic filling remains fixed when the integration win-
dow is shifted (see Fig. 2.6d and e). In other words, the phase of the filling changes
continuously when the integration window is moved along the time axis. To avoid
this problem the filling phase should be fixed relative to the observation window by
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Fig. 2.6 a Time series x(t) = sin(π t) and several integration windows b–d with different lengths
2T and the analyzing harmonic filling exp(−i2πn/T ). The real part of the filling is shown by the
solid line, and the imaginary part by the dashed line. The maximal value of |S(T, t0)|2 is observed
for T = 4 (c), when the frequency of the filling coincides with the signal frequency ω. e Shift of
the integration window by the value determined by the second variable t0

means of the following modification of (2.5):

S(T, t0) =
t0+T∫

t0−T

x(t) exp

[
−i

2πn

T
(t − t0)

]
dt . (2.8)

Clearly, changes in the phase of the harmonic filling do not influence the value of
|S(T, t0)|2. For the harmonic signal x(t) = sin(ωt), the transform (2.8) gives

S(T, t0) = 2T sin(ωT )

ω2T 2 − 4π2n2

[
ωT sin(ωt0) − i2πn cos(ωt0)

]
. (2.9)
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Fig. 2.7 Transform (2.8) for
the signal
x(t) = sin(ω1t) + sin(ω2t),
ω1 = π , ω2 = 2π . The
dashed line corresponding to
the function T 2 determines
the maxima of the
corresponding frequency
components with unit
amplitude
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It is easy to see that the difference between (2.6) and (2.9) consists only of the factor
exp(−i2πnt0/T ).

Thirdly, one has to take into account the fact that different frequency components
of the signal with equal amplitude are detected by the transformation (2.8) in different
ways. The corresponding maxima are characterized by different magnitudes. The
squares of these maxima are related to each other by

|S1|2
|S2|2 =

(
ω2

ω1

)2

, (2.10)

which may be obtained directly from (2.7). In other words, the lower the frequency,
the larger its contribution to the signal spectrum, under the condition that the ampli-
tudes of the considered spectral components are equal (see Fig. 2.7). This means that,
if there are two ormore components in the signalwhose frequencies differ sufficiently
from each other, the components with higher frequencies may be missed.

Equation (2.8) may be written in the more general form

S(T, t0) =
+∞∫

−∞
x(t)ψ∗

(
t − t0

T

)
dt , (2.11)

where ψ(ξ) is the analyzing function (see Fig. 2.8)

ψ(ξ) = [H(ξ + 1) − H(ξ − 1)
]
ei2πξ , (2.12)

and the star hereafter indicates complex conjugation. In fact, (2.11) may already be
considered (with some corrections) as the wavelet transform. So we have gone in
stages from the Fourier transform to the wavelet analysis.

The transformation (2.11) consists in the expansion and shift of the functionψ(ξ)

as described above and shown in Fig. 2.6. In this case the quantity T describes the
expansion of the analysing function ψ(ξ), whereas the variable t0 corresponds to the
shift ofψ(ξ) along the time axis. The functionψ(ξ) is known as the mother wavelet,
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Fig. 2.8 The real (solid line)
and imaginary (dashed line)
parts of the sine wavelet
(2.12)

ψ(ξ)

ξ

and all other functions ψ((t − t0)/T ) used for other time scales are obtained from
it by expansions and shifts. For convenience, a normalization condition is imposed
on the mother wavelet:

‖ψ‖L2 =
⎡

⎣
+∞∫

−∞
ψ(ξ)ψ∗(ξ)dξ

⎤

⎦

1/2

= 1 . (2.13)

Taking into account the requirement (2.13), the mother wavelet (2.12), denoted by
ψ0, should be written in the form

ψ0(ξ) = H(ξ + 1) − H(ξ − 1)√
2

ei2πξ . (2.14)

The wavelet functionsψ0((t − t0)/T ) obtained for other time scales by means of the
expansion and shift of the mother wavelet ψ0 do not satisfy the requirement (2.13).
To satisfy the normalization condition for every time scale T , a normalization factor
depending on the time scale T should be introduced. Then the function ψ0(ξ) with
normalization coefficient T −1/2 should be used instead of ψ(ξ) in (2.11):

ψT,t0(t) = 1√
T

ψ0

(
t − t0

T

)
. (2.15)

Finally, (2.11) takes the form

S(T, t0) = 1√
T

+∞∫

−∞
x(t)ψ∗

0

(
t − t0

T

)
dt . (2.16)

Equation (2.16) is the standard form of the continuous wavelet transform introduced
in the scientific literature [7, 12, 14, 16–20]. At the end of this section we need also
to compare the notation in this section with the one used traditionally in the literature.
For the continuous wavelet transform, the time scale is traditionally denoted by s (so
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in the above consideration, T ≡ s, whereas for the wavelet surface that results from
the transformation, the symbol W is used, i.e.,

W (s, t0) = 1√
s

+∞∫

−∞
x(t)ψ∗

0

(
t − t0

s

)
dt . (2.17)

Often, the notion of “frequency” f is considered instead of the “time scale” s since it
is more suitable in many studies. In fact, the frequency f used in the wavelet analysis
carries the same meaning as the frequency of the Fourier transform. In particular,
this approach is commonly used in neuroscience and neurophysiology. At the same
time, researchers have to be very careful using the term “frequency” for wavelets,
since in general the relationship between the time scale s of the wavelet analysis and
the frequency f of the Fourier transform differs from the equation f = 1/s, which
becomes correct only for special choices of the mother wavelet and its parameters.

So we have moved gradually from the Fourier transform to the wavelet analysis,
aiming to expose the underlying ideas of wavelets. By analogy with the Fourier
transform, the wavelet analysis expands the given signal x(t) in terms of a certain
functional basis. At the same time, the functional bases used for the Fourier and
wavelet transforms are not the same. While the infinite-in-time harmonic functions
sine and cosine are used in classical spectral analysis, functions ψs,t0 that are well-
localized in both time and frequency (obtained by expansion and shift of the mother
wavelet ψ0) are used in wavelet analysis. These localized functions (wavelets) allow
us to examine processes with statistical characteristics that vary in time (or in space),
and provide a two-dimensional representation of the signal x(t) when the time and
frequency are interpreted as independent variables.

We shall refer to themother wavelet (2.14) obtained by the gradual transition from
the Fourier transform shown in Fig. 2.8 as the sine wavelet. The sine wavelet is not
widely used in practical applications (in particular, due to the low level of localization
in the frequency domain), but it brings out the main ideas and methodology of
continuous wavelet analysis. An important particularity of the wavelet transform is
the possibility of using an arbitrary function satisfying certain conditions (which will
be discussed in Sect. 2.2) as the mother wavelet.

Finally, note that, besides the continuous wavelet transform, the discrete wavelet
transform is also used in many applied problems. General information concerning
these two counterparts of the wavelet transform is given below.
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2.2 Continuous Wavelet Transform

2.2.1 Main Definitions. Properties of the Continuous Wavelet
Transform

In the following, we restrict the class ofmother functions to f ∈ L2(R). The function
space L2 contains signals with limited energy, i.e., with finite norm ‖ f ‖L2 . The
continuous wavelet transform (CWT) is performed by convolution of the examined
function f (t) with the two parameter wavelet function ψs,t0(t), viz.,

W (s, t0) =
+∞∫

−∞
f (t)ψ∗

s,t0(t)dt . (2.18)

The wavelet function is obtained from the mother wavelet ψ0(t) by means of an
expansion and a shift:

ψs,t0(t) = 1√
s

ψ0

(
t − t0

s

)
. (2.19)

The parameter s, known as the time scale of the wavelet transform (s ∈ R
+), deter-

mines the width of the wavelet in the time domain, whereas the parameter t0 ∈ R

specifies the wavelet location on the time axis. The factor 1/
√

s in (2.19) provides
the constant unit norm of the wavelets in the function space L2(R), i.e.,

‖ψs,t0‖L2 = ‖ψ0‖L2 = 1 , (2.20)

where the norm in the space L2(R) is defined by

‖ f ‖L2 =
⎡

⎣
+∞∫

−∞
| f (x)|2 dx

⎤

⎦

1/2

. (2.21)

Below, we will use the following notation for the wavelet functions:

• ψ0 for the mother wavelet.
• ψs,t0 for the wavelet function obtained from the mother wavelet ψ0 by (2.19).
• ψ for the wavelet function obtained from the mother wavelet ψ0, for which the
normalizing factor is not yet defined, i.e., ψ = aψ0, where a is unknown.

• Ψ for the wavelet function used in the calculation of the wavelet surface using the
fast Fourier transform.

By the Parseval formula, the condition (2.20) implies that
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1

2π

+∞∫

−∞
|ψ̂0(ω)|2 dω = 1 , (2.22)

where ψ̂0(ω) is the Fourier image of the mother wavelet function

ψ̂0(ω) = 1√
2π

∞∫

−∞
ψ0(t)e

−iωt dt . (2.23)

Analogously,

1

2π

+∞∫

−∞
|ψ̂s,t0(ω)|2 dω = 1 , (2.24)

where ψ̂s,t0(ω) is the Fourier image of the wavelet function ψs,t0(t).
So the continuouswavelet transformmaps the space of one-dimensional functions

into the two-dimensional (in general, complex) space.

W : L2(R) → C(R × R
+) ,

and as a consequence, information contained in the wavelet coefficients is abundant.
This fact results, e.g., in the presence of a correlation in the wavelet spectrum of a
random signal (noise), although this correlation is not actually present in the signal
(so this is a consequence of the wavelet transform). This may be considered as a
significant disadvantage of the wavelet transform that must be taken into account
when wavelet spectra are interpreted.

The mother wavelet can be chosen rather arbitrarily, e.g., as in Sect. 2.1, but it
must fulfill several requirements. First of all, we should mention the boundedness
condition +∞∫

−∞
|ψ0(t)|2dt < ∞ . (2.25)

Then there is the localization condition, according to which the mother wavelet func-
tion ψ0 must be localized in both the time and frequency domains. This condition
is satisfied if the function ψ0 decreases rapidly and is quite regular. As an esti-
mate for good localization and boundedness, the conditions |ψ0(t)| < 1/(1 + |t |n)
or |ψ̂0(ω)| < 1/(1 + |ω − ω0|n) may be used, where ω0 is the dominant frequency
of the wavelet and the parameter n should be as large as possible [21].

According to the admissibility condition, the Fourier image ψ̂0(ω) of the mother
wavelet ψ0(t) must obey the condition
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Cψ =
+∞∫

−∞

|ψ̂0(ω)|2
ω

dω < ∞ . (2.26)

Since in practice only positive frequencies are usually considered, (2.26) can often
be replaced by

+∞∫

0

|ψ̂0(ω)|2
ω

dω =
+∞∫

0

|ψ̂0(−ω)|2
ω

dω < ∞ . (2.27)

Note also that, for practical purposes, the condition (2.26) is analogous to the con-
dition of zero mean as a consequence of (2.22):

+∞∫

−∞
ψ0(t)dt = 0 , (2.28)

or
ψ̂0(0) = 0 , (2.29)

whence the mother wavelet ψ0(t) must be an oscillatory function.
Sometimes this requirement may be important not only for the zero moment

(2.28), but also for the m first moments, i.e.,

+∞∫

−∞
t kψ0(t)dt = 0 , k = 0, 1, . . . , m . (2.30)

Such m th order wavelets may be used to analyse small-scale fluctuations and high
order features by ignoring quite regular (polynomial) components. Indeed, expanding
the function f (t) in (2.18) in a Taylor series at t0, one obtains

W (s, t0) = 1√
s

[
f (t0)

+∞∫

−∞
ψ∗

0

(
t − t0

s

)
dt

+ f ′(t0)
+∞∫

−∞
(t − t0)ψ

∗
0

(
t − t0

s

)
dt

+ · · · + f (n)(t0)

n!
+∞∫

−∞
(t − t0)

nψ∗
0

(
t − t0

s

)
dt + · · ·

]
. (2.31)
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By (2.30), the first m terms of (2.31) vanish, and as a consequence, they do not
contribute to W (s, t0). Note that it may be enough for practical purposes if (2.30) is
approximately satisfied.

If the admissibility condition (2.26) is satisfied, the inverse wavelet transform
exists (see, e.g., [22] for details):

f (t) = 1

Cψ

+∞∫

0

ds

s2
√

s

+∞∫

−∞
ψ0

(
t − t0

s

)
W (s, t0)dt0 . (2.32)

By analogy with the Fourier power spectrum P(ω) = | f̂ (ω)|2, the distribution of
instantaneous energy over the time scales of the wavelet transform can be introduced
by

E(s, t0) = |W (s, t0)|2 , (2.33)

along with the time-averaged integral wavelet spectrum or scalogram

〈E(s)〉 = 1

T

T∫

0

|W (s, t0)|2 dt0 . (2.34)

Since the distribution of the wavelet energy is related to the Fourier power spectrum
[16] by

〈E(s)〉 ∼ s
∫

P(ω)|ψ̂0(sω)|2 dω , (2.35)

this means that 〈E(s)〉 is a smoothed Fourier power spectrum, defined by the Fourier
image ψ̂0 of the mother wavelet ψ0.

One important point is the ability of the wavelets to pick out information con-
cerning local properties of a signal. As discussed above (Sect. 2.1), in order to obtain
precise information about high-frequency components with good temporal resolu-
tion, rather short time intervals must be used. However, extracting information about
low-frequency spectral components requires relatively long fragments of time series.

Figure2.9 illustrates the ability of different transformations to extract localized
information. Figure2.9a shows a segmentation of the time t-frequency ω space for
discrete samples of the signal values, when the δ-function plays the role of the basis
function (Shannon transform). One can see that this transform provides excellent
time resolution, but no frequency information at all can be extracted. In contrast, the
Fourier transform is characterized by perfect frequency resolution, but there is no
localization in time (see Fig. 2.9b). Figure2.9c corresponds to the short-time Fourier
transform, where the resolution on short and long time scales is determined by the
length of the integration window. In the case of the wavelet transform (Fig. 2.9d),
the time resolution determined by the width of the wavelet ψ(t/s) decreases with
the growth of the time scale s, whereas the frequency resolution determined by the
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Fig. 2.9 Time-and-
frequency localization in the
space time t-frequency ω for
different transformations. a
Discrete sample (Shannon
transform), b Fourier
transform, c Short-time
Fourier transform, d
Continuous wavelet
transform t
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Fig. 2.10 Influence angle of
the wavelet transform on the
plane (t0, s)
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width of the Fourier image of the wavelet ψ̂(sω) increases. It provides good time
localization for small scales and good frequency resolution for large scales (see
Fig. 2.9d).

So the main feature of the wavelet transform which is extremely important when
analyzing complex nonstationary processes is the ability to respect the locality of
the signal representation, and as a consequence, the ability to reconstruct the signal
locally. Importantly, the continuous wavelet transform allows us to determine the
contribution of a certain scale at a given moment of time. It also provides the possi-
bility to reconstruct only a part of the signal. In fact, there is a relationship between
local properties of the signal and local behavior of the wavelet surface related to this
signal. This means that, in order to reconstruct a part of the signal, one has to use
the values of the wavelet surface W (s, t) belonging to a certain region called the
influence angle (see Fig. 2.10a).

When the wavelet function ψ0 is well localized in the time interval ΔT for the
time scale s = 1, the values of the wavelet spectrum corresponding to the time t ′

0 are
contained in the influence cone bounded by the straight lines s = 2(t ′

0 − t0)/ΔT and
s = 2(t0 − t ′

0)/ΔT . At the same time, the value W (s ′, t ′
0) at point (t

′
0, s ′) depends on

the fragment of the time series contained in the same influence cone (see Fig. 2.10b).
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The longer the analyzed time scale s, the longer the fragment of time series, i.e.,
high-frequency (or, what comes to the same, short-scale) information is determined
by short fragments of the time series, whereas longer fragments of time series should
be used for low-frequency components. If the wavelet function ψ0 provides good
localization in the Fourier space, i.e., the Fourier image ψ̂0 of the mother function is
concentrated in the frequency band ΔΩ around the dominant frequency ω0 for time
scale s = 1, the values of the wavelet transform corresponding to the frequency ω′
are located in the range of time scales s ∈ [(ω0 − ΔΩ/2)/ω′, (ω0 + ΔΩ/2)/ω′]. If
f (t) is a locally smooth function, the corresponding values of the wavelet surface
are fairly small. When f (t) has a singularity, the magnitude of the wavelet surface
increases in its vicinity. Note also that, if the wavelet surface contains artifacts at
certain points, they are influenced on the reconstructed signal only locally, in the
vicinity of these positions, whereas the inverse Fourier transform spreads these errors
over the whole reconstructed signal.

2.2.2 Mother Wavelets

One important problemwhen using thewavelet transform is the choice of appropriate
mother wavelet ψ0 for analysis of the signal. This choice depends on both the aim of
the study and the characteristics of the analyzed signal. Thus, to detect phases of an
oscillatory process by means of the wavelet transform, complex wavelets are used.
In contrast, to reveal self-similarity on different time scales, there is a good reason
to use real wavelets. Existing traditions as well as intuition and the experience of the
researcher may also play an important role when choosing the mother wavelet. This
section discusses the main wavelets used in practical applications.

The actual choice ofmotherwavelet dependsonwhat information is to be extracted
from the analyzed signal. Each wavelet function ψ0 is characterized by different
properties that allow us to reveal distinct features of the signal f (t). Figure2.11
shows the most commonly used wavelets ψ0(η), together with their Fourier images
ψ̂0(η). Important characteristics of these wavelets (discussed in detail later) are given
in Table2.1.

One of the most popular complex wavelets used to reveal the time–frequency
structure of signals is the Morlet wavelet [3] (see Fig. 2.11)

ψ0(η) = π−1/4
(
eiω0η − e−ω2

0/2
)
e−η2/2 , (2.36)

where ω0 is the wavelet parameter (often taken as ω0 ∼ 2π ). The second term in
the brackets performs a correction of the wavelet transform for signals with nonzero
mean values. When ω0  0, the term e−ω2

0/2 may be neglected, whereas the central
frequency (the globalmaximumof theFourier image of thewavelet) is conventionally
taken to be ω0.
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Fig. 2.11 Most commonly used wavelets (left) and their Fourier images (right). The real part of
each wavelet function is shown by a solid line, while the dashed line illustrates the imaginary part.
a Morlet wavelet with main frequency ω0 = 2π . b Morlet wavelet with ω0 = 16. c MHAT wavelet
(DOG wavelet with m = 2). d Paul wavelet with m = 4. e FHAT wavelet
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Table 2.1 Commonly usedwavelets and theirmain properties.Here H(x) is theHeaviside function,
f is the frequency of the Fourier transform, fs is the frequency of the wavelet transform ( fs = 1/s),
and τs is the width of the region of boundary effects
Wavelet ψ0(η) ψ̂0(sω) τs f/ fs

Morlet π−1/4eiω0ηe−η2/2 π−1/4H(ω)e(sω−ω0)2/2 √
2s

ω0 +
√
2 + ω2

0

4π

Paul
2m im m!√
π(2m!) (1 − iη)−(m+1) 2m

√
m(2m − 1)

H(ω)(sω)me−sω s/
√
2

2m + 1

4π

DOG
(−1)m+1

[
Γ

(
m + 1

2

)]1/2
dm

dηm e−η2/2 im
[
Γ

(
m + 1

2

)]1/2 (sω)me−(sω)2/2 √
2s

√
m + 1/2

2π

FHAT

⎧
⎪⎪⎨

⎪⎪⎩

1, |η| < 1/3,

−1/2, 1/3 < |η| ≤ 1,

0, |η| > 1

3H(sω)

[
sin(sω)

sω
− sin(3sω)

3sω

] √
2s 3/4

In fact, the Morlet wavelet is an analog of the sine wavelet described in Sect. 2.1.
Indeed, the Morlet wavelet is a plane wave modulated by a Gaussian function,
whereas the sine wavelet is the same plane wavemodulated by a rectangular impulse.
The functional set obtained on the basis of the Morlet wavelet is well localized in
both the time and frequency domains. With growing value of the parameter ω0, the
resolution in Fourier space increases, whereas the time localization is reduced. This
is easily seen from the comparison of Fourier images of the Morlet wavelet obtained
for ω0 = 2π and ω0 = 16 (see Fig. 2.11a and b). For ω0 = 16, the Fourier image is
narrower, attesting to the better resolution in the frequency domain. However, the
time resolution decreases for ω0 = 16.

Another example of a complex wavelet is the Paul wavelet [23] (Fig. 2.11d)

ψ0(η) = 2m imm!√
π(2m!) (1 − iη)−(m+1) , (2.37)

where m is the wavelet order corresponding to the number of zero moments.
Among real wavelet functions, the DOG wavelets are widely used (DOG stands

for difference of Gaussians) [24]. DOG wavelets are constructed on the basis of
derivatives of the Gaussian function (see Fig. 2.11c):

ψ0(η) = (−1)m+1

[

Γ

(
m + 1

2

)0.5
]

dm

dηm
exp

(−η2

2

)
. (2.38)

The mother wavelet corresponding to m = 1 is called the WAVE wavelet, viz.,
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ψ0(η) = ηe−η2/2 , (2.39)

while m = 2 corresponds to the MHAT (Mexican hat) wavelet, viz.,

ψ0(η) = (1 − η2
)
e−η2/2 . (2.40)

Another real mother wavelet is the discrete FHAT (French hat) wavelet shown in
Fig. 2.11e, viz.,

ψ0(η) =
⎧
⎨

⎩

1 , |η| < 1/3 ,

−1/2 , 1/3 < |η| ≤ 1 ,

0 , |η| > 1 .

(2.41)

The simplest discrete wavelet used inmany technical applications is the Haar wavelet
[25]

ψ0(η) =
⎧
⎨

⎩

1 , 0 ≤ η < 1/2 ,

−1 , 1/2 ≤ η < 1 ,

0 , η < 0, η ≥ 1 ,

(2.42)

which will be discussed in detail in Sect. 2.3 on the discrete wavelet transform.
The set of mother wavelets is not restricted to the functions considered here.

Other functions are also applied in practice and successfully used in various areas of
research. The reader can find additional examples of the mother wavelets as well as
ways to construct them, e.g., in [16, 26–30]. In the following chapters of this book,
we shall discuss examples of wavelets constructed especially to analyze neurophys-
iological signals.

2.2.3 Numerical Implementation of the Continuous Wavelet
Transform

Since the analytical form of wavelet spectra can be obtained only for the simplest
cases such as, e.g., f (t) = a sin(ωt), analysis of experimental time requires numer-
ical implementation of the wavelet transform.

Whenwe carry out numerical analysis,we are dealingwith time series of a variable
x(t) whose values are known only at specified time moments. Typically, the values
of x(t) are recorded with equal time span.5 Therefore, we shall further consider a
time series {xn}, where each value xn is acquired with an equal time interval h, i.e.,
xn = x(hn), n = 0, . . . N − 1, where N is the number data points in the time series.

5This is the most typical case in experimental studies. However, data can be acquired in such a
way that each data point is related to an arbitrary instant of time. This happens, e.g., for point
processes represented by RR intervals of the electrocardiogram [31, 32]. In such a case, the relevant
algorithms must be modified [31, 32].
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The continuous wavelet transform of the sequence {xn} is defined as the discrete
counterpart of the convolution of the analyzed signal and the basis function ψ(η)

(2.18) which is normalized by the corresponding time scale s and shifted along the
time axis by the interval nh. One can then write

W (n, s) =
N−1∑

n′=0

xn′ψ∗
(

(n′ − n)h

s

)
, (2.43)

where the normalization coefficient for the discrete analogue of the continuous
wavelet transform will be discussed later [see (2.59)]. Changing the scale coeffi-
cient and the time shift nh, one can localize the dynamics of any particularities of
the process {x} in the time domain s.

2.2.3.1 Effective Numerical Method for the Continuous Wavelet
Transform

Direct calculation of the wavelet transform using (2.43) is not optimal. The simplest
andmost universal way to optimize the numerical procedure of the wavelet transform
is to consider the local nature of the wavelet function (see Fig. 2.10). Indeed, the
wavelet functionψs,t0 is localized within the time interval t ∈ [t0 − T (s), t0 + T (s)].
As the function ψs,t0 is normalized for different time scales, the time localization
interval 2T (s) depends on the time scale s. Since the wavelet function is supposed
to be close to zero with high precision outside this interval, (2.18) may be replaced
by

W (s, t0) �
t0+T (s)∫

t0−T (s)

f (t)ψ∗
s,t0(t)dt . (2.44)

The quantity T (s), which also depends on the selected mother wavelet, can be found
experimentally for the preassigned precision of numerical calculations. Of course,
the higher the value of T , the more accurate the result of the wavelet transform.
For the Morlet wavelet, for instance, the optimal length of the time interval related
to a reasonable compromise between time duration and accuracy of the performed
calculations is estimated as T (s) = 4s.

In the discrete form, (2.44) should be rewritten as

W (n, s) =
n+[T (s)/h]∑

n′=n−[T (s)/h]
xn′ψ∗

(
(n′ − n)h

s

)
. (2.45)

One can see that, for arbitrary values of the analyzeddiscrete sequence {xn}, the values
of the wavelet function are invariable for all time moments n, and as a consequence,
they can be calculated once and for all in the interval [−T (s), T (s)] with time span
h as
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ysn = ψ∗
(

nh

s

)
, (2.46)

keeping this thereafter as the matrix.
So the problem of calculating the wavelet transform is reduced to multiplying two

matrixes, viz.,

W (n, s) =
[T (s)/h]∑

i=−[T (s)/h]
xn+i ysi , (2.47)

which may be done rather quickly.
To perform direct numerical realization of the wavelet transform using (2.43), the

sum should be estimated N times for every time scale s, where N is the number of data
points.Assuming that {xn} is a complex sequence and thewavelet functionhas already
been calculated in the whole region of possible values, M =L ×8N 2 +O(N ) arith-
metic iterations must be carried out, where L is the number of time scales s for
which the wavelet transformation is applied. Indeed, according to (2.43), N complex
multiplications (6 arithmetic operations) and N − 1 complex additions (2 arithmetic
operations) must be performed at each point of the discrete space with dimension
N × L .

Using (2.47) considerably reduces the required operations, since only

M = 8N ×
[smax/Δs]∑

i=[smin/Δs]
[T (iΔs/h)] + O(N ) (2.48)

operations must be carried out, where smin and smax are the minimal and maximal
boundaries of the analyzed time scales, andΔs is the discretization step. If T (s)/h �
N , a considerable efficiency gain is obtained. For the Morlet wavelet, the number of
required iterations is estimated as

M = 64N ×
[smax/Δs]∑

i=[smin/Δs]
(iΔs/h) + O(N ) . (2.49)

2.2.3.2 Numerical Method for the Continuous Wavelet Transform
Based on the Fast Fourier Transform

Considering the Fourier images for the initial signal x̂k and wavelet ψ̂ also reduces
the number of required operations [8, 16]. By the convolution theorem, one can
simultaneously compute all values of W (n, s) (n = 0, . . . , N − 1) in the Fourier
space for the fixed time scale s using the discrete Fourier transform.

For the sequence {xn}, the discrete Fourier transform is estimated as follows
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x̂k =
N−1∑

n=0

xne
−2π ikn/N , (2.50)

where k/(Nh) ⊂ (0, . . . (N − 1)/(Nh)) forms the frequency set of initial signal xn

given by the sequence consisting of N points with the time step h.
With a known Fourier image ψ̂0(ω) of the mother wavelet ψ0(t) [see (2.23)], one

can easily compute the Fourier image of the function ψ(t/s):

{
ψ(t) → ψ̂(ω) ,

ψ(t/s) → ψ̂(sω) ,
(2.51)

i.e., renormalization of the wavelet function in the Fourier space is taken into account
by multiplying the frequency by the scale factor s.

Similarly, using the discrete Fourier transform6 one can obtain

Ψ̂ (ωk) =
N−1∑

n=0

Ψ (nh)e−iωk nh ,

Ψ̂ (sωk) =
N−1∑

n=0

Ψ (nh/s)e−isωk nh/s ,

(2.52)

where the frequence ωk is given by

ωk = 2πk

Nh
. (2.53)

In the Fourier space, the wavelet transform is written as a simple multiplication of
the Fourier image of the signal x̂ by the complex conjugated Fourier image Ψ̂ ∗ of
the wavelet function. The wavelet surface W (n, s) is obtained by the inverse Fourier
transform

W (n, s) = 1

N

N−1∑

k=0

x̂kΨ̂
∗(sωk)e

iωk nh . (2.54)

When using the approach based on the Fourier images {x̂} and ψ̂ , thewavelet function
ψ should be renormalized for each time scale s to correctly compare the wavelet
spectra of different signals (and, moreover, the same signal for different time scales
s). The aim of this renormalization is to provide the unit energy at each time scale:

Ψ̂ (sωk) =
( s

h

)1/2
Ψ̂0(sωk) . (2.55)

6Notice the difference between ψ , ψ̂ and Ψ , Ψ̂ used for the continuous and discrete transforms,
respectively.
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Finally, the equation for the wavelet surface W (n, s) is written as

W (n, s) =
( s

h

)1/2 1

N

N−1∑

k=0

x̂kΨ̂
∗
0 (sωk)e

iωk nh . (2.56)

Fourier images of different wavelet functions ψ0(η) are shown in Fig. 2.11 and
Table2.1. Constant factors for each function are chosen according to the normal-
ization condition (the condition of the unit energy)

∞∫

−∞

∣∣∣ψ̂0(ω)

∣∣∣
2
dω = 1 . (2.57)

The analogous condition for the discrete form is

N−1∑

k=0

∣
∣∣Ψ̂ (sωk)

∣
∣∣
2 = N , (2.58)

where N is the number of data points.
If (2.43) is used, the normalization of the wavelet function for the time scale s

takes the form

ψ

(
(n′ − n)h

s

)
=
(

h

s

)1/2

ψ0

(
(n′ − n)h

s

)
, (2.59)

where ψ0(η) is the wavelet function obeying the condition ‖ψ‖L2(R) = 1, i.e., the
wavelet function ψ0 is also characterized by unit energy. Taking into account (2.59),
Eq. (2.43) should be written in the final form

W (n, s) =
(

h

s

)1/2 N−1∑

n′=0

xn′ψ∗
0

(
(n′ − n)h

s

)
. (2.60)

Taking into account (2.56), one can simultaneously obtain the results of the wavelet
transform W (n, s) for the fixed value of s and all n, using the fast Fourier trans-
form (FFT) to determine all sums in (2.50) and (2.56). Since the FFT requires only
N log2 N iterations [33] to calculate the sums (2.50) or (2.56), the whole wavelet
surface W (n, s) (for all considered time scales s) is computed with L × N log2 N
iterations.7 For a large number of points N , it gives sufficient gain in comparison
with the use of (2.60).

An important aspect of the wavelet transform is the set of time scales {s} used
to calculate the wavelet spectrum (2.56). If the mother function represents one from
orthogonal wavelets [19, 34], this set of time scales is strongly restricted, whereas

7Here we do not consider iterations for calculation of the Fourier image of the signal x̂ , since this
transform should be performed only once.
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for nonorthogonal wavelets the set {s} can be arbitrarily chosen in order to acquire
more detailed information about the signal. When the FFT procedure is used, the set
of time scales is typically considered to be some power of 2:

sl = s02
lΔs , l = 0, . . . ,L , L = log2(Nh/s0)

Δs
. (2.61)

Here s0 is theminimal time scale distinguishedwhen thewavelet transform is applied
andL is the maximal number of time scales used to calculate the wavelet spectrum.
The minimal time scale s0 should be used in such a way that the Fourier period
corresponding to this time scale is about 2h (see below). The optimal value of Δs
is determined mainly by the width ΔΩ of the Fourier image of the mother wavelet
Ψ̂0. If Δs exceeds ΔΩ/(2ω0 − ΔΩ), the scale resolution of the wavelet transform
decreases, since some time scales are excluded fromconsideration.On the other hand,
the choice of a smallΔs does not provide essential improvements in the resolution of
the wavelet transform (due to the finite width of the wavelet function in the Fourier
space). However, it does increase the time required for the calculation.

In the case of the Morlet wavelet with ω0 = 2π , the maximal value of (Δs)max

allowing acceptable resolution is about 0.5, whereas for other wavelet functions, e.g.,
the Paul wavelet, the maximal value of Δs may increase, e.g., (Δs)max ≈ 1.0 for the
Paul wavelet.

The FFT procedure used for the continuous wavelet transform in (2.50) and (2.56)
also constrains the length of the considered time series {xn}, since for the FFT pro-
cedure the number of points in the time series must obey the requirement N = 2p,
where p is a natural number. Typically, it is not too difficult to obtain time series
with the required number of points. Nevertheless, in several cases, the number of
data points is limited and cannot be easily enlarged (e.g., in the case of climatic or
geological data).

If the length of such time series is roughly (but less than) 2p, the properties of the
wavelet transform allow one to effectively analyze this data using 2p points instead
of 2p−1. This may be done by forming a surrogate time series in which the first and
last (2p − N )/2 points are set equal to constant values, e.g., mean values of the initial
time series (x =∑n xn/N ) or zeros. In this case the region of edge effects on the
plane (n, s) becomes broader (see next section).

2.2.3.3 Influence of Edge Effects

When a finite time series is used to obtain the wavelet spectrum, the errors in W (n, s)
appear near the boundaries of the time axis (i.e., near n = 0 and n = N − 1) and this
results in a distortion of the time–frequency representation of the signal. Firstly, this
is due to the fact that, for the considered time scale s, the wavelet function shifted
along the time axis starts going beyond the analysed time series. As a consequence,
the W (n, s) values in the vicinity of the time series boundaries become incorrect.
Obviously, the region of influence of edge effects becomes broader for longer time
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scales s (smaller frequencies). Secondly, use of the FFT procedure supposes that the
analysed data {x} is periodic with period Nh, whereas the considered time series
does not usually have this property.

The width τs of the edge effect region is determined by the time interval T (s)
introduced earlier [see (2.44)]. For the Morlet wavelet, the width of the region where
edge effects influence the results of the wavelet transform is given by

τs = T (s) = 4s . (2.62)

There are different ways to suppress unwanted edge effects [8, 16, 35]. One of the
most effective solutions of this problem is the formation of a surrogate time series {x ′

n}
with length 2N in which the first N points are taken from the initial time series {xn},
whereas the next N points starting from n = N are filled by zeros. The resulting
surrogate time series {x ′

n} is further used for the wavelet transform (2.56). Since
N = 2p, the FFT procedure can be applied, but for a time series with length 2p+1.
This approach reduces the influence of edge effects, and in addition, it is rather fast
due to the use of the FFT procedure.8

The use of a surrogate time series {x ′
n} results in the appearance of a large hetero-

geneity on the boundary of the initial time series xn . Nevertheless, because half of
the surrogate time series consists of constant values (e.g., zeros), the perturbations
induced this heterogeneity are in the region of very long time scales, whereas the
spectrum of the initial heterogeneity (being sufficiently less than added one from
the formal point of view) connected with the influence of the boundaries of the time
series is related to the region of time scales of the signal. As a consequence, intro-
ducing this kind of heterogeneity results in a decrease in the amplitude |W | of the
wavelet spectrum in the vicinity of the boundaries of the time series. Obviously, the
longer the part of the surrogate time series filled by zeros, the less the influence of
edge effects. The use of surrogate time series with equal lengths of fragments filled
by initial values and zeros seems to be an optimal solution in terms of the balance
between speed of calculation, internal memory consumption, and accuracy of the
wavelet transform in the vicinity of the boundaries of the initial time series xn [8,
16].

The region of the wavelet spectrum W (n, s) on the plane (n, s)where edge effects
are important and cannot be neglected will be referred to as the region of influence of
edge effects. According to [8], the region of influence of edge effects can be defined
using the effective width τs of the autocorrelation function, which is calculated for
the wavelet power at each time scale s. The value of τs is equal to the shift relative
to the boundary when the power of the wavelet transform of a time series with edge
heterogeneity is halved on the logarithmic scale, i.e., on a linear scale, it corresponds
to a power decrease by a factor of e2. Such a choice for the boundary of the region
associated with edge effects guarantees that these effects can be neglected for times
nh, where (N − n)h > τs and nh > τs for the corresponding scales s.

8For time series with length N , only L × 2N (1 + log2 N ) arithmetic operations are needed to
obtain the wavelet surface with the described technique for reducing edge effects.
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Estimates of thewidths τs for differentmotherwavelets are given inTable2.1when
using the technique of surrogate time series. Comparing the value of τs obtained for
theMorlet wavelet with the widths of the region of influence of edge effects obtained
for the case when these effects have not been suppressed (2.62), one finds that this
approach is reasonably effective, allowing effective suppression of the influence of
edge effects.

Note also that the value of τs characterizing the region of edge effects determines
the characteristic time of influence of an isolated peak of large amplitude in the time
series on the form of the wavelet power spectrum. Considering the width of the peak
in the power spectrum, one can separate, e.g., large-amplitude artifacts in the time
series from a permanent harmonic component with the same period.

2.2.3.4 Time Scales of the Continuous Wavelet Transform Versus
Frequencies of Fourier Analysis

From Fig. 2.11 one can see that maximum of the Fourier image ψ̂(sω) of ψ(sω)

does not correspond to the frequency ωs = 2π fs (where fs = 1/s). In other words,
there is no equivalence between frequencies of the Fourier transform ( f ) and those
of the wavelet transform ( fs). Moreover, each mother wavelet is characterized by its
own relationship between f and fs (see Table2.1). Thus, the Morlet wavelet with
ω0 = 2π is characterized by f ≈ fs , and in this case the time scale of the wavelet
transform is almost equivalent to the Fourier period. At the same time, for ω0 = 16,
the frequencies f and fs are already related to each other by f/ fs = 2.5527. A
similar situation occurs for theMHATwavelet ( f/ fs = 0.2518) and the Paul wavelet
with m = 4 ( f/ fs = 0.7166). So these relations must be taken into account when the
results of the wavelet analysis are compared with the results of the Fourier transform.
This is also very important when the wavelet power spectra obtained for different
mother wavelets are compared with each other.

A relationship between the frequencies fs and f may easily be obtained either
analytically by substituting the Fourier image of a harmonic signal with known
frequency ω0, i.e., δ(ω − ω0) into (2.54) and determining the corresponding time
scale s (which may be found as a maximum of the wavelet power spectrum), or
numerically, with only one difference, namely that the power spectrum in this case
must be calculated with the technique described earlier.

2.2.3.5 Normalization of Wavelet Spectrum

In the framework of classical Fourier analysis, the total power of oscillations is equal
to the area under the curve of spectral density |S( f )|2, while the magnitude of the
peak can be used to determine the amplitude of oscillations with the corresponding
frequency. For wavelet analysis, this situation is more complicated. When the total
power of the wavelet spectrum is considered, the amplitude cannot be estimated cor-
rectly and vice versa. Therefore, depending on the quantity to be obtained, different
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Fig. 2.12 Spectra of two harmonic functions with unit amplitudes and different frequencies, cal-
culated using the Morlet wavelet with ω = 2π

normalizations of the wavelet spectrum should be used. To illustrate this point, we
consider the evaluation of the wavelet spectrum of a harmonic function for different
frequencies of oscillation (see Fig. 2.12, where the Morlet wavelet with ω0 = 2π is
used). One can see that the peak in the wavelet spectrum becomes “blurred” with
increasing frequency, while its magnitude decreases.

If one needs to calculate the energy associated with a certain frequency band, this
effect is not significant, since the increased width of the peak is accompanied by
contraction of its amplitude, and the total power of oscillations, i.e., the area under
the curve E( f ) (see Fig. 2.12), remains unchanged. At the same time, estimating
the amplitudes of each sine curve as the square root of the power related to the con-
sidered frequency gives different results, and the amplitude decreases with growing
frequency f (see also Fig. 2.7 and the corresponding discussion in Sect. 2.1).

To estimate correctly the relationship between the amplitudes of oscillations, a
special normalization should be used. For this purpose, the factor 1/

√
s in (2.19)

should be replaced by 1/s. This allows us to determine correct amplitudes for rhyth-
mic processes with different periods (with a certain constant factor as compared with
Fourier analysis), although energy characteristics are preserved. Below (in Fig. 2.15c
and d), both normalizations of the wavelet spectrum are given. We thus conclude
that the power in a certain frequency band and the amplitudes of characteristic peaks
should be considered separately using appropriate normalizations.
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2.2.3.6 Signal Reconstruction Based on Wavelet Spectrum

The wavelet transform (2.18) or (2.43) can be considered as a band-pass filter with
known frequency characteristic (wavelet function ψ). Therefore, the initial signal
can be reconstructed from the wavelet spectrum W (n, s) either through inversion of
the convolution product (2.18) or by designing the inverse filter. Such manipulations
are relatively easy when one deals with an orthogonal wavelet transform. However,
for the continuous wavelet transform, reconstruction of the initial signal x(t) is
a serious problem due to the redundancy of information contained in the wavelet
surface W (s, t). A simple procedure for signal reconstruction based on knowledge
of the wavelet surface for a certain function (the simplest case is the δ-function) is
described in [24, 36]. In this case, the time series xn can be represented by the sum
of all coefficients of the wavelet transform on all considered time scales [8, 16]:

xn = Δs
√

h

Kδψ0(0)

L∑

l=0

W (n, sl)√
sl

, (2.63)

where the coefficients ψ0(0) and 1/
√

s are introduced to obtain the unit energy on
each time scale s. For a real signal {xn} ⊂ R, the inversion formula (2.63) takes the
form

xn = Δs
√

h

Kδψ0(0)

L∑

l=0

Re {W (n, sl)}√
sl

. (2.64)

The coefficient Kδ in (2.63) and (2.64) is estimated from the reconstruction of δ-
function obtained from its wavelet spectrum, which has been calculated with the
mother wavelet ψ0(η). To obtain Kδ one has to construct the time series xn = δn0.
In this case, the amplitudes of harmonics in the Fourier spectra are constant for all
k, x̂k = 1/N . Having substituted x̂k into (2.54), one finds that the wavelet spectrum
at n = 0 takes the form

Wδ(s) = 1

N

N∑

k=0

ψ̂∗(sωk) . (2.65)

In this case, the relation for Kδ follows from the inverse formula (2.64)

Kδ = Δs
√

h

ψ0(0)

L∑

l=0

Re {W (n, sl)}√
sl

. (2.66)

Therefore, the parameter Kδ does not depend on the time scale s and remains constant
for each mother function ψ0. The values of Kδ for commonly used mother wavelets
ψ0 are given in Table2.2.

Obviously, the total energy of the signal must remain unchanged after the direct
and inverse wavelet transforms. This requirement results in an analogue of Parseval’s
theorem for the wavelet transform, which (in the discrete form) can be written as
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Table 2.2 Characteristics of mother wavelets for the reconstruction of the initial signal from its
wavelet spectrum

Wavelet Kδ ψ0(0)

Morlet (ω0 = 2π ) 0.776 π−1/4

Paul (m = 4) 1.132 1.079

DOG (m = 2) 3.541 0.867

DOG (m = 6) 1.966 0.884

σ 2 = Δsh

Kδ N

N∑

n=0

L∑

l=0

|W (n, sl)|2
sl

, (2.67)

where σ 2 is the standard deviation of the time series. The δ-function is used in (2.67)
to reconstruct the initial signal.

Equations (2.63) and (2.67) can be applied to check upon the accuracy of the
numerical realization of the wavelet transform. Having obtained information about
the accuracy of the numerical calculation of the wavelet spectrum, the minimal time
scale and the step along the time axis can be selected to achieve the required accuracy
of analysis.

2.2.4 Visualisation of Wavelet Spectra. Wavelet Spectra of
Model Signals

In general, the wavelet spectrum W (t0, fs) = |W (t0, s)|e−iϕW (t0,s) of a 1D signal
x(t) can be considered as two surfaces, viz., the surfaces of amplitudes |W (t, s)|
and phases ϕW (t, s) of the wavelet transform, in the three-dimensional space of
time–time scale s/frequency f -amplitude |W |/phase ϕW . In the case where both the
mother wavelet and the analysed signal, are real functions, the wavelet spectrum is
also a real function. In this section we shall consider only the amplitude spectrum of
the wavelet transform |W (t0, s)|, while questions related to the phase of the wavelet
transform will be considered in the next.

As the simplest model, let us consider the harmonic function x(t) = sin(2π f t),
with all calculations performedwith theMHATwavelet. For simplicity, the frequency
of the signal is fixed as f = 10. The wavelet transform of this function is shown in
Fig. 2.13.

In Fig. 2.13a, the wavelet spectrum is shown in the form of a three-dimensional
surface. However, this kind of visualization is not often used due to the poor clarity
and complicated qualitative interpretation of the results. It ismore typical to represent
the amplitude wavelet spectrum as the projection of the wavelet surface on the plane
(t0, s) [or (t0, fs)] either in the form of contour curves or with shades of gray (see
Fig. 2.13b and c, respectively).
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Fig. 2.13 Methods for visualising wavelet spectra. Results of the wavelet transform of a harmonic
signal with frequency f = 10 for the MHAT wavelet. a Three-dimensional representation, b pro-
jection, and c contour curves of the wavelet surface W ( fs , t). d Distribution of the total energy
〈E( fs)〉 over the wavelet frequencies fs

The distribution of the energy 〈E〉 (2.34) over the time scales s (or over the
wavelet frequencies fs) is also very informative. This distribution 〈E( fs)〉 is shown
for the considered harmonic function x(t) in Fig. 2.13d. Note that the maximum
of the distribution corresponds to fs ≈ 40, which is in good agreement with the
relationship (see Sect. 2.2.3) between the frequency f of the Fourier transform and
the wavelet frequency fs for the MHAT wavelet.

Visual analysis of the wavelet surface provides detailed information concerning
the particularities of the signal structure. There is only one characteristic time scale
which is constant during the whole time of observation. For multiple-frequency and
non-stationary signals, analysis of wavelet surfaces becomes more complicated. The
alternation of light and dark spots in the vicinity of each local maximum or minimum
overloads thewavelet spectrumby a large number of detailswhichmaybe insufficient
for understanding the time–frequency structure of the signal under study.

The results are analogous to those shown in Fig. 2.13 and can be obtained with
the help of other mother wavelets. For clarity of analysis, complex wavelet functions
are preferable [besides eliminating phase information by considering the modulus
of the wavelet surface |W (t0, s)|]. In particular, the complex Morlet wavelet (2.33)
is very useful for analyzing multiple-frequency and non-stationary signals.

Different representations of the corresponding wavelet spectrum of the harmonic
signal with the same frequency f = 10 are shown in Fig. 2.14. One can see that use of
the Morlet mother wavelet gives a clearer wavelet surface than would real wavelets.
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Fig. 2.14 Wavelet transform of the harmonic signal with frequency f = 10 for theMorlet wavelet.
aThree-dimensional representation,b projection, and c skeleton of the amplitude surface |W ( fs , t)|.
d Distribution of the total energy 〈E( fs)〉 over the wavelet frequencies fs

Indeed, the maximum of the wavelet surface corresponds to the unique rhythm of the
signal with frequency f = 10. Obviously, contour curves are not convenient in this
case. An alternative way of visualizing the wavelet surface, the so-called skeleton,
may then be used.

The skeleton is away to vizualize results of thewavelet transform by localmaxima
or minima of the wavelet surface at each time moment. In other words, the skeleton
is the plane (t, s) [or (t, fs)] containing only the peaks of the wavelet energy distri-
bution. This form of information representation is clearer than the 3D representation.
For the considered sinusoidal signal, the skeleton gives the time dependence of the
instantaneous frequency shown in Fig. 2.14c. Thus, using the approach described
above, one can move from consideration of initial signals to study of the instan-
taneous frequencies (or time scales) and the instantaneous amplitudes of rhythmic
processes, and we shall show in the following chapters that this facilitates analysis
of neurophysiological signals.

Note also that the ordinate axis (s or fs = 1/s) is usually shown on a logarithmic
scale to represent the data over a wide range of time scales or frequencies.

Since the simple example considered here does not allow us to demonstrate con-
clusively all the advantages of wavelet analysis, we shall consider in the next few
sections several examples of nonstationary signals which are characterized by fea-
tures that are typical of real neurophysiological signals.
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2.2.4.1 Signals with Frequency Switchings

Analysis of oscillations with a frequency of about 0.01 Hz is important when study-
ing the complex dynamics of many physiological processes in living systems. Many
rhythms in biology and medicine correspond to the range 10−2–10−1 Hz, and special
methods allowing the detailed analysis of signal structure are important, especially
for diagnosing the state from experimental data. As mentioned in Sect. 2.1, classical
spectral analysis based on the Fourier transform allows us to detect the presence of
different rhythms. However, it is impossible to track the time evolution of instanta-
neous characteristics of these rhythmic processes. Wavelet analysis provides various
ways to examine the local properties of signals, including the case of fast changes
in the instantaneous frequencies of rhythmic processes. This kind of behavior is
typical, e.g., for electroencephalograms, which are characterized by the fast occur-
rence/disappearance of different rhythms.

Amodel signal for which the frequency of oscillations changes suddenly is shown
in Fig. 2.15. Note that the amplitude of the harmonic function is equal to unity, both
before and after switching. Wavelet analysis with the Morlet mother function allows
us (with good enough accuracy) to localize time moments when the signal structure
is altered. Figure2.15c and d illustrate the instantaneous distributions of the wavelet
energy, both before and after the frequency switches. The maximum of the wavelet
power spectrum is shifted after the signal frequency has changed.

Figures2.15c and d differ only in the type of normalization. The “classical”
wavelet transform (Fig. 2.15c) fixes the energy E( fs) = |W ( fs, t = tfix)|2, whereas
the normalization used in Fig. 2.15d ensures the equivalence of the amplitudes in the
wavelet power spectrum |W ( fs, t = tfix)|2/s if the harmonics are characterized by
equal amplitudes. For a detailed discussion of this aspect see the previous section
and Fig. 2.11.

Wavelet analysis allows us to correctly localize the moments of switching for
series with rather fast frequency variation. Figure2.16 shows the case when the
frequency changes twice during one period of oscillation.

2.2.4.2 Signals with Varying Frequency (Chirps)

When we consider neurophysiological signals, frequency variations are typically
smooth (in contrast to the sudden frequency switchings of Sect. 2.2.4.1). As a model
example, let us consider a chirp signal, i.e., a signal whose frequency changes linearly
or, more generally, monotonically in time. Figure2.17a illustrates the results of the
wavelet transform (with the Morlet mother wavelet) of the signal consisting of two
“parallel” chirps, viz.,

x(t) = sin
[
2π( f1 + Δ f1t/2)t

]+ sin
[
2π( f2 + Δ f2t/2)t

]
,

where f1 = f2/2 = 0.02, Δ f1 = Δ f2 = 1.33 × 10−4. For clarity, only the signal
x(t) and the corresponding skeleton of thewavelet surface are shown. As one can see,
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Fig. 2.17 Analysis of chirps. a Two parallel chirps. b A chirp whose frequency is approximately
doubled during one period of oscillation. Only the skeletons of the wavelet surfaces are shown

the variations of the instantaneous frequencies described by the linear dependence
can easily be identified using thewavelet transform.Thus,wavelet analysis can obtain
information concerning the structure of the given signal. This analysis reveals the
presence of two chirps in this example.

Although the complex wavelet basis makes it possible to perform local spectral
analysis, all characteristics are evaluatedwithin a certain time range corresponding to
thewavelet functionψs,t0(t). Thismeans that these characteristics are not found abso-
lutely locally, but are obtained as a result of some averaging. Indeed, the averaging
procedure leads to decreased accuracy in the estimated instantaneous characteristics,
and this accuracy will be less for fast frequency variations. Nevertheless, even for
fast variation of the signal properties, the wavelet analysis provides correct results.
To illustrate this aspect, a chirp whose frequency is approximately doubled during
one period of oscillation is considered in Fig. 2.17b. As one can see, the wavelet
analysis with the Morlet wavelet resolves this extremal case with good precision.

2.2.4.3 Processes with Complex Spectral Structure

Wavelet analysis is also a powerful tool for studying complex multiple-frequency
signals [16]. To illustrate this aspect of the wavelet transform, we consider a signal
representing a multiple-frequency process. Results of the wavelet transform (with
the Morlet wavelet) for such a (sawtooth) signal are shown in Fig. 2.18a. The period
of the impulses is T = 0.1 s. The spectrum of this signal is characterized by higher
harmonics of the main frequency, as can be seen from Fig. 2.19.

The wavelet transform nicely reveals the higher harmonics of the main frequency.
Indeed, the wavelet spectrum has several stripes corresponding to the frequencies 10,
20, 30Hz, etc. The skeleton can represent the structure of the signal in amore obvious



50 2 Brief Tour of Wavelet Theory

t, st, s

f s
, H

z
f s

, H
z

(a) (b)

Fig. 2.18 Analysis of signals with complex spectral structure. Model of a sawtooth signal. Wavelet
surface and its skeleton for the signal with constant main frequency f = 10GHz (a) and main
frequency varying from 10 to 5GHz (b)
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Fig. 2.19 Fourier spectrum of the sawtooth signal shown in Fig. 2.18. One can clearly see the
harmonics n f (where n = 2, 3, 4, . . . ) of the main frequency f = 1/T = 10Hz

way, since only the first harmonics can be clearly seen by considering the wavelet
surface. Starting from a certain number n, one cannot distinguish higher harmonics
of the signals that are caused by their decreasing magnitudes. This example perfectly
illustrates differences in the frequency resolution between the Fourier and wavelet
analysis. As one can see, Fourier analysis is a more sensitive tool than wavelet
analysis for frequencies with small amplitudes.

Note also the growth in the magnitude of the wavelet surface in the region of
higher frequencies at times when the initial signal is changing quickly. This kind of
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behavior is typical and so can be used to localize and select different artifacts of the
experimental data. The application of this feature of wavelet analysis to neurophys-
iological data will be discussed in detail in the following chapters.

Figure2.18b illustrates the application of the wavelet analysis to a more compli-
cated case where the period of the sawtooth signal grows with time. As one can see
from the skeleton estimated for this case, the dynamics of both the main frequency
and its higher harmonics can also be precisely estimated. As the main frequency
of the sawtooth signal decreases, the skeleton lines come closer together with time.
Alternatively, if the main frequency increases, the skeleton lines diverge. These par-
ticularities of the wavelet spectra must be taken into account when experimental data
are examined.

2.2.5 Phase of the Wavelet Transform

In Sect. 2.2.4, attention was focused on the amplitude and power characteristics of
the wavelet spectra. At the same time, if complex wavelets are used, the wavelet
surface is also complex, and the quantity W (s, t) is therefore characterized by both
the amplitude and the phase

ϕ(s, t) = arg
(
W (s, t)

)
. (2.68)

Typically, the phase of the wavelet surface is eliminated from consideration and
only the amplitude |W (s, t)| is taken into account, in the same way as was done in
Sect. 2.2.4. Nevertheless, the phase contains important information about the signal
and, roughly speaking, the phase dynamics involves approximately half the informa-
tion contained in the signal, with phase information being different from information
about the amplitude part of the wavelet spectrum.

Indeed, it is more customary to use the amplitude and it is more convenient to deal
with, allowing a simple and clear interpretation. Moreover, for many tasks, analysis
of amplitudes is quite sufficient to solve research problems. At the same time, this
does not mean that the phase does not play an important role, i.e., that it does not
deserve attention. There are a broad range of problems in which phase dynamics is
extremely important, e.g., problems involving synchronization phenomena. In this
section, we consider the phase and discuss problems where phase analysis can prove
useful. We begin our considerations with the phase of the Fourier transform (2.3), in
the same way as when the wavelet transform was introduced in Sect. 2.1.

2.2.5.1 Phase of the Fourier Transform

Let us imagine, that the signal under study f (t) is shifted along the time axis by
some time interval f1(t) = f (t + τ). In this case the result of the Fourier transform
of new signal f1(t) is
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S1(ω) =
+∞∫

−∞
f1(t)e

−iωtdt =
+∞∫

−∞
f (t + τ)e−iωtdt

= eiωτ

+∞∫

−∞
f (ξ)e−iωξdξ = S(ω)eiφ(ω), (2.69)

where S(ω) is the Fourier transform (2.3) of the initial signal f (t) and φ(ω) = ωτ .
One can see that the same signal in other reference systems is characterized by
Fourier images that are related to each other by (2.69). The amplitudes of these
Fourier images are identical, i.e., |S(ω)| ≡ |S1(ω)|, but the phases are different:

ϕ1(ω) = ϕ(ω) + ωτ , (2.70)

where ϕ(ω) = arg S(ω), ϕ1(ω) = arg S1(ω). Thus, the phase of the signal contains
information about the positioning of the signal relative to the time axis, while infor-
mation about the presence of a certain harmonic and its intensity is completely
included in the amplitude part of the Fourier spectrum.

Since the characteristics of the signal are the main subject of interest (but not its
position on the time axis), the amplitude part of the Fourier spectrum is used for this
kind of task. On the other hand, the question of the position of the signal relative to
the coordinate origin of the time axis is very specific and seldom arises in practice.

The situation changes radically when one begins to consider interactions between
systems. Since in this case the states of the systems should be considered relative to
each other (but not relative to the coordinate origin), the phase difference Δϕ(ω) of
the Fourier spectra must be used rather than the phases:

Δϕ(ω) = ϕ1(ω) − ϕ2(ω) . (2.71)

Consideration of the phase difference has been proposed to study synchronization of
chaotic oscillators [37–40]. The phase difference between spectral components can
be found either directly (see, e.g., [37]) or using the cross-spectrum [41].

2.2.5.2 Phase Synchronization

The wavelet transform with a complex mother function becomes a more useful and
effective tool for studying the phase dynamics of the given systems. Besides giving
access to the spectral composition of the signal, this approach allows one to track
the phase evolution with time. Note that the phase of the oscillations can be obtained
without the wavelet transform. For periodic oscillations, the definition of the phase is
quite obvious (see, e.g., [42]). But for chaotic oscillations, the definition of the phase
becomes more complicated. The concept of chaotic phase synchronization involves
consideration of the phases of chaotic interacting systems and we shall discuss it
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here, since it is closely related to the analysis of phases introduced using wavelet
analysis and will be considered below.

Oscillating chaotic systems are widespread in nature [43, 44], but they are char-
acterized by complicated irregular behavior that makes it difficult to study them.
Neurophysiological systems are also characterized by intricate dynamicswhose char-
acteristics often coincide with, or at least resemble, the characteristics of chaotic sys-
tems. Although it is impossible in general to prove that neurophysiological systems
are deterministic with chaotic dynamics (moreover stochastic or random behavior
must be taken into account), the prospects for studying them from the standpoint
of dynamical chaos look quite promising. A wide range of phenomena typical of
chaotic oscillators are observed in neurophysiological systems.

One of the most widespread phenomena is the synchronous dynamics of inter-
acting systems. When the systems under study are chaotic, this type of behavior is
called chaotic synchronization. The concept of the chaotic synchronization is fun-
damental and deals with different types of synchronous behavior. Several types of
chaotic synchronization are known: complete synchronization [45], lag synchoniza-
tion [46], generalized synchronization [47], noise induced synchronization [48–50],
phase synchronization [42], time scale synchronization [51–54], synchronization of
spectral components [40], etc.

One of themost important and commonly occurring types of synchronous dynam-
ics is phase synchronization. As pointed above, phase synchronization is based on the
concept of the instantaneous phase ϕ(t) of a chaotic signal [42, 55–57]. In addition,
the instantaneous phase is also used to detect the coupling direction of interacting
oscillators, which is useful for neurophysiological systems. Note, however, that there
is no universal method for defining the phase of a chaotic signal which would be
correct for every dynamical system.

The concept of the attractor plays an important role in the phase definition.
Typically, the oscillating behavior of the system under study is presented in the form
of a time series when the observable quantity is shown as a time function. There is
another way to represent the oscillating dynamics when the variables characterizing
the system state are plotted as coordinates along axes in a certain space called the
phase space,9 while the time is not shown at all. Although this type of representation
of the system dynamics is unusual in biological studies, it is quite useful for solving
certain tasks. Each point in the phase space corresponds to a specific state of the
system under study and vice versa, with a one-to-one correspondence between the
system state and the point in the phase space. The point corresponding to the current
state of the system is referred to as the representation point and the curve along
which the representation point moves is called the phase trajectory. A set attracting
the representation points as time goes to infinity is an attractor of the dynamical
system. When the system dynamics is represented in the plane, one speaks of the

9The dimension of the phase space is equal to the number of quantities required to fully characterize
the state of the system under study.
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Fig. 2.20 Projections of phase coherent (a) and phase incoherent (b) attractors on the plane (x, y).
The dynamics of the chaotic Rössler system is shown

projection of the phase space (the phase trajectory, attractor) on the corresponding
plane.10 Examples of the projections of chaotic attractors are shown in Fig. 2.20.

There are variousways of defining the phase of a chaotic signal. All theseways can
be effectively usedwhen the chaotic attractor of the systemhas simple topology. Such
systems are called systems with well-defined phase or systems with phase coherent
attractor. The chaotic attractor for these systems is characterized by the topology
when the projection of the phase trajectory on a certain plane of states, e.g., (x, y),
winds around the coordinate origin but does not cross and envelop it (see Fig. 2.20a).
In this case the phase ϕ(t) of the chaotic signal may be defined as the angle in the
polar coordinate system (x, y) [46, 58], whence

tan ϕ(t) = y(t)

x(t)
. (2.72)

Since the projection of the phase trajectory does not cross and envelop the coordinate
origin, the mean frequency Ω of the chaotic signal, defined as the mean frequency
of the phase variation

Ω = lim
t→∞

ϕ(t)

t
= 〈ϕ̇(t)〉 , (2.73)

coincides with the main frequency of the Fourier spectrum S( f ) of the system oscil-
lations. If the projection of the phase trajectory envelops or crosses the coordinate
origin at certain times, the origin of the coordinate plane is smeared by pieces of the
phase trajectory. This kind of chaotic attractor is said to be phase incoherent and the
system is referred to as a system with ill-defined phase (see Fig. 2.20b).

10Of course, if one deals with a system dimension of 3 or higher.
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Another way to define the phase of a chaotic signal is to construct the analytical
signal [42, 55]

ζ(t) = x(t) + ix̃(t) = A(t)eiφ(t) , (2.74)

where the function x̃(t) is the Hilbert transform of x(t), viz.,

x̃(t) = 1

π
PV

+∞∫

−∞

x(τ )

t − τ
dτ , (2.75)

and PV indicates that the integral is taken in the sense of the Cauchy principal value.
The instantaneous phase φ(t) is defined from (2.74) and (2.75).

The third way to define the instantaneous phase of a chaotic signal is the Poincaré
secant surface [42, 55]

φ(t) = 2π
t − tn

tn+1 − tn
+ 2πn , tn ≤ t ≤ tn+1 , (2.76)

where tn is the time of the n th crossing of the secant surface by the trajectory.
Finally, the phase of a chaotic time series can be introduced by means of the con-

tinuous wavelet transform [59], but an appropriate wavelet function and parameters
must be chosen [60].

The regime of phase synchronization of two coupled chaotic oscillators means
that the difference between the instantaneous phases φ(t) of chaotic signals x1,2(t)
is bounded by some constant, i.e.,

|φ1(t) − φ2(t)| < const . (2.77)

As mentioned above, it is possible to define a mean frequency (2.73), which should
be the same for both coupled chaotic systems, i.e., phase locking leads to frequency
entrainment. Indeed, according to (2.77) and (2.73), the main frequencies of the
synchronized chaotic oscillators must coincide with each other.

Note that, independently of the method used to define it, the phase of a chaotic
signal may be located in both the region ϕ ∈ (−∞,∞) and a band of width 2π , e.g.,
ϕ ∈ [−π, π) or ϕ ∈ [0, 2π). To examine the phase-locking condition (2.77), the
values ϕ(−∞,∞) ∈ (−∞,∞) are more useful. However, in certain circumstances,
the bounded phases, e.g., ϕ[0,2π) ∈ [0, 2π), can be used. The two cases are related
by

ϕ[0,2π) = ϕ(−∞,∞) , mod 2π . (2.78)

All these approaches provide correct and similar results for “good” systems with
well-defined phase [58]. Indeed, the behavior of the instantaneous phase for the
methods (2.72) and (2.76) is very similar within any time range that is less than the
characteristic recurrence time. Furthermore, the instantaneous phase defined using
the Hilbert transform (2.75) is known to behave for the phase coherent attractor in
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just the same way as the phases introduced by (2.72) and (2.76) (see, e.g., [58]).
These methods involve certain restrictions [61], in particular, for oscillators with
ill-defined phase (see, e.g., [61, 62]).11

Obviously, if the examined system is characterized by a well-defined main fre-
quency in the Fourier spectrum and by low background noise, the phase of the signal
introduced using one of the above methods will be close to the phase of the corre-
sponding harmonic signal. This is the case when good results can be achieved using
the approach of chaotic phase synchronization. If the spectral composition of the
signal becomes more complicated, e.g., there are several spectral components with
similar amplitudes, the dynamics of the system cannot be correctly described by
means of only one phase. In such cases, an approach based on continuous wavelet
analysis and the associated concept of time-scale synchronization [52, 53, 65] can
be used.

2.2.5.3 Phase of the Wavelet Transform

Since the wavelet surface is complex (if a complex mother wavelet is used), so that

W (s, t0) = |W (s, t0)|eiϕ(s,t0) , (2.79)

and since it characterizes the system behavior at each time scale s at the arbitrary time
t0, the instantaneous phase of the wavelet transform is also automatically defined at
each time scale s by

ϕ(s, t) = arg W (s, t) . (2.80)

In other words, the behavior of each time scale s can be described by means of its
own phase φ(s, t), this being a continuous function of the time scale s and the time
t . Thus, a set of phases φ(s, t) characterizes the dynamics of the system and can be
used to study its behavior.

As in the case of a chaotic signal, the phase defined through the wavelet transform
can also be presented in both the range ϕ ∈ (−∞,∞) and a band of width 2π , viz.,
ϕ ∈ [−π, π) or ϕ ∈ [0, 2π). When (2.80) is used, the phase takes values in the 2π
band, but there is no problem representing the phase in the infinite range of values.

We begin our considerations of the wavelet phase with a simple signal of the form
f (t) = sin(ωt + φ) and transforming it using the Morlet wavelet. In this case the
wavelet surface is given by

W (s, t) = √
2πsπ1/4 sin(ωt + φ − iωω0s)e−(s2ω2+ω2

0)/2

≈ π1/4

√
s

2
e−(ωs−ω0)

2/2ei(ωt+φ−π/2) , (2.81)

11Nevertheless, the phase synchronization of such systems can usually be detected by means of
indirect indications [58, 63] and measurements [64].
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Fig. 2.21 Modulus of the wavelet spectrum for each component of the signal (2.82), showing them
separately (a) and for the whole signal (b). The wavelet spectrum of the harmonic function with
frequency ω1 = π is shown in a by the dashed line, and the function with frequency ω2 = 2π by
the dotted line

where ϕ(s, t) = ωt + φ − π/2. As one can see from (2.81), the phase of the wavelet
transform does not depend on the time scale and repeats the phase of the initial
harmonic signal (ϕsin = ωt + φ) with time lag −π/2. Note that, in the case of a
harmonic signal, the evolution of the phase ϕ(s, t) is the same for all time scales.
As for the Fourier spectrum, shifting the signal relative to the time reference point
changes the phase ϕ(s, t).

Consider now a signal consisting of two harmonic functions

f (t) = sinω1t + sinω2t , (2.82)

where ω1 is assumed to be π and ω2 = 2π (see Fig. 2.21). Due to the linearity of the
wavelet transform, the wavelet spectrum of the signal (2.82) is defined by

W (s, t) = √
2πsπ1/4 sin(ω1t − iω1ω0s)e−(s2ω2

1+ω2
0)/2

+√
2πsπ1/4 sin(ω2t − iω2ω0s)e−(s2ω2

2+ω2
0)/2 (2.83)

≈ π1/4

√
s

2

[
e−(ω1s−ω0)

2/2ei(ω1t−π/2) + e−(ω2s−ω0)
2/2ei(ω2t−π/2)

]
,

and this spectrum is obviously more complicated.
Figure2.21a shows the absolute value of the wavelet spectrum of each component

of the signal (2.82) separately, while Fig. 2.21b shows the modulus of the wavelet
surface of the whole signal (2.82). One can see that each frequency component
is characterized by its own maximum of the wavelet surface |W (s, t)|, and that the
amplitudes of these maxima are different due to the factors discussed in Sect. 2.2.3.5,
despite the equivalence of the amplitudes of the sinusoidal functions.

It is intuitively clear that the presence of several spectral components results in
the time dependence of the phase dynamics on the time scale of the observation. This
statement is illustrated by Fig. 2.22, where the time dependence of the phase ϕ(s, t)
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Fig. 2.22 Time dependence of the phase ϕ(s, t) of the wavelet surface W (s, t) for different time
scales s : a s1 = 2.0, b s = 1.35, c s∗ = 1.325, d s2 = 1.0

of the wavelet surface W (s, t) is shown for different time scales s. Figure2.22a
illustrates the time dependence of the phase ϕ(s, t) for the time scale s1 = 2.0 (see
also Fig. 2.21b) corresponding to the lower frequencyω1 = π . Similar dynamics (but
with different frequency) is observed for the second time scale s2 = 1.0, correspond-
ing to the second frequency ω2 (Fig. 2.22d). Obviously, for intermediate time scales
from the range s ∈ (s2, s1), a transition from the behavior shown in Fig. 2.22d to the
dynamics shown in Fig. 2.22a should be observed.

This transition is shown in Fig. 2.22b and c. One can see that the amplitude of the
wavelet surface decreases with decreasing time scale, namely, in the transition from
the time scale s1 corresponding to the main frequency ω1 to the time scale s2 corre-
sponding to the frequency ω2. The time dependence of the phase exhibits decreasing
segments (Fig. 2.22b) due to the influence of the second harmonic of the signal f (t)
(with frequency ω2), but the harmonic with frequency ω1 plays the dominant role
as before. The time scale s∗ separates regions where the phase dynamics is deter-
mined by the harmonic with frequency ω1 or ω2, and as a consequence, on this time
scale s∗, both harmonics provide equivalent contributions to the phase dynamics (see
Fig. 2.22c). Finally, in the range of time scales s ∈ (s1, s∗), the phase dynamics is
determined by the harmonic with frequency ω1.

Thus, considering the phase of the wavelet transform, we have to keep in mind
the following:

• For each time scale s of the signal under study, the time-dependent instantaneous
phase (2.80) is naturally defined.

• For the selected time scale s ′, the dynamics of the phase is defined not only by the
frequency component corresponding to this time scale, but also by other harmonics
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located nearby in the spectrum of the signal and characterized by a large enough
amplitude. In other words, on the fixed time scale s ′, the phase dynamics can
be determined by several components of the Fourier spectrum from a certain
frequency band.

It is important to note that one can detect the presence of several frequency com-
ponents by considering only the amplitude spectrum |W (s, t)| of the wavelet trans-
form, and then defining these frequencies as well (see Fig. 2.21b). However, there
are several cases where this cannot be done. Indeed, the wavelet spectrum of the
two-frequency signal

f (t) = A1 sinω1t + A2 sinω2t , (2.84)

where A1 = 0.5, ω1 = 0.9π , A2 = 1.25, and ω2 = π , is characterized by a single
maximum exactly in the case of a signal with a single frequency (Fig. 2.23a). This
form of the wavelet spectrum is caused by (i) the finite resolution of the wavelet
transform in the time space and (ii) the closeness of the coexisting frequency compo-
nents in the Fourier spectrum of the signal (2.84), as well as the difference between
their amplitudes.

Consideration of the phase dynamics allows rather easy detection of nonharmonic
dynamics since, in the time scale ranges s < s∗ and s > s∗, the phase dynamics is
different (see Fig. 2.23b). On the time scale s2 = 2, this phenomenon is connected
with the dominance of the spectral component with frequency ω2 (dashed line in
Fig. 2.23b) (the phase dynamics thus corresponds here to this component), whereas
on the time scale s1 = 3, the main role is played by the spectral component with
frequency ω1 (which thus determines the behavior of the phase in this case).
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Fig. 2.23 a The moduli of the wavelet spectra for each component of the signal (2.84) are shown
separately (the wavelet spectrum of the sinusoidal function with frequency ω1 = 0.9π is shown
by the dotted line, and that of the function with frequency ω2 = π by the dashed line) and for the
whole signal (solid line). b Time dependences of the phase ϕ(s, t) for the time scales s1 = 3 (dotted
line) and s2 = 2 (dashed line)
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2.2.5.4 Time-Scale Synchronization

To end this section let us briefly discuss the concept of time scale synchronization
[51–54], based on the examination of the phase dynamics of interacting systems on
different time scales. An important feature of the concept of time-scale synchro-
nization is the unification of all types of synchronous behavior of chaotic systems,
since all known types of chaotic synchronization (phase synchronization, generalized
synchronization, lag synchronization, complete synchronization) can be considered
from a unified point of view.

Let us consider the dynamics of two coupled oscillators with complex dynamics.
If the time series x1,2(t) generated by these systems contain the range sm ≤ s ≤ sb

of time scales s for which the condition of phase locking

|φ(s1, t) − φ(s2, t)| < const. (2.85)

is satisfied, and if also a part of the wavelet spectrum energy within this range is not
equal to zero, viz.,

Esync =
sb∫

sm

〈E(s)〉 ds > 0 , (2.86)

we say that time-scale synchronization (TSS) takes place between the oscillators.
It is obvious that the classical synchronization of coupled periodic oscillators

corresponds to TSS because all time scales in this case are synchronized accord-
ing to the time scale s, instantaneous phase φs(t), and TSS definitions. The case
of chaotic oscillations is more complicated. Nevertheless, if two chaotic oscillators
demonstrate any type of synchronized behavior, the time series x1,2(t) generated
by these systems contain time scales s which are correlated with each other for
which the phase-locking condition (2.85) and the energy condition (2.86) are satis-
fied. Therefore, time-scale synchronization is also realized. In other words, complete
synchronization, lag synchronization, phase synchronization, and generalized syn-
chronization are particular cases of time-scale synchronization. To detect time-scale
synchronization, one can examine the conditions (2.85) and (2.86), both of which
should be satisfied for synchronized time scales.

Note that the phase-locking condition (2.85) may be generalized to the case of
m : n synchronization. To study this kind of regime, the more general relation

∣∣mϕ1(sn1, t) − nϕ2(sm2, t)
∣∣ < const. (2.87)

should be examined in different ranges of time scales sn1 ∈ I1 = [s1l,≤ s1h] and
sm2 ∈ I2 = [s2l,≤ s2h] instead of Eq. (2.85). For (m : n) synchronization, the time
scale sm1 of the first system and correspondingly the time scale sn2 of the second
system must obey the relation sm2/sn1 = m/n. The energy condition (2.86) remains
unchanged, but different ranges of time scales I1 and I2 should be used.
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Finally, synchronous dynamics may take place on a time scale changing with
time. In this case one, has to check for fulfillment of the condition

∣∣ϕ1(s(t), t) − ϕ2(s(t), t)
∣∣ < const. (2.88)

This problem is important when investigating systems whose main rhythm changes
with time. In particular, this kind of behavior is typical for physiological systems
(see, e.g., [31, 32] where the human cardiovascular system was considered).

A measure of synchronization can also be introduced. This measure γ (t) can be
defined as that part of the wavelet energy associated with the synchronized time
scales:

γ (t) = Esync(t)
∫ +∞

0
E(s, t) ds

× 100% , (2.89)

where the numerator is the energy corresponding to the synchronous time scales
and the denominator is the total energy of the wavelet spectrum. The value of this
measure γ = 100% corresponds to regimes of complete and lag synchronization,
while γ = 0 is evidence of completely asynchronous dynamics. Intermediate values
of γ are manifestations of phase synchronous dynamics in a certain range of time
scales, when the amplitudes of oscillations may remain uncorrelated. Increasing γ

values attest to the expansion of ranges related to synchronous time scales. Thus, the
synchronization measure γ can be used, not only to distinguish between synchro-
nized and nonsynchronized oscillations, but also to characterize the degree of TSS
synchronization. Since the synchronization measure depends on time, it can be used
to analyze processes leading into or out of the synchronous state.

As a consequence, besides the amplitudes of the wavelet spectrum, the phases (on
different time scales) also inform us about the behavior of these complex systems.
However, detailed consideration of synchronization theory (in particular, time-scale
synchronization based on the continuous wavelet transform) is beyond the scope of
this book. The reader can find a detailed description of different aspects of synchro-
nization theory and its applications in [31, 32, 40, 51–54, 65–70].

2.3 Discrete Wavelet Transform

2.3.1 Comparison of the Discrete and Continuous Wavelet
Transforms

Section2.2 focused on the continuous wavelet transform, which allows a clear
visual representation of the results of signal processing. In contrast to scientific
research, many technical applications deal mainly with the discrete wavelet trans-
form. Although it is inferior to the continuous wavelet transform from the viewpoint
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of visualizing results, the discrete wavelet transform has considerable advantages,
such as computational speed, a simpler procedure for the inverse transform, etc. It
is important to keep in mind that the discrete wavelet transform is not the discretiza-
tion of the formula for the continuous wavelet transform (in contrast to the discrete
Fourier transform). Differences between the continuous and the discrete wavelet
transforms are sufficient to consider them as two different ways for for analyzing
signal structure.

In the context of the continuous wavelet transform, infinitely differentiable func-
tions represented in analytical form are considered as mother wavelets.12 As a con-
sequence, these functions are characterized by exponential decay at infinity, and the
basis constructed from these wavelets is not orthonormal. Therefore, the continu-
ous wavelet transform provides excessive information, and the values of the wavelet
coefficients are correlated. Nevertheless, in several cases, this feature plays a positive
role, allowing one to obtain a clearer interpretation of the results, e.g., in the form of
skeletons or contour curves [13]. Information obtained from the continuous wavelet
transform are more easily analyzed than other ways of studying non-stationary pro-
cesses (see, e.g., [12, 72]).

Using complex functions, the continuous wavelet transform can be used to study
the evolution of such characteristics as the instantaneous amplitude, frequency, and
phase of rhythmic processes identified in the signal structure. One may also consider
the set of phases corresponding to different spectral components of the signal [51–
53, 65]. For these reasons, the continuous wavelet transform is a promising tool for
solving many neurophysiological problems. Thus, the continuous wavelet transform
is useful in the case when analyzing the synchronous dynamics between neurons or
groups of neurons, or diagnosing the presence/absence of rhythmic components in
the activity of a neuron group [73].

Although the discrete wavelet transform can use non-orthogonal basis functions
(e.g., frames) [19], orthogonal (or almost orthogonal) bases are most commonly used
since this allows one to represent the signal more precisely and simplifies the inverse
transformation. In contrast to the continuous wavelet transform, the wavelets used
in the framework of the discrete wavelet transform have no analytical expression,
with the exception of the Haar wavelet (2.42) [18]. The wavelets are specified in
the form of matrix coefficients obtained by solving certain equations. In practice,
the concrete form of the wavelet function in the explicit form is not considered, and
only sets of coefficients are used to define the wavelet. This results in a series of
elementary operations that allow the realization of fast algorithms for the discrete
wavelet transform. The basis is created using an iterative algorithm that varies the
scale and shifts the single function. However, the detailed description of the essential
differences between the discrete and continuouswavelet transforms is amathematical
problem that goes beyond the subject of our book, and is discussed, e.g., in [74].

The absence of an analytical expression for wavelets used in the discrete wavelet
transform leads to a certain inconvenience with the discrete wavelet transforma-

12For practical purposes, mother wavelets can also be constructed from tabulated segments of time
series (see [30, 71]).
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tion. However, this inconvenience is compensated by many useful properties of the
discrete wavelet transform. For example, it provides the possibility of using fast algo-
rithms (see, e.g., [75]), which is important for practical purposes, e.g., for coding and
transmitting information, or for compressing data. The discrete wavelet transform
is used, for instance, in the framework of the JPEG graphic format and the MPEG4
video format, in computer graphics for editing three-dimensional images, etc. The
algorithms of the fast discrete transform are applied when processing experimental
data.

An important feature of the wavelet transform is shift invariance. This means that,
if the signal is shifted along the time axis, the wavelet coefficients are also shifted
and, after relabeling, one can find a relationship between the new coefficients and
those prior to the shift. This feature is easily illustrated for the continuous wavelet
transform, but the relationship between the coefficients on different time scales is
more complicated for the discrete wavelet transform. Estimating the wavelet coef-
ficients provides a way to solve the problem of image identification. More efficient
algorithms can also be created using a combination of wavelet analysis and neural
networks.

The majority of wavelet functions used in the framework of the discrete wavelet
transform are irregular. For practical purposes, such properties as the regularity, the
number of zero moments, and the number of wavelet coefficients exceeding a cer-
tain value are important when selecting the wavelet function. A large number of
zero moments makes it possible to realize effective data compression, since wavelet
coefficients at small scales tend to be zero at those points where the function is
rather smooth, and as a consequence, these coefficients may be neglected without
significant loss of information. In this case, however, the wavelet function becomes
broader and this results in a decreased speed of computing. Thus, the choice of basis
function is determined by specific features of the problem to be solved. Typically, the
discrete wavelet transform is used to solve technical problems (signal coding, com-
puter graphics, image recognition, etc.), whereas the continuous wavelet transform
is applied in scientific studies related to the analysis of complex signals.

Wavelet analysis, as applied to neurodynamics and neurophysiology tasks, pro-
vides many possibilities for effective recognition (or identification) of signal shapes.
Additionally, wavelets are able to filter noise, artifacts, and random distortions from
experimental data. Indeed, neurophysiological data often contain artifacts such as
rapid changes in the amplitude and other local variations of the signal, which may
be caused by the neurophysiological processes themselves or by equipment failures,
external factors, etc. Filters based on the Fourier transform are useless for elimi-
nating artifacts, since information about them is contained in all coefficients of the
transform. Filtration with wavelets is more effective, since it is possible (perhaps in
automatic regime) to detect, localize, identify, and eliminate artifacts, having ana-
lyzed the wavelet coefficients on small scales. Digital filtration based on wavelets
can be used to clear noisy signals from experimental data at the preprocessing stage.
Wavelets are also widely used to recognize signals with similar shapes in the pres-
ence of noise. In neurophysiology, such problems arise in the tasks of EEG pattern
recognition, identification of impulse activity of single neurons from extracellular
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recordings of electric potentials, etc. In other words, the reason for the active use of
wavelets in modern studies is that similar problems arise in the digital processing of
different signals.

2.3.2 General Properties

The continuous wavelet transform discussed in Sect. 2.2 deals with the expansion of
the signal f (t) when the basis is obtained from a soliton-like function ψ(t). In this
approach, the scale transformation is carried out for only one function (the mother
wavelet). The multi-scale analysis is based on a different concept. It uses orthonor-
malized wavelet bases to characterize the ‘increment of information’ required for the
transition from the rough description to the more detailed one [18]. This approach
was used for the first time in problems relating to image analysis. It provides suc-
cessive approximations of the given signal f (t) at different scales. In fact, the signal
is approximated for certain intervals, and deviations from the approximating func-
tions are analyzed. The approximating functions are related to each other on different
scales and orthogonal to each other with the shift along the time axis. This means that
only specific functions can be used for the approximation. To explain the ideology of
multi-scale analysis, we introduce the necessary definitions using the Haar wavelet
as the most simple example.

To analyze the successive approximations for the signal on different scales,
the approximating functions should be chosen to satisfy an additional requirement
imposed by the relationship between the approximating functions on different scales.
In the ideal case, it is better to use a single function ϕ(t) to approximate the signal on
both the large and small scales. Further, the detailed analysis of the signal structure is
carried out at the selected scale with the waveletψ(t). The function ϕ(t) is called the
scaling function or father wavelet. For the scaling function, the following property
is fulfilled:

∫ ∞

−∞
ϕ(t)dt = 1 , (2.90)

i.e., its mean value is not equal to zero as for the mother wavelet ψ(t). The functions
ϕ(t) and ψ(t) of the Haar wavelet are shown in Fig. 2.24. Scaling of the functions
ϕ(t) and ψ(t) results in the equations

ϕ(t) = ϕ(2t) + ϕ(2t − 1) ,

ψ(t) = ϕ(2t) − ϕ(2t − 1) ,
(2.91)

from which the difference between these functions is clear. When the signal is ana-
lyzed, the functions ϕ(t) and ψ(t) play the role of high-pass and low-pass filters,
respectively.
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Fig. 2.24 Scaling function
and Haar wavelet
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By analogy with the basis of the continuous wavelet transform, we introduce the
notation

ϕ j,k(t) = 1

2 j/2
ϕ

(
t

2 j
− k

)
. (2.92)

For the given values of the scale and shift, characterized by the parameters j and k,
the approximation coefficients of the signal x(t) are

s j,k =
∫ ∞

−∞
x(t)ϕ j,k(t)dt . (2.93)

For the selected scale the resulting coefficients are referred to as the discrete approx-
imation of the signal on the scale j . Summing the scaling functions with the corre-
sponding coefficients provides the so-called continuous approximation of the signal
x(t) at the selected scale [76]:

x j (t) =
∞∑

k=−∞
s j,kϕ j,k(t) . (2.94)

On small scales, this continuous approximation is very close to the initial signal x(t).
As an illustration, let us consider the approximation of one period of the har-

monic function shown in Fig. 2.25. Using the Haar scaling function means that on
different scales the signal is replaced by the averaged values. For large j , it results
in a very rough representation of the harmonic function, but for the maximum pos-
sible resolution level j = 0 (determined by the discretization step), the continuous
approximation tends to the initial signal x(t).

Using the Haar wavelet, we thus have a simple illustration of the main idea of
multi-scale analysis, namely the construction of a set of approximating function
spaces. In fact, we are dealing with the histogram approximation of the signal,
with the orthogonal complements adding more details on the smallest scales [76].
Figure2.26 shows examples of the calculation of two successive approximations and
the complement to the second of these.
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j=0

j=2

j=4

j=6

Fig. 2.25 Approximation of the harmonic function on different levels of resolution j

j=2 j=3

Fig. 2.26 Approximations of a half period of the harmonic function on the scales j = 2 and j = 3,
together with the complement to the approximation on the scale j = 3, allowing one to move to the
next scale
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Fig. 2.27 Scaling function
(solid line) and the
Daubechies wavelet D4

(dashed line)

Wavelets and the corresponding scaling functions used in practice are usually
characterized by a more complicated form (see, e.g., Fig. 2.27). However, all equa-
tions written for Haar wavelets remain applicable with other bases. We thus pursue
our discussion of the simplest case, assuming that the results can be extended to other
wavelets.

The concept of continuous approximation can reveal a trend in the analysed pro-
cess at the selected scale, with further detailed wavelet-based analysis of fluctuations
relative to this trend. On a certain arbitrary scale, any function x(t) ∈ L2(R) can be
expanded in a series

x(t) =
∑

k

s jn ,kϕ jn ,k(t) +
∑

j≤ jn

∑

k

d j,kψ j,k(t) , (2.95)

where

d j,k =
∫ ∞

−∞
x(t)ψ j,k(t)dt (2.96)

are the wavelet coefficients. The first sum is the approximation of x(t), whereas the
second sum provides the details of this function on different scales.

For the selected scale jn , one can write

x(t) = x jn (t) +
∑

j≤ jn

μ j (t) , (2.97)

whereas the function
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μ j (t) =
∑

k

d j,kψ j,k(t) (2.98)

characterizes the detailed structure of the signal on the scale j . According to (2.97),
one obtains

x j−1(t) = x j (t) + μ j (t) , (2.99)

i.e., if the detailing function μ j (t) of the signal is added to the approximation on the
selected scale j (this characterizes fluctuations relative to the approximated trend),
the approximation on the next, more precise level of resolution ( j − 1) is obtained.
This is the main idea of multi-scale analysis.

In general, the relationship between the functions ϕ(t) and ψ(t) and their scaled
and shifted modifications can be written in the form

ϕ(t) = √
2
2M−1∑

k=0

hkϕ(2t − k) ,

ψ(t) = √
2
2M−1∑

k=0

gkϕ(2t − k) ,

(2.100)

where the factor
√
2 is connected with the traditional form of the fast algorithms and

normalization of the functions ϕ j,k(t) and ψ j,k(t), whereas the parameter M deter-
mines thewavelet length, e.g., M = 1 for theHaar wavelet. Note also the relationship
between the coefficients hk and gk [76]:

gk = (−1)kh2M−k−1 . (2.101)

These coefficients are determined from general properties of the scaling functions
and wavelets.

As an example, let us consider calculation of the coefficients for the case M = 2.
Since the relatively shifted scaling functions are orthogonal, we have

∫ ∞

−∞
ϕ(t)ϕ(t − l)dt = δ0l . (2.102)

Using (2.100), a first restriction on the coefficients hk is obtained:

∑

k

hkhk+2l = δ0l . (2.103)

The condition
∫ ∞

−∞
tnψ(t)dt = 0 , (2.104)
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excluding slow nonstationarity (the polynomial trend) for n = 0, . . . , M − 1 gives

∑

k

kngk =
∑

k

(−1)kknhk = 0 . (2.105)

Finally, from the normalization condition (2.90), one obtains

∑

k

hk = √
2 . (2.106)

In the particular case (M = 2), the last 3 equations written in explicit form result in
the system

h0h2 + h1h3 = 0 ,

h0 − h1 + h2 − h3 = 0 ,

−h1 + 2h2 − 3h3 = 0 ,

h0 + h1 + h2 + h3 = √
2 .

⎫
⎪⎪⎬

⎪⎪⎭
(2.107)

Solution of these equations [74] gives the coefficients

h0 = 1

4
√
2
(1 + √

3) ,

h1 = 1

4
√
2
(3 + √

3) ,

h2 = 1

4
√
2
(3 − √

3) ,

h3 = 1

4
√
2
(1 − √

3) ,

(2.108)

which determine the Daubechies wavelet D4 (the upper index corresponds to the
number of coefficients hk). For wavelets of higher order, the coefficients hk can
be obtained only numerically, but with any required accuracy. The resulting set of
coefficients is typically represented in the form of a vector. As already mentioned, in
practice, the functions ϕ(t) andψ(t) are not considered in the explicit form.With the
pyramidal expansion algorithm and the vector hk , it is easy to estimate the coefficients
s j,k and d j,k .

The procedure of the pyramidal algorithm is shown in Fig. 2.28. In the case of the
Daubechies wavelet D4, the discrete wavelet transform with time series x(i) may
be represented as multiplication of the vector of the analyzed data by the matrix
constructed from the vector hk by its translations, viz.,
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Fig. 2.28 Schematic
representation of the
pyramidal expansion
algorithm

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

h0 h1 h2 h3

h3 −h2 h1 −h0

h0 h1 h2 h3

h3 −h2 h1 −h0
...

...
. . .

h0 h1 h2 h3

h3 −h2 h1 −h0

h2 h3 h0 h1

h1 −h0 h3 −h2

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (2.109)

where empty matrix elements correspond to zero values.
For the sequence x(i) consisting of 8 elements, the pyramidal expansion is imple-

mented as follows. First, after multiplying the vector

[
x1 x2 x3 x4 x5 x6 x7 x8

]T
(2.110)

corresponding to the scale j = 0 by the 8 × 8 matrix (2.109), the set of coefficients
s and d are obtained:

[
s11 d11 s12 d12 s13 d13 s14 d14

]T
. (2.111)

The coefficients d j,k are not used in the following transformations and they should
therefore be separated by reorganizing the vector elements

[
s11 s12 s13 s14 | d11 d12 d13 d14

]T
. (2.112)

Secondly, the 4 × 4 matrix (2.109) multiplies the vector of s-coefficients to give the
vector

[
s21 d21 s22 d22 | d11 d12 d13 d14

]T
. (2.113)

Rearranging the coefficients, one obtains

[
s21 s22 | d21 d22 | d11 d12 d13 d14

]T
. (2.114)
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Thus, the wavelet coefficients characterizing the signal at different scales are sepa-
rated. The resulting coefficients can be used for signal recognition, e.g., to recognize
the impulse activity of single neurons from the common activity of the neuron ensem-
ble which is considered in the next chapter.
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Chapter 3
Analysis of Single Neuron Recordings

Abstract In this chapter, we consider several problems where wavelets provide
information about the dynamics of neuronal systems that cannot be obtained with
ordinary frequency or time domain methods. We discuss the possibility of studying
intracellular dynamics and information encoding by individual neurons. We charac-
terize the dynamical stability of the neuronal response and propose an approach to
quantify wavelet coherence.

3.1 Introduction

The central nervous system (CNS) of living beings processes a large amount of
sensory information that is received through interaction with the external world. A
study of how this information is encoded, represented, and processed is one of the
most important problems in the natural sciences.

Visual, auditory, tactile, gustatory, and olfactory stimuli are encoded by the cor-
responding receptors into sequences of electrical pulses (spikes) that are transferred
to the first neurons, i.e. to the areas of the CNS that carry out preprocessing. Sen-
sory information passes through several other processing stages before reaching the
cortex, where an internal representation (or image) of the external world is formed.

The complexity of experimental studies of the corresponding processes increases
significantly with each subsequent stage. Though the molecular and ionic mecha-
nisms underlying encoding are rather well understood [1, 2], the properties of spike
trains as information carriers remain less clear: How do these trains reflect the enor-
mous complexity and variety of the external world? There are many open questions
regarding the principles of information encoding by individual neurons and their
networks, even at the initial information processing stage.

In Chap.2 we provided a short introduction to the theory and practice of wavelet
analysis. Let us now apply this knowledge to several problems in which wavelets can
offer information about the dynamics of neuronal systems that would be inaccessible
to ordinary frequency or time domain methods.

In general, these problems can be separated into groups depending on the chosen
mathematical approach, i.e., either the continuous or the discrete wavelet transform.
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However, as already mentioned, both approaches can provide useful information
about the object under study, although this information may differ. Therefore, a
better choice is to separate tasks according to the subject of research. In our case it is
reasonable to sort out problems according to the spatial scale and complexity of the
analyzed signals. In this chapter we deal with single neuron recordings, i.e., signals
recorded from one neuron, even if it is a part of a network. We also consider different
types of recording: in studies of intracellular dynamicswe analyze continuous signals
(data from interference microscopy), whereas for the investigation of information
processing we use spike trains (point processes) extracted from extracellular single
unit recordings.

3.2 Wavelet Analysis of Intracellular Dynamics

At the single neuron level, cell activity includes a large number of biochemical pro-
cesses that occur on different time scales in the membrane and in the cell cytoplasma.
Traditional experimental approaches such as, e.g., fluorescent microscopy, intracel-
lular recordings of the membrane potential, and patch-clamping provide ways to
analyze features of biochemical, metabolic, and electrical processes. Often, how-
ever, they are highly invasive and may have a significant impact on the intracellular
dynamics.

Since intracellular dynamics can be extremely rich andmanifests itself on different
time scales, the wavelet approach is very useful. It can provide information about the
interplay between different processes and help to achieve a deeper understanding of
intracellular regulatorymechanisms. In this sectionwe discuss a study of intracellular
dynamics using interference microscopy and wavelet-based techniques.

3.2.1 Interference Microscopy and Subcellular Dynamics

Interference microscopy measures the optical path difference between the beam
transmitted through an object and a reference beam [3, 4]. The resulting value is
normalized to the wavelength to estimate the so-called phase height of the object,
which is given by

Φ = φ0 − φobj

2π

λ

2
− Φ0, (3.1)

where φ0 is the initial phase, φobj is the phase shift that occurs after the laser beam
is transmitted through the analyzed object, λ is the laser wavelength, and Φ0 is a
constant shift of the phase height depending on the selected reference point.

For inhomogeneous objects characterized by a refractive index that varies along
the vertical direction z, the phase height is estimated as
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Fig. 3.1 Isolated pond snail neuron. a Optical photograph of the neuron. b Phase height landscape
of the same neuron obtained by interference microscopy (wavelength λ = 532 nm). Bars in the x
and y directions correspond to 10µm, and the bar in the z direction corresponds to a phase height
of 200nm (for details, see [5])

Φ(x, y) =
∫ Z

0

[
nobj(x, y, z) − ns

]
dz − Φ0, (3.2)

where ns is the constant refractive index of the physiological saline and nobj(x, y, z)
is the refractive index of the cell at a point (x, y, z) placed at the distance z from the
mirror. The integration limit Z is selected to be above the whole object.

By scanning a cell in the horizontal (x, y) plane, the interferencemicroscopemea-
sures the phase height landscape Φ(x, y). Figure3.1 shows side-by-side an example
of an optical photograph and a phase height landscape of an isolated pond snail
neuron. Movements of, e.g., organelles in the cell change nobj(x, y, z), and hence
the phase height in the corresponding place. By scanning a cell many times with
constant time interval, we can obtain frames as in a movie. The resulting dynamics
of the phase height Φ(x, y, t) can then be used to monitor different intracellular
processes.

Here we consider results obtained from experiments performed with isolated
neurons from the buccal ganglia of the pond snail L. stagnalis. We measured the
phase height at a single point (x, y) inside the cell. Figure3.2a shows the power
spectrum of such a signal. It exhibits a number of characteristic frequencies near
0.1, 0.3, 0.6, 1.2, and 3.0Hz. These rhythms are caused by movements of protein
macromolecules, changes in ion concentration near the membrane, fluctuations in
the membrane potential, etc. Many of these intracellular processes interact with one
other.
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Fig. 3.2 Analysis of the phase height dynamics reflecting intracellular processes.aEnergy spectrum
exhibiting several peaks. Frequency peaks correspond to different rhythmic components in the
intracellular dynamics. b Extracted ridges of the wavelet coefficients, obtained after the wavelet
transform of the phase height

3.2.2 Modulation of High Frequency Oscillation by Low
Frequency Processes

To reveal possible interactions between different rhythmic components, we applied
the continuouswavelet transformwith theMorlet mother function to the phase height
signal. Then we identified instantaneous frequencies and amplitudes of rhythmic
contributions.

Figure3.2b illustrates a typical example of the dynamics of instantaneous fre-
quencies. Rhythmic components in the range from 0.1 to 0.3Hz have almost constant
frequency, while instantaneous frequencies of rhythms near 1 and 3Hz show slow
oscillations [5, 6]. Thus, the processes characterized by long time scales modulate
high-frequency oscillations of the phase height. This type of modulation is a known
phenomenon in living systems. As an example, we can mention the modulation of
the heart rate by breathing. The duration of beat-to-beat intervals varies at different
stages of the breathing process.

There exist several types of low frequency modulation of a high-frequency pro-
cess. During modulation, the amplitude A(t) and/or the frequency ω(t) of a fast
oscillation x(t) can vary with the frequency of a slow process z(t).

In the case of so-called amplitude modulation (AM), we can write

A(t) = A0 + �Az(t), (3.3)

where A0 is the base-line amplitude of the fast oscillation and �A is the maximal
deviation of the amplitude (for convenience, we assume that |z(t)| ≤ 1). A single-
tone modulated signal (with single frequency ω0) is given by

x(t) = A(t) cos(ω0t + ϕ0) = A0
[
1 + maz(t)

]
cos(ω0t + ϕ0), (3.4)
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where ma = �A/A0 is called the amplitude modulation index or the modulation
depth, and ϕ0 is the initial phase. The modulation depth is a bounded constant with
ma ∈ [0, 1]. If ma = 0, then no modulation exists, whereas ma = 1 corresponds to
maximal modulation.

Frequency modulation (FM) is another type of modulation. In this case the instan-
taneous frequency of the signal x(t) can be written as

ω(t) = ω0 + �ωz(t) (3.5)

where ω0 is the base frequency and �ω is the maximal deviation of the frequency.
Then an FM signal can be written as

x(t) = A0 cos
[
Ψ (t) + ϕ0

]
, Ψ (t) =

∫ t

0
ω(s)ds, (3.6)

or using (3.5),

x(t) = A0 cos

[
ω0t + ϕ0 + �ω

∫ t

0
z(s)ds

]
. (3.7)

In the case of a single-tone FM-signal z(t) = cos(Ωt + Φ0) and therefore

x(t) = A0 cos
[
ω0t + ϕ0 + mf sin(Ωt + Φ0)

]
, (3.8)

wheremf = �ω/Ω is the frequencymodulation index,which characterizes the depth
of modulation of the FM signal, which can take values exceeding 1.

In terms of modulation, slowly varying frequency ridges shown in Fig. 3.2b can
be classified as FM processes.

3.2.3 Double Wavelet Transform and Analysis of Modulation

The nonstationary dynamics which is frequently observed in living systems always
has multi-tone oscillations. Then the equations describing modulated processes
become complicated and the values used to compute modulation indexes become
time-dependent. To describe such phenomena and their structure, a double wavelet
transform has been proposed [7].

First, we apply an ordinary wavelet transform to the analyzed signal. Then the
second wavelet transform is applied to signals constructed from instantaneous fre-
quencies (or amplitudes) of modulated rhythmic processes. Again, as in the first
wavelet transform, CWT coefficients are estimated and the ridges of the wavelet
energy are identified. Since the wavelet transform is applied twice, this method has
been called the double-wavelet analysis [7]. A similar idea called the secondary
wavelet transform has been proposed independently by Addison and Watson [8, 9].
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Fig. 3.3 Double wavelet analysis of the phase height dynamics of single cells. a Frequency modu-
lation of 1 and 2–4Hz rhythmic components by slow processes. Modulation depth vs frequency of
the slow process. b The same as in (a), but for amplitude modulation. c Typical normalized spectra
of the modulation processes

This approach allows one to obtain a time series for such characteristics as the ampli-
tude (or frequency) deviation, time-varying modulation indexes, and local spectra of
modulation [10].

In addition to the FM process shown in Fig. 3.2b, analysis of the phase height
dynamics can reveal modulation of the amplitude of high-frequency oscillations by
slower dynamics. To obtain statistical information about features of AMand FMphe-
nomena in the dynamics of intracellular processes, we repeated the above described
experiments 200 times [5]. Then for each measurement we estimated the modulation
frequencies and modulation indexes (modulation depths) using the double-wavelet
technique.

Figure3.3a and b illustrate the distributions of the modulation indexes for FM and
AM, respectively. In the FM case, there is clear difference between the two rhythms.
The modulation depth is higher for the 2–4Hz oscillation. In the AM case the 2–4Hz
rhythm generally has a higher modulation frequency. Figure3.3c shows a typical
example of the power spectra of the modulation processes for each rhythm. Thus,
the rhythmic components near 1 and 3Hz are modulated by different intracellular
processes. The rhythm near 1Hz is mainly modulated by a process with ultralow
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frequency around 0.1Hz, while the 3Hz rhythm is modulated by a higher-frequency
dynamics.

In conclusion, the double wavelet analysis revealed the presence of an interac-
tion between slow and fast rhythmic intracellular processes. This interaction occurs
in the form of modulation. We associate low-frequency dynamics with processes
occurring in the plasma membrane, while high-frequency processes are associated
with cytoplasmic events. Evidence for such an assumption is discussed in [11].
Thus, low-frequency oscillations are significantly more pronounced in the mem-
brane region than in the centre of neurons, while the 20–25Hz rhythms display the
opposite behaviour [6]. Moreover, independent experiments on the same type of
neurons demonstrated the existence of rhythmic dynamics. In particular, it has been
established [12] that frequencies in the range of 0.2–0.4Hz depend on the activity
of Ca2+ channels. It has also been found [13] that neurons in invertebrates possess
intrinsic electrical activity with frequencies 1 and 1.5–3Hz. The suggestion about the
origin of high frequencies (20–25Hz) from cytoplasm processes accords with exper-
imental data on vesicle movements in neurons (8–40Hz) obtained by light-scattering
measurements [14].

The double-wavelet approach allows a better understanding of neuron functions
and features of intracellular dynamics, both under normal conditions and under differ-
ent external influences. This approach provides quantitative measures characterizing
the interplay among intracellular processes and allows one to diagnose changes in
this interplay when there are external stimuli (see, e.g., [6]).

3.2.4 Modulation of Spike Trains by Intrinsic Neuron
Dynamics

Neurons encode and exchange information in the form of spike trains. Figure3.4a
shows a typical example of the extracellular potential recorded in the vicinity of a
projecting neuron in the gracilis nucleus. The trace has a number of spikes (short
pulses) that are clearly distinguishable over the background activity. In Chap.4, we
will discuss the problem of spike identification and sorting in more detail. Here
we just cross-check that all spikes belong to the same cell. This can be done by
superposing spikes (Fig. 3.4b). We can verify that all of them have a similar shape
and hence can be classified as emitted by only one neuron.

The first part of the recording corresponds to spontaneous neuron dynamics (no
external stimulation), while the second represents the neuron response to stimuli
(a slight pricking of the rat foreleg with frequency of 1Hz). We observe that the
stimulation drastically changes thefiring rate of the neuron.Moreover, the structure of
neural firing shows some signs ofmodulation.The analysis ofmodulationphenomena
discussed in Sect. 3.2.3 can also be applied to this spike train. In general, this approach
can lead to a deeper understanding of the information encoding used by neurons.
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t

x

(b)(a)

Fig. 3.4 Experimental recording of spiking activity in a single neuron. a Extracellular potential
with spikes generated by only one projecting neuron in the gracilis nucleus of a rat. The arrow
marks the beginning of external (tactile) stimulus. b Superposed spikes exhibit the same shape,
which confirms that they belong to the same neuron

The structure of interspike intervals without external stimulation is quite irregu-
lar, whereas under stimulation a well pronounced rhythm appears at the frequency
of the external stimulation (Fig. 3.5a, b). To reveal the time dynamics of different
rhythms in the spike train, we apply the wavelet transform (with the Morlet mother
wavelet) to interspike intervals. The spontaneous neuron dynamics exhibits several
rhythms. The twomost powerful of these correspond to 8 and 20s interspike intervals
(Fig. 3.5a, c, peaks at 0.05 and 0.125Hz). Under stimulation, a clear peak appears
in the power spectrum at the driving frequency of 1Hz and the ultralow frequency
(0.05Hz) disappears. However, the low-frequency dynamics observed under spon-
taneous conditions remains in the spectrum (Fig. 3.5b).

Figure3.5c, d show the time–frequency spectrograms. Under control conditions
(spontaneous firing), there are several rhythms whose frequencies “float” around
certain mean values. The sensory stimulus excites a new oscillation at 1Hz, which
again shows some oscillations. Thus, the neuron has some intrinsic dynamics even
under stimulation. This provides evidence for a nonlinear interaction between the
rhythmic components in neuron dynamics and raises an open question: Is it possible
to describe the process of information encoding in terms of frequency modulation?

Indeed, one possible interpretation of the oscillation observed in the main 1Hz
rhythm (Fig. 3.5d) can be given in terms of frequency modulation. The idea is that
the intrinsic slow dynamics of the neuron modulates the stimulus driven frequency.
Therefore, information encoding by this neuron is not trivial, but includes additional
features describing the neuronal state, feedbacks, and even some temporal history of
oscillations. On the basis of this hypothesis, modulation features such as the central
frequency, depth index, etc., can be estimated using the double-wavelet technique
(Sect. 3.2.3).

The instantaneous external frequency 1Hz is considered as a new signal for the
CWT. As a result, all rhythms occurring in the modulation will be revealed and
the depth of modulation can be estimated separately for each rhythm. Figure3.6
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Fig. 3.5 Analysis of interspike intervals in the neuronal spike train shown in Fig. 3.4. a and b Power
spectra under spontaneous conditions and under stimulation, respectively. c and d Time–frequency
dynamics of wavelet ridges under spontaneous conditions and under stimulation, respectively
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shows that the structure of low-frequency modulating signals is quite similar to
the spontaneous dynamics of the neuron. This indirectly confirms the hypothesis.
However, physiological interpretation of the observed phenomena and direct ways
of testing the hypothesis require more detailed analysis.
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3.3 Information Encoding by Individual Neurons

In Sect. 3.2.4, we saw that neurons can encode sensory stimuli in a rather complex
way. Besides extrinsic stimuli, some intrinsic neuronal dynamics enters the output
spike train transmitted to further relay stations of the central nervous system. Let us
now consider information encoding in more detail.

3.3.1 Vibrissae Somatosensory Pathway

The rodent vibrissae system is one of the most widely used experimental models for
the study of sensory information handling. The rat perceives the main information
by means of the vibrissal pad or “whiskers” (Fig. 3.7a). This is a highly specialized
and sensitive piece of apparatus that conveys tactile signals via the trigeminal system
to the animal’s brain (Fig. 3.7b) [15].

The four longest vibrissae, called straddlers, are labeled by the letters α, β, γ , and
δ. The other vibrissae are placed on the upper lip in five rows labeled by letters A, B,
C , D, and E . In each row, the vibrissae are numbered, e.g., A1, A2, etc. The length of
the vibrissae varies from 30–50 to 4–5mm, thus providing simultaneous contact of
their tipswith a tangible surface of an object duringwhiskermovements. The different
lengths and widths of wibrissae provide themwith different oscillatory features. This
allows them to cover the wide range of frequencies required for effective perception
of objects with different tactile characteristics.

Rats actively use their whiskers to detect and localize objects, and also to dis-
criminate surface textures. By sweeping the whiskers at rates between 5–20Hz, they
can localize and identify objects within a few whisking cycles or even with a single
vibrissa [16]. Thus relatively short temporal, but not spatial mechanical information,
dominates in the object detection.

Mechanical encoding of different textures is attributed to the whisker resonance.
The vibration amplitude across the whisker array codifies the texture (see, e.g., [17]).
It occurs also in awake rats and shapes natural whisker vibration. However, it seems
that textures are not encoded by the differential resonance. Instead, slip-stick events
contribute to a kinetic signature for texture in the whisker system, which suggests
the presence of temporal structure in neural spike trains under these experimental
conditions [18]. Thus the efficacy of the sensory information transmission and pro-
cessing in the time domain resides in the possibility for multiple cells to generate
coherent responses to a stimulus, which constitutes the neural code.

Although there has been much discussion about what type of neural code is
employed by each individual neuron or neuron group, growing experimental evi-
dence shows that the same neuron may use different coding schemes (see reviews in
[19, 20]). The temporal correlation of multiple cell discharges has also been found
important for information transmission to the cortex and its modulation by corticofu-
gal feedback (see, e.g., [21–23]).
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(a)

(b)

Fig. 3.7 Rat vibrissae system. a Illustration of vibrissae and their labeling. b Sketch of the main
steps in the pathway of tactile information processing

Somatosensory information from the whiskers arrives at the trigeminal complex,
organized into one motor and three sensory nuclei, including the principal nucleus or
principalis (Pr5), the spinal nucleus (Sp5), and themesencephalic nucleus (Fig. 3.7b).
In turn, Sp5 consists of three subnuclei called oralis (Sp5o), interpolaris (Sp5i), and
caudalis (Sp5c). Information from Pr5 and Sp5 goes to the contralateral thalamus
(VPm) and then to the primary somatosensory (SI) cortex. There is also a feed-
back monosynaptic projection with an extremely precise somatotopy from SI to the
trigeminal nuclei.

Over the whole pathway, primary afferents and neurons form spatial structures
called barrelettes, berreloids, and barrels in the trigeminal complex, VPm, and SI,
respectively. These spatial structures replicate the patterned arrangement of the
whisker follicles on the snout (for details see, e.g., [24–27]).
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3.3.2 Classification of Neurons by Firing Patterns

In electrophysiological studies, the classification of neurons according to their firing
patterns for spontaneous activity and under stimulation is widely accepted. Neu-
rons can be divided into three groups according to their mean firing rate (MFR)
under spontaneous conditions: silent neurons (SN) with MFR < 0.1 spikes/s, low-
frequency (LF) neurons with 0.1 < MFR < 1.5spikes/s, and high-frequency (HF)
neurons with MFR > 1.5spikes/s.

For tactile whisker stimulation, short air puffs directed toward a single vibrissa are
usually used. This kind of stimulation produces vibrations of the individual whisker
similar to real behavioral conditions. In experiments, the duration of air puffs can
be varied. We used three values: short 10ms, intermediate 50ms, and long 100ms
pulses. Trigeminal neurons fired from 1 to 8 spikes in response to each onset of tactile
stimulation of 10 and 50ms duration. For the long (100ms) stimulus, some of the
neurons produced from 20 to 40 spikes.

Taking into account the neural responses to the 100ms stimuli, we can classify
all neurons into tonic and phasic [28]. Figure3.8 shows an example of each neuronal
type. Phasic neurons (PhN) generate a few spikes under a change of stimulus phase,
i.e., at the beginning and/or the end of the stimulus (Fig. 3.8a, c). Tonic neurons (TN)
produce large spike trains lasting for the whole stimulation period (Fig. 3.8b, d).

According to the standard electrophysiological analysis, the three nuclei have a
quite different percentage of SN, LF, and HF cells (Fig. 3.9a). There is also some
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Fig. 3.8 Classification of neurons into phasic and tonic types, according to their response to a long
stimulus. a Typical response of a phasic neuron to a single stimulus. The extracellular potential
recorded in the trigeminal nucleus is shown. The upper bar corresponds to the duration of the
stimulus. c Peristimulus histogram of a phasic neuron made over 50 identical stimuli (2ms bin). b
and d The same as in (a) and (c), but for a tonic neuron
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Fig. 3.9 Statistical properties of neurons in Pr5, Sp5i, and Sp5o trigeminal nuclei. a Distribution
of neurons according to spontaneous activity: SN silent, LF low frequency, and HF high-frequency
neurons. b Mean spiking frequencies of S, LF, and HF cells. c Distribution of neurons according
to the type of response to whisker stimulation: TN tonic and PhN phasic neurons. d Mean spiking
frequencies for entire population, phasic, and tonic neurons

deviation in the mean firing frequencies among the nuclei (Fig. 3.9b). Thus there is
a difference in the spontaneous neural activity among the nuclei.

The three nuclei have similar percentages of tonic and phasic cells (Fig. 3.9c), and
hence no conclusions about dissimilarities among them can be drawn solely on the
basis of the type of response to stimulation.

Nevertheless, the Sp5i nucleus appears to be different from the Pr5 and Sp5o,
which in turn have some degree of similarity. Indeed, analysis of the firing rate
reveals:

• Similarly low spiking frequency among neurons from Pr5 and Sp5o compared
with Sp5i neurons for all (S, LF, and HF) groups (Fig. 3.9b).

• Ph cells from Pr5 and Sp5o nuclei have 2–3 times lower frequency than those from
Sp5i (Fig. 3.9d). The opposite behavior is observed for T neurons.

3.3.3 Drawbacks of the Traditional Approach to Information
Processing

In Fig. 1.1, we already gave an example of the firing dynamics of a Pr5 neuron
under periodic stimulation of a vibrissa in its receptive field. Even under the con-
dition of a completely repeatable stimulus, the neuronal response is far from being
constant. During the first few seconds, the neuron exhibits a maximal firing rate
(about 27 spikes/s), but the rate then quickly falls to about 10 spikes/s, and further
fluctuates for more than 20s. The neuron behavior is thus essentially nonstationary.
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However, most traditional approaches, such as peristimulus histograms, ignore this
observation.

Traditional analysis of neural spike trains has often been performed assuming
that segments of the experimental time series are approximately stationary and that
such segments can be studied by means of statistical techniques such as correlation
measures or Fourier analysis (see, e.g., [29–31]). This approach is obviously useful if
the nonstationarity has a time scale longer than the rhythms of interest. However, this
is not always the case. Instantaneous frequencies of various rhythmic components can
exhibit complex irregular fluctuations, that is, the nonstationarity may be associated
with higher frequencies aswell. Previous results [21] have shown that Fourier analysis
is hardly applicable in such conditions. An alternative is to use the wavelet technique,
which can be successfully applied to analyze the temporal structure of neuronal
spiking over a wide range of time scales [10, 21].

3.3.4 Wavelet Transform of Spike Trains

For information processing it is reasonable to assume that neurons produce and
exchange stereotypical events or spikes. Thus, only the timings of the spike occur-
rences carry a message. Consequently, before applying any analysis, spikes in exper-
imental data should be identified and sorted among different neurons. This procedure
will be discussed in detail in Chap.4. Here we assume that this problem has already
been solved.

Figure3.10a illustrates a typical example of a high-pass filtered extracellular
recording ( fcut = 300Hz) made in a Pr5 nucleus. Four spikes coming from a single
cell can be seen by the naked eye. However, in more complex situations, advanced
spike sorting techniques must be used, including those based on the wavelet trans-
form. The results of data preprocessing given in this section are based on the wavelet
shape-accounting classifier (WSAC) (see Sect. 4.4).

Once spikes of a single cell have been identified, they can be represented as a
series of δ-functions,viz.,

n(t) =
∑

δ(t − ti ), (3.9)

where {ti } is a set of time instants corresponding to spike firing (Fig. 3.10a). Then
we can apply the continuous wavelet transform to the signal (3.9).

Let us consider the CWT with the Morlet function. The timescale s plays the role
of the period of the rhythmic component. Given a characteristic timescale (e.g., the
period) s, the resolution of the wavelet in the time and frequency domains is given
by

δt = ck0s, δω = c

k0s
, (3.10)

where c is a constant of the order of unity. There is a trade-off between the frequency
and time resolutions: small values of k0 provide better time resolution, whereas large
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Fig. 3.10 Wavelet analysis of a spike train. a Conversion of extracellular recording into a spike
train n(t). b Energy density E( f, t) of the spike train (color from blue to red corresponds to the
spectrum magnitude). The dashed black curve defines the cone of influence where edge effects
cannot be neglected. c Time evolution of spectral “ridges” Fk(t). The thick curve corresponds to
the main (most prominent and stable) ridge, whose central frequency oscillates in time at around
20Hz

values of k0 improve frequency resolution. The commonly adopted value is k0 = 1
and the limit k0 → ∞ corresponds to the Fourier transform. Sometimes, especially
for the analysis of spike trains, k0 = 2 can be more suitable.

Equation (3.9) allows us to estimate the wavelet coefficients analytically:

W (s, t0) = 1√
s

∑
i

e−i2π(ti−t0)/se−(ti−t0)2/2k20s
2
. (3.11)

Using the wavelet transform (3.11), we can perform the time–frequency analysis
of rhythmic components hidden in the spike train. The wavelet coefficients can be
considered as a parameterized function Wp(t0), where t0 plays the role of time. It is
convenient to introduce the following normalization of the energy density:

E(s, t0) = 1√
πrk0s

|W (s, t0)|2, (3.12)
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where r is the mean firing rate (the normalization of the energy spectrum per spike
simplifies comparison of neurons with different firing rates). For biophysical conve-
nience, instead of (3.12), its frequency counterpart E( f, t) is often considered. This
is obtained by substituting s = 1/ f (k0 = 1).

E( f, t) represents a surface in 3D space whose sections at fixed times provide
information about the local energy spectra. Figure3.10b is a 2D plot of the energy
density of the spike train shown in Fig. 3.10a. Each spike produces a broad frequency
spectrum. The existence of rhythms in the spike train leads to the appearance of
“ridges” in the 3D energy surface, associated with the rhythmic contributions. These
ridges, oriented along the time axis, identify the spectral content of the spike train at
any given time moment.

Thus the dynamics of rhythmic components hidden in a spike train is reflected in
the time evolution of spectral ridges. To construct spectral ridges, a search for local
maxima of the energy spectrum E( f, t0) at time t0 is performed (Fig. 3.10a), thus
obtaining a set of 2D functions of time Fk(t), where the subindex corresponds to the
number of the ridge (Fig. 3.10c).

Spectral ridges can appear and disappear in time, and they can also oscillate
(Fig. 3.10c). Oscillations indicate the presence of a given rhythm in the spiking
dynamics of a neuron and its modulation by other rhythms (e.g., due to a high
frequency jitter in the spike timings). If a neuron generates a stereotypic response to
periodic stimulation (i.e., the same pattern for each stimulus event), then its instan-
taneous frequency associated with the stimulus rhythm remains constant. We thus
obtain a “perfect” (continuous and straight) spectral ridge at the stimulus frequency.

Deviation from the stereotypic response associated with “missing” or “extra”
spikes, or with changes in the interspike intervals, causes temporal variations in
the instantaneous frequency and even disappearance of the ridge, as happens in
Fig. 3.10c. Moreover, the greater the fluctuation of the instantaneous frequency, the
more significant the differences in the neuronal response. Thus, following the time
evolution of the instantaneous frequency of spectral peaks (i.e., the spectral ridge)
enables one to study the stability and stationarity of neuronal responses to a tonic
stimulus.

To quantify the stability of the neuronal response, the following measure can be
considered:

St = 1

σ0
, (3.13)

where σ0 is the standard deviation of the time evolution of the main spectral ridge
F0(t) found in the vicinity of the stimulus frequency.

To evaluate St for a spike train, its energy density (3.12) is estimated. Then for
a fixed time t0 (changed with a 5ms time bin), we search for the energy maximum
in the frequency range fstim ± 5%. The resulting frequency is assigned as F0(t0).
Finally, the standard deviation of F0 yields St.
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3.3.5 Dynamical Stability of the Neuronal Response

In this section we test the methodology proposed in Sect. 3.3.4 on simulated neuronal
responses to external stimuli. To do so, we consider three neurons embedded in a
network and receiving the same periodic (1Hz) sequence of 50 stimuli. Depending
on the current network state and its dynamics, the neuronal responses may have
different variability, i.e., the firing patterns provoked by each stimulus event may
have different degrees of repeatability.

We simulated neuronal responses under three different conditions:

• N1: Constant in time strong variability. The neuron responds to each stimulus
by generating 3–5 phasic spikes (3.9 ± 1.2 std) with fluctuating spike timings
(8ms std).

• N2: Changing (small) variability. The neuron generates a spike train similar to N1,
but the firing rate decays linearly (from 5 spikes per stimulus at the beginning to
about 2.5 at the end).

• N3: Increasing (intermediate) variability. The spike train is similar to N2, but the
fluctuation in spike timings increases from 0 at the beginning to about 40ms std
at the end.

The response pattern of the first neuron has a stationary distribution, whereas those of
the second and third neurons are similar to the experimentally observed adaptability
to the stimulus (Fig. 1.1). Their firing rates decay in time. The difference between
the neurons N2 and N3 is in the variability of the spike timings. The neuron N2 has
constant fluctuations, whereas the magnitude of the fluctuations for N3 increases
with time.

Figure3.11a shows a 5s epoch of the stimulus and spike trains of the three neurons.
Applying the traditional peristimulus time interval analysis, we obtain roughly the
same peristimulus time histograms (PSTHs). All histograms have three peaks at
latencies 20, 50, and 90ms, corresponding to the neuronal phasic response to the
stimulus, and are hardly distinguishable. Thus, PSTH fails to quantify the differences
in behavior exhibited by the neurons, as expected. Not much additional information
is provided by the raster plot (not shown).

The wavelet energy spectrum of the first spike train differs significantly from
the spectra of N2 and N3, which are very similar (Fig. 3.11b). Fluctuations in the
spectral magnitude of the 1Hz rhythm reflect changes in the strength of the neuronal
response at that frequency. Loosely speaking, it is proportional to the number of
spikes generated per stimulus. The spectral magnitude of the train N1 fluctuates
around the mean value, which agrees with the stationary nature of the firing patterns
of this neuron. The energymagnitude of N2 andN3 decays in time, again as expected
from the decaying firing rate of these neurons.

Figure3.12a shows the time evolution of the main spectral ridges F0(t) (corre-
sponding to fstim = 1Hz) for the three neurons. This provides information about
the phase (temporal) relationships between spikes in the firing patterns and reveals
differences in the three cases. The instantaneous frequency of N1 displays large
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Fig. 3.11 Quantification of the dynamical stability of the stimulus response patterns for three
neurons. a Stimulus and spike trains of three neurons (only 5 s epoch is shown). The three neurons
have almost the same PSTHs, but their firing dynamics is significantly different (see the main text).
bWavelet energy spectra of the spike trains in the stimulus frequency band (color from blue to red
corresponds to the spectrum magnitude)

stationary deviations from 1Hz due to the constant variability of spike timings and
“missing” spikes. The ridge of N2 has smaller deviations, especially in the first half
of the recording, where the neuronal response was more consistent (in the number
of generated spikes). N3 shows the smallest ridge variability (close to zero by con-
struction) at the beginning of the stimulation, but growing progressively toward the
end. The difference with N2 is explained by the temporally increasing variability of
the N3 spike timings.

It is noteworthy that the time evolution of the spectral magnitude (Fig. 3.11b) and
the ridge dynamics (Fig. 3.12a) provides complementary information about the firing
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Fig. 3.12 Quantification of the dynamical stability of the stimulus response patterns for three
neurons. a Time evolution of the main spectral ridges for the three spike trains. Shaded areas
correspond to the envelopes of F0(t) (obtained by the Hilbert transform). b Different response
stability measures. Left: Reciprocal of the standard deviation of the number of spikes. Center:
Reciprocal of the standarddeviationof themagnitudeof the energydensity at 1Hz.Right:Dynamical
stability factorS.The latter characteristic reveals distinctions in the stimulus responses of the neurons

patterns. Indeed, a strong neuronal responsewith a similar number of spikes produces
a quite stable, high magnitude spectral ridge. If the variability of spike timings is
much lower than the reciprocal of the ridge frequency (interstimulus intervals), then it
makes little contribution to the ridge height. However, this high-frequency dynamics
will affect the instantaneous ridge frequency and, consequently, will be visible in the
F0(t) plot.

Let us now check the different measures of the response stability of the neurons
N1–N3 that can be derived from the spike trains and their wavelet analysis. First, the
standard deviations of the number of spikes elicited by each stimuluswere calculated.
Similar characteristics have been used for quantification of the frequency-dependent
response in VPm and SI neurons [32]. Figure3.12b (left inset) shows that the recipro-
cal of the standard deviation (i.e., 1/std number of spikes) is the same for all neurons,
whence this measure cannot distinguish dynamical differences in their responses.

Figure3.12b (middle inset) shows the reciprocal of the standard deviation of
the magnitude of the energy density (corresponding to Fig. 3.11b) at the stimulus
frequency. This measure differentiates the responses of N1 from those of N2 and N3.
The lower value for N2 and N3 is mostly due to the trend in the energy magnitude
in these cases. Detrending the energy density functions raises the measure to 74 for
N2 and N3 and does not affect its value for N1. Thus the energy magnitude-based
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measure can be a good predictor of a neural rate code, but it cannot pick up the
variability in the spike timings.

Finally, Fig. 3.12b (right inset) shows the dynamical stability measure (3.13) eval-
uated for the three neurons. This measure correctly quantifies the differences in
stability of the firing patterns among all three neurons.

3.3.6 Stimulus Responses of Trigeminal Neurons

The examples described in this section are based on experiments performed on anes-
thetized (urethane, 1.5g/kg)Wistar rats of either sexweighing 200–250g. The exper-
imental procedure is similar to that described in the work byMoreno et al. [33]. Ani-
mals were placed in a stereotaxic device that allowed easy access to the vibrissae.
Recordings were obtained using tungstenmicroelectrodes directed vertically into the
Pr5, Sp5i, and Sp5o nuclei.

Once an electrode had been put in place, the vibrissae were manually stimulated
by means of a thin brush to determine their receptive fields. The vibrissa maximally
activating a neuron near the electrode was further used for mechanical stimulation.
Free whisker movements were generated by air puffs directed at one vibrissa only
and signals were not recorded when other vibrissae exhibited any vibration. Air
pulses were generated by a pneumatic pressure pump (Picospritzer III, Parker Inst.
TX) and delivered via a silicon tube of diameter 0.5mm, positioned at 10–12mm
perpendicularly to the vibrissa:

• Stimulus protocol S1: Three separate sequences of 50 air puffs lasting 10, 50, or
100ms each with 1 s interpuff intervals were delivered at the neuron’s receptive
fields.

• Stimulus protocol S2: Air puffs of fixed duration (10ms), but with different stimu-
lation frequency, ranging from 1 to 30Hz, were delivered at the neuron’s receptive
fields. During the course of individual experiments, the frequency was randomly
changed. The whole duration of stimulation at a given frequency was 50s.

The extracellular potential was amplified, sampled at 20kHz, passed through the
band-pass filter (0.3–3.0kHz), and then analyzed using the special software Spike 2
and custom packages written in Matlab. For the wavelet analysis, we selected only
those neurons whose extracellularly recorded spikes were well isolated from the
activity of the other neurons.

3.3.6.1 Effect of Stimulus Duration (Protocol S1)

The stability parameter St was calculated for all selected neurons and the three
stimulus durations. In addition, we determined the stimulus duration (10, 50, or
100ms) that provides the maximally stable response pattern for each neuron. To
describe quantitative changes in the stability parameter when the stimulus duration
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Fig. 3.13 Population analysis of the dynamical stability of the neuronal response patterns under
variation of the air puff duration (stimulus protocol S1). a Percentage of cells showing maximal
stability for 10, 50, or 100ms stimuli. Neurons from Pr5 and Sp5i “prefer” 50ms, whereas Sp5o
shows better stability for shorter (10ms) stimuli. b Percentage of neurons showing an increase (left)
or decrease (right) in the response stability under increasing stimulus duration

Table 3.1 Comparative analysis of the stability of neural response patterns evoked by tactile
whisker stimulation by air puffs of different duration (10, 50, and 100ms) for neurons from Pr5,
Sp5i, and Sp5o nuclei

Maximal S (%) Increase in S
(%)

Decrease in S
(%)

10ms 50ms 100ms (S50 > S10) (S50 > S100)

Pr5 20 53 27 73 73

Sp5i 8 67 25 92 75

Sp5o 50 17 33 33 67

increases (10 → 50 → 100 ms), the neurons satisfying the conditions St50 > St10
and St50 < St100 were counted. Figure3.13 and Table3.1 summarize the results.

In the case of Pr5 neurons, the stability parameter St is likely to bemaximal for the
middle stimulus duration (50ms, Fig. 3.13a). The most stable response is observed
for 53% of all cells with the 50ms stimulus. The remaining 27 and 20% of cells
respond stably to 100 and 10ms stimuli, respectively.

Quite similar behavior occurs for Sp5i neurons. Here even more cells (67%)
“prefer” stimuli of intermediate duration. This is achieved mostly by decreasing the
cell population showing a better response to the shortest 10ms stimuli (8%).

Sp5o neurons typically behave differently. The maximally stable response pattern
for 50ms stimulation was observed for only 17% of the cells. Meanwhile, half of the
neurons showed better stability for the shortest stimulation (10ms). The proportion
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of the cells with better response to the 100ms stimuli was about 33%, a little bit
higher than for Pr5 and Sp5i neurons.

Figure3.13b shows differential stability characteristics. For 73% of Pr5 neurons,
responses to 50ms stimulation are more stable than those to air puffs of 10ms dura-
tion. In the case of Sp5i neurons, the value of St increases at the transition 10 → 50ms
for about 92% of cells. Thus, Pr5 and Sp5i neurons are characterized by a rather simi-
lar type of reaction to variation of the stimulus duration. However, different behavior
is observed for Sp5o neurons. Only for 33% of cells did St increase with the stimulus
duration (from10 to 50ms). If the stimulus duration increases further (50 → 100ms),
about 70% of neurons from all nuclei display a decrease in their response stability.

Thus the protocol S1 allowed us to conclude that:

• The stability of response patterns depends on the stimulus duration, that is, neurons
process stimuli of different duration in different ways.

• There exist significant changes in the types of responses for Pr5, Sp5i, and Sp5o
neurons. The most reliable responses are achieved in Pr5 and Sp5i for 50ms
stimulus and in Sp5o for 10ms.

3.3.6.2 Effect of Stimulus Frequency (Protocol S2)

Let us now discuss effects of the stimulation frequency (protocol S2). It has been
found that all trigeminal neurons can be subdivided into three groups by their type
of response to the frequency content of the stimulus. Figure3.14 shows the stability
measure as a function of the stimulus frequency St( fstim) for three representative
cells. By analogy with the filter terminology, we will refer to the three basic types of
neuronal response as low-pass, band-pass, and no dependence.

In all nuclei, band-pass is the most frequent cell behavior. It occurs in 58, 59,
and 53% of neurons in Pr5, Sp5i, and Sp5o, respectively (Fig. 3.15a). The low-pass
reaction is observed for 33, 31, and 35%of neurons fromPr5, Sp5i, and Sp5o, respec-
tively. Finally, 9, 10, and 12% of cells in the corresponding nuclei are characterized

(a) (b) (c)

Fig. 3.14 Three main types of behavior of the dynamical stability of neuronal responses to the
frequency of a tonic stimulus St( fstim): low-pass (a), band-pass (b), and no dependence (c)
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(a) (b)

Fig. 3.15 Population analysis of the dynamical stability of neuronal responses under variation of
the stimulus frequency (stimulus protocol S2). a Percentage of cells showing different “filtering”
characteristics in Pr5, Sp5i, and Sp5o nuclei. b Mean central frequencies of band-pass neurons

by the no-dependence reaction. Thus, there are small population distinctions in the
frequency filtering properties of Pr5, Sp5i, and Sp5o nuclei.

For band-pass type responses, the mean central frequency was determined (mean
± s.e.): 5.1 ± 0.9Hz (Pr5), 5.2 ± 0.8Hz (Sp5i), and4.0 ± 1.3Hz (Sp5o) (Fig. 3.15b).
Thus, neurons in Pr5 and Sp5i nuclei have the same central frequency, whereas cells
in Sp5o typically show a smaller value of the stabilization frequency.

3.3.6.3 Biophysical Interpretation

For effective stimulus perception, information specific to the object should be invari-
ant to the details of the whisking motion. Therefore, flexibility and adaptability in the
processing of the whisker vibrations are required. Experiments in vitro [34] demon-
strated that neurons in the barrel cortex do indeed adapt their input-output function,
in such a way that the gain rescales, depending on the range of the current stimu-
lus distribution. In this section, it has been shown that in vivo accommodation of
firing patterns to stimulus characteristics can be quantified by the stability measure
St, which was used to study neuronal responses in the trigeminal nuclei evoked by
tactile whisker stimulation.

Analysis of the time evolution of frequency ridges in thewavelet space can be used
to identify the variable frequency content in a neural spike train under essentially
nonstationary conditions of sensory information processing. The method allows an
integral quantification of the variability in the number of phasic spikes and in the
spike timings. It takes into account changes at the stimulus time scale and also at
significantly shorter time scales. The validity of the method has been cross-checked
using simulated spike trains resembling properties of real recordings (Fig. 3.11).
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A fundamental issue in neural coding is the role of variation of spike timings in
information processing. Indirectly, this can be tested by an artificial jittering of the
spike timings and its influence on the derived measures (see, e.g., [35, 36]). The
stability measure St can be used to provide a direct answer to the question: how
stable or repeatable are the firing patterns produced by a neuron for each stimulation.
If the stability measure is high, then the spike patterns are highly repeatable during
the whole recording, and consequently, such a neuron is likely to be using a kind
of temporal code. Conversely, low stability suggests high variability in the spike
patterns and points to a rate code or the presence of a complex dynamics, for example,
involving local and global feedback and fast adaptation.

Recent results [35] demonstrate that the trigeminal ganglion neurons use temporal
code. Here, using the dynamical stability measure, it has been shown that neurons in
Pr5, Sp5i, and Sp5o nuclei can vary their response stability according to the stimulus
characteristics, for example, the stimulus duration (Fig. 3.13). Thus the trigeminal
neurons adapt their coding scheme to the stimulus characteristics, and there is a
continuous oscillation between the two extremes, the temporal and rate codes. This
conclusion is indirectly supported by the presence of an extensive network locally
connecting neurons in the trigeminal nuclei and the global corticofugal projections,
so that the global network dynamics canmodify the stimulus-evoked patterns of each
individual neuron.

It is known that the frequency of whisker movements plays an important role in
effective perception (see, e.g., [37, 38]). Previous results showed the presence of
resonance properties in the firing of thalamic and cortical neurons (see the review
in [17]). Indeed, the stimulation of a vibrissa at a given frequency can be related to
its vibration during perception. Then the surface discrimination requires fine-tuning
of the system and a series of impulses deflecting the vibrissa can be considered as a
single entity. Therefore, we expect an effective band-pass amplification (or filtration)
of the stimuli in a given frequency band by some cells. It was found that more than
half (about 57%) of neurons in the trigeminal nuclei have this property. Finally, the
remaining 10% of cells have no pronounced dependence on the stimulus frequency,
and these neurons probably perform a different task, not directly linked to stimulus
codification and transmission. Besides, their stability factors are usually extremely
low (e.g., in Fig. 3.14, Stlow ≈ 500, Stband ≈ 150, whereas Stno dep ≈ 18), which also
suggests that stimulus processing is not their primary role.

The percentage of neurons showing low-pass, band-pass, and no-dependence
behavior is quite similar across different nuclei (Fig. 3.15a). This suggests that the
number of neurons specializing in different tasks (e.g., border or texture detection)
is also similar in Pr5, Sp5i, and Sp5o nuclei. The mean “optimal” stimulation fre-
quencies of the band-pass neurons is about 5Hz for Pr5 and Sp5i and about 4Hz in
Sp5o. These frequencies are close to the lower end of the frequency scale for whisker
movements in active exploration (4–12Hz) [39]. These results correlate with stud-
ies of the amplitude of averaged neuronal responses in the somatosensory cortex,
where similar filtration properties have been found [32]. Thus, we can suppose that
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at least some the filtration properties observed for neurons in the somatosensory cor-
tex can be influenced by analogous responses generated by neurons in the trigeminal
complex.

3.4 Wavelet Coherence for Spike Trains: A Way to
Quantify Functional Connectivity

Avery commonmethod to track temporal coupling or functional association between
stimulus and neural response is the peristimulus time histogram, which characterizes
the cross-correlation between two point processes, i.e., stimulus events and the neural
spike train [29].On the one hand, the PSTHexamines temporal changes in the amount
of generated spikes triggered by the stimulus. On the other, analyses in the frequency
domain can provide a more concise description of the temporal correlation of the
oscillatory patterns in spike trains.

In the frequency domain, spectral coherence is a well-established standard tool
to analyze the linear relationship between two (usually continuous) signals by deter-
mining the correlation between their spectra. A high spectral coherence suggests
the presence of a functional association between, e.g., the stimulus and the neural
response in the corresponding frequency band. Starting from this concept, several
modifications of the coherence measure have been suggested (see e.g., [40–42]).

Although the above-mentioned measures have been shown to be very useful for
different problems in neuroscience, they suffer from the assumption of stationarity
of the neural response and do not account for dynamical changes in associations
(coupling) between stimulus and neural response. Indeed, any analysis based entirely
on time averaging (PSTH) or on the Fourier transform (spectral coherence) ignores all
temporal variations in the functional coupling between tactile stimulation and neural
response. An additional temporal resolution is essential and demands replacement
of the classical Fourier (spectral) coherence by other methods. There have been
successful attempts to adapt Fourier-basedmethods to short time signals, for example,
by means of orthonormal sliding windows [43–45], which are similar to the classical
Gabor transform [46].

Wavelet analysis is a significantly more powerful tool that offers a reasonable
compromise between temporal and frequency resolutions. The wavelet transform
has been used to analyze brain signals from the very beginning in neuroscience.
Most of its applications have been to electroencephalographic recordings (see, e.g.,
[47–54]).

The first studies of wavelet coherence go back to the beginning of this century
[55–58]. In a similar way to spectral coherence, wavelet coherence informs about
the functional coupling between, e.g., the stimulus and neural response, but it also
provides the temporal structure of the coupling. The use of the wavelet transform for
analysis of neural spike trains recorded in the trigeminal nuclei under tactile whisker
stimulation is illustrated in [10, 59].
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In this section, we quantify the wavelet coherence (i.e., functional association) of
the gracile neural response to tactile stimulation, and show that activation of the SI
cortex leads to a dynamical (i.e., time-varying) alteration of the neuronal response
characteristics mediated by the corticofugal pathway. For this purpose, we shall
consider how wavelet coherence can be used to investigate the dynamical properties
of neural spike trains and to evaluate dynamical changes in the neural response to
tactile stimulation in the gracilis nucleus provoked by activation of the corticofugal
feedback from the SI cortex.

3.4.1 Wavelet Coherence of Two Point Processes

PSTH and ordinary spectral coherence usually provide little information about the
time–frequency contents of a spike train. Some insight can be obtained by the tradi-
tional dot-raster display. Although the raster display can capture important temporal
characteristics of the neural stimulus response, it is merely a visual tool, i.e., no mea-
sure of stability of the neural response can be derived directly. Moreover, a correct
comparison of raster displays generated by several neurons with essentially different
firing rates is difficult, if not impossible. This leads eventually to a problem in gener-
alizing results over the neuronal population.Meanwhile, the wavelet technique offers
a natural way to study the temporal structure of neural stimulus response coherence.

A spectral representation of a spike train can generally be obtained by the Fourier
transform. However, this transformation is known to have difficulties in dealing with
point processes [30]. To overcome some of these difficulties, the multitaper Fourier
transformhas been advocated in the literature [31].Although themultitaper transform
usually provides a good estimate of the power spectrum, in the case of excessively
periodic spike trains (e.g., under experimental conditions of periodic stimulation), it
may fail to represent the spectral density consistently. The wavelet transform can be
used as an alternative way to perform spectral analysis.

As we saw in Sect. 3.3.4, a spike train can be represented as a sum of delta
functions (3.9). Then the wavelet power spectrum of the spike train can be defined
by (3.11) and (3.12). The global wavelet spectrum can be obtained from (3.12) by
time-averaging the local (time-dependent) spectrum:

EG(s) = 1

T

∫ T

0
E(s, t0)dt0, (3.14)

where T is the time length of the spike train. The global spectrum (3.14) provides
an unbiased and consistent estimate of the true power spectrum [60].

This approach ensures that the mean energy in a random spike train is homo-
geneously distributed over all interspike intervals EG(s) = 1. This is similar to the
spectrum of white noise. Consequently, we quantify the power distribution in the
train under study in units of the power of the random spike train with the same mean
firing rate. Energy below (above) 1 means that the probability of spike patterns with
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the given scale s is below (above) the probability of such a pattern in the random
spike train.

When dealing with two spike trains N and M , by analogy with the Fourier cross-
spectrum, we can introduce the following wavelet cross-spectrum:

WNM(s, t0) = WNW ∗
M

k0
√

πrNrM
, (3.15)

where WN and WM are the wavelet transforms of the trains N and M , respectively.
Then a normalizedmeasure of association between the two spike trains is the wavelet
coherence [55]

CNM(s, t0) =
∣∣∣S[

WNM(s, t0)/s
]∣∣∣2

S
[
EN (s, t0)/s

]
S
[
EM(s, t0)/s

] , (3.16)

where S is a smoothing operator (for details see [55, 61]). The coherence defini-
tion (3.16) may give artificially high values for the coherence in the case of infinites-
imally small values of the power spectrum of either signal or both signals, i.e., when
E(s∗, t∗0 ) ≈ 0. To avoid this problem in numerical calculations, a thresholding pro-
cedure can be used, setting the coherence to zero when either of the power values is
below a certain threshold.

3.4.2 Measure of Functional Coupling Between Stimulus
and Neuronal Response

3.4.2.1 Coherence in the Stimulus Frequency Band

To study the functional coupling between the stimulus and the neuronal response
we can use (3.16) with N the train of stimulus events and M the neuronal spike
train. Because we are interested in studying the functional coupling with stimulus
events, which are periodic, we will focus on the frequency band corresponding to the
stimulus frequency, i.e., on f = 1Hz, which is associated with the scale s = 1 s. To
successfully resolve the stimulus-induced frequency contents in the neural response
with minimal loss in time resolution, we set k0 = 2. Then from (3.10), δω ≈ 1/2 and
δt ≈ 2. Although the wavelet transform uses the time scale (period) s as a parameter,
to address the frequency contents,we shall use the frequency as the parameter, defined
formally by f = 1/s.

To quantify the variation of the functional coupling among stimuli and neural
response, we average the neural stimulus coherence over scales in a narrow band
around the stimulus frequency. An estimate of the band limits can be obtained from
(3.10), viz., f ∈ [

(1 − c/2πk0), (1 + c/2πk0)
]
,whichgives 0.83–1.16Hz for c = 2.

We shall refer to this frequency band as the stimulus frequency band. Obtained this
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way, the coherence is a function of time

C(t) = 1

s2 − s1

∫ s2

s1

CNM(s, t)ds, (3.17)

which is then used to evaluate the power spectrum by the conventional Fourier trans-
form.

3.4.2.2 Statistical Significance

Two linearly independent spike trains have insignificant coherence CNM(s, t0) ≈ 0,
whereas CNM(s, t0) = 1 indicates a perfect linear relationship between the spike
trains at the scale s and localization t0.

Although a large coherence amplitude usually indicates the presence of a consis-
tent phase relationship (coupling) between two spike trains in a given time interval, it
is also possible that this is a random variation in the spike trains. One should therefore
cross-check the statistical significance of the observed coherence.

The statistical significance of the wavelet coherence can be assessed relative to
the null hypotheses that the two spike trains generated by independent stationary
processes with given distributions of interspike intervals (ISIs) are not coherent. To
evaluate the significance level, we use a surrogate data test [62, 63] with Monte
Carlo simulation to establish a 95% confidence interval. The surrogate spike trains
are obtained from the original one by randomizing phase relations, keeping other
first-order characteristics intact. We shuffle the ISIs and evaluate coherence among
the surrogate spike trains. To conclude positively about the connectivity between the
stimulus train and the neuronal response, their coherence should be higher than the
resulting significance level.

3.4.2.3 Mean Characteristics Describing Effects of Cortical Stimulation

To examine the effect of cortical stimulation on the coherence of neural response to
stimulus, we average the local coherences over time and the stimulus frequency band

Cm
cntr = 〈

Ccntr(t)
〉
t , Cm

AESC = 〈
CAESC(t)

〉
t , (3.18)

whereCcntr(t) andCAESC(t) are the coherences in the stimulus frequency band in the
control and after the SI cortex stimulation conditions, respectively. For convenience
we also introduce the overall mean coherence Cm = (Cm

AESC + Cm
cntr)/2. First, we

recall that Ccntr(t) and CAESC(t) are bounded functions of time and thus the maximal
increment δCm = Cm

AESC − Cm
cntr depends on the overall mean coherence and cannot

exceed the value 2(1 − Cm). Thus the higher the overall mean coherence, the lower
the coherence increment can be. Then we guess a linear model
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|δCm| = α(1 − Cm), (3.19)

where α is a constant to be identified from the data.
Then for a given value of the wavelet coherence, by using (3.19) we can evaluate

the expectation of the absolute value of the coherence increment. If the observed
increment is much smaller than the expectation, we can question its significance
(i.e., no effect). To decide positively on the presence of an effect on the stimulus
coherence provoked by the SI cortex stimulation, we require the experimentally
observed increment δCm to be at least 50% of the expectation value, i.e., |δCm| ≥
0.5α(1 − Cm). Then we have a coherence increase or I-effect for positive δCm and
a decrease or D-effect for negative values.

3.4.3 Functional Connectivity of Gracilis Neurons to Tactile
Stimulus

The analyzed data set consisted of 29 extracellular recordings (spike trains) of unitary
neuronal activity from the gracilis nucleus measured at three different epochs:

• Spontaneous firing.
• Responses to periodic stimulation (1Hz rate) of the neuronal receptive field (con-
trol conditions).

• Responses to periodic stimulation (1Hz rate) of the neuronal receptive field after
electrical stimulation of the SI cortex (AESC conditions).

All neurons were identified as projecting to the thalamus [21]. The analyzed neurons
showed a low spontaneous activity with mean firing rate 1.1 ± 0.4spikes/s (range
0–10spikes/s) whose pattern coincided with the firing characteristics of projecting
neurons described previously [64, 65].

3.4.3.1 Example of Wavelet Analysis

First, let us illustrate the wavelet analysis of a representative neural spike train.
Figure3.16a shows the spike train during three different experimental epochs (for
illustration purposes, we selected a neuronwith a considerable spontaneous activity).
Under spontaneous conditions, the neuron exhibits an irregular spiking pattern with
a slight peak at 70ms, manifested in the autocorrelation histogram (ACH, Fig. 3.16b,
left).Mechanical stimulation under the control conditions elicited awell-pronounced
neuron response with 25ms peak latency, followed by a weakly rhythmic firing with
120ms period (Fig. 3.16b, middle). Electrical stimulation of the SI cortex facilitated
the neural response to the tactile stimulation. The response in the PSTH became
more prominent (Fig. 3.16b, right). However, neither the response latency nor the
mean firing rate (21.1 vs. 23.7 spike/s) varied much relative to the control conditions.
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(a)

(b)

(c)

(d) (e)

Fig. 3.16 Wavelet spectral and coherence analysis of experimental spike trains. a Stimulus events
and neural spike trains during three experimental epochs: spontaneous activity, control 32 s tactile
stimulation delivered to the neuron receptive field at 1Hz rate, and the same tactile stimulation
repeated after electrical stimulation of the somatosensory (SI) cortex (AESC). b Autocorrelation
(ACH) and peristimulus time histograms (PSTHs) for the corresponding epochs. c Wavelet power
spectra of the neural spike train for the corresponding epochs. The x-axis corresponds to the local-
ization z (time), whereas the oscillation frequency from 0.5 to 15Hz is plotted along the y-axis on
a logarithmic scale. Gray intensity is equivalent to wavelet spectral power. Dashed lines define the
cone of influence and horizontal dotted lines delimit the stimulus frequency band 0.83–1.16Hz.
d Level of statistical significance for the wavelet coherence obtained by the surrogate data test.
Coherence above the curve is deemed significant. The gray region is the frequency band of interest
(around the stimulus frequency). eWavelet coherence of the neural spike train to tactile stimulation
events for the control epoch and after SI cortex stimulation. Solid black lines delimit islands of
statistically significant coherence (the stripe between two dotted lines is of interest). Gray intensity
corresponds to the strength of the stimulus coherence of the neural response

Furthermore, the weak oscillatory behavior observed in the tail of the PSTH under
control conditions disappeared.

The wavelet power spectrum (Fig. 3.16c, left) confirms the irregularity of spon-
taneous firing observed in the ACH. There are many oscillatory rhythms localized
in both the time and frequency domains with essentially erratic distribution. Thus
spiking activity has no well-defined dominant periodic activity (although there is
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a feeble and not-persistent-in-time power peak at 14Hz). The distribution of the
power under control conditions (Fig. 3.16c, middle) shows a consistent peak in the
stimulus frequency band (from 0.83 to 1.16Hz, between the two dotted horizontal
lines). This peak indicates the presence of the stimulus-evoked rhythm in the neural
firing. We also note that the peak amplitude (power) is not persistent in time, but
instead exhibits a low-frequency oscillation (<0.3Hz). This oscillation of the spec-
tral power suggests that the neural response to the same tactile stimulation is not
stable (identical) throughout time, but instead has some variability, i.e., the neuron
fires essentially different numbers of spikes with different ISIs in response to the
same stimulus events during the stimulation epoch. We also observe some increase
in the spectral power around 8Hz, consistent with the oscillations (120ms period)
observed in the corresponding PSTH (Fig. 3.16b, middle). In accordance with the
stimulus response facilitation observed in the PSTH after electrical cortex stimula-
tion, the power peak at the stimulus frequency band became even more pronounced
(Fig. 3.16c, right). Now we have a continuous practically black island going through
the whole stimulation epoch in the stimulus frequency band. Notice, however, that
the ultralow-frequency oscillation of the power is weaker, but still exists. Besides,
there is a significant increase in the power of harmonics of the 1Hz rhythm and, on
average, a greater presence of oscillations in the domain of higher frequencies.

To quantify how coherent (reliable) the neural response to the stimulus events is,
we evaluated the wavelet coherence of the neural spike train and stimulus events.
To decide on the statistical significance of the observed coherence level, i.e., on
the presence of functional associations (coupling) between the stimulus and neural
response, we performed a surrogate data test by randomizing phase relationships
between two signals. Figure3.16d shows a statistical significance curve (P value
0.05) for the frequency range observed in the neural spike train. Coherence above
the curve is deemed statistically significant, although if the area of the significant
islands is small enough (5%), then the conclusion regarding the coherent response
should be made carefully.

Figure3.16e illustrates the wavelet coherence of the tactile stimulus events and
evoked neural response. Because the tactile stimulation is periodic (i.e., has only
one frequency), we shall refer to the stimulus frequency band only (delimited by
dotted lines in Fig. 3.16e) when speaking about the response coherence. During the
control stimulation epoch, we observe three islands of significant coherence in the
stimulus frequency band (Fig. 3.16e, left). This provides evidence for the presence of
the stimulus–response association previously observed in the corresponding PSTH.
However, we also find that the association or stimulus response coupling is not
constant, but an oscillatory function of time. Notice also that the neural power spec-
trum in the corresponding frequency band was not very strong (Fig. 3.16c, middle).
However, the coherence clearly reveals the functional coupling between the neural
firing dynamics and stimulus events. The stimulus coherence of the neural response
becomes stronger after electrical stimulation of the somatosensory cortex (Fig. 3.16e,
right). As we observed earlier in the wavelet power spectra (Fig. 3.16c, middle and
right), the stimulus coherence also suffers from ultralow-frequency oscillations.

Thus for a given neuron we observed two phenomena:
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• The strength of the functional stimulus–neural response coupling is amplified by
the electrical stimulation of the SI cortex.

• The coupling strength is a dynamical quantity, slowly oscillating in time, that can
temporarily fall below the significant level.

The latter implies that the stimulus–response association may be temporarily lost for
a single neuron.

3.4.3.2 Pitfalls of Fourier Spectrum and Wavelet Spectral Analysis

To illustrate possible pitfalls in the interpretation of the Fourier power spectrum, we
first evaluated the power spectrum through the multitaper Fourier transform of the
neural spike train shown in Fig. 3.16a. In accordance with the irregularity of firings
under spontaneous conditions, the Fourier spectrum (Fig. 3.17a) is essentially flat
with a peak at 14Hz corresponding to the periodicity observed earlier in the ACH
(Fig. 3.16b, left). However, for the control stimulation epoch, the overall spectral
distribution is quite similar to that of the spontaneous spectrum, and it lacks a peak
at 1Hz corresponding to the neuron response at the stimulus frequency. In contrast,
due to the excessive periodicity of the neural response, after the electrical stimulation
of the SI cortex, we observed an unreasonably wide peak around 1Hz, followed by
many strong harmonics contaminating the high-frequency range. Thus the Fourier
transform of a spike train may fail to consistently represent its spectral density.

We then used the wavelet transform as an alternative way to perform spectral
analysis. Figure3.17b shows the global wavelet power spectra of the neuron-firing
counterpart to the Fourier spectra. The wavelet spectra are much more consistent
with the oscillatory rhythms suggested by the previous analysis of spike trains by
the ACH and PSTHs. According to the normalization used in (3.12), the unit power
density corresponds to the power spectrum of a spike train with randomly distributed
ISIs, which we refer to briefly as a random spike train. Then a spectral power above
(or below) unity indicates the presence (or absence) of the corresponding rhythm in
the spike train with statistical power higher than just a random ratio.

During spontaneous activity, the power spectrum of the neuron firing only slightly
deviates from the spectrumof the random train across all frequency bands (Fig. 3.17b,
dotted line). In agreement with the weak rhythm observed in the ACH (Fig. 3.16b,
left), the global wavelet spectrum also has a small peak at 14Hz. We also detected
peaks at about 0.7 and 1.9Hz. Going back to the complete wavelet spectrum
(Fig. 3.16c, left), we find that the latter peaks are due to strong episodic events
localized between 4 and 7s and between 10 and 16s from the beginning, respec-
tively. Thus spontaneous firing can be characterized as random, showing no strong
persistent specific frequencies. Under the control tactile stimulation, we observed
a dramatic peak in the stimulus frequency band (Fig. 3.17b, solid line). Note that
the peak is quite narrow and has a harmonic at 2Hz. Stimulation of the SI cortex
boosts the amplitude of the power peak in the stimulus frequency band, and we also
observed an important enhancement of the power in the band ranging from about 5
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Fig. 3.17 Spectral analysis
of spike train (corresponding
to Fig. 3.16a) for three
different epochs:
spontaneous activity (dotted
line), control tactile
stimulation (solid line), and
tactile stimulation preceded
by electrical stimulation of
the SI cortex (dashed line,
AESC). Gray regions delimit
the alpha frequency band
ranging from 5 to 15Hz, and
the stimulus frequency band
0.83–1.16Hz. a Power
spectra obtained by the
multitaper Fourier transform.
b Global wavelet power
spectra for the same epochs

(a)

(b)

to 15Hz. For higher frequencies (>15Hz), there is no significant deviation of the
power density from 1, whereas for the range <5Hz, the harmonics of the stimulus
frequency rhythm are manifested in the power spectrum. Accordingly, we define
the second frequency band of interest (5–15Hz), which we shall refer to briefly as
the alpha frequency band. Thus at the single-neuron level used in this study, we
found that the frequency band corresponding to the evoked neural spiking activity is
localized in the stimulus and alpha frequency bands.

3.4.3.3 Population Properties of Spectral Power

To assess statistical properties of the observed changes in the spectral power of the
neuronal firing, we compared the global wavelet power spectra under spontaneous
conditions and under tactile stimulation in the control and after the SI cortex stimu-
lation conditions. Figure3.18 summarizes the results.

The overallmeanpower under spontaneous conditions corresponds to the power of
the random spike train, in both the stimulus and the alpha frequency bands (Fig. 3.18a,
b, spontaneous). This confirms that the firing pattern of projecting neurons in the
gracilis nucleus is essentially random. Stimulation of the neuron receptive fields
boosts the mean power concentrated in both the alpha and the stimulus frequency
bands (Fig. 3.18a, b, control), although the increase in the stimulus band is much
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(a) (b) (c)

Fig. 3.18 Spectral characteristics of gracile projecting neurons in the stimulus and alpha frequency
bands. a Mean power of the global wavelet spectrum and its SE in the stimulus frequency band
for spontaneous conditions and during response to tactile stimulation under control conditions and
after electrical stimulation of the SI cortex (AESC). b Same as a, but for the alpha frequency band. c
Statistics of the types of spectral effect of the electrical stimulation of the SI cortex for 2 frequency
bands. I, No, and D stand for increase, no effect, and decrease in the spectral power, respectively.
Black and gray bars correspond to the stimulus and alpha frequency bands, respectively

stronger (7 vs. 2.5 times). Electrical stimulation of the SI cortex raises the power
concentrated in these frequency bands even higher (Fig. 3.18a, b, AESC). However,
on average, the latter enhancement is not so drastic. The effect of electrical stimulation
lasted between 15 and 30min, after which the neurons recovered their activity.

A balanced one-way ANOVA ensures that the mean spectral powers in three
different epochs are significantly different with α values 2.5E−5 for the stimulus
frequency band and 2.7E−5 for the alpha band. A multiple-comparison test shows
that the values of the power during tactile stimulation under control conditions and
after SI cortex stimulation conditions differ significantly from the power of sponta-
neous firing in both frequency bands, and that they are statistically indistinguishable
from each other.

Although the mean spectral power across both frequency bands does not differ
significantly between tactile stimulations under control conditions and after electrical
stimulation of theSI cortex (Fig. 3.18a, b), in themajority of experimentsweobserved
an increase in the power provoked by cortex stimulation. This result agrees with
the previously reported facilitation of the stimulus response provoked by SI cortex
stimulation [66–69]. To quantify the percentage of neurons exhibiting different types
of effects of stimulation of the SI cortex, we evaluated the number of increases in the
spectral power (I-effects), the number of cases when the difference was negligible
(no-effects), and the number of decreases (D-effects). To decide on the type of the
effect we used the relative increment of the power in the given frequency band, viz.,
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�E = EAESC − Ecntr

(EAESC + Ecntr)/2
, (3.20)

where Ecntr and EAESC are the spectral power under control conditions and after
SI cortex stimulation conditions. If the absolute increment was <5%, we assigned
no-effect, otherwise, according to the sign of the increment, we decided on an I- or
D-effect.

Figure3.18c shows that, after stimulation of the SI cortex, in the majority of cases
(66 and 69% for the stimulus and alpha frequency bands, respectively), the power
of firing does indeed increase in both frequency bands, i.e., we have an I-effect of
cortex stimulation. In 17% of cases for the stimulus band and 14% for the alpha band,
cortex stimulation had no effect on the spectral characteristics of the neural response.
Finally, in 17% of cases, for both bands, the spectral effect of cortex stimulation was
negative, i.e., the power diminished.

Thus tactile stimulation leads to a significant enhancement of the power of neuron
firing, in both the alpha and the stimulus frequency bands. In addition, electrical
stimulation of the SI cortex amplifies the spectral power in these bands for about two
thirds of the neurons in the gracilis nucleus. We also conclude that facilitation of the
neural response by the corticofugal pathway occurs not only through an increase in
the number of spikes elicited by the stimulus, but also through the ordering of the
response pattern.

3.4.3.4 Effect of Cortex Stimulation on Response Coherence

Let us recall that coherence is a normalized measure of the cross-spectrum of two
signals. It thus has meaning in the frequency bands presented in both the neural spike
train and the stimulus. The latter has thefixed frequencyof 1Hz (up to small variations
due to the experimental setup). Accordingly, we study the wavelet coherence of the
neural response to tactile stimulation in the stimulus frequency band only, whose
limits were set to 0.83–1.16Hz.

To study the effect of cortex stimulation on the neural response coherence in the
gracilis nucleus, we evaluate the mean stimulus coherences in the control Cm

cntr and
after electrical stimulation of the SI cortex Cm

AESC. Figure3.19a shows the absolute
value of the coherence increment |δCm| = |Cm

AESC − Cm
cntr| as a function of the mean

overall coherence Cm = (Cm
AESC + Cm

cntr)/2 for the experimental data set. Not sur-
prisingly, the plot shows a strong linear tendency of the coherence increment to be
smaller for higher values of the overall mean coherence. By fitting the model (3.19)
to the data in the least-squares sense, we obtain α = 0.41 (solid straight line in
Fig. 3.19a). Thus for a given value of the wavelet coherence, by using (3.19), we can
evaluate the expectation of the absolute value of the coherence increment and define
the effect (No, I, or D) provoked by cortical stimulation (Fig. 3.19a).

Figure3.19b shows the percentage of different types of effects of electrical stim-
ulation of the SI cortex on the tactile stimulus coherence of neuron firing in gracile
projecting neurons. In the majority of cases (59%), electrical stimulation of the SI
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(a)

(b) (c)

Fig. 3.19 Effect of the electrical activation of the SI cortex on the wavelet coherence (reliability)
of the response of projecting neurons in the gracilis nucleus to tactile stimulation of their receptive
fields (RFs). a The absolute value of the coherence increment δCm as a function of the mean overall
coherence Cm shows a strong linear tendency. The solid straight line is the best fit of the data to the
model (3.19). The gray region delimits the no-effect region (data points shown by triangles), where
the experimentally observed value of the coherence increment is <50% of the expectation. Circles
and squares correspond to I (increase) and D (decrease) effects of electrical cortex stimulation on
the stimulus response coherence. b Percentage of neurons exhibiting I, No, and D types of effect.
c Relative changes (increase or decrease) in the coherence for I and D effects

cortex facilitates a more reliable (higher coherence) neural response to the tactile
stimulus. In 24 and 17% of cases, we had no effect or a decrease in coherence,
respectively. The observed relative increment of the coherence value for I- and D-
effects was about the same, namely, 13 and 15%, respectively (Fig. 3.19c).

We note that the positive increment in the coherence (reliability of the neuron
response to tactile stimulation) was observed in a slightly lower number of cases
than the increment of power in the stimulus frequency band (59% in Fig. 3.19b vs.
66% in Fig. 3.18c), which confirms the statement made earlier that an increase in
the spectral power is not necessarily accompanied by an increase in the coherence.
Moreover, this suggests possible subtle changes occurring in the stimulus response
pattern due to the corticofugal pathway, instead of a simple increase in the firing rate.

To cross-checkwhether the increment in thewavelet stimulus coherence correlates
with conventional characteristics of neural activity, we plotted an increment in the
mean firing rate δFR = FRAESC − FRcntr and an increment in the amplitude of the
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(a) (b)

Fig. 3.20 Increment in the mean neural firing rate (a) and the amplitude of the PSTH peak (b)
vs. the increment in the neural stimulus response coherence. Quadrants I and III correspond to
positive correlation between two characteristics (i.e., increase or decrease of one characteristic is
accompanied by the same effect in the other), whereas quadrants II and IV correspond to negative
or anticorrelation (i.e., when the effect in one characteristic is contrary to the effect in the other).
Dashed straight lines and gray regions containing them show the best linear fits of the data and
their 95% confidence limits. The direction and position of the fits imply the absence of correlation
between the firing rate and coherence measures, and a positive correlation of the amplitude of the
PSTH peak and coherence measures. However, note the presence of cases where changes in the
PSTH amplitude do not correspond to changes in the coherence

response peak in thePSTH�APSTH = AAESC − Acntr versus δCm (Fig. 3.20). In these
plots, a data point belonging to quadrant I or quadrant III corresponds to a positive
correlation between the corresponding measures, i.e., an increase or decrease in
coherence is associated with an analogous effect in the other characteristic, whereas
quadrants II and IV establish the contrary effect or anticorrelation. According to
the above-described findings, we expected that an enhancement of the reliability of
the neural response to tactile stimulation (i.e., δCm > 0) would not necessarily be
reflected in the neuron firing rate, but it seems reasonable to expect a better peaking
of the PSTH and consequently �APSTH > 0.

Indeed, Fig. 3.20a shows that the data points in the case of the mean firing rate are
distributed quite arbitrarily over the plane—the linear fit of the data confirms this.
The straight line and its 95% confidence interval are essentially horizontal, showing
no significant correlation between the measures. A different picture is observed for
the increment in the amplitude of the PSTH peak (Fig. 3.20b). The best-fit line and
its 95% confidence interval have a notably positive slope. Thus, as expected, we
have a positive correlation for the changes provoked by electrical stimulation of the
SI cortex between the coherence and the amplitude of the PSTH peak. However,
we note that an enhancement (or reduction) of the stimulus coherence is not always
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accompanied by an increase (or decrease) in the PSTH amplitude. This means that,
for a considerable number of experiments the PSTH measure fails to predict the
effect of changes in the coherence of the neural response to the tactile stimulus.

3.4.3.5 Variable Functional Coupling to Stimulus

In Fig. 3.16e, we observed qualitatively that tactile stimulus coherence oscillates
slowly in time, both for the control experimental conditions and after electrical stim-
ulation of the SI cortex. Let us nowquantify these oscillations and study their possible
functional role.

Figure3.21a shows two strips cut out of the corresponding coherence functions
in the stimulus frequency band that is shown in Fig. 3.16e between two horizontal
dotted lines. To examine the mean coherence and its modulation in time, we average
the local coherence over the stimulus frequency band. The resulting time series for
the control Ccntr(t) and after SI cortex stimulation CAESC(t) give a measure of the
reliability of the neuron response to stimulation events throughout the corresponding
stimulation epoch (Fig. 3.21a, bottom).At the beginning of the stimulation epochs (up
to∼20 s), the stimulus response coherence is higher after electrical cortex stimulation
than under the control conditions. The two characteristics then both exhibit some
decay (i.e., the neuron firing becomes less stimulus coherent) and no substantial
difference between the coherence values is observed. Over all the stimulation epochs,
we observed a slow oscillation of relatively large amplitude. We note that the period
of slow oscillation is much longer than the wavelet temporal resolution (about 10–15
vs. 2 s), which ensures correct identification of the coherence oscillatory behavior.

The observed oscillationmay have a functional role. Indeed, for the control stimu-
lation epoch the coherence falls temporarily below the significance level (Fig. 3.16e,
left and Fig. 3.21a, bottom).We can thus define timewindows (segments) with coher-
ence above or below the level of statistical significance. In Fig. 3.21a, these windows
are shown by white and gray boxes, so that the total length of the significant and
nonsignificant segments is the same. Obviously, in windows with high coherence,
the neuron should exhibit a strong functional stimulus–response relationship. How-
ever, when the stimulus coherence is not significant, this functional association may
be lost. The “raw” PSTH (Fig. 3.16b, middle) does not provide evidence for this
phenomenon. However, by splitting the spike train into two parts according to the
significance of the observed coherence, we do indeed observe an essential difference
in the PSTHs (Fig. 3.21b). In regions with significant coherence, the neuron exhibits
a well-pronounced stimulus response (Fig. 3.21b, left), whereas its firing becomes
practically uncorrelated with the stimulus in the time windows of nonsignificant
coherence (Fig. 3.21b, right). We can interpret this behavior as a temporal loss of
functional connectivity between the tactile stimulus and the neuron. We also note
that electrical stimulation of the SI cortex increases the stimulus–response coherence
and that it stays above the level of significance during practically the whole stimula-
tion epoch. Only after about 27 s does the coherence become nonsignificant. In such
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(a)

(b)

(c)

Fig. 3.21 Oscillatory behavior of thewavelet coherence of the neural response to tactile stimulation
events in the stimulus frequency band. a Top strips show coherences evaluated in the stimulus fre-
quency band 0.83–1.16Hz (corresponding to those shown in Fig. 3.16e between horizontal dotted
lines) for the control and after electrical stimulation of the SI cortex (AESC) for the representative
neuron. Gray intensity corresponds to the local coherence value. Zero on the time axis corresponds
to the beginning of each epoch. Bottom: Thick curves show the integral (averaged over the stimulus
frequency band) wavelet stimulus coherence of the neuron response throughout the stimulation
epochs. The thin dash-dotted horizontal line defines the level of statistical significance for coher-
ence under control stimulation conditions. According to the statistical significance, we define time
windows of significant (gray boxes) and nonsignificant (white boxes) coherence. b PSTHs of the
neural response under control conditions, evaluated over time windows with coherence above (left)
and below (right) the significance level. In the windows of coherent response, the neuron shows
a pronounced peak, whereas it loses the stimulus correlation outside the coherence windows. c
Fourier power spectra of the oscillation of the wavelet coherences under control conditions and
after SI cortex stimulation (AESC)
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(a) (b)

Fig. 3.22 Statistical properties of the ultraslow oscillations of the stimulus response coherence of
projecting neurons in the gracilis nucleus under control conditions and after electrical stimulation
of the SI cortex (AESC). a Mean oscillation frequency. b Mean oscillation power

an “alerted” state, the neuron maintains functional coupling to the sensory stimulus,
sending coherent spikes to the thalamus.

Figure3.21c shows Fourier power spectral densities for the ultralow-frequency
oscillation of the stimulus coherence in the control and after cortex stimulation. In
the first case, the spectrum has a peak at 0.09Hz, whereas after SI cortex stimulation,
the peak shifts to a lower frequency (0.06Hz) and becomes smaller.

Figure3.22 shows the mean frequency and power of the coherence oscillations
averaged over the neuron population during tactile stimulation under control con-
ditions and after electrical cortex stimulation. The mean frequency under control
conditions was 0.065Hz, which is slightly lower than the oscillation frequency of
0.068Hz after cortex stimulation. However, there is no statistically confirmed sig-
nificant difference between the two means. Similarly, the mean oscillation power
is slightly (but not significantly) higher in the case of tactile stimulation preceded
by electrical stimulation of the SI cortex. The mean frequency and amplitude of the
ultralow-frequency oscillations averaged over the neural population are not affected
by the electrical stimulation of the SI cortex.

Thus, the possibility of studying the temporal structure of the stimulus–response
coherence allowed us to describe ultraslow fluctuations in the tactile responses of
single projecting neurons. We note that such oscillations are not directly observable
either in the Fourier spectrum or in the PSTH of the neural response. Instead, they
represent slow modulation of the coherence (or reliability) of the neural response
to the tactile stimulation over a long timescale, i.e., the neuron fires essentially a
different number of spikes with different ISIs for the same stimulus events during
the stimulation epoch. Besides observing a facilitation of the tactile stimulus–neural
response functional coupling by the electrical stimulation of the SI cortex, we have
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provided evidence that the functional coupling between the sensory stimulus input
and neural response oscillates slowly in time. During this oscillation, the stimu-
lus coherence can temporarily fall below the significant level. This means that the
stimulus–response association may be temporarily lost for a single neuron. This phe-
nomenon suggests that information processing in the gracilis nucleus occurs on the
network level, which may be “energetically” beneficial for the system. The mean
frequency of the observed coherence oscillation was about 0.07Hz. Oscillations in
the same frequency band (0.02–0.2Hz) have been reported in studies of human EEG
[70]. The authors showed that large-scale ultraslow oscillations in widespread cor-
tical regions may represent a cyclic modulation of cortical gross excitability. This
ultraslow oscillation of cortical activity might be transferred to the gracilis nucleus
through the corticofugal projections, thus modulating tactile responses.
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Chapter 4
Classification of Neuronal Spikes from
Extracellular Recordings

Abstract In this chapter, we consider the problem of spike separation from extracel-
lularly recorded action potentials, which is important when studying the dynamics of
small groups of neurons. We discuss general principles of spike sorting and propose
several wavelet-based techniques to improve the quality of spike separation, includ-
ing an approach for optimal sorting with wavelets and filtering techniques. Finally,
we consider the application of artificial neural networks to solve this problem.

4.1 Introduction

Most of the neurons in the brain communicate by sending and receiving short-lasting
electrical pulses, so-called action potentials or spikes. When analyzing the coopera-
tive behavior of a neuronal ensemble or studying the neural code, spikes are thought
to be stereotypical events. Hence it is not the shape of each spike waveform but the
precise timing of spike firing that matters for this analysis. Then we can speak about
spike trains generated by neurons as of a multivariate binary process. Many contem-
porary studies of neuronal activity rely on the analysis of spike trains. One may seek
different correlations among neurons or behavioral correlates, spatial and temporal
patterns, firing synchronization phenomena, etc. For example, this is especially rel-
evant for the analysis of neuronal responses in the first relay stations of the brain to
external tactile stimuli, i.e., the way neurons process different external inputs and the
temporal sequences of spikes they generate [1, 2]. In particular, it has been shown
that spiking of single neurons in the gracilis nucleus in response to a stimulus may
not always be faithful, while the neuronal group does reliably transmit the stimulus
to the next neural nuclei.

Spiking activity can be recorded by a single microelectrode or microelectrode
array immersed in a nervous tissue. The vast majority of in vivo electrophysiologi-
cal experiments use so-called extracellular recordings, i.e., an electrode (inside the
nervous tissue) detects electrical activity of neurons from a distance. Then several
neurons near the electrode tip can produce spikes of different amplitude and shape
(for more detail see, e.g., [3]). Consequently, one experimental recording (extracellu-
lar electric potential) may contain a mixture of spikes generated by different neurons.
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Then the experimentalist must identify and sort or separate spikes due to different
neurons. Ideally all spikes produced by a single neuron should be assigned to one
group or cluster. Errors occur when spikes belonging to other neurons are grouped
together with the spikes of the target neuron (so-called false positives) or when some
spikes emitted by that neuron are not included in its group (false negatives).

Finally, the quality and reliability of any subsequent analysis of spike trains,
cooperative neuronal behavior, or single neuron activity depends on the quality of
solution of the spike sorting problem. It has been shown that the quality of spike sort-
ing by a human operator is significantly below the estimated optimum [4]. Besides,
the amount of data generated by modern experimental setups is truly enormous and
continues to grow. In a typical experiment one can easily get more than 104 spikes
recorded by a single electrode tip. Modern multielectrode arrays can have hundreds
of tips, which multiplies the amount of information to be processed. For all these
reasons, there is a growing demand to develop automatic techniques for spike sorting.

It is typically assumed that each neuron generates spikes of the same shape and
amplitude, while signals from different cells have some individual peculiarities (even
though their signatures may be quite similar). Although this assumption may be
significantly compromised (e.g., in a burst, each subsequent spike is usually smaller
than the previous one), it is reasonably reliable for many practical cases and we shall
accept it throughout this chapter.

Nowadays, there exist a number of numerical tools for spike sorting (see, e.g., [3,
5, 6, 8–14], and references therein). In this chapter we shall provide a brief overview,
while paying attention to methods involving the wavelet transform and comparing
them to the standard techniques most widely used in experimental labs. Although
existing methods show good performance on preselected data sets [15–22], the best
procedure for spike feature extraction is still a challenging issue.

4.2 General Principles of Spike Sorting

Figure4.1a sketches a typical setup with a linear multi-electrode lowered to the rat
hippocampus along the main axis of the pyramidal neurons. The electrode spans
several hippocampal subfields, including CA1 and CA3 regions. As we mentioned
above, in vivo electrophysiological experiments usually provide recordings of the
extracellular field potential that contains multi-unitary activity coming from nearby
neurons. This activity, besides spikes, contains low-frequency oscillations (<1kHz),
so-called local field potentials (LFPs) produced by synaptic currents in principal
cells (Fig. 4.1b). LFPs can have significantly higher amplitude than the spikes. These
oscillations can be considered as a noise from the standpoint of spike sorting. How-
ever, LFPs have great importance when studying information processing (see, e.g.,
[23, 24] and references therein). Figure4.1c shows a short epoch of a recordingwhere
we see low-frequency oscillations and fast spikes. LFPs generally have a broad-band
spectrum, which significantly overlaps with the spectrum of a typical spike. How-
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ba
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Fig. 4.1 Example of extracellular recordings in the CA1–CA3 regions of the rat hippocampus. a
Sketch of the recording setup. A linear micro-electrode with 16 tips is lowered into the hippocampus
along the main cell axis. b Epoch of electrical potentials recorded by the electrode (16 traces). c
Zoomed trace from the electrode tip #14. Several neuronal spikes can be observed with the naked
eye (arrows)

Fig. 4.2 Common steps in
spike sorting

Delimitation of clusters of spikes in the feature space 

ever, even with the naked eye, we can distinguish at least high amplitude spikes and
conclude that they may not be the same.

Although details of different spike sorting techniques may differ significantly,
the vast majority of known methods go through a number of common steps. These
steps can be independent, or some of them can be included in a single procedure
for improving the quality of spike sorting. Some methods can also skip some steps.
However, to obtain a good understanding of the problem of spike sorting, it is useful
to separate it into four steps (Fig. 4.2).
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Steps I) and III) are the most challenging. In Sect. 4.10, these two problems will
be solved together. Concerning step III, there are two types of method: empirical
and model-based. In step IV, the researcher should determine the number of different
groups (neurons) and the membership of the spikes in these groups.

There are also many clustering algorithms (see, e.g., [25, 26]) showing different
performances on different data sets. As amatter of fact, the final performance of spike
sorting is largely defined by the quality of the extracted spike features. Currently
available methods for feature extraction may be divided into groups, including:

• Naive, threshold based.
• Principal component analysis (PCA).
• Wavelet transform (WT).

The first two methods are the most widely used now, but the third technique has been
shown to be superior and is becoming more popular [10–12].

4.3 Spike Detection Over a Broadband Frequency Activity

In the spike sorting procedure mentioned above (Fig. 4.2), step I (filtering the extra-
cellular potential) is usually intended to suppress noise and facilitate step II (detection
of spiking events). A straightforward way to identify spikes is then to apply a high-
pass filter (HPF) to the raw recording. However, this may significantly distort spike
waveforms and create additional difficulties for the ensuing spike sorting. Besides,
the operator must set the cutoff frequency, which is not always obvious (we shall
discuss this problem in detail in Sects. 4.9 and 4.10). Figure4.3a, b, and c show an
example application of HPF with different cutoff frequencies to a recording contain-
ing high amplitude low frequency activity. Obviously, filtering reduces the noise:
the more aggressive the filter, the lower the noise. However, the spike amplitude is
also reduced, so we may even decrease the signal-to-noise ratio (Fig. 4.3c). More
importantly, the spike shape may be significantly distorted.

A better choice in the case of linear multi-electrode recordings (Fig. 4.1) may be
the so-called current source density (CSD) analysis. This is based on modeling the
field potential using Maxwell’s equations [27]. In its simplest form, the CSD can be
written as

J (t, x) = −σ∇2V (t, x) , (4.1)

where V (t, x) is the extracellular (recorded) potential, σ is the (ohmic) conductivity
of the extracellular space, and J (t, x) is the CSD. Since spikes are local events, while
LFPs usually have large spatial extent, evaluation of the CSD from experimental data
can spotlight spikes over LFPs.

For practical reasons we can approximate the second spatial derivative in (4.1)
at the j th electrode by finite differences (this is especially useful in laminar brain
structures like the hippocampus):
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Fig. 4.3 Attenuation of low-frequency oscillations in extracellular recordings. a Original electric
potential with strong low-frequency oscillation (red dashed curve). bHigh-pass filtering with cutoff
frequency Fcut = 300 Hz. Spiking activity stands out above the noise. However, spike amplitudes
decrease and spike shapes are distorted. c Same as in b, but with more aggressive filtering, Fcut =
800Hz.dCSD-basedmethod emphasizing local currents corresponding to spikeswithout disturbing
their shapes

J̃ j (t) = −Vj+1(t) + 2Vj (t) − Vj−1(t) , (4.2)

where Vj (t) is the voltage recorded at the j th electrode [without loss of generality,
we assumed σ = 1 in (4.2)]. Then J̃ j can be used for spike detection and sorting.
Figure4.3d shows the currents produced by spiking activity. Note that we now avoid
the need to adjust any filter parameters and obtain the true shape of the spikes, but
in terms of the CSD.

Let x(t) be the preprocessed signal containing spikes [either high-pass filtered
V (t) or CSD-like J̃ (t), Fig. 4.3]. Once x(t) has been obtained, we have to select
events corresponding to spikes. In other words, we aim to distinguish spikes from
the background activity. This is often done by amplitude thresholding. If x(t) crosses
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Fig. 4.4 Detection of spikes
by thresholding. Events that
go through the threshold (red
dashed line) are marked as
spikes (xth = −3σx ). The
detected spikes are then used
for sorting

xth

a threshold xth (in one selected direction), we mark this event as a spike. More
complex detection algorithms are sometimes applied. For example, power detection,
in contrast to x(t), uses the quadratic quantity

y(t) =
∫

H(t − τ)x2(τ ) dτ , (4.3)

where H is some smoothing kernel [in the simplest case H(t) = δ(t)].
Changing the threshold level xth allows us to regulate the trend between missed

spikes (so-called false negatives, going undetected) and the number of events occur-
ring due to random fluctuations (false positives, which are non-existent spikes).
Ideally, the threshold should be selected in such a way as to minimize the total error.
As a rule of thumb xth ≈ −3σx , where σx is the standard deviation of x(t) (Fig. 4.4).

Finally, we obtain a set of spikes:

Ω =
{(
t j , x j (t)

)∣∣∣ t ∈ [t j , t j + T ]
}

, (4.4)

where t j are the times of the spikes and T is a time window or duration of spikes
(usually T ≈ 1–2 ms). For correct spike sorting, all spikes should be aligned in the
set Ω . This is usually done in such a way that the maxima (or minima) of all spike
waveforms are at the same distance from the beginning of the corresponding spike.

In experimental recordings, each spike waveform x j (t) is discretized with the
time stepΔt = 1/Fs, where Fs is the sampling rate. For adequate spike sampling, Fs

should be sufficiently high. Fs = 20 kHz is usually acceptable. Then the discretized
spikes can be considered as vectors in an m-dimensional space:

x j = (x j1, . . . , x jm)T ∈ R
m , (4.5)

where m = T/Δt is the length of the spikes. Finally, we can construct a data matrix

X = [x1 x2 . . . xN ] ∈ Mm×N (R) (4.6)

containing all spikes. Each column of X describes one spike waveform and the
column number corresponds to the number of the spike in the set Ω . Hence we can
work with the set
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Ω = {X, {t j }Nj=1

}
. (4.7)

4.4 Naive Spike Sorting

Once a set of events (spikes) Ω (4.7) has been obtained, we must decide how many
classes (neurons) there are and separate spikes between them. Comparing spike
waveforms, one can resolve this problem with some degree of reliability. However,
in practice, spike sorting represents a complicated task due to the high level of back-
ground noise, variability of spikewaveforms, the fact that distinctions between spikes
of different neurons are frequently not well-pronounced, and so on. For example, in
Fig. 4.5, at least two groups of spikes are observable by the naked eye, but a reliable
inference needs more careful investigation.

Mathematically speaking, each spike is a point in an m-dimensional space (4.4).
Since m is quite big (usually m = 30–70), the curse of dimensionality is the major
obstacle for clustering spikes in such a multidimensional space. Hence some method
is required to reduce the dimension of the representation space. In this section,
we describe the simplest (but sometimes very useful) approach to the dimension
reduction problem.

Extracellularly recorded signals can be treated as a mixture of spikes produced by
several neurons and different sources of fluctuations or noise. Figure4.6 illustrates a
model of this process. The recorded signal is then given by

V (t) =
N∑

n=1

vn(t) +
K∑

k=1

ξk(t) . (4.8)

The simplest approach to the problem of spike sorting is amplitude thresholding.
The amplitude is one of the most important characteristics of spikes. It is assumed
a priori that each neuron generates signals of the same shape, and that this shape
does not change significantly over time. If the electrode is placed near one neuron,

Fig. 4.5 A typical example
of the extracellular potential
recorded from the rodent
hippocampus. The simplest
way to sort spikes (marked
by arrows) is by amplitude
thresholding (two dashed
lines)

5 ms

A A
A

A

B B
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Fig. 4.6 An illustration of
the spike sorting problem.
The extracellularly recorded
signal is a sum of spikes
generated by neurons 1–3
and fluctuations produced by
noise sources ξ1, . . . , ξK

1

Fig. 4.7 Controlling the
quality of spike sorting by
spike superposition. a Good
separation. Spikes of only
one class (shape) appear in
the plot. b Bad separation.
Spikes of two different
classes are merged

a b

then its spikes will be significantly higher than spikes of distant neural cells and
the background activity. In this case it becomes possible to identify at least one
type of spike with amplitude thresholding (e.g., spikes B in Fig. 4.5). Spikes of
different heights can be separated by selecting different thresholds (spikes A and
B in Fig. 4.5). The advantage of this method is that it requires minimal equipment
and can be implemented on-line during recordings. In some cases this approach
provides quite precise information, adequate for the research at hand, and no further
improvements are required. One obvious disadvantage is that the amplitude is not the
only feature of a spike. Spikes of different neurons may have similar amplitudes but,
e.g., different widths. Then the quality of spike sorting by amplitude thresholding
decays drastically.

To test the quality of spike sorting one can use a superimposed plot of all spikes
belonging to a single cluster (Fig. 4.7). If the spikes belonging to one class have
basically the same form (up to small variations induced by noise), then we can
conclude that the sorting is good enough (Fig. 4.7a). The existence of a spike class
with clearly different spike shapes (Fig. 4.7b) means that the method is unable to
accurately resolve spikes and other techniques should be applied. However, this
method usually works when the number of spikes is relatively small. In the case of
big data sets (thousands of spikes), other methods based on electrophysiological and
anatomical criteria should be applied (for details see, e.g., [7]).

Besides the background noise, which can be considered as a normally distributed
process (or sometimes a Poisson distribution), the amplitude can vary due to possi-
ble overlapping if two different neurons fire simultaneously or within a small time
window. When the maximum of one spike coincides with the minimum (or, more
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Fig. 4.8 Spike sorting errors
due to spike overlap

generally, with the negative phase) of another spike, then the resulting signal may
not reach the threshold (Fig. 4.8a). The number of such events can be estimated
approximately as follows:

Nmissed ∼ ντ− , (4.9)

where ν is the mean firing rate of neurons and τ− is the mean duration of the negative
phase.

Another possible error occurswhen two independent spikeswith small amplitudes
add together and the threshold is crossed by the resulting signal (Fig. 4.8b). Denoting
the firing rates of spikes as ν1 and ν2, we can estimate the error rate in this case as

Nwrong ∼ ν1ν2τ1τ2 , (4.10)

where τ1, τ2 are the spike durations.
These two types of error are typical for amplitude thresholding. Besides the pos-

sibility of doubled spikes, one can also consider noisy events with high enough
amplitudes to affect the amplitude of spikes. The shape-accounting techniques dis-
cussed in the remaining part of this chapter are more robust against these errors.
Nevertheless, false positive and false negative errors appear for any spike-sorting
technique, but their number is typically much lower than for amplitude thresholding.

In order to perform a more detailed description of spike features, besides ampli-
tude, additional characteristics such as duration, height of local extrema, etc., can
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also be used. Such an ad hoc approach based on the geometrical description of spikes
was widely used in spike-sorting techniques developed early on [28–30]. As a rule,
the more characteristics are employed for spike description, the better the spike
sorting that can be achieved. However, these techniques are subjective and usually
provide suboptimal spike sorting. In the following sections, we discuss spike-sorting
techniques based on an integral analysis of spike waveforms.

4.5 Principal Component Analysis as Spike-Feature
Extractor

Principal component analysis (PCA) is a simple but significantly more powerful tool
for spike sorting [31–35]. This approach can be considered as a particular case of
factor analysis [36]. It is widely used for image recognition [37], noise reduction [38],
reduction of dimensions in dynamical models without significant loss of information,
e.g., for mathematical description of turbulent flows [39], and so on.

4.5.1 How It Works

PCA estimates a set of orthogonal vectors for the matrix (4.6), the so-called principal
components {ci }Ni=1. These are eigenvectors of the covariance matrix constructed
from the data ci = (ci1, . . . , cim)T ∈ R

m . Then each spike x j can be represented as
a weighted sum of the principal component vectors with the corresponding weights
or scale factors, so called scores Si j , which are evaluated by the scalar product

Si j = (cTi , x j ) ≡
∑
k

cik x jk . (4.11)

Thus we decompose each spike into an orthogonal set of principal components:

x j =
N∑
i=1

Si j ci . (4.12)

Then the scores Si j can be considered as features describing the j th spike.
To illustrate the use of PCAfor spike sorting,wegenerated an artificial set of spikes

that consisted of a series of 3 repeated waveforms extracted from experimental data
(with random order of the waveforms), corrupted by noise with Poisson distribution.
By analogy with Lewicki [3], we consider the standard deviation of the scores in
the direction of each principal component (Fig. 4.9). If λ1, λ2, . . . are the variances
in the directions of the principal components, we can estimate the percentage of the
data variation that is accounted for by the first k components as 100(λ1 + λ2 + · · · +
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Fig. 4.9 Principal component analysis of spikes of three different classes. a Standard deviations
of the scores versus the number of the principal component. b Plane of the first two principal
components. Three clusters are easily distinguishable

λk)/
∑

i λi . Figure4.9 illustrates the standard deviation of scores versus the number
of the principal component. The first three components characterize themain changes
in the spike shapes. They account for about 80% of the variance in the data. This
suggests that, for reasonably faithful description of spikes, one can use just the first
few principal components.

There are different approaches for selecting the number of principal components
to retain, i.e., deciding which components are important and which can be excluded
without losing important information (see, e.g., [40, 41]. For instance, the method
proposed by Cattel [41] examines the explained variance (Fig. 4.9a) and searches for
the point where the decrease in the standard deviation versus the number of the prin-
cipal component becomes the slowest (the so-called elbow criterion). Components
to the right of this point can be excluded without loss of important information.

In practice, using the first two [N = 2 in (4.12)] or sometimes three components
turns out to be optimal. These components have eigenvalues larger than the back-
ground noise. Consequently, they account for the most important information about
the shapes of the action potentials, while higher components are usually very noisy
and provide no information about the shape of the spikes. Other components provide
either an insignificant improvement or even decrease the accuracy of spike sorting.
The score of the first two components typically enables acceptable spike sorting
with much better performance than the method of amplitude thresholding (or at least
equivalent). For instance, in the case shown in Fig. 4.9b, the performance of the
method is 100%, i.e., all ‘recorded’ spikes are correctly assigned to three neurons.
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Fig. 4.10 Original spike
waveforms used to generate
two data sets (sets #1 and
#2). We use three clearly
different waveforms (WFs
1–3) and two similar
waveforms (WFs 4 and 5).
The difference between the
similar WFs appears on short
time scales for set #1 and on
longer time scales for set #2

4.5.2 Possible Pitfalls

In contrast to the amplitude approach, disadvantages with the PCA-basedmethod are
less obvious and can be revealed only in comparative analysis of different techniques
for spike sorting. For illustrative purposes, we generated two semi-simulated data sets
(Fig. 4.10), both consisting of 500 spikes of five different waveforms. The original
spike waveforms where selected from electrophysiological recordings. The two sets
have three clearly different waveforms (WFs 1–3) and two similar ones (WFs 4,
5). Similar waveforms in set #1 exhibit differences only on short time scales, while
WFs 4 and 5 in set #2 show a more pronounced difference on longer time scales.
To simulate the noisy background, we mixed a colored noise, band-pass (300 Hz–
3.0 kHz) filtered Poisson process, with the noise-free spike waveforms.

Spike sorting of set #1 by PCA reveals four different clusters (Fig. 4.11a). Three
clusters correspond to spikes of WFs 1–3, thereby confirming the potential of the
PCA approach. However, the fourth cluster contains a mixture of spikes of the two
similar waveforms (WFs 4 and 5). Analysis of the first principal components proves
that the difference between WFs 4 and 5 is not reflected by them. Thus a problem
with the PCA method may occur when, among different spike waveforms, there are
two types with similar shapes and clearly expressed distinctions appearing only on
small time scales (set #1 in Fig. 4.10). Such distinctions are not usually reflected in
the first principal components, and consequently the method fails to separate such
spikes.

In order to confirm this conclusion, we considered the other test data set, i.e., data
set #3, consisting of 500 spikes of five different waveforms (Fig. 4.12a) corrupted by
noise. Application of the PCA to this data set again reveals four different clusters.



4.5 Principal Component Analysis as Spike-Feature Extractor 131

Fig. 4.11 Sorting of the data sets shown in Fig. 4.10 by PCA andwavelet techniques. aThewavelet-
based approach outperforms the spike separation by PCA for set #1. In the PCA feature space, the
spikes of WFs 1–3 are clearly clustered, but WFs 4 and 5 (open and solid circles, respectively)
are mixed together. The wavelet space provides five well separated clusters for all spikes (WFs
1–5). b The PCA method provides better separation of set #2, than the WSC method. The chosen
suboptimal wavelet coefficients exhibit multi-modal distributions allowing separation of clearly
different spikes (WFs 1–3), but not similar WFs 4 and 5

First, three clusters correspond to spikes of the WFs 1–3, thereby demonstrating the
potential of the PCA approach. However, the fourth cluster contains a mixture of
spikes of two similar waveforms: WFs 4 and 5 (Fig. 4.12b). Analysis of the principal
components confirms that the difference between WFs 4 and 5 is not reflected in the
first of them. Thus PCA-based methods may fail to separate spikes with differences
appearing on small scales.
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Fig. 4.12 An example where the wavelet-based approach outperforms the spike separation by the
PCA. a Original spike waveforms used for generation of the data set (set #3). We use three clearly
different waveforms (WF 1–3) and two similar waveforms (WF 4 and 5). The difference between the
two similarWFs appears on small time scales. b Feature space of the first two principal components.
A zoomed region corresponding to the fourth cluster is shown. Spikes of two waveforms (open and
solid circles for WFs 4 and 5, respectively) are mixed, and an acceptable separation is impossible. c
The “Wave”, i.e., the function chosen for wavelet analysis. d Zoomed region corresponding to the
fourth and fifth clusters (WFs 4 and 5) in the wavelet space. Two clearly distinct clouds are formed,
and separation is possible with high fidelity

4.6 Wavelet Transform as Spike-Feature Extractor

The wavelet approach [10–12] represents the spike waveform x j (t) by coefficients
of the WT. In the case of the continuous wavelet transform [13, 14], the coefficients
are associated with selected values of the time localization t0 and the scale s. In its
most general form, the continuous WT of a spike waveform reads

Wj (s, t0) = 1√
s

∫ T

0
x j (t)ψs,t0(t) dt , (4.13)

where T is the spike duration (typically 1–3 ms), and
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ψs,t0(t) = ψ

(
t − t0
s

)

is a translated and scaled mother wavelet.
The main wavelet-based techniques for spike sorting (e.g., [10–12]) use the dis-

crete wavelet transform, since this provides a quick decomposition of a spike with
fewer coefficients. Let us consider, e.g., an approach proposed by Letelier andWeber
[10].

4.6.1 Wavelet Spike Classifier

TheWT of a spike can be considered as a set of filters with different bandwidth. Then
the value of the energy found in a specific frequency band for each spike is considered
as its feature. This idea was first adopted in the framework of the wavelet-based spike
classifier (WSC) [10]. This approach is based on the standard pyramidal expansion
algorithm (see Fig. 2.28, Sect. 2.3). The coefficients of the spike decomposition in
the basis of Daubechies wavelets are used as features for spike sorting.

For illustrative purposes, we can consider a more general case, namely, applica-
tion of both the continuous and the discrete wavelet transform, depending on the
researcher’s choice. We shall consider here the continuous WT, because it is simpler
and allows for a detailed representation of the results. In particular, it becomes pos-
sible to discuss the problem of optimization of spike features in terms of a surface
of the wavelet coefficients, which is a more illustrative approach.

With the tuning parameter s in (4.13), one can successfully resolve the multi-scale
structure of the data sets #1 (Fig. 4.10a) and #3 (Fig. 4.12a). Indeed, the WSC tech-
nique finds all five clusters, including those corresponding toWFs 4 and 5 (Figs. 4.11a
and 4.12d).

In the case where spike waveforms have a multi-scale structure with significant
characteristics appearing on small scales, as in the data sets #1 and #3 used in
Figs. 4.10a and 4.12a, the wavelets are able to resolve these features. Indeed, appli-
cation of the wavelet technique to the data set of Fig. 4.11a shows that this approach
finds all five clusters. Figure4.12d also illustrates a good separation of WFs 4 and 5
into two clusters, where the PCA had difficulties (Fig. 4.12b).

4.6.2 Potential Problems

Although the WT is potentially more powerful than PCA, there are a number of
inherent problems restricting its broader application for spike sorting. Here we dis-
cuss the main ones among them: an arbitrary choice of mother wavelet and selection
of the best wavelet coefficients:



134 4 Classification of Neuronal Spikes from Extracellular Recordings

• Apparently, the results of the analysis, e.g., the wavelet coefficients, depend on
the mother wavelet ψ . Generally, there is no standard answer about how to choose
the mother wavelet in a particular case. Thus the performance of the method for
a given mother wavelet may vary considerably from one data set to another. For
spike separation, different mother wavelets have been advocated: Daubechies [10],
Coiflet [11], and Haar [12]. Possible advantages of one or the other depend on the
particular spike waveforms of the analyzed data set, and no a priori recommen-
dation can be given about which mother wavelet will perform better. Successful
classification can be achieved by selecting a mother wavelet similar in shape to
the spike waveforms. For instance, in the example shown in Fig. 4.12, to obtain
a good separation, we used the Wave wavelet (Fig. 4.12c), which is visually very
similar to WFs 4 and 5 (Fig. 4.12a).

• Let us assume that the mother wavelet has been selected somehow. Then the WT
of spike waveforms is performed, thus obtaining a number of different wavelet
coefficients for each spike (usually 64 in the case of theDWTand evenmore for the
CWT). In contrast to PCA, these coefficients are not ordered, and making the right
choice among them for spike sorting is a challenging problem. Different authors
have suggested different procedures for coefficient selection. Among others, we
can list: large standard deviation, large mean values, and multi-modal distribution
[10]. There is also a more complicated, but at the same time mathematically better
justified method based on information theory [11]. However, there is no single
universal approach for the choice of WT features capable of providing the best
classification in every case, and a counterexample can always be found.Difficulties
occur especiallywhen the analyzed data contains spiking activity ofmany neurons,
and among them there are both clearly different and rather similar types of spike
waveforms.

To illustrate the kind of problems that may be encountered, we again generated
test data sets #2 and #4 (Figs. 4.10b and 4.13a) with more pronounced differences
between theWFs 4 and 5 andwith no clear distinctions on small scales. This helps the
PCA to separate all spike groups, including those of similar waveforms (Figs. 4.11b
and 4.13a). According to one of the wavelet coefficient selection procedures [10],
the features used for classification should show amulti-modal distribution. However,
in many practical cases, a multi-modal distribution is obtained for many different
wavelet coefficients and there is no clue about how to perform an automatic compari-
son in order to select themost informative ones. An example of such a quasi-arbitrary
(unsuccessful) choice of coefficients is illustrated in Fig. 4.13b. Although the chosen
wavelet coefficients have multi-modal distributions (Fig. 4.13d), allowing separation
of the first three clearly different spike waveforms, the wavelet approach gives a
worse classification of two similar waveforms than the one provided by the PCA
(Fig. 4.13a and c).
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Fig. 4.13 A case where the PCA provides better separation than the wavelet technique. As in
Fig. 4.12, we use a data set with spikes of three clearly different and two similar waveforms.
However, the difference between similar spikes is not so pronounced now, and is not on small scales
(set #4). a Principal components show a good separation of spikes ofWF4 andWF5 (open and solid
circles, respectively). bWavelet classification. The chosen wavelet coefficients exhibit multi-modal
distributions allowing separation of clearly different spikes. However, separation of WF4 and 5 is
not achieved. c and d Histogram of spike density along the first component score (c) and one of the
wavelet coefficients (d). The wavelet coefficient exhibits a multi-modal distribution, but the number
of peaks [four in (d)] corresponding to clusters is less than in the PCA case [five in (c)]

4.7 Wavelet Shape-Accounting Classifier

With a view to improving the wavelet-based extraction of discriminative spike fea-
tures, let us consider a three-step approach based on a combination of the PCA and
wavelet techniques [13, 14]. This algorithm, which we shall refer to as the wavelet
shape-accounting classifier (WSAC), works as follows:

• Find representative waveforms (rWFs).
• Search for wavelet parameters (s, t0) maximizing the distances between the rWFs
in the wavelet space.

• Evaluate the wavelet coefficients for the resulting parameter sets for all neuronal
spikes Wi (s∗, t∗0 ).

To demonstrate the method we start with a typical situation frequently encountered
when processing real electrophysiological recordings. A conventional method of
spike feature extraction, e.g., PCA, gives two poorly separated overlapping clouds
(Fig. 4.14a). For the sake of simplicity, we suppose that these clouds consist of spikes
of two neurons (or spikes of one neuron and other possibly noisy spike-like pulses).
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Fig. 4.14 Working principle of theWSACmethod. a Two overlapping clouds correspond to spikes
of different types on the PCA plane. Insets show representative spike waveforms obtained by
averaging over neighborhoods of the cloud centers. b Difference between wavelet coefficients for
the representative spikes as a function of scale. Circles mark the coefficient pairs (s = 4.8, t0 = 18
and s = 7.1, t0 = 32) that correspond to themost prominent distinctions between rWF1 and rWF2. c
New spike feature space. The resulting coefficients are used. d Spike density along the clouds. Peaks
correspond to the centers of the clouds. The dashed line corresponds to the PCA space and the solid
line shows the results obtained in the wavelet space. The later distribution shows better separated
and more prominent peaks resulting in a better localization of spikes of different waveforms in
feature space [compare the clouds in (a) and (c)]

Our goal is to improve the separability of the two clouds and hence to reduce the
number of wrongly classified spikes.

First, we localize the cloud centers Sk (k = 1, 2), i.e., the positions of the spike
density maxima in the PCA space (step 1). Then we average the spike waveforms
over spikes falling in a small neighborhood of each cloud center (insets in Fig. 4.14a):

xrWFk = x j∈ω , ω = { j ∈ [1, N ] : ‖Sj − Sk‖ < ε
}

. (4.14)

The mean or representative waveforms (rWFs) thus obtained approximate noise-free
spike waveforms of the two neurons. Here we assume that each neuron emits spikes
of the same shape that are linearly mixed with noise at the electrode, so that the noise
impact near the cloud centers is minimal and gets canceled by averaging.
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Second, we apply theWT to xrWF1, xrWF2 and search for a set of parameters (s∗, t∗0 )
that maximizes the distance |WrWF1(s∗, t∗0 ) − WrWF2(s∗, t∗0 )| (step 2). Figure4.14b
shows the distance between rWFs in the wavelet space as a function of the scale s for
different values of t0. Frequently, crucial differences between spike waveforms occur
at the beginning and the end of firing. To better account for the spike morphology,
we search separately for the maximal distance in the first and second halves of the
spike time window. Circles in Fig. 4.14b mark two points (one for each half window)
where the distance between the representative waveforms is maximal.

Third, we apply the WT for all spikes x j , using the parameter sets (s∗, t∗0 ) found
above (step 3). The resulting coefficients are the new spike features (Fig. 4.14c).
Visually, the clouds corresponding to two neurons are better delimited in the wavelet
plane than in the PCA space (compare Fig. 4.14a and c). Indeed, the histogram of
the distribution of spike features in the wavelet spaces (WSAC method) exhibits
significantly more pronounced peaks than the PCA method (Fig. 4.14d). This means
that one can now better delimit clouds and considerably reduce classification errors
arising from misclassification of spikes in the overlapping part of the clouds.

4.8 Performance of PCA Versus WT for Feature Extraction

We tested the proposed approach on three different data sets (S1, S2, and S3). Each
data set is obtained in the following way. We take two experimental electrophys-
iological recordings. One of the recordings is selected in such a way that spikes
of one type can be easily separated from the rest by the conventional thresholding
method (Sect. 4.4). These spikes are then mixed with another experimental recording
displaying complex spiking activity. On the one hand, this procedure allows one to
keep all characteristics essential to a real electrophysiological experiment (level and
type of noise, spike waveform variation, etc.), and on the other hand, we possess a
priori information about the membership of spikes for one target cluster formed by
the “additional” spikes. Hence, we can estimate the classification error for the given
cluster.

The generated data setswere used as an input to three feature extraction algorithms
discussed above: PCA, WSC, and WSAC. Then clustering was performed using
the superparamagnetic method [42], and the number of misclassified spikes was
estimated.

Figure4.15 illustrates results obtained for the data set S1 consisting of 16568
spike waveforms, including 3069 “additional” spikes. The PCA gives 2 clusters
(Fig. 4.15a) shown in black and gray, corresponding to the additional (targeting) and
the original action potentials, respectively. Squares mark unclassified spikes that
are not related to either of the clusters. Classification of spikes by the three first PCs
gives 290misclassified spikes: 24 false negative and 266 false positive, i.e., 0.8% and
8.6% of the total number of spikes in this cluster. The histograms of spike densities
for each coordinate in the feature space show a bimodal distribution for the PC1,
and a unimodal distribution for the PC2. The former allows separation of different
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Fig. 4.15 Results of spike separation by different methods for the data set S1. a Projection of the
feature space for the PCA onto its first two components, and corresponding histograms of spike
densities. Black points correspond to spikes classified as belonging to the targeting cluster. b The
same as in a, but for the WSC method. c The same as in a, but for the WSAC method. d Number
of misclassified spikes for the different methods and for different spike feature subsets used for
classification

waveforms into two clusters, while the latter does not actually provide additional
information for spike classification.

Figure4.15b illustrates the results of spike sorting performed by theWSCmethod
[10]. Following the authors’ recommendations, we chose for classification the
wavelet coefficients showing the largest standard deviations, the largest values,
and the bimodal distributions. Note that, in contrast to the PCA, the histograms
in Fig. 4.15b are both bimodal, so they actually provide useful information for spike
sorting. However, for the considered example, we obtain a higher classification error:
410 misclassified spikes (5.2% of false negative and 8.1% of false positive). Thus a
quasi-arbitrary choice of wavelet coefficients satisfying the given recommendations
did not lead to an improvement in spike sorting as compared with the PCA method.

Figure4.15c shows the results of the spike classification obtained using theWSAC
method.We found that three pairs of coefficients (s∗, t∗), namely, (6.8, 31), (8.6, 51),
and (6.2, 20), maximize the difference between the characteristic spike shapes. These
sets were used for spike sorting, which provided the best results: 185 or 2.8% of false
negatives and 3.1% of false positives.
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Table 4.1 Classification error rates for all data sets and different methods (percentage of misclas-
sified spikes out of the total number of spikes in the cluster). FN and FP denote false negative and
false positive errors

S1 S2 S3

FN FP Sum FN FP Sum FN FP Sum

PCA 0.8 8.6 9 0.5 41.6 11 0.8 53.4 0.1 2.6 2 0.7

WSC 5.2 8.1 13 0.3 34.2 13 0.8 48.0 6.7 2.9 9 0.6

WMSPC 7.5 8.9 16 0.4 28.7 0 0.8 29.5 9.5 4.4 13 0.9

WSAC 2.8 3.1 5 0.9 26.4 8 0.2 34.6 1.8 0.3 2 0.1

Figure4.15d shows the results of spike classification using the three methods for
different combinations of features used in each particular technique. For instance,
classification performed using the first two principal components gives 364 errors
(first bar in Fig. 4.15d), whereas the same done with PC1 and PC3 results in 296
errors. This means that, in this case, PC3 describes the variation in the data set
better than PC2. Using all three components slightly improves the classification,
resulting in 290 errors. Considering WSC, we note that each coefficient improves
the results of classifications, but the overall performance is the worst among all the
methods. On average, the WSAC approach gives the minimal classification error for
any combination of spike features.

Table4.1 summarizes the results obtained for all data sets. We also include clas-
sification errors obtained by the WMSPC method based on the approach proposed
by Quian Quiroga et al. [12]. This approach performs considerably better for the set
S2, while showing poor performance for S1 and S3.

Hence, regarding the question of when wavelet-based methods outperform the
PCA, we have shown that the main advantage of WT techniques reveals itself when
dealing with the detailed structure of experimental signals over a broad range of
scales. Considering the WT approach as a mathematical microscope, the following
interpretation can be given: wavelets can resolve fine details of a signal structure, but
we need to choose the focal point and resolution of this “microscope” appropriately.
From themathematical viewpoint, thismeans that the selection ofwavelet parameters
responsible for resolution and focusing is of crucial importance. If they are selected
successfully, the “microscope” can elucidate the differences in spike waveforms.

This is why the problem of selecting the optimal wavelet coefficients is an impor-
tant trend in the problem of spike separation. In contrast to PCA-based methods,
where the first principal component scores are used as spike features due to their
natural order, optimal selection of features within the framework of WT techniques
is a significantly more complicated procedure.

There are at least two caseswherewavelet-based techniques are potentially prefer-
able to PCA:

• When there is small-scale structure in the waveforms that is not reflected in the
first principal components.
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• When there is strong enough low-frequency noise, since this significantly dimin-
ishes the performance of the PCAmethod, whereas noise statistics are less critical
for wavelets.

In other situations, the considered WT-based approaches give comparable results to
PCA.

4.9 Sensitivity of Spike Sorting to Noise

Sensitivity of spike sorting to noise statistics is an important problem for any
approach. Extracellular recordings of neural activity contain different kinds of noise,
from Johnson noise in the electrode and electronics, through the background activity
of distant neurons and electrode micromovement, to variation of action potentials
due to physiological processes in the cell dynamics.

Obviously, the quality of the spike separation is degraded by increasing noise
intensity, although robustness against the noise level may be different for different
methods. Another, more important questionwe address here is how the efficacy of the
method depends on the frequency band of the noise. Indeed,when the noise frequency
band lies far outside the frequency band of a spike spectrum (about 300–3000 Hz),
the noise can be easily filtered out by applying high-pass and/or low-pass filters, thus
eliminating the impact of the noise on spike separation. However, when the noise
frequencybandoverlapswith the spike spectrum, the use of filters becomesworthless,
and the advantages of one or another method can become significant. This kind of
overlap can happen, for example, when recording certain neurons from a densely
populated brain region and spikes from more distant neurons (far enough away and
consequently of low enough amplitude to be included as spikes for separation, but
close enough that their effect is noticeable) are confused with noise.

In this section, we study and compare the performance of the PCA and the wavelet
technique with regard to the noise statistics, assuming an overlap between the spike
spectrum and the noise frequency band. We discuss how the quality of spike separa-
tion depends on the frequency band of the experimental noise.

4.9.1 Impact of High/Low Frequency Noise on PCA and WT

Quantities used as features for spike separation in the PCA and WT techniques are
often related to rather different time scales. This suggests that PCA and WT may
show different degrees of robustness against noise with different statistics.

The wavelet coefficientsW (s, t0) used for spike classification are typically related
to rather small values of the scale parameter s. Therefore we expect the coefficients
to be distorted mainly by fluctuations in the frequency band associated with the scale
parameter value. Relatively slower or faster fluctuations should not have an essential
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Fig. 4.16 PCA feature space of spike waveforms contaminated by noise. a Low-frequency noise,
fnoise = 500 Hz. b High-frequency noise, fnoise = 2500 Hz

influence (in the case of additive noise). The latter means that separation of several
types of spikes by the WT approach should have a maximal classification error for
noise with high-frequency dynamics.

Another situation is expected for PCA. This approach quantifies spike features
on large scales for entire waveforms. The low-frequency noise appearing on the
time scales of the first principal components disperses spikes in the PCA feature
space. The high-frequency noise mainly affects high principal components that are
not considered for spike separation. As a result, the PCA method should exhibit an
error that decreases with the frequency band of the presented fluctuations.

To check these conjectures, we generated data sets consisting of 2000 spikes of
two different types (two neurons). Then we mixed spike waveforms with colored
noise of a certain frequency band, and finally we performed spike sorting on the
resulting data sets.

The colored noise was obtained by band-pass filtering of a Poisson random pro-
cess. Choosing different values of the central frequency fnoise of the band-pass filter,
which defines the base noise frequency, and fixing the filterwidth (Δ fnoise = 700Hz),
we estimated the classification error for each spike-sorting technique.Noisewith base
frequency lower than the main frequency of the spike spectrum (about 1kHz) was
considered to be low frequency, while fluctuations with fnoise > 1kHz were consid-
ered to be the high-frequency noise. For wavelet sorting, we used the WSC method
[10], but other methods show qualitatively similar results.

Figure4.16 shows that the presence of slow fluctuations is more critical for PCA
than the high-frequency dynamics. In the case of high-frequency noise, clusters are
well distinguished ( fnoise = 2500 Hz, Fig. 4.16b), whereas they are less pronounced
for a slower random process ( fnoise = 500 Hz, Fig. 4.16a). In contrast, spike sorting
using the wavelet technique shows good performance in the case of low-frequency
noise (Fig. 4.17a, fnoise = 500Hz), but performance is diminished for high-frequency
noise (Fig. 4.17b, fnoise = 2500 Hz).
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Fig. 4.17 WT feature space of spike waveforms contaminated by noise. a Low-frequency noise,
fnoise = 500 Hz. b High-frequency noise, fnoise = 2500 Hz
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Fig. 4.18 Classification error versus base noise frequency for PCA (a) and the WT technique (b)

We repeated spike sorting for a different base noise frequency. Figure4.18 summa-
rizes our results. The error of spike sorting using PCA clearly decreases with the base
noise frequency (Fig. 4.18a). Spike separation using the wavelet technique shows a
bell-like resonance curve. The worst classification is achieved for an intermediate
noise frequency (around 2 kHz). Thus, the spike classification error is sensitive to
the noise statistics.

4.9.2 Proper Noise Filtering May Improve Spike Sorting

The results shown in Fig. 4.18 provide a clue that the quality of spike sorting may
be increased by smart data preprocessing, i.e., noise filtering. In particular, when
the noise frequency band lies far outside the frequency band of the spike spectrum,
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Fig. 4.19 Classification error versus cutoff frequency of a high-pass filter in the case of non-
overlapping (a) and overlapping (b) power spectra of noise and spikes. The noise intensity is higher
in (b)

the noise can be easily filtered out by applying high- and/or low-pass filters, thereby
eliminating the noise impact on the spike separation. Figure4.19a illustrates this
simple situation.

In order to choose an optimal value for the filter cutoff frequency, one must
estimate the power spectra of noise and spikes. But in order to provide a better
separation of action potentials, rather than the latter spectrum, it seems to be even
more useful to evaluate the spectrum of the difference between the typical (averaged)
spike waveforms. Choosing the cutoff frequency of the high-pass filter higher than
the range of fluctuations, we obtain clear spike sorting (Fig. 4.19a). Note that the
classification error remains the same here, even when the cutoff frequency lies inside
the spike spectrum: the filtering changes the waveform shapes, but these changes are
the same for each type of spike, so the waveforms can be well separated. Similar
results can be obtained if the frequency band of the noise is higher than the frequency
band of the spike dynamics. The noise intensity does not have a crucial impact on
the selection of the optimal cutoff frequency here.

In practice, however, a significantly more complicated situation is typically
encountered. Usually the noise spectrum overlaps significantly with the spike spec-
trum and the choice of filter parameters becomes less obvious.

In order to seek for the best filtering strategy, we filtered waveforms using elliptic
IIR zero-phase filter. Figure4.19b illustrates an example of how the classification
results depend on the cutoff frequency of a high-pass filter for overlapping power
spectra. In contrast to the previous case (Fig. 4.19a), we cannot take bigger values of
the cutoff frequency here due to the increasing classification error. An optimal value
of the given frequency probably depends on both the noise intensity and the strength
of spectrum overlap. In particular, this optimummay not be well expressed for rather
low noise intensity (Fig. 4.20a), while the choice of filter parameters becomes more
critical in the case of intense noise.According to Fig. 4.20b, a cutoff frequency around
400 Hz provides the best spike separation here.
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Fig. 4.20 a Classification error of the PCA and WT techniques versus the cutoff frequency of a
high-pass filter in the case of overlapping power spectra of noise and spikes (low noise intensity).
b The same, but for low-pass filtered spikes

Let us now consider how the use of a low-pass filter influences the quality of
spike sorting. Figure4.20b shows the dependence of the total classification error
on the cutoff frequency of the low-pass filter. Indeed, the classification error for
the WT technique has a minimum at frequencies around 2.2 kHz and then rapidly
increases. For the PCA, the error first decreases gradually to 2 kHz, then remains
almost constant. This suggests that low-pass filtering of spikes is worthless for PCA,
and is essential for the WT, where to be on the safe side we recommend a cutoff
frequency in the range 2.5–3 kHz.

4.10 Optimal Sorting of Spikes with Wavelets and Adaptive
Filtering

In the vast majority of spike sorting methods, experimental noise is reduced by
a standard filtering prior to extraction of spike features. This procedure does not
account for the noise statistics, nor for the spike signatures. Standard techniques like
amplitude thresholding and PCA have a long history, and well established recipes for
optimal filtering. Their performance usually reaches amaximum for a high-pass filter
at 0.3–1 kHz. However, this may not be the case for the WT technique (Fig. 4.20).
Then a different filtering approach may be superior.

As we shall see in this section, the performance of the WT method can be sig-
nificantly improved by incorporating the filtering step into the problem of selecting
the optimal feature set. In other words, signal filtering and spike feature extraction
can be done in a single step. The parametric wavelet sorting with advanced filtering
(PWAF) approach was proposed to exploit this idea [43].
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Fig. 4.21 a Error rate of
spike sorting versus base
noise frequency. b Error rate
after low-pass filtering of
spikes
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4.10.1 Noise Statistics and Spike Sorting

To illustrate how the noise statistics affects the spike-sorting performance, we gen-
erated semi-artificial data sets. Each data set consisted of (1000+1000) spikes of
two different neurons. The original spike waveforms where selected from electro-
physiological recordings in the hippocampus. To simulate the effect of the noisy
background, we mixed colored noise (a band-pass filtered Poisson process) of a
certain frequency band with spike waveforms. We used these data sets for spike
sorting and then estimated the performance through the error rate, i.e., the ratio of
misclassified spikes to the total number of spikes.

Figure4.21a shows the error rate as a function of the base noise frequency. In
accordance with previous results (Sect. 4.9), the PCA method gives a high error
rate for low-frequency noise and then progressively increases performance for high-
frequency noise.

As a representative approach for wavelet-based methods, we use the WSC tech-
nique. This method exhibits significantly different behavior. The error rate has a
well-pronounced peak at an intermediate noise frequency (about 2 kHz). Compared
with PCA, the wavelet technique is a better option for sorting spikes contaminated
by low-frequency noise ( fnoise < 800 Hz).

In order to find the best filtering strategy, we filter waveforms, varying the cutoff
frequency of the LPF, and then perform spike classification on the filtered data. Here
we use white noise passed through the LPF with a varying cutoff frequency. Filter-
ing generally reduces the error rate. However, it affects the PCA and WT methods
differently (Fig. 4.21a). Indeed, the classification error for the WT technique has a
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minimum at a filter frequency around 2.2 kHz and then increases rapidly. For PCA,
the error begins by gradually decreasing to 2 kHz and then remains practically con-
stant. This suggests that low-pass filtering of spikes is worthless for PCA, but it may
be essential for WT methods, where the cutoff frequency should be appropriately
selected.

4.10.2 Parametric Wavelet Sorting with Advanced Filtering

We now discuss the details of optimal spike sorting using the wavelet technique.

4.10.2.1 Derivation of PWAF Method

We start from a data set of N + M spikes of two different neurons, contaminated
by noise. Denoting the original noise-free spike waveforms by wA(t) and wB(t), the
recorded spikes can be written as

x j (t) = ξ j (t) +
{
wA(t) , j = 1, 2, . . . , N ,

wB(t) , j = N + 1, . . . , N + M .
(4.15)

where we have assumed without loss of generality that the spikes are ordered. Here,
{ξ j } are colored noise sources, mutually uncorrelated and with the same statistics
(i.e., spectrum).

Applying the WT (4.13) to the spike waveform x j (t) for a selected parameter set
(s, t0), we obtain

Wj (s, t0) = η j +
{
WA , j = 1, 2, . . . , N ,

WB , j = N + 1, . . . , N + M ,
(4.16)

where we have put

η j (s, t0) = 1√
s

∫ T

0
ξ jψs,t0 dt , (4.17)

WA,B(s, t0) = 1√
s

∫ T

0
wA,Bψs,t0 dt . (4.18)

In (4.16), the ηi (s, t0) represent a kind of measurement noise and WA,B are the WT
coefficients of the corresponding noise-free spikes.

The coefficients Wj can now be used for sorting. The aim is to separate them
blindly into two clusters or groups with the lowest possible error rate. In our case, the
sorting is achieved by selecting a thresholdWth and assigning spikes withWj < Wth

to neuron A, and the others to neuron B (Fig. 4.22). This makes sense if the {Wj }
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Fig. 4.22 a Histogram of
the distribution of the WT
coefficients Wi describing
noisy spikes of two neurons.
Dashed curves depict the
histograms of single
neurons. Classification errors
appear in the overlap region.
bMinimal error rate given
by (4.22) as a function of the
discriminability for several
different values of γ
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have a bimodal distribution, otherwise when, e.g., the noise is too strong or the
parameters (s, t0) are not optimal and no bimodal distribution exists, spike sorting is
meaningless.

Let us now assume that the measurement noise is approximately Gaussian with
standard deviation σ . We denote the half distance between the noise-free spikes in
the wavelet space by

Ŵ = WB − WA

2
= 1

2
√
s

∫ T

0
(wB − wA)ψs,t0 dt . (4.19)

Without loss of generality, we can shift the origin and set Ŵ ≡ WB = −WA. Then
the probability density distribution of {Wj } reads

h(W ) = M√
2πσ

{
γ exp

[
− (W + Ŵ )2

2σ 2

]
+ exp

[
− (W − Ŵ )2

2σ 2

]}
, (4.20)

where γ = N/M is the ratio of the numbers of spikes emitted by the neurons. Then
the minimum of the total number of misclassified spikes is attained for

Wth = σ 2

2Ŵ
ln γ . (4.21)

Note that the optimal threshold value (γ 
= 1) does not generally correspond to the
position of the minimum in the histogram. Finally, the theoretical minimum of the
error rate is given by
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Rmin =
γ erfc

(
Δ + ln γ

4Δ

)
+ erfc

(
Δ − ln γ

4Δ

)

2(1 + γ )
, (4.22)

where erfc is the complimentary error function, and

Δ = Ŵ√
2σ

(4.23)

is the discriminability coefficient. Accordingly, the error rate is a two-parameter
function of γ and Δ that decays with an increase in Δ (Fig. 4.22b). The ratio γ

of the spike numbers is fixed by experiment, so the only remaining freedom is the
discriminability Δ.

Let us now explore ways to improve the discriminability. Selecting (s, t0) appro-
priately, we can maximize the value of Ŵ which, for constant σ , increases Δ. How-
ever, as we shall show, the scaling parameter s has a nontrivial effect on the standard
deviation σ of the noise, and consequently also on Δ.

The experimental noise ξ(t) of a limited frequency bandΩnoise can be represented
by a sum of harmonics:

ξ j =
∑
Ωnoise

A(ωk) cos(ωk t + φk j ) , (4.24)

whereωk andφk j are the frequency and randomphase of the corresponding harmonic,
and A(ω) defines the noise amplitude spectrum. Using the Haar wavelet (advocated
for spike sorting in [12]), we obtain the WT of the experimental noise (4.24):

η j = − 4√
s

∑
k

A(ωk)

ωk
sin φk j sin

2 sωk

4
. (4.25)

Note that the statistical properties of η do not depend on the localization parameter
t0. Then the standard deviation of the measurement noise reads:

σ 2(s,Ωnoise) = 8

s

∑
k

A2(ωk)

ω2
k

sin4
sωk

4
. (4.26)

Thus the discriminability may depend nontrivially on the parameters (s, t0), the spike
waveforms, and the spectral characteristics of the experimental noise. A natural way
to change the noise spectrum is to filter the signal. Denoting the cutoff frequency of
the filter by fc, we finally reduce the problem of optimal spike sorting to searching
for the parameter set (s, t0, fc) which maximizes the discriminability:

arg max
s,t0, fc

Ŵ√
2σ

. (4.27)
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Note that our problem statement is more general than conventional methods relying
on a search for the best parameter set for the WT alone. By including spike filtering
in the problem of optimal spike sorting, we account for the specific noise of the
individual experiment and potentially provide the best possible spike classification.
Moreover, other methods of WT parameter selection are based on empirical analysis
of the experimental distribution of the WT coefficients, while the PWAF method is
parametric.

4.10.2.2 Implementation of the PWAF Method

Under experimental conditions, we have no a priori knowledge of the noise-free
spikes, nor the spectrum of the experimental noise. To estimate these and optimally
sort spikes, we propose the following algorithm:

1. Estimate the noise-free spike waveforms. Applying a conventional algorithm,
e.g., PCA, we find peaks in the distribution of spike features and average spike
waveforms in the vicinity of each peak, thus estimating wA,B .

2. Estimate the spectrumof the experimental noise P(ω). A good approximation
is the spectrum of the whole extracellular signal.

3. Find an optimal parameter set (s∗, t∗0 , f ∗
c ) maximizing the discriminability.

For a given (s, t0, fc):

• Filter the signal representing thewaveform difference (wB − wA) and evaluate
Ŵ .

• Evaluate
A2(ω) = P(ω)H 2(ω) ,

where H is the filter magnitude response, and then σ .
• Evaluate the discriminability, Ŵ/

√
2σ .

Find the maximum

(s∗, t∗0 , f ∗
c ) = arg max

s,t0, fc
Δ(s, t0, fc) .

4. Filter spikes with f ∗
c and calculate Wi (s∗, t∗0 ).

5. Sort spikes according to the coefficients Wi .

Note that the proposed method can be very efficient for large data sets. Steps 1–3 do
not depend on the number of spikes and the WT of the whole data set is evaluated
only once. Moreover, the algorithm allows the use of more than one feature set for
sorting. At step 3, we can obtain more than one extremum, and then perform step
4 for all of them. In this way, we describe each spike with more than one feature
(wavelet coefficient) and can use them together for spike sorting in step 5.
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Fig. 4.23 Sorting of data set
#1. a Discriminability Δ vs
cutoff frequency of an LPF.
For the maximal Δ = 2.39,
the theoretical minimum of
the error rate is 0.3%. Inset:
Superposed experimental
spike waveforms and noise
free spikes (white). b
Distributions of spike
features for different
methods: PCA, exhaustive
wavelet, and PWAF
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4.10.2.3 Algorithm Performance

To test the algorithm, we employ simulated data sets differing by noise statistics and
spikewaveforms. Figure4.23 shows an application of the algorithm to the data set #1.
The discriminability has a strong peak at a surprisingly low frequency fc = 100 Hz
(Fig. 4.23a). With such aggressive filtering, the difference Ŵ between the noise-free
spikes in the wavelet space is small, but at the same time, we almost completely filter
out the noise, thereby gaining in performance.

Figure4.23b shows histograms of the distribution of spike features (see also
Fig. 4.22a). The PCA method involves a significant overlap of the spikes of two
neurons and the resulting error rate is 5.5%. To find the best possible classification
with the conventional WT, we search exhaustively through all pairs (s, t0) for a set
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Table 4.2 Error rate for spike sorting by different algorithms with simulated and experimental data
sets

Data set PCA Exhaustive
wavelet (%)

PWAF (%)

Simulated #1 5 0.5% 4.5 0.7

Simulated #2 28 0.0% 5.5 1.7

Experiment #1 11 0.1% 7.0 3.4

Experiment #2 12 0.2% 7.3 6.8

minimizing the error rate. Note that this is not possible in any real situation without a
priori knowledge of the spike clusters. This procedure yields the absolute minimum
of classification errors that can be achieved by any empirical WT-based method. The
exhaustive wavelet gives a bit better classification than PCA, achieving a 4.5% error
(Fig. 4.23b).

The PWAF method is significantly superior, with an error rate of 0.7%, which is
quite close to the theoretical minimum. This confirms the hypothesis that intelligent
filtering is essential for wavelet methods.

We performed the same procedure for another data set (Table4.2) thatwas selected
to exhibit differences between noise-free spikes at small time scales. This is a case
where the wavelet technique has an advantage over the PCAmethod. Indeed exhaus-
tive wavelet and PWAF yield a much better classification than PCA.

We now test the PWAF method on real measurements. Extracellular recordings
were made using tetrode electrodes. Their design permits recording of the same
neuron by two electrode tips (for details see [4]). In rare cases, two electrode tips
captured high-amplitude spikes generated by a single neuron in addition to simul-
taneous multi-neuronal activity. Among many experimental recordings, we selected
two data sets where these conditions were satisfied. For these data sets relating
voltage traces of the two channels, we sort spikes manually with high fidelity. Then
using this information, we estimate the error rate of the automatic methods. Table4.2
summarizes the results, showing once again that the PWAF method is superior.

4.11 Spike Sorting by Artificial Neural Networks

We now discuss applications of artificial neural networks [44–48] for spike sorting,
including combined approaches based on wavelets and neural networks.
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Fig. 4.24 Multilevel decomposition of a typical spike waveform using the D4 wavelet

4.11.1 General Approach

Here we use the wavelet multiscale decomposition of spikes as an input to a neural
network. For spike decomposition, the discrete wavelet transform is used as a tool
to characterize the structure of complex signals over a broad range of time scales.
Figure4.24 depicts an example of a three-level DWT of a typical spike waveform
x(t). The series of coefficients s1–s3 correspond to the approximation of x(t) at three
levels, whereas d1–d3 represent details. Then the set [s3, d1, d2, d3], used as input to a
neural network, uniquely represents the original spike waveform x(t) in the wavelet
space.

In general, DWT provides quite a large number of coefficient features for each
spike (equal to the spike length, e.g., 64). Not all of them are relevant for spike
sorting, others may contain duplicated information. Thus for efficient spike sorting,
a dimension reduction is required, and for this purpose we use neural networks.

Let us assume that some multilayer feedforward neural network receives as
input spike waveform features extracted by the wavelet technique described above
(Fig. 4.25). The network should be trained in such a way that, at the output, we can
read out a few compound features best discriminating the spikes [44]. Then the prob-
lem of spike sorting becomes trivial and simple clustering algorithms, e.g., k-means,
can be used. We thus formulate the following algorithm for spike sorting:

• Detect spikes that exceed the level of experimental noise by thresholding the
high-pass-filtered recorded potential [Fig. 4.5, fcut = 100–300 Hz, Vth = 3∗MAD
(mean absolute deviation)].
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Fig. 4.25 General scheme for spike sorting using the wavelet transform and neural networks.
Different spikes are wavelet transformed and the resulting coefficient features are fed into a network
which finally represents the spikes in a low-dimensional space. The network should be trained in
such a way that spikes of different neurons are grouped into clusters located far away from each
other

• Apply DWT to the selected waveforms (Fig. 4.24).We assume that each waveform
has 64 data points and use the D4 orthonormal Daubechies wavelet, performing a
pyramidal decomposition of the waveforms.

• Remove wavelet coefficients fluctuating around zero mean value, since these coef-
ficients are strongly influenced by noise.

• Process the remaining wavelet coefficients by a 3-layer feedforward neural net-
work.

After applying the algorithm, we expect to obtain several clusters grouping spikes in
the low-dimensional feature space (Fig. 4.25). The most challenging problem in this
algorithm is how to select an appropriate network and how to train it [45–48].

In general, training algorithms can be subdivided into two groups: supervised
and unsupervised learning. Supervised learning, i.e., with a “teacher”, usually gives
better results. However, within this framework, the learning procedure requires a
priori knowledge of all standard spikes, i.e., denoised typical spikes generated by all
neurons, which is hardly going to be available in a real experiment.

At the present time, there exist different algorithms for unsupervised learning
(without a “teacher”) [46, 47]. These algorithms have been shown to be successful
in image recognition, but their reliability depends significantly on the noise level and
the data set. Consequently, their use for spike sorting may not be effective. In the
present approach, we thus use a kind of supervised learning algorithm, which we
shall describe later.

Setting the network structure for a recognition problem is often simply a matter
of experience on the part of the researcher. The selected three-layer network in
Fig. 4.25 is just one among many. However, several circumstances should be taken
into account. The feedforward network representing a multilayer perceptron [49]
is one of the most studied in the literature. The choice of the number of layers
and units in each layer is a compromise between network stability and plasticity.
More complex networks possess better adaptation, but they may be unstable in the
recognition process. Concerning the number of units (neurons), we use 64, 32, and
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Fig. 4.26 Block diagram for the proposed method of spike sorting

2 units in the first, second, and third layers, respectively. The number of units in the
first layer is fixed by the number of data points available for each waveform, whereas
the output layer has only two units, corresponding to the lowest useful dimension
for clustering (clustering in 1D usually has much lower performance) (Fig. 4.26).

4.11.2 Artificial Neural Networks

Followingon from thebrief sketchgiven inSect. 4.11.1, let us nowdiscuss approaches
based on ANN in more detail. We continue to use a 3-layer perceptron (Fig. 4.27). In
the theory of ANNs, neuron nodes are typically described by the McCulloch–Pitts
equations [50]. The state of the neuron j in layer k, denoted by y jk , is given by

y jk = F(ν jk) , ν jk =
Mk∑
i=1

ωi jk yik−1 − θ jk , j ∈ [1, Nk] , (4.28)

Fig. 4.27 Artificial neural
network in the form of a
3-layer perceptron
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where F(x) is the activation function, and in fact, usually F(x) = α tanh(βx), while
ωi jk are the synaptic weights defining connections of the neuron with other neurons
in the previous layer, and θ jk is the threshold for activation of the neuron. Finally,
Mk and Nk are the numbers of synapses and neurons, respectively, in layer k.

The learning of such a multilayer structure assumes an appropriate tuning of the
thresholds {θ jk} and synaptic coefficients {ωink}, in such a way that input vectors xs
would bemapped to predefined output vectors ys. As the learning technique, we shall
consider algorithms based on the backward propagation of errors. This approach uses
minimization of the error functional over the parameters ωi jk and θ jk , viz.,

E = 1

2

Nk∑
j=1

(y jk − ysj )
2 , (4.29)

where y j3 represents the vector of output values obtained in the process of recog-
nition of the input vector xs using the neural network, and ys is the known vec-
tor. The minimization procedure is based on the convex property of E . In order
to reach a minimum of the function, one can move against the gradient of E . Let
P = {. . . ωi jk . . . ; . . . θ jk . . .} be the vectorwhose components are the synaptic coeffi-
cients and threshold levels of the neural network. Thenwehave to find argminP E(P).
This can be done by the following iterative procedure:

P(1) = P(0) − e j h
∂E(P(0))

∂P (0)
j

, (4.30)

where h > 0 is a small constant known as the learning rate (the learning is performed
for one component at a time). Then the minimum of the scalar error function (4.29),
using all components {ωi jk}, {θ jk}, corresponds to

∂E

∂ωi jk
= ∂E

∂y jk

∂y jk
∂ν jk

∂ν jk

∂ωi jk
= 0 ,

∂E

∂θ jk
= ∂E

∂y jk

∂y jk
∂ν jk

∂ν jk

∂θ jk
= 0 , (4.31)

y jk = α tanh(βν jk) .

The coefficients of the neural network (Fig. 4.27) are corrected using (4.28), (4.29),
and (4.31):

∂E

∂ωi j3
= yi2

β

α
(y j3 − ysj )(α − y j3)(α + y j3) ,

∂E

∂θ j3
= (−1)

β

α
(y j3 − ysj )(α − y j3)(α + y j3) ,
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∂E

∂ωi j2
= yi1

β

α
(α − y j2)(α + y j2)

N3∑
n=1

ω jn3
β

α
(yn3 − ysn)(α − yn3)(α + yn3) ,

(4.32)

∂E

∂θ j2
= (−1)

β

α
(α − y j2)(α + y j2)

N3∑
n=1

ω jn3
β

α
(yn3 − ysn)(α − yn3)(α + yn3) ,

∂E

∂ωi j1
= xi

β

α
(α − y j1)(α + y j1)

×
N2∑

m=1

ω jm2
β

α
(α2 − y2m2)

N3∑
n=1

ωmn3
β

α
(yn3 − ysn)(α

2 − y2n3) ,

∂E

∂θ j1
= (−1)

β

α
(α − y j1)(α + y j1)

×
N2∑

m=1

ω jm2
β

α
(α2 − y2m2)

N3∑
n=1

ωmn3
β

α
(yn3 − ysn)(α

2 − y2n3) ,

ω
(1)
i jk = ω

(0)
i jk − hk

∂E

∂ωi jk

∣∣∣∣
(0)

, θ
(1)
jk = θ

(0)
jk − hk

∂E

∂θ jk

∣∣∣∣
(0)

.

4.11.3 Training the Artificial Neural Network

Let us now describe the supervised network training. We denote the input and output
vectors by w and y, respectively. In our particular case w ∈ R

64 represents a spike
waveform in the DWT space and y ∈ R

2 is the reduced set of discriminating spike
features. We then construct a set of vector pairs (wj , y j ), ( j = 1, . . . , n) for n spikes,
and say that the network is trained if, when presenting vector wj at the input, we
receive y j at the output for any j ∈ [1, n]. To achieve this we have to adjust the
synaptic weights of the interneuron couplings.

4.11.3.1 Delta Rule

The simplest learning algorithm for a two-layer network consists in several steps and
uses iterative adjustment of weights for each neuron in the network. In the first step
all weights are randomly initialized. In the second step we present a vector wj to the
input of the network and receive some vector z j at the output. Then the error of the
network response is
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δ j = y j − z j . (4.33)

In the third step the coupling weights are modified proportionally to the obtained
error. We employ the following delta-rule learning:

Vt+1 = Vt + νwjδ
T
j , (4.34)

where Vt is the weight vector at the learning step t and ν > 0 is a small constant
defining the learning rate. The learning is performed until convergence is achieved.
The learning contains several epochs and is deemed finished if either (a) the weights
do not change, or (b) the full absolute error (a sum over all vectors) becomes less
than some fixed value.

4.11.3.2 Back Propagation of Errors

When training a multilayer network, the delta-rule described above is not applicable,
since the outputs of the internal layers are unknown. In this case the method of back
propagation of errors is usually used. This method allows one to obtain the errors
for the internal layers. In the learning process, information is passed from the input
layer to the output layer, while the error propagates in the opposite direction.

The method estimates the gradient of the error within the network and performs
a correction on the coupling weights. It consists of two stages. In the first stage,
forward propagation of the input signal is performed to estimate output activations.
Then, differences between output activations and the teacher output are estimated to
obtain deltas for all neurons in the hidden layers. In the second stage, the gradient
for each weight is computed by multiplying its output delta and input activation.
Further, the weight is reduced by analogy with (4.34).

Details of the method are given in [44–48]. We shall illustrate this approach for
different examples of neural networks.

4.11.4 Algorithm for Spike Sorting Using Neural Networks

When sorting experimental spikes, the main problem is lack of information about the
number of clusters and about the noise-free standard spikes. Thus we cannot apply
the above algorithm for network training directly. To overcome this difficulty, we use
the algorithm for finding representative waveforms discussed in Sect. 4.7. Finally, the
spike-sorting algorithm is as follows (Fig. 4.26):

• Detect spikes that exceed the level of experimental noise.
• Obtain information about the noise statistics and perform preliminary spike sorting
using PCA or the wavelet transform.
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• Select regions in the feature space with a high density of spikes and obtain the
mean spike shapes.

• Apply the wavelet transform to the mean spike waveforms.
• Train the neural network using the wavelet coefficients computed in the previous
step.

• Sort the experimental spikes with the resulting network parameters.

Thus for network training, we use spike waveforms corresponding to the centers of
the clusters obtained using preliminary spike clustering by a conventional method,
e.g., PCA orwavelet transform. As the standard output of the network, we use vectors
obtained in the feature space of the mean waveforms [51].

In order to test the spike-sorting abilities of this approach, we created a semi-
simulated data set. Two different but rather similar spikewaveforms (Fig. 4.25, spikes
A andB)were selected from a real extracellular recording.We then generated a series
consisting of 946 spikes for each repeated waveform and added colored noise to the
data. The noise characteristics were similar to those observed experimentally. As a
result, we obtain a signal similar to a real extracellular recording, but with a priori
knowledge about the membership of each spike in one or the other group.

The use of preselected standard spikes without experimental noise enables the
simplest supervised learning using the back propagation of errors algorithm.We used
64 wavelet coefficients as the learning sequence wj for the first spike waveform and
the same number for the second spike waveform. As a result, the learning algorithm
contained 64 epochs. As mentioned above, the network should provide the most
effective spike clustering, so the standard output vectors yi associated with the two
waveforms should be markedly different. They can be appropriately chosen. Here
we used y1 = [0.1, 0.1] and y2 = [0.5, 0.5]. Once the learning procedure has been
finished, the network can be used to separate noisy data.DWTsof all spikewaveforms
are used as input to the trained network, thus providing pairs (y1, y2) for each spike.
For the final data clustering, we used the k-means algorithm. Then the clustering error
is the number of wrongly classified spikes relative to the total number of spikes.

Figure4.28 illustrates the performance of the proposed approach for spike sorting
in the presence of color noise with a fixed bandwidth of 500 Hz and varying central
frequency. The classification error grows slightly from 0.7% for low-frequency noise
( fc = 250 Hz) to about 1.5% for noise for the central frequency 1 kHz, and then it
remains constant.

We now test the approachwith real electrophysiological recordings. Following the
proposed algorithm, we performed preliminary spike sorting using the wavelet spike
classifier. Figure4.29a illustrates the clustering results in the wavelet space. The data
are organized into three partially overlapping clusters. For each cluster, we selected
50 points located closest to the spike density peaks in the feature plane. Averaging
over 50 spikes provided the representative spike waveforms for three neurons. Using
these waveforms, we trained the neural network. Then the full set of spikes was
passed through the neural network. Figure4.29b shows the network output, i.e., the
plane (y1, y2). Again all spikes formed three clusters. However, in the network output
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Fig. 4.28 Sorting of semi-simulated spikes. a (y1, y2)-planes representing spikes for different
central noise frequencies. b Classification error vs central noise frequency (noise band 500 Hz)

space, cluster overlapping was significantly reduced. This facilitates clustering (e.g.,
using k-means), and presumably reduces the number of misclassified spikes.

In conclusion, the considered approach combines the wavelet transform and artifi-
cial neural networks. The wavelet analysis allows us to reveal characteristic features
in the shapes of spike waveforms. As we have shown in previous sections, WT is
potentially a more powerful technique than PCA. However, the selection of the most
informative features and rejection of noisy ones in WT approaches is a challenging
problem. The use of neural networks provides an automatic solution to this problem
(through training). The trained network automatically selects appropriate combina-
tions of the most discriminative features from the whole set. It effectively projects
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Fig. 4.29 Clustering of electrophysiological spikes by a conventional wavelet method (a) and by
the proposed combined approach (b)

wavelet coefficients into a low dimensional space (2D in our case), significantly
improving the separability of spikes generated by different neurons.

We tested the proposed approach with semi-simulated and real electrophysiolog-
ical data. We showed that the use of neural networks can significantly improve the
preliminary classification obtained using PCA scores or wavelet coefficients. Relia-
bility of the spike clustering also has been shown for the case of several clusters in
the feature space of wavelet coefficients. The considered examples demonstrate the
superior performance of the present approach over conventional PCA and wavelet
techniques.

4.12 Artificial Wavelet Neural Networks for Spike Sorting

In Sect. 4.11, we showed that the approach based on a combination of the wavelet
transform and artificial neural networks can reduce errors in automatic spike sorting.
However, it also has some limitations.

On the one hand, this approach can outperform standard neural networks because
the integration of a time–frequency representation (using wavelets) into the structure
of the recognition algorithm allows an initial preprocessing of the data used as input
for the neural network. In this context, the wavelets used in the data preprocessing
stage provide a way to select characteristics that can be used by the neural network to
better distinguish signals of different types. On the other hand, this method assumes
no variation of wavelet parameters in the learning phase. For this reason, the efficacy
of the method depends on the initial selection of the parameters, i.e., the results of
the data preprocessing.

In the learning phase, there is a loss of connection with the selection of WT
parameters since, in the approach considered here, these parameters are not adjusted
in the course of the learning procedure. If these parameters are selected sub-optimally,
then the situation cannot be further improved. It has been shown that this circumstance
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strongly influences the final result of image recognition (and consequently of spike
sorting), because the personal experience of a researcher becomes one of the key
factors. In order to reduce the influence of subjective factors, one can extend the
learning phase and include additional tuning of the wavelet parameters, depending
on the quality of recognition. This approach is used with the so-calledwavelet neural
networks (WNN) (see, e.g., [52–56]).

4.12.1 Structure of Wavelet Neural Networks

The structure of WNN and its analytic description is similar to standard neural
networks. A WNN can be treated as an extended perceptron that includes two parts:
a wavelet transform for revealing typical features of signals and an artificial neural
network for image recognition using the selected features.

The first part includes wavelet nodes where wavelet functions (e.g., the Morlet
function) are used instead of the classical logistic function. Thesewavelets reveal fea-
tures of signals on different independent scales. The procedure begun with obtaining
of wavelet coefficients from native data that reflect typical features of the analyzed
signal. These coefficients represent an input for the second part of the algorithmwhen
final recognition is performed. One feature of WNN is the possibility of selecting
wavelet coefficients in the course of learning, besides correcting the synaptic coef-
ficients. WNNs constitute one of the most promising approaches for recognition of
spike waveforms. We shall thus discuss this approach in more detail. Since WNN is
an extension of standard ANN (Fig. 4.27), we shall briefly discuss some aspects of
image recognition with different variants of WNNs (Figs. 4.30, 4.31 and 4.32).

4.12.2 Wavelet Neural Networks

Figure4.30 shows the first and simplest variant of WNN. It does not require one to
include thewavelet part of theWNN in the learning process. To obtain amathematical
description of this WNN, we shall consider discretization of the CWT and the basic
functions WAVE and MHAT.

When computing the continuous wavelet transform of a function x(t), we shall
use the discrete values of the scale parameter s = 2 j and the WAVE function as
mother wavelet, written in the form

ψ(ρ, q, t) = (ρt − q) exp

[
− (ρt − q)2

2

]
. (4.35)

The process of computing wavelet coefficients will be rewritten as follows:
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Fig. 4.30 First type of WNN

Fig. 4.31 Second type of WNN

C jk = W

(
1

2 j
,
k

2 j

)
≈ 2 j/2Δt

N−1∑
n=0

x(nΔt)ψ(ρ j n − qk) , ρ j = 2 jΔt , qk = kρ j .

(4.36)
The signal decomposition over thewavelet basis can be treated as the formal inclusion
of an additional layer of NN nodes that will contain wavelet coefficients in the
synapses. Thresholds of such nodes are switched off, and the activation function is
a simple linear function. For the neuron l of the first wavelet layer, we obtain
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Fig. 4.32 Third type of WNN

yl1 = ανl1 − β , νl1 =
N−1∑
n=0

xnwnl1 ,

wnl1 = ψ(ρ j n − qk) = (ρ j n − qk) exp

[
− (ρ j n − qk)2

2

]
, (4.37)

for

1 ≤ l ≤ NNf , j =
[
l

N

]
, k =

[{
l

N

}
N

]
,

where yl1 is the reaction of neuron l from the first layer after receiving the vector
x, Nf corresponds to the maximal frequency in the power spectrum, and the integer
values j , k quantify the scale and translation parameters. In Eq.4.37 square and curly
brackets denote the integer and fractional parts of the number, respectively.According
to (4.37), each neuron of the first layer is associated with the given parameters of the
wavelet transform. If the neural network (Fig. 4.27) is added to this layer, one of the
simplest variants of the WNN of the first type is obtained (Fig. 4.30). This variant
does not require differentiation of the wavelets, and its practical realization is quite
simple.

The second type of WNN (Fig. 4.31) assumes a more complex computing algo-
rithm within the framework of which the wavelet function is used in the synaptic
part of the first layer and should satisfy the differentiation condition for including
wavelet nodes in the learning algorithm. Coefficients of the wavelet transform carry
information about the relation between the input vector and a given type of signal,
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and this is why an additional layer with wavelet functions integrated into the synaptic
part seems to be useful. According to the model neuron (4.28), mathematical oper-
ations in the synaptic part are analogous to the discretized version of the wavelet
transform (4.36), but the decomposition is provided using another basis of functions.
If the wavelet function ψ is included in both the recognition and the learning cycles,
then a layer of “wavelet nodes” is obtained, where synaptic coefficients are given by
the translation and scale parameters of the corresponding function ψ .

Let us show how the procedure of learning and recognition will be written for the
WNN shown in Fig. 4.31. The first layer includes a decomposition of the input vector
in the basis of wavelet functions. The following layers are organized according to the
standard scheme shown in Fig. 4.27. The additional layer of this WNN is described
by the following equations:

y j1 = α tanh

⎡
⎣β

⎛
⎝M1∑
i=1

xiwi j1 − θ j1

⎞
⎠
⎤
⎦ , wi j1 = (ρ j i − q j ) exp

[
− (ρ j i − q j )

2

2

]
,

y j2 = α tanh

⎡
⎣β

⎛
⎝M2∑
i=1

yi1ωi j2 − θ j2

⎞
⎠
⎤
⎦ , y j3 = α tanh

⎡
⎣β

⎛
⎝M3∑
i=1

yi2ωi j3 − θ j3

⎞
⎠
⎤
⎦ .

(4.38)
Two variants can be considered for the functioning of the wavelet layer, namely, the
cases of linear and nonlinear activation function, where (4.38) corresponds to the
latter. The learning procedure for this WNN assumes correction of the following
parameters: the translation parameter ρ j and the scale parameter q j of the wavelet
function ψ(t) in the first layer, the thresholds θ j1 of formal neurons in the first layer,
the synaptic coefficientsωi j2,ωi j3, and the thresholds θ j2, θ j3 of the remaining neural
layers. The learning process follows the scheme

∂E

∂ρ j
= ∂y j1

∂ν j1
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(4.39)
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The values of derivatives (∂y j1/∂ν j1)(∂ν j1∂ρ j ) are estimated depending on the selec-
tion of the activation function and the wavelet. Let us consider theWAVE andMHAT
wavelets as activation functions:

ψ(t) =

⎧⎪⎪⎨
⎪⎪⎩
t exp

(
− t2

2

)
, WAVE ,

(1 − t2) exp

(
− t2

2

)
, MHAT .

(4.40)

The general structure of the WNN constructed on the basis of the 3-layer neural
network with the WAVE wavelet in the first layer is shown in Fig. 4.31.

The third type of WNN (Fig. 4.32) includes the wavelet functions as activation
functions in the first layer. Let us consider a 3-layer neural networkwith the activation
functionψ(t) in the first layer (Fig. 4.32). The coefficients of thisWNN are corrected
according to the following equations:

∂E

∂ωi j3
= yi2

β

α
(y j3 − ysj )(α − y j3)(α + y j3) ,

∂E

∂θ j3
= (−1)

β

α
(y j3 − ysj )(α − y j3)(α + y j3) ,

∂E

∂ωi j2
= yi1

β

α
(α − y j2)(α + y j2)

N3∑
n=1

ω jn3
β

α
(yn3 − ysn)(α − yn3)(α + yn3) ,
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∂E

∂θ j2
= (−1)

β

α
(α − y j2)(α + y j2)

N3∑
n=1

ω jn3
β

α
(yn3 − ysn)(α − yn3)(α + yn3) ,

(4.41)
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.

The learning rules for all consideredWNNs (Figs. 4.30, 4.31 and4.32) are generalized
as the following computing algorithm:

• Select initial values of the synaptic coefficients and thresholds of theneural network
and wavelet coefficients.

• Recognition based on testing data sets that contain signals of several types is
provided for a random sequence of signals of different type. After recognition, the
error is estimated and the coefficients of NN and WNN are corrected.

• Recognition and correction are repeated in several stages (“epochs”). The number
of stages is chosen depending on the features of the recognized objects.

4.12.2.1 Performance of WNNs

To compare the efficacy of different types of WNNs and to analyze spike-sorting
errors, we used two types of waveforms produced by real neurons. Two different
waveforms were extracted from extracellular recordings of electrical activity of neu-
ral ensembles. The quality of spike identification was controlled using tetrode micro-
electrodes that allow registration of extracellular potentials in four closely located
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Fig. 4.33 Fragment of a test signal used to compare the efficiency of different recognition
approaches

Table 4.3 Parameters of the neural network (Fig. 4.27)

# Parameter Description

1 Number of layers 3

2 Number of neurons in the 1st layer 16

3 Number of neurons in the 2nd layer 250

4 Number of neurons in the 3rd layer 2

5 Activation function F(x) = α tanh(βx), α = 6.0, β = 0.45

6 Number of learning epochs 1000

7 Number of types × spikes 2 × 250

8 Learning step of neurons from layer i h1 = 0.0003, h2 = 0.0002, h3 = 0.0001

9 Initial values of coefficients Random values equally distributed in the
range [−0.001, 0.001]

10 Maximal × minimal value of the output
vector

−6.0× 5.0

points (about 30 µm apart) thus providing multichannel recordings of neural activ-
ity. A more detailed description of the experimental data can be found in [14, 43].
Further, test signals were generated, including a random sequence of impulses of
both types with added noise. Figure4.33 shows an example of the corresponding test
signal. A 3-layer perceptron (Fig. 4.27) contained a number of parameters indicated
in Table4.3. Parameters of the WNNs are given in Table4.4.

In the course of learning, the considered neural networks solved the problem of
signal identification in the presence of fluctuations within different frequency bands.



168 4 Classification of Neuronal Spikes from Extracellular Recordings

Table 4.4 Parameters of the WNNs (Figs. 4.30, 4.31 and 4.32)

# Parameter Description

1 Wavelet function ψ(t) = te−t2/2, ψ(t) = (1 − t2)e−t2/2

2 Type of WNN – WNN of the first type (not including
learning procedure for the wavelet layer)
– WNN of the second type (including
learning procedure for the wavelet layer)
with linear and nonlinear activation
function
– WNN of the third type (including wavelet
function as activation function)

3 Number of layers used for learning (in
general case)

3

4 Number of neurons in the 1st layer 16

5 Number of neurons in the 2nd layer 250

6 Number of neurons in the 3rd layer 2

7 Activation function F(x) = αth(βx)

8 Number of epochs 1000

9 Number of types × spikes 2 × 250

10 Learning step of neurons from layer i hi ∈ [0.000001, 0.005]
11 Initial values of coefficients Random values equally distributed in the

range [−0.001, 0.001]

12 Maximal × minimal value of the output
vector

−6.0× 5.0

As the first test, a narrow-band noise (1/20 from the maximal frequency in the power
spectrum) was applied because, according to Sect. 4.4, the efficiency of techniques
for image recognition strongly depends on the spectral properties of the presented
fluctuations. Experiments were performed using ANN (Fig. 4.27) by changing the
frequency band of the presented noise added to the signal (Fig. 4.33). The results
are shown in Fig. 4.34. According to this figure, the quality of recognition depends
heavily on the frequency band of the fluctuations. The error is maximal for the central
frequency of the noise, viz., 600–700 Hz. In general, the classification error takes
larger values in the low-frequency area compared with the central frequency of the
analyzed signal (about 1.0–1.5 kHz) and approaches zero in the high-frequency area.
The test was performed using a series of 3610000 generated spikes (each consisting
of 32 data points) with frequency band 250 Hz.

Another situation is observed for fluctuations in the middle and high frequency
range. The identification error is small and an increase in the noise intensity (at
least, up to the value 0.6 of the signal energy) does not lead to any remarkable
increase in the error. This allows us to conclude that the NN can be treated as a
filter with characteristics that are adjusted in the course of learning. According to
Fig. 4.34a, effective filtering and further recognition are able only when fluctuations
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Fig. 4.34 Estimation of the identification error for a standard neural network [(a) and (b)] and
WNN of the second type [(c) and (d)] with the MHAT function and nonlinear activation function
for different values of the ratio of energies Enoise/Esignal: 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4), 0.5 (5),
0.6 (6). Dependencies of the recognition error [(a) and (c)] on the central frequency of narrow-band
noise and of the mean error versus the relative intensity of fluctuations [(b) and (d)]

are associated with the middle and higher frequencies as compared with the mean
frequency of the recognized signal. Figure4.34b illustrates an increase in the mean
error (as a result of averaging over the whole range of fc). The mean error increases
for higher noise intensities, but the rate of this increase and absolute values of the
error depend on the type of NN used. Thus, application of WNNs typically improves
recognition accuracy.

Analogous test experiments were performed for WNNs. All variants of wavelet
neural networks (Figs. 4.30, 4.30 and 4.32) were analyzed using the two basic func-
tions WAVE and MHAT. Additionally, for WNN of the second type (Fig. 4.31), both
linear and nonlinear activation functions were considered (Table4.5). Testing was
performed using the same example (Fig. 4.33) to compare the errors of the various
methods under identical conditions.

This investigation showed that results obtained with WNNs correspond to the
results obtained for the classical ANN (Fig. 4.27), but that wavelet nodes enable error
recognition in the presence of noise. Let us consider the corresponding results for
theWNN of the second type. Application of the linear activation function within this
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Table 4.5 Neural networks used for spike recognition

# Type of the used network

1 Standard NN

2 WNN of the first type with WAVE function

3 WNN of the first type with MHAT function

4 WNN of the second type with WAVE function and linear activation

5 WNN of the second type with WAVE function and nonlinear activation

6 WNN of the second type with MHAT function and linear activation

7 WNN of the second type with MHAT function and nonlinear activation

8 WNN of the third type with WAVE function

9 WNN of the third type with MHAT function

Fig. 4.35 Comparison of
efficiency of spike
recognition with the neural
networks. Error is
normalized to the maximal
value. Error for the case
Enoise/Esignal=0.6 is shown
by gray color, and coefficient
of the increase of error is
shown by black color

WNN simplifies computations and does not use thresholds, i.e., it provides a much
quicker learning procedure as compared with the nonlinear activation function. The
more nonlinear elements are included in the WNN, the more time is required for
learning.

According to Fig. 4.34, application of WNNs reduces the maximal error by about
5% (for the case Enoise/Esignal=0.6) and the mean error by about 1%. These results
are obtained for the case of narrow-band noise. With an increased frequency band
of fluctuations, the quality of recognition with WNNmay be significantly improved,
and the dependence of the error on the frequency band changes. As another test, the
case of noise with a broader frequency band (1 kHz) was considered. This test was
performed using a series of 3040000 generated spikes (each consisting of 32 data
points).

Instead of visual comparison between the graphics (similar to Fig. 4.34), we use
two numerical measures: error at fixed signal-to-noise ratio and the coefficient of the
increase in the mean error with the noise intensity. Nine NNs (see Table4.5) were
compared using these measures (Fig. 4.35).
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According to the results obtained, we can conclude that the most effective recog-
nition techniques are WNN of the second type with nonlinear activation function
(variants 5 and 7 in Table4.5). Let us note that this conclusion is based on the pro-
cessing of a large number of experiments performed in vivo with the trigeminal
complex of rats. Less effective results are obtained for WNNs 6 and 9. In the latter
case, the accuracy is less than for the standard approach (variant 1). Likewise, for
WNNs 2, 3, 4, and 8, no essential improvement was revealed in the results compared
with the standard NN. This may be explained by the nonlinearity of WNN, which
requires appropriate adjustment using special techniques. The less effective results
for some WNNs (e.g., 6 and 9) confirm that the adjustment of WNNs with linear
activation functions requires special techniques or complicating the NN structure.

We considered in more detail the WNN of the second type, which is typically not
considered in practical applications due to the more complicated learning procedure.
They require a learning process about 7 times larger compared with the standard NN.
However, they provide better recognition in the presence of noise (by about 16%
compared with the classical NN), which easily counterbalances the extra computing
time.
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Chapter 5
Analysis of Gamma-Waves in
Multielectrode LFP Recordings

Abstract Neuronal activity in different brain regions is predominantly irregular.
Nevertheless, the coordinated firing in cell assemblies is responsible for at least
part of the information flow at the circuit level. The synchronization of the synaptic
bombardment promotes sizable transmembrane currents in target neurons that give
rise to extracellular local field potentials (LFPs). Thus, LFPs provide convenient
access to information processing at the circuit level. However, the LFP analysis
requires the solution of complex mathematical problems. This chapter offers a brief
introduction to mathematical methods that enables the separation of raw LFPs into
pathway-specific components and their in-depth analysis. In particular, we discuss
twowavelet-basedmethods for quantifying gammawaves induced in the CA1 region
of the hippocampus by the synchronized firing of functional clusters of CA3 pyrami-
dal cells. We show how gamma waves’ analysis helps establish causal relationships
between the firing of individual CA3 and CA1 cells. We also address the problem
of integrating information parsed by gamma waves in the two bilateral CA3-CA1
circuits.

5.1 Introduction

Information processing and transfer between higher brain nuclei are primarily based
on the coordinated firing of functional groups of neuronal assemblies. Yet, little is
known about how much of the neural code resides in units or assemblies activities
[1, 2]. Although spike trains of single neurons in different brain regions are predom-
inantly irregular, it has been proposed that synchronous activity in cell assemblies is
responsible for at least part of the information flow [3–5].

Thus, many studies have focused on the search for synchronization in an irregular
activity. However, this task applied to the firing of single units is technically demand-
ing [6]. At the circuit level, the synchronous firing of neuron assemblies promotes
the summation of synaptic currents in tissue volume surrounding the target neurons.
These currentsmay give rise tomeasurable extracellular local field potentials (LFPs),
which provide a link between neuronal activity and behavior [7–9].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. E. Hramov et al.,Wavelets in Neuroscience, Springer Series in Synergetics,
https://doi.org/10.1007/978-3-030-75992-6_5

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75992-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-75992-6_5


176 5 Analysis of Gamma-Waves in Multielectrode LFP Recordings

LFP is a mesoscopic variable. It contains accurate spatiotemporal information of
the synaptic activity generated by converging neuronal populations [10]. LFPs can be
easily monitored by intra-cranial multi-electrode matrices. The multiple presynaptic
origins of LFPs have, however, limited their use to a few macroscopic events and
oscillations mostly in architectonically simple regions as the hippocampus [7].

This chapter discusses a novel approach to extract pathway-specific ongoing
synaptic activity from irregular hippocampal LFPs [11, 12]. The pathway-specific
activity can be used to investigate the ongoing dynamics of one presynaptic popu-
lation, e.g., the CA3 region. We can quantify its contribution to the elaboration of
spike trains in postsynaptic CA1 units. Pyramidal cells in the CA1 region receive
excitatory inputs from several presynaptic nuclei, all of which can themselves initiate
postsynaptic firing when sufficient synchrony occurs (e.g., following electrical stim-
ulation) [13].AlthoughCA3pyramidal cells usually firewithin functional assemblies
[14, 15], it is unknown whether the degree of synchronization is enough to fire CA1
pyramidal neurons during ongoing activity.

The independent component analysis (ICA) has a spatiotemporal resolution suf-
ficient to separate different generators in irregular LFPs [16]. Hippocampal LFPs are
particularly suited for ICA as the stratification of afferent axons from diverse presy-
naptic populations along principal cell dendrites facilitates spatial discrimination
of the electrical current sources. Recently, a successful decomposition of irregular
hippocampal LFPs into several generators with a subcellular spatial definition has
been obtained [11, 12]. Specifically, we identified the so-called Schaffer generator
corresponding to the ipsilateral input from the CA3 to CA1.

To get a more in-depth insight into synchronization processes, we develop two
wavelet-based methods that allow the identification of separate micro-events in the
ongoing activity of the CA3-CA1 pathways. The low firing rate and functional clus-
tering of CA3 pyramidal cells [17] allows us discriminating elementary synaptic
events in the Schaffer generator, which we term micro-field EPSPs (μfEPSPs).

We use the identified μfEPSP events to find correlated spikes between presy-
naptic and postsynaptic CA3-CA1 pairs of units within long spontaneous epochs.
Paradoxically, during irregular hippocampal LFPs, the Schaffer μfEPSPs constitute
a regular oscillatory succession of excitatory packages involving a variable contri-
bution from individual presynaptic CA3 units. These μfEPSPs appearing at gamma
rate can effectively fire CA1 pyramidal cells revealing the pathway-specific origin
of some spikes as proposed in synfire chains [18]. Further, we study the bilateral
integration of gamma-parsed information in the two hippocampal lobes. First, we
show that under irregular activity, the probability of generating asynchronous (one
side) events is about the same as the probability of synchronous (two sides) events.
On average, the amplitude of the asynchronous left and right events is significantly
smaller than that of synchronousμfEPSPs. Second, synchronous events exhibit vari-
able time lag between left and right lobes. Moreover, the right side leads more often,
and μfEPSP events have significantly higher amplitude on the right side. We show
that initial asynchrony in bilateral events is compensated by adjusting their durations.
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5.2 Disentanglement of Raw LFP Recordings into
Pathway-Specific Generators

This section shows a step-by-step procedure allowing obtaining from LFPs recorded
by a multielectrode array the pathway-specific electrical activity produced in a target
domain by projecting neurons from other brain regions.

5.2.1 LFP Recordings and Current-Source-Density Analysis

For recording LFPs, we used linear multisite silicon probes with 32 recording tips,
lowered into the hippocampus of an anesthetized rat (see cartoon in Fig. 5.1a). Sur-
gical and stereotaxic procedures were standard, and their detailed description can be
found elsewhere [19, 20]. For orthodromic activation of the CA1 region, a concentric
bipolar stimulating electrode was used in the ipsilateral CA3 area.

The multi-electrode array recorded the electrical activity in 50 µm steps along
the principal axis of the CA1 pyramidal cells, also spanning the DG/CA3 regions.
The acquisition frequency was 20 kHz, which enables recording both LFPs and
spike waveforms. The firing activities of pyramidal cells and putative interneurons
were isolated, and units were classified (for details on the problem of spike sorting,
see Chap.4). After the spike analysis, the sampling rate was decreased to 2 kHz to
analyze LFPs, which have the frequency band limited from above by 500 Hz.

Our goal is to study the CA3-CA1 pathway, which is represented by the Schaffer
collaterals in the ipsilateral part of the hippocampus (Fig. 5.1). Axons from CA3
pyramidal neurons bifurcate and pass through the CA1 area in parallel (Fig. 5.1b).
Neurons in the CA3 region can form temporal clusters and synchronize their fir-
ing. Thus, a CA1 cell receives spikes from a group of CA3 neurons, whereas each
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Fig. 5.1 Schaffer pathway in the hippocampus. a The laminar organization of the CA3 and CA1
areas in the hippocampus facilitates multiple parallel synaptic contacts between neurons in these
areas through Schaffer collaterals. A multi-electrode array can record the LFP activity along the
principal axis of pyramidal neurons. b Axons from CA3 pyramidal neurons bifurcate and pass
through the CA1 area in parallel (left), giving rise to the convergence-divergence of the information
content (right). Multiple CA1 neurons receive multiple synaptic contacts from CA3 neurons
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Fig. 5.2 Retrieval of pathway-specific generators from raw LFP recordings. a Right panel: A
typical segment of LFPs (right panel) recorded across the CA1 and CA3 fields (black and gray
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ipsilateral CA3.Left panel:Zoom from the right panel corresponding to the evoked Schaffer-specific
field potential. b The current source density plot obtained from the LFPs shown in (a). c ICA of
LFPs provides four LFP-generators, each defined by a curve of spatial weights (top panel) and
a time course (bottom traces). The Schaffer generator (blue curves) captures the Schaffer-evoked
activity (stimulus arrows). d The reconstructed virtual LFPs corresponding to the activity of the
Schaffer pathway taken separately. e The CSDmap of the virtual Schaffer LFPs provides the precise
spatiotemporal distribution of inward/outward currents

CA3 neuron has a synaptic contact with multiple CA1 cells, which gives rise to the
convergence-divergence of the information content.

Figure5.2a (right panel) shows a typical segment of LFPs recorded simultane-
ously along a linear track spanning the CA1 and CA3 fields of the rat hippocampus
(see also Fig. 5.1a). The segment consists of a bulk subthreshold stimulation of the
ipsilateral CA3 region. The stimulus produces evoked potentials. Their topographic
analysis allows identifying the electrode’s position up to tens of micrometers and
location of the soma layers [20]. The spontaneous activity (Fig. 5.2a, right panel,
after stimulation) exhibits irregular oscillations without strongly correlated rhyth-
mic activity as, e.g., during theta rhythm.

Current source density (CSD) analysis [21, 22] determines the magnitude and
location of the net transmembrane current generated by neuronal elements within
a small tissue region. The transmembrane current i(x, y, z, t) is a spatiotemporal
function depending on various factors. It is determined by the synaptic currents
produced by the converged inputs from presynaptic neuronal assemblies. Assuming
a purely ohmic conductive medium, the CSD can be related to the field potential [23,
24]:

i(x, y, z, t) = ∇(
σ(x, y, z)∇u(x, y, z, t)

)
, (5.1)
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where σ is the conductivity tensor of the medium, u is the electric field potential,
i.e., LFPs, and ∇ is the standard gradient operator. For simplicity, we can assume
that the medium is homogeneous and the conductivity is a constant σ(x, y, z) = σ

(but see discussion in [25]). Therefore, the CSD reduces to

i(x, y, z, t) = −σΔu(x, y, z, t), (5.2)

where Δ is the Laplacian operator.
Next, we observe that the hippocampus consists of monolayer structures with

principal cells oriented along the main (vertical) z-axis. Hence u(x, y, z) has little
variations along x and y directions. Accordingly, to estimate the CSD, we can use
the one-dimensional approach, which evaluates the CSD from the voltage gradients
along the cells axis [26]:

i(x, y, zk, t) ≈ i(zk, t) = −σ
∂2u(x, y, zk)

∂z2
, (5.3)

where zk = z0 + kh are the location of electrode tips. The partial derivative along
z-axis can be approximated by 3-point formula:

i(zk, t) ≈ ik(t) = −σ
uk−1(t) − 2uk(t) + uk+1(t)

h2
, (5.4)

where uk(t) is the LFP recorded at time t by electrode tip k, and h is the distance
between recording tips.

Admittedly, the spatial extent of CSD may not be large enough to fulfill the cri-
terion of homogeneous activation in the (x, z)-plane parallel to anatomical strata or
laminae during an asynchronous synaptic bombardment. Thus, tangential currents
may introduce error in the amplitude of sinks and sources [27]. Conveniently, the spa-
tial distortion introduced by unbalanced tangential currents is effectively canceled out
by time averaging of myriads microscopic currents as if they all were synchronously
activated [16]. Thus, the curve of spatial weights for each LFP-generator is accurate
to the subcellular level. Although there is also a notable heterogeneity of tissue resis-
tivity at the level of the stratum pyramidale [28], it introduces a negligible spatial
distortion of depth profiles when active currents are located in distant dendritic loci.
Thus, we can assume homogeneous resistivity and use arbitrary units instead of [A
m−2].

The CSD analysis of the recorded LFPs [employing Eq. (5.3)] shows the standard
Schaffer-specific evoked field potentials (Fig. 5.2b, left panel) with the subcellular
spatiotemporal pattern of the transmembrane current along themain axis of pyramidal
cells. As expected [26], active inward synaptic currents or sinks (blue color) are
surrounded by passive outward currents or sources (red color), corresponding to the
CA1 field EPSP produced by the stimulation of the CA3 region.

However, the CSDmap for the ongoing spontaneous LFPs (Fig. 5.2b, right panels,
after the stimulus) shows a poorly informative spatiotemporal mixture of sources and
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sinks induced by the co-activation of several different afferent inputs converging on
principal cells. Thus, in such a spontaneous mixture, we cannot distinguish the activ-
ity produced by different synaptic inputs from different neuronal nuclei, including
from the CA3 region through the Schaffer collaterals. In Sect. 5.2.2, we will address
this issue.

5.2.2 Decomposition of LFPs into Pathway-Specific
Generators

5.2.2.1 Independent Component Analysis of Raw LFPs

Independent component analysis (ICA) is routinely used to elucidate functional con-
nectivity either in multisite scalp recordings or in functional magnetic resonance
imaging. It provides spatially stable components of coherent activity [29–32].

The attribution of the independent components to their source populations and
pathways is difficultwhen recording fromadistance (e.g., forEEG).Nevertheless, the
in-source recording of intrahippocampal LFPs allows the thorough spatial inspection
of active neurons down to the subcellular resolution and direct matching with the
evoked potential profiles [12].

A detailed procedure of the ICA of LFPs can be found elsewhere [11, 33]. Both
the mathematical validation and the interpretation of ICA components in laminated
structures, such as, e.g., the hippocampus, were performed using realistic LFP mod-
eling [16]. There is also a freely available Matlab package for performing different
analyses of LFPs, including the decomposition into pathway-specific components
by ICA (Fig. 5.3).

Briefly, let u(t) = (u1(t), u2(t), . . . , uM(t))T ∈ R
M be a vector representing M

recorded LFP signals at a discrete-time instant t (t = 1, 2, . . . , L). The ICA model
assumes that the observed data matrix U = (u(0)|u(1)| · · · |u(L)) ∈ R

M×L can be
represented as the weighted sum of the activities of N neuronal sources or the so-
called LFP-generators:

U = V S, (5.5)

where V = (v1|v2| · · · |vN ) ∈ R
M×N is the mixing matrix composed of the so-called

voltage loadings or spatial distributions of all LFP-generators (vn = (v1n, . . . , vMn)
T

is the voltage loading of the nth generator) and S = (s1|s2| · · · |sN )T ∈ R
N×L is the

matrix of time courses of the LFP-generators (sn = (sn(1), . . . , sn(L))T is the time
course of the nth generator). Thus, the raw LFP observed at the mth electrode tip
is a linear mixture of the electrical activity of several independent LFP-generators
describing oscillations of the transmembrane currents in principal cells:

um(t) =
N∑

n=1

vmnsn(t). (5.6)
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Fig. 5.3 The front panel of the software ICAofLFPs. It shows an example of five LFP-generators:
Top panel: A segment of time courses of the generators; Bottom panels: Spatial distributions of
voltage and CSD loadings (see also Fig. 5.2c). The software is freely available at http://www.mat.
ucm.es/~vmakarov/downloads.php

The LFP observed in all electrodes at a time instant t is given by

u(t) =
N∑

n=1

vnsn(t). (5.7)

Then, the CSD is

i(t) = −σ

N∑

n=1

Δ̃vnsn(t). (5.8)

where Δ̃ represents the discrete second order spatial derivative, which in the simplest
case can be approximated by the 3-point formula (5.3). We can now introduce the
CSD loading (spatial weights) for the nth LFP generator:

jn = −σΔ̃vn, (5.9)

and obtain the formula for CSD equivalent to (5.7):

i(t) =
N∑

n=1

jnsn(t). (5.10)

http://www.mat.ucm.es/~vmakarov/downloads.php
http://www.mat.ucm.es/~vmakarov/downloads.php
http://www.mat.ucm.es/~vmakarov/downloads.php
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As recording sites’ location is known, the curve of spatial weights of the nth LFP
generator vn equals the instant depth profile of voltages recorded during a predomi-
nant activation of the corresponding single pathway. Such a situation happens, e.g.,
during the laminar recording of standard pathway-specific evoked potentials.

5.2.2.2 Technical Considerations on ICA of LFPs

When dealing with ICA of LFPs, some technical considerations should be taken
into account. In general, ICA allows separating up to M LFP-generators, where M
is the number of electrode tips in a multielectrode array. However, usually, only a
few ICA components exhibit significant variance and distinct spatial distributions.
Our experience suggests that 4–7 stable LFP-generators out of possible 32 can be
identified [12, 34].

Such a low number of sizable LFP-generators in raw LFPs permits further opti-
mization of the algorithm by pre-processing raw LFPs before performing the ICA. In
particular, the dimension reduction of the data matrixU by the principal component
analysis (PCA) efficiently diminishes weak, noisy generators [16]. The PCA also
stabilizes and accelerates the subsequent convergence of ICA algorithms [11].

By assuming that U has been previously centered (i.e., row mean values have
been subtracted), we can find the covariance matrix of the data: C = 1

LUUT . Then,
the covariance matrix can be factorized:

C = WDWT , (5.11)

where D = diag(λ1, . . . , λM) is the matrix of eigenvalues sorted in descending
order (λ1 ≥ λ2 ≥ · · · λM ≥ 0, note that C is symmetric semi-positive) and W =
(w1| · · · |wM) is the matrix of the corresponding eigenvectors. When dealing with
LFPs, the eigenvalues decrease rapidly, which means that the effective data dimen-
sion is less than M (about 4–7 compared to M = 32).

We now can project the data matrix U into a reduced PCA space:

Y = W̃ TU, W̃ = (w1| · · · |wN ) ∈ R
M×N , (5.12)

where N ≤ M is the number of principal components we want to retain. Finally, the
ICA is applied to the reduced data matrix Y , and we get its factorization:

Y = QS̃, (5.13)

where Q ∈ R
N×N is the squared matrix of loadings describing the spatial dynamics

and S̃ ∈ R
N×L is the matrix of activations describing the time dynamics. We thus

have the following data representation:

Ũ = Ṽ S̃, (5.14)
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where Ṽ = W̃ Q is the mixing matrix (or the matrix of voltage loadings) and Ũ
approximates the original data matrix U . We now have to select N in such a way
that the approximation error ‖U − Ũ‖ would be reasonably small.

The optimal choice of N is 2–3 more than the number of components that attain
significant variance in the ICA. We routinely disregard the ICA components with a
total compound variance below 1% (i.e., always keeping 99% of the original LFP
variance) unless their spatial and temporal accuracy can be ensured through other
means. Algorithmically, to select N , we use the following equation:

N = argmin
m∈1,M

∣∣∣∣
∣

m∑

n=1

λn − 0.99
M∑

n=1

λn

∣∣∣∣
∣
. (5.15)

5.2.2.3 Schaffer LFP-Generator: CA3 Ipsilateral Input to CA1

Figure5.2c shows the results of ICA separation of the ongoing raw LFPs into the
contribution of pathway-specific LFP-generators. The analysis of the component
variance [see Eq. (5.15)] reveals the existence of four significant LFP-generators
with specific spatial patterns and time dynamics (top and bottom panels in Fig. 5.2c,
respectively). Thus, these four major LFP-generators contribute to the epoch of LFPs
shown in Fig. 5.2a.

Each of the four generators is described by its distribution of spatial weights
along the principal axis of pyramidal cells and by its temporal dynamics, given by
matrices Ṽ and S̃ in Eq. (5.14), respectively. The cross-animal stability, pathway
specificity, and quantitative properties of these LFP generators have been described
elsewhere, both experimentally [11, 12, 33] and by using realistic simulations of the
field potentials generated by the multicompartmental model of pyramidal neurons
aggregated in monolayers [16].

One of the generators (colored in dark blue in Fig. 5.2c) corresponds to the activa-
tion of the Schaffer collaterals conveying packets of spikes from the ipsilateral CA3
region of the hippocampus to CA1 (Fig. 5.1).We derive this observation from the fol-
lowing facts: (i) This generator exclusively captures the evoked activity produced by
subthreshold stimulation of CA3 (pulse followed after “stimulus” arrows in the time
course, Fig. 5.2c); (ii) The characteristic spatial profile matching the Schaffer-evoked
field EPSPs.

Disentanglement of rawLFPs into four LFP-generators enables the reconstruction
of virtual LFPs produced by each pathway taken separately. Figure5.2d shows the vir-
tual LFPs contributed exclusively by the activity of the Schaffer pathway. Subsequent
CSD analysis of the reconstructed Schaffer-LFPs produces a clean spatiotemporal
map of the transmembrane currents with a characteristic source-sink-source distribu-
tion, both for the evoked and ongoing activities (Fig. 5.2e). We then can compare the
distribution of the CSD maps of evoked potentials over raw LFPs and clean Schaffer
LFPs (Fig. 5.2b and e left panels, respectively).
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5.3 Localization and Quantification of Gamma Waves in
the Schaffer-Generator by Wavelet Analysis

In Sect. 5.2, we described the method of isolation of a pathway-specific activity
from raw LFPs. In particular, we separated the synaptic contribution induced by the
Schaffer pathway activated by the ipsilateral CA3 input to the CA1 region (Fig. 5.2).
More details on the characteristics and pharmacological studies of this pathway
can be found elsewhere [33, 35]. Below, we will study the time course (activation
dynamics) of this LFP-generator.

5.3.1 Method for Detecting Gamma Waves

Figure5.4 showsa short epochof the activationof theSchaffer generator. Thebaseline
activity of this generator is composed of a series of discrete field events excited by
packets of spikes coming from the CA3 region to pyramidal cells in CA1. We term
such elementary synaptic events as micro-field EPSPs or μfEPSPs. Paradoxically,
during irregular hippocampal LFPs, the Schaffer μfEPSP events constitute a rather
regular succession of excitatory packages produced by a variable contribution of
individual presynapticCA3units. The rhythmic excitatory packages appear at gamma
frequency, the histogram peaks at 45 Hz. We now aim at detecting and quantifying
individual μfEPSP events. To this end, let us first model a succession of μfEPSP.
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Fig. 5.4 The ICA-separated Schaffer generator exhibits typical micro-field EPSP events appearing
at a gamma rate
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5.3.1.1 Model of the Schaffer Generator Time Course

A short packet of spikes reaching pyramidal neurons in CA1 evokes local active
synaptic currents surrounded by passive transmembrane currents (Fig. 5.2e). These
currents generate Schaffer LFPs. Figure5.2c (bottom subplot, left panel, dark blue
trace) shows a typical time course of a single field EPSP in the form of a short pulse.
As discussed above, single μfEPSP events have the same electric nature.

For the description of μfEPSP, we use the alpha function [36]:

α(t) = H(t)te1−t , (5.16)

where H(t) is the Heaviside step function, which makes α(t) casual (α(t) = 0 for
t < 0). This alpha function reaches a maximum at tmax = 1, and α(tmax) = 1. The
effective duration of the alpha functionmeasured at level e2−e ≈ 0.5 is equal to e. The
alpha function describes a change in the conductance of the postsynaptic membrane
with a characteristic time-course.

Then, the time course of the Schaffer generator in a specific time interval can be
modeled as a sum of K individual μfEPSP events:

s(t) = −
K∑

i=1

Aiα

(
t − ti

τi

)
, (5.17)

where ti is the time instant of the beginning of the i th event, Ai and τi are the
amplitude and time scale of the event. Figure5.5a, b (top panels) show examples of
simulated activations of the Schaffer generator consisting of one and five μfEPSP
events with different parameters.

Equation (5.17) describes a direct problem, i.e., how to build the time course of
the Schaffer generator by using a known number of μfEPSP events with known
parameters. However, we are instead interested in the inverse problem: how to infer
on the number of events K and their parameters {Ai , τi , ti } from the time course
s(t). Although in the modeled situations shown in Fig. 5.5a, b, this problem can be
resolved by employing a nonlinear curve-fitting method, in experimental conditions
(Fig. 5.4) such a direct approach fails. Indeed, even in a short time interval of 1 s,
we have about 45 events, each described by three parameters, and hence, we get an
optimization problem in 135-dimensional space. Then, the curse of dimensionality
makes it untreatable [37]. Besides, inferring on the number of events K is also a big
issue.

5.3.1.2 Wavelet Measure for Identification and Quantification of
μfEPSP Events

To approach the inverse problem, we use the continuous Wavelet Transform of the
Schaffer activation s(t) (for details, see Chap. 2):
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W (a, b) = 1√
a

∫ ∞

−∞
s(t)ψ

(
t − b

a

)
dt, (5.18)

where a is the time scale, b is the localization in time, and

ψ(t) =
⎧
⎨

⎩

1, if − 1
2 ≤ t < 0

−1, if 0 < t ≤ 1
2

0, otherwise
(5.19)

is the Haar mother wavelet function. As we will see below, such a mother wavelet,
in the form of two successive pulses of different polarity, is well suited for detecting
short pulses in a signal.

We then rectify the wavelet coefficients and introduce the following wavelet mea-
sure for quantifying gamma events:

C(a, b) = 1√
a
max{0,W (a, b)}. (5.20)
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The two-dimensional surface C(a, b) describes the local linear fit of the Schaffer-
specific LFP by the Haar wavelet at scales a and localizations b. Peaks of C(a, b)
correspond to abrupt pulse-like transitions in s(t). Thus, we can associate such points
in the (b, a)-plane with single pulse-like events. Consequently, we identify the local
maximums of C(a, b) evaluated as global maximums over a set of small enough,
non-overlapping open domains {ωi }:

(ai , bi ) = argmax
a,b∈ωi

{C(a, b)}. (5.21)

As we show below, the time instants of μfEPSPs are given by {bi }, their durations
by {ai }, and amplitudes by {C(ai , bi )}. We also note that the factor 1√

a
in Eq. (5.20)

is essential, since it ensures the existence of local maximums in (5.21).
Let us now study the properties of the surfaceC(a, b) in more detail. We consider

the signal s(t) = −α(t) consisting of a single μfEPSP event generated at t = 0 with
the unit amplitude and time scale (Fig. 5.5a, top). We can now apply the wavelet
transform (5.18), (5.19) to the signal and obtain:

Wα(a, b) = e1−b

√
a

×

⎧
⎪⎪⎨

⎪⎪⎩

0 b < − a
2

eb − (1 + b + a
2 )e

− a
2 b ∈ [− a

2 , 0)
2(1 + b) − eb − (1 + b + a

2 )e
− a

2 b ∈ [0, a
2 )

2(1 + b)(1 − cosh a
2 ) + a sinh a

2 b ≥ a
2 .

(5.22)

We observe thatWα(a, b) ∈ C1. This function attains a global maximum over local-
izations b, given that a is a constant, at

bmax = a/2

2ea/2 − 1
. (5.23)

Assuming that a is big enough, we can approximate bmax ≈ 0, i.e., the maximum of
W (a, b) (and hence of C(a, b)) coincides rather precisely with the time instant of
the event beginning. Nevertheless, in a computer algorithm the correction (5.23) can
be easily taken into account, i.e., t ′ = t − bmax(amax).

The maximum of C(a, b) over time scales a satisfies to

(amax + 1)2 = 4eamax/2 − 3, (5.24)

which for a > 0 has a unique solution, although it cannot be written in a closed form.
We note that W (a, b) has no maximums in a.

Figure5.5a (bottom panel) shows the measure C(a, b) for the simulated event. A
numerical analysis yields:

amax ≈ 2.94, bmax ≈ 0.19, C(amax, bmax) ≈ 0.43. (5.25)
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Let us now assume that the event has an arbitrary amplitude and time scale, s(t) =
−Aα(t/τ). Then, thewavelet transform (5.18) of s(t) and thewavelet measure (5.20)
can be written as:

W (a, b) = √
τ AW0(a

′, b′), C(a, b) = AC0(a
′, b′), (5.26)

where a′ = a/τ , b′ = b/τ ; W0 and C0 are the wavelet transform and the wavelet
measure of the unitary event −α(t). Thus, the magnitude of C scales linearly with
A, whereas the time scale and localization a and b scales linearly with τ .

Therefore, we can use the constants (5.25) to express the event duration, time
instant, and amplitude:

di = ai
amax

e, ti = bi − bmax

amax
ai , Ai = C(ai , bi )

C(amax, bmax)
, (5.27)

where ai and bi are the coordinates of the i th local maximum given by (5.21).
To illustrate the approach, we simulated the activity of the Schaffer generator

consisting of five μfEPSP events (Fig. 5.5b). Then, we evaluated C(a, b), found
its maximums, and calculated the parameters of each event by using (5.27). The
number of local maximums in C(a, b) provides the number of μfEPSP events in
the signal K . Figure5.5c shows the comparison of the found parameters with the
original characteristics used to generate the signal s(t). One can observe the good
precision of the detection method.

5.3.2 Elementary Micro-fEPSPs in Ongoing Schaffer Activity

Oscillatory gamma patterns, formed by small pulse-like events of variable amplitude
and duration, dominates the basal activity of the Schaffer generator (Fig. 5.4). This
temporal pattern is exclusive for the Schaffer generator, which can also include
occasional sharp-wave events that emerge from the baseline during non-theta epochs
[33].

Figure5.6a illustrates an epoch of the Schaffer-generator activity isolated by ICA
and a typical spike train of a CA3 pyramidal neuron recorded simultaneously. Some
Schaffer events are time-locked to neuronal spikes. Then, we can assume that this
neuron participates in the firing activity of a cluster of CA3 neurons that provokes
some of the Schaffer events.

To crosscheck this assumption, we evaluated the spike-triggered activity of the
Schaffer generator (Fig. 5.6b). The confidence intervals (dashed red lines) were eval-
uated using surrogate data (spikes in the train were randomly shuffled). The signif-
icance level was set to 0.05, and we also used the Bonferroni correction [38]. The
activity of the Schaffer generator exhibits a statistically significant coupling with the
spiking of the CA3 neuron. Moreover, the coupling is causal, i.e., firing of the neu-
ron, presumably involved in synchronous firing of a cluster of CA3 neurons, causes a
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the zoomed region of the Schaffer generator. Cyan dots mark locations of local maximums (see also
Fig. 5.5). d Schematic representation of the micro-field EPSPs composing the Schaffer activity. The
width and height of the bars codify the duration and amplitude of the detected μ-fEPSP events. e
The distributions of the duration (top) and amplitude (bottom) of the detected μ-fEPSP events (10
min recording)

sizable response in the Schaffer generator. Therefore, we assess whether elementary
postsynaptic events from single CA3 principal cells or their functional clusters could
be discriminated in ongoing CA1 LFPs by studying the fine temporal structure of
the Schaffer generator.

When considering an epoch of the Schaffer-specific activity (Fig. 5.6a), we
observe a sequence of pulses corresponding to individual μLFP events. To detect
these elementary events, we use the wavelet-based method described in Sect. 5.3.1.
Figure5.6c shows the wavelet-measure C(a, b) calculated for a short segment of
the activity of the Schaffer generator. The measure has local maximums similar to
those shown in Fig. 5.5. The positions of the maximums (cyan dots) correspond to
the time instants and durations of elementary μfEPSPs, while the amplitudes of the
local maximums provide the amplitudes of the elementaryμfEPSPs [see Eq. (5.27)].

Figure5.6d illustrates the identified and quantified single μfEPSP events as rect-
angles of the width and height corresponding to the duration and amplitude of the
events and with the left side located at the beginning of the event. The found events
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exhibit substantial amplitude variability and moderate fluctuations in the event dura-
tions. The rate of the detected events (about 42 Hz) falls within the gamma band.

Figure5.6e shows histograms of the distribution of the duration and amplitude
of μLFP events identified over a 10 min recording period. Both parameters have a
right-skewed distribution with modes at 11.6 ms (mean 14.5) and 114 µV (mean,
156). These parameters are similar to the spike-averaged Schaffer activity shown in
Fig. 5.6b. The absence of the baseline explains the amplitude discrepancy due to the
hardware high-pass filtering of the recordings (AC-recordings, for more details, see
[39]). Note that the wavelet-based method is insensitive to the presence of the DC-
part and hence enables better estimation of the event parameters (the Haar wavelet
canceles the DC part).

5.3.3 Detected Gamma Events Help to Establish Causal
Relations Between CA3 and CA1 Pyramidal Cells

Let us now get a deeper insight into the properties of μfEPSPs. A mufEPSP can be
considered as an intermediate event between spikes of a presynaptic CA3 neuron and
a postsynaptic CA1 cell. Thus, identification of time series of elementary μfEPSPs
permits a detailed study of information transfer from CA3 to CA1. We can test
whether an ongoing input from a single afferent pathway is strong enough to fire
postsynaptic units in the CA1 region.

Figure5.7a shows spike trains of CA3 and CA1 pyramidal neurons and an inter-
mediate train of μfEPSP events (a point process consisting of the identified starting
time instants ti ). Presumably, the CA3 neuron is coupled with the CA1 (Fig. 5.7a,
cartoon) and thus can participate in its excitation. However, the cross-correlation
analysis of the spike trains of these neurons shows no significant peaks (Fig. 5.7b).
Therefore, we could conclude that the neurons are uncoupled, or at least only a few
spikes of the CA3 cell participate in the excitation of CA1, and hence their contribu-
tion to the histogram is negligible. Nevertheless, we will show how the knowledge
on the μfEPSP events composing the activity of the Schaffer generator helps in
establishing causal relations between the CA3 and CA1 neurons.

Figure5.7c illustrates the histogram of cross-correlation among μfEPSP events
and firings of the CA3 pyramidal cell. By analogy with the latency of evoked sub-
threshold fEPSPs [26], we consider that μfEPSP events can be monosynaptically
related with firings of the presynaptic unit within a postspike time window of 2–
6ms. Notably, the obtained latency of 4.9 ± 2.2 ms (mean ± std) falls within this
interval (orange bars in Fig. 5.7c, dashed line shows the Holm–Bonferroni statistical
significance interval [40]). Moreover, all CA3 principal cells, which exhibited a cor-
relation with the Schaffer generator, displayed statistically significant peaks within
this time window [33].

We thus separated all spikes of the CA3 pyramidal neurons into two groups: (i)
Spikes time-lockedwithμfEPSP events (about 50%of spikes fall within a 10ms time



5.3 Localization and Quantification of Gamma Waves in the Schaffer-Generator … 191

-100      -50         0         50        100

latency (ms)

450

500

550

600

co
un

ts

-100      -50         0         50        100
latency (ms)

5

10

15

20

co
un

ts

presynaptic CA3 pyr. neuron

µ-fEPSP (Shaffer) events

CA3 Spikes
Sch. Events
CA1 Spikes

0.5 s

postsynaptic CA1 pyr. neuron 

-100      -50         0         50        100

latency (ms)

40

50

60

70

80

co
un

ts

Type III: CA3 - µfEPSP - CA1

25 ms

-100      -50         0         50        100

latency (ms)

500

600

700

800

co
un

ts

all
signif.

Type I: CA3 - µfEPSP

CA1

CA3

Sch.

Type II: µfEPSP - CA1

a b

c

Fig. 5.7 Wavelet analysis reveals functional couplings between spontaneous firing of CA3 pyra-
midal cells and spikes of CA1 neurons. a Left: A cartoon of the information transfer from CA3 to
CA1 regions through Schaffer collaterals. Right: A five second epoch showing spikes of a pyrami-
dal presynaptic CA3 neuron (bottom train), μfEPSP events created by Schaffer collaterals (middle
train), and spikes of a pyramidal postsynaptic CA1 neuron (top train). b Direct cross-correlation of
spikes of the CA3 and CA1 cells exhibits no temporal relation. Blue dashed line marks the level
of statistical significance. c Step by step identification of the functional CA3-CA1 coupling. Left:
Identification of CA3 spikes time-locked to Schaffer μfEPSP events. Orange bars show signifi-
cant correlation, and we thus define Type I spikes in CA3 firing.Middle: Significant correlation of
μfEPSP events and firing of the CA1 cell enables identification of CA1 time-locked spikes. Right:
Correlation of Type I spikes of the CA3 neuron and Type II spikes of the CA1 neuron exhibits a
significant peak (orange bar)

window, orange bars in Fig. 5.7c) and (ii) Other remaining spikes. The spike-locked
Schaffer time course constitutes a subpopulation of the monosynaptic μfEPSPs,
which are probably elicited by the CA3 neuron or the functional cluster to which it
belongs.

We then performed cross-correlation analysis of μfEPSPs and spikes of the CA1
neuron. The cross-correlation exhibits a significant peak (Fig. 5.7d) with the latency
2.6 ± 1.5 ms, which corresponds to the time lag between the initiation of a μfEPSP
and firing of the CA1 cell. We note that only 2.3% of μfEPSPs excite the cell, and
about 24% of spikes of the CA1 neuron are time-locked with μfEPSPs. We now
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separate spikes of the CA1 cell into (i) spikes caused by μfEPSP events and (ii) all
the other.

The introduced classification of spikes of the CA1 and CA3 neurons allows us to
identify the following temporal relations:

• Type I: Spikes driving Schaffer.A presynaptic CA3 spike participates in excitation
of aμfEPSP event but no time-locked CA1 spike appears (green ticks in Fig. 5.7c).

• Type II: Shaffer driven spikes. A μfEPSP excites a postsynaptic CA1 spike, but
no CA3 time-locked spike is recorded (blue ticks in Fig. 5.7c).

• Type III: Triple coincidences. A presynaptic CA3 spike participates in exciting a
μfEPSP event and, in turn, it excites a CA1 spike (red ticks in Fig. 5.7c).

Type I temporal relationships were observed in all CA3 pyramidal cells, although
only about 23% of the spikes had a monosynaptic association to μfEPSPs. This
index is interpreted as the recruitment rate of individual CA3 pyramidal cells into
functional clusters responsible forμfEPSPs. Thus, time-variable clustering of presy-
naptic CA3 neurons is behind sizableμfEPSPs in the CA1 region. This indicates that
CA3 pyramidal neurons can organize into functional clusters to effectively transmit
information to the CA1 output and the cortex.

Statistically significant Type II temporal relationships were found in about 70%
of CA1 pyramidal cells. The cross-correlation histogram of μfEPSP-CA1 shows a
statistically significant peak at a 2 ms time lag, corresponding to the Schaffer-driven
spikes (Fig. 5.7c, left). Such spikes constitute about 11% of the firing of CA1 cells.
Thus, a significant share of the CA1 output is driven by the local Schaffer input.

Some spontaneous μfEPSPs fulfill both Types I and II temporal relationships.
We then assume that μfEPSPs can be considered as a selector of time instants when
the information transmission from a CA3 cell to a CA1 neuron is likely. Thus, the
μfEPSP events can be used for searching for functional coupling between individual
CA3 and CA1 cells. Figure5.7c (right) shows such a situation of monosynaptically
connected CA3-CA1 cell pairs. The cross-correlation histogram, in this case, was
build by taking into account only spikes ofTypes I and II of theCA3andCA1neurons,
respectively. We observe a significant peak at the time lag of 7.3 ms (compare to the
raw cross-correlation in Fig. 5.7b), which reveals a functional connection between
these neurons, i.e., some spikes fired by a CA3 cell actively participates in the firing
of a CA1 spike.

5.4 Improved Identification of Micro-fEPSP Events

5.4.1 Distortion of Micro-fEPSP Events by Wavelet Method

In Sect. 5.3.1, we have introduced the wavelet-based method for the identification
of μfEPSP events in the irregular activity of the Schaffer LFP generator. It enables
computationally efficient isolation and quantification of individual gamma waves
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induced in the CA1 region by firing of pyramidal cells in the CA3 area. However,
we noticed that due to the frequent overlap of successive events, the method could
introduce some distortions in the identified parameters of the μfEPSP events, given
by Eq. (5.27).

To quantify the distortions, we simulated a random sequence of 2000 overlapping
gamma events on a 50 s time interval (mean event rate 40 Hz). The parameters of
gamma events were chosen to reproduce the experimental distributions of the event
duration and amplitude shown in Fig. 5.6e. To do that, we evaluated the experimental
cumulative distribution functions for the amplitudes and durations, FA(u) and Fd(u),
and then generated a set of random event durations and amplitudes by:

di = F−1
d (ξi ), Ai = F−1

A (ηi ), i = 1, . . . , 2000, (5.28)

where ξi and ηi are independent random variables uniformly distributed on the inter-
val (0, 1). These parameters have been used for simulating Schaffer activation by
using Eq. (5.17). Finally, we added a small (−25 dB) Gaussian white noise to the
obtained signal.

Figure5.8a shows an epoch of the simulated Schaffer activity composed of a
sequence of randomly chosen gamma events. We then applied the wavelet method
described in Sect. 5.3.1, blindly identified the μfEPSP events in the simulated sig-
nal, and determined their parameters: starting times, durations, and amplitudes
(Fig. 5.8b). Finally, we quantified the distortions obtained during the identification
of the parameters.

Figure5.8c shows the histograms of deviations of the event parameters from the
original values. We observe that the wavelet method tends to delay the starting time
of the identified event on average by 1.0 ms, although time lags up to 3 ms have been
detected. The event duration and amplitude could be underestimated by 4.1 ms and
17 µV, respectively. In Sect. 5.4.2, we describe a modification to the wavelet method
that significantly improves the precision of the identified characteristics of μfEPSP
events, although on the expenses of time-consuming calculations.

5.4.2 Likelihood Enhanced Wavelet (LeW) Method

5.4.2.1 Probabilistic Mixture Model of Micro-fEPSP Events

Let us consider an epoch of the Schaffer activity composed of K μfEPSP events
modeled by Eq. (5.17) with some arbitrary parameters {Ai , ti , τi }Ki=1. Then, such a
model can be rewritten in terms of a weighted mixture of the probability density
functions:

p(t) =
K∑

k=1

wk f (t − tk; τk), (5.29)
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where

f (x; τ) = 1

eτ
α

( x
τ

)
= x

τ 2
e− x

τ H(x), (5.30)

is the probability density function (scaled α) and wk is the relative magnitude of the
kth event. The latter can also be interpreted as a prior probability of the kth μfEPSP.
One can check

∫ ∞
−∞ f (x; τ) dt = 1. Besides, the relative magnitudes must satisfy

the condition
∑K

k=1 wk = 1. Thus, we set
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wk = Ak
∑K

j=1 A j

. (5.31)

We note that in experimental conditions, one can obtain p(t) from the recorded
signal by applying an appropriate scaling:

p(t) = s(t)

s0
, s0 :=

∫ T

0
s(t) dt, (5.32)

where T is theworking time interval. In the case of anAC-recording, special attention
should be given to satisfy p(t) ≥ 0 [41]. Using definition (5.32) and Eqs. (5.17),
(5.29)–(5.31), we can find the inverse relation for the amplitudes of μfEPSP events:

Ai = |s0|wi

e
∑K

k=1 wkτk
. (5.33)

Thus, knowing the parameters of the probabilistic mixturemodel and the area limited
by the Schaffer signal s(t), we can evaluate the amplitudes of the μfEPSP events.

Figure5.9a illustrates an example of p(t) made up by 22 μfEPSP events of dif-
ferent magnitude and duration (colored curves). Overlapped oscillations are added
and produce a higher magnitude signal, which also includes some small noise (black
curve).

5.4.2.2 Inverse Problem: Estimation of the Presynaptic Content

Given the parameter set θ = {w, τ , t}, where

w = (w1, . . . ,wK )T , τ = (τ1, . . . , τK )T , t = (t1, . . . , tK )T , (5.34)

one can easily build the compound Schaffer signal (in Fig. 5.9a s(t) = s0 p(t)). How-
ever, in experimental conditions, we rather deal with the inverse problem, i.e., we
have to estimate the parameter set θ from the observed activation s(t) or, which is
the same, from the corresponding probability p(t). To accomplish this task, we will
use a combination of the wavelet approach described in Sect. 5.3.1 and the method
of maximization of a likelihood function. Let us now describe the maximization of
likelihood.

Given the parameter set θ , we can define

p(x| θ) =
N∏

n=1

p(xn|θ) (5.35)

where x = (x1, . . . , xN )T are time samples, xn ∈ [0, T ], n = 1, N . In general, x can
be taken independently from the experimental distribution p(t). However, such an
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approach is extremely resource-demanding and we will rather use equidistant sam-
ples (xn = δ(n − 1), where δ = T/(N − 1)) together with the experimental proba-
bility distribution:

p := (p1, . . . , pN )T , pn =
∫ δn

δ(n−1)
p(t) dt, n = 1, N . (5.36)
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This distribution is naturally obtained from an experimental sampling of the Schaffer
activation s(t).

Thus, to solve the inverse problem, we aim at maximizing the log-likelihood:

L (θ | x, p) =
N∑

n=1

pn log

[
K∑

k=1

wk f (xn − tk; τk)

]

+
(

1 −
K∑

k=1

wk

)

. (5.37)

The first term in (5.37) is the log-likelihood (log p(x|θ)), whereas the second one
accounts for the constraint

∑K
k=1 wk = 1. Since the sum over components (single

events) appears inside the logarithm, there is no closed-form solution maximizing
the likelihood.Thus, tomaximizeL ,weuse the expectation-maximization algorithm
adapted for the given likelihood function.

5.4.2.3 Optimization of the Likelihood Function: E-Step

In general, any data point xn can be sampled from one of the K components (gamma
waves) satisfying the condition xn > tk (where tk is the starting time of the compo-
nent). Thus, we can introduce a set of latent variables zn ∈ {1, 2, . . . , K }, n = 1, N .
If zn = k, then the data point xn has been drawn from the kth component. To describe
these variables, we introduce the conditional probability that a given data point xn
has been generated by the kth event:

rkn := p(zn = k| xn). (5.38)

This posterior probability is frequently called responsibility of the component k for
generating the observation xn .

Using the Bayes theorem, we get

rkn = p(zn = k)p(xn| zn = k)
∑K

j=1 p(zn = j)p(xn| zn = j)
= wk f (xn − tk; τk)

∑K
j=1 wj f (xn − t j ; τ j )

(5.39)

Therefore, we define the responsibility matrix:

R(θ) = (rkn) ∈ R
K×N . (5.40)

Thus, for a given parameter set θ , we can evaluate the expectation of the responsi-
bilities for all data points, or perform the E-step.

5.4.2.4 Optimization of the Likelihood Function: M-Step

A maximum of the likelihood satisfies:
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L (θ)

∂wk
= L (θ)

∂τk
= L (θ)

∂tk
= 0, k = 1, K . (5.41)

We will now use it to perform the maximization of the likelihood or M-step.
Optimization of weights. Evaluating the first derivative in (5.41), we get:

1

wk

N∑

n=1

pnwk f (xn − tk; τk)
∑K

j=1 wj f (xn − t j ; τ j )
− N = 0. (5.42)

Using the definition of the responsibilities (5.39), (5.40), we obtain:

w = R p. (5.43)

Optimization of time scales. Calculating the partial derivative of (5.37) with respect
to τk and by using similar arguments as above, we obtain:

N∑

n=1

pnrkn(ykn − 2τk)

τ 2
k

= 0, (5.44)

where ykn := xn − tk . Then, we denote by Y = (ykn) ∈ R
K×N the data matrix and

get

τ = 1

2
(Y � R) p � R p, (5.45)

where � and � stand for the Hadamard product and division, respectively. To sim-
plify notation, we also assume that the standard product has higher priority than the
Hadamard operations.
Optimization of starting times. Similarly to the cases discussed above, the partial
derivative of (5.37) with respect to tk is:

N∑

n=1

pnrkn

(
1

τk
− 1

ykn

)
= 0. (5.46)

Thus, we get the following equation:

F(t) := (R � Y ) p − R p � τ = 0. (5.47)

Equation (5.47) is nonlinear with respect to t (a polynomial of order N in general
case). We can solve it numerically by, e.g., using the Newton method:

t j+1 = t j − F(t j ) � F ′(t j ), (5.48)

where j is the method’s step and the derivative of F is given by



5.4 Improved Identification of Micro-fEPSP Events 199

F ′(t) = (
R � (Y � Y )

)
p. (5.49)

The numerical scheme (5.48) converges rapidly (in a few steps), given a good initial
approximation t0. As an initial approximation, we can take the value of t found at
the previous step of the algorithm but see below.

5.4.2.5 The LeW Algorithm

Above, we discussed the expectation-maximization approach to maximize the like-
lihood. It is iterative and alternates E and M steps while the likelihood grows rea-
sonably fast. One of the difficulties to start the calculation is to provide the initial
conditions for the first E-step. To start the numerical scheme and facilitate the con-
vergence, at the beginning, we perform an initial estimation of the parameters by the
wavelet method (Sect. 5.3.1). The wavelet method requires no a-priory knowledge
and provides reasonably good results. Besides estimating the starting times t , dura-
tions τ , and amplitudes w, it automatically finds the number of sizable events K in
the Schaffer activity (see, e.g., Fig. 5.5).

LeW algorithm: Likelihood-enhanced Wavelet method for identification
and quantification of gamma events.

(a) Rescale signal s(t) into the probability representation [Eq. (5.32)] and
evaluate the probability vector p.

(b) Evaluate for p the wavelet measure C(a, b) [Eq. (5.20)].
(c) Detect localmaximums ofC(a, b) and find the number of gamma events

K , and estimate their parameters tW , wW , and τW [Eqs. (5.21), (5.27)].
(d) Set the initial parameter values θ to those found in step (c).
(e) Evaluate the responsibility matrix R (E-step) [Eq. (5.40)] and the

weightsw (M-step) [Eq. (5.43)]. Evaluate the likelihoodL [Eq. (5.37)],
and if it was increased, update the value of w.

(f) Evaluate the responsibility matrix R (E-step) [Eq. (5.40)] and the dura-
tions τ (M-step) [Eq. (5.45)]. Evaluate the likelihood L [Eq. (5.37)],
and if it was increased, update the value of τ .

(g) Evaluate the responsibility matrix R (E-step) [Eq. (5.40)] and numer-
ically approximate the starting times t (M-step) [Eqs. (5.47)–(5.49)].
Evaluate the likelihood L [Eq. (5.37)], and if it was increased, update
the value of t .

Loop steps (e)–(g) until a convergence criterion is reached. Calculate the
amplitudes and durations of the events: Ai [Eq. (5.33)], di = eτi .

Figure5.9 illustrates the algorithm. Step (a): we rescale the Schaffer signal s(t)
and find the probability vector p (Fig. 5.9a). Steps (b)–(c): we evaluate the wavelet
measure C(a, b), search for local maximums and use them to define the number of
events K , and estimate their parameters tW ,wW , and τW (Fig. 5.9b,Wavelet step). At
this point, we already can approximate the signal s(t) by the sum of gamma waves.
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Table 5.1 Deviations of the main parameters of gamma waves identified by two methods relative
to the original values

Method Deviations from original values

Starting time, ΔT (ms) Centering Duration,
ΔD (ms)

Amplitude, ΔA (µV)

Plain wavelet 0.95 5.15 21

LeW 0.22 0.55 3

However, such an approximation (Fig. 5.9b, Likelihood step, blue curve) exhibits a
relatively strong discrepancy with the original signal (gray curve), especially when
several events overlap strongly.

Next, we use the results of the wavelet approach for the expectation-maximization
algorithm (Steps (d)–(g)). Maximizing the likelihood function yields a signifi-
cantly better approximation of the original signal. Both curves practically coincide
(Fig. 5.9b, Likelihood step, red and gray curves). We then can plot the identified
gammawaves (Fig. 5.9b, Detected events) and compare themwith the original events
used for building signal s(t) Fig. 5.9a, Original events).

Finally, to confirm the method validity, we compared the parameters of gamma
waves found by theWavelet approach and the LeWmethodwith the original parame-
ters (Fig. 5.9c, blue triangles and red circles, respectively). TheLeWmethod provides
a significant reduction of the deviation of the evaluated parameters from the origi-
nal ones. Table5.1 summarizes the main results. As expected, the Wavelet approach
estimates μfEPSP events with good but not optimal precision. The most significant
discrepancy is observed in the duration of events. The LeW method improves this
first estimate by 4, 9, and 7 times for the starting times, durations, and amplitudes.

5.5 Bilateral Integration of Gamma-Parsed Information

The hippocampus is a paired structure consisting of two anatomically similar lobes.
It is thus interesting to study the lateralization of information processing. Do the
two hippocampal lobes convey similar or complementary activities, and how do they
cooperate?

Lateralization of certain neural functions in vertebrates is thought to bear evolu-
tionary advantages [42]. Many studies have focused on finding anatomical correlates
to behavioral asymmetries. For example, fMRI studies have shown bilateral or lat-
eral activation of the same structures when a subject performs different tasks [43,
44]. But there has been little insight into the functional mechanisms underlying the
differential routing and integration of activity in bilateral networks.

The existence of important bilateral connections between hippocampal subre-
gions suggests some degree of integration and cooperation. In rodents, hippocampal
lateralization is observed during specific memory tasks [45, 46], in the expression
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gammawaves. The excitatory outputs of CA3 from both sides converge in each CA1 through Schaf-
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multielectrode matrices in the left (L) and right (R) hippocampal lobes (blue and red traces on the
top). The contribution of CA3 neurons to CA1 LFPs was isolated by the independent component
analysis. b Left: Traces of activations of the LFP-generators in the left and right CA1 regions (in
black) and traces obtained by the LeWmethod after reconstruction from individual μfEPSP events
(in blue). Right: Detected μfEPSP events composing the traces of activation in the left (top) and
right (bottom) CA1 regions. Synchronous and asynchronous events are shown by colored and gray
curves, respectively. cRegion delimiting synchronous and asynchronousμfEPSP events (ω0 = 0.5)

of synaptic plasticity [47], or following environmental enrichment [48]. In humans,
lateralization was reported during sequence disambiguation [49] and in cognitive
navigation [50, 51].

The hippocampal CA3 region is an important hub for ascending and cortical
pathways [52], and its output is conveyed to numerous brain regions. The left and
right CA3 are connected reciprocally, and they also send excitatory inputs to the CA1
on both sides of the brain (Fig. 5.10a). Thus, this system represents an ideal model to
explore the flow of activity and its integration in bilateral networks. In this section,
we provide some results of the analysis of electrophysiological data with the LeW
method described above (additional data can be found in, e.g., [53]).
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5.5.1 Experimental Recordings and Retrieval of Bilateral
Micro-fEPSP Events

Recordings were obtained from two multielectrode linear probes lowered at homo-
topic sites of the dorsal hippocampus across the CA1 region, and that also spanned
the DG/CA3 (Fig. 5.10a, raw LFPs). Then, we processed the raw LFPs and isolated
the contribution of CA3 regions into the activity in CA1 zones in the same way
as it was described in Sect. 5.2. Figure5.10b (left, black traces) illustrates a typical
epoch of the obtained traces corresponding to the left (L) and right (R) regions of
the hippocampus.

Once the traces of the activity in CA1 regions induced by ipsi- and contra-lateral
CA3 neurons were obtained, we have proceeded to their analysis by the LeWmethod
(Sect. 5.4.2). The analysis revealed individualμfEPSP events (Fig. 5.10b, right) com-
posing the traces of the corresponding LFP-generators (Fig. 5.10b, left, blue traces).
As it was observed above (Fig. 5.9), the theoretical traces built from individual
μfEPSP events faithfully reproduce the original experimental signals. In the next
step, we will deal with individual μfEPSP events.

Since now we have events recorded from the left and right hippocampal lobes, we
can analyze their possible synchronization. Such a synchronization occurs due to the
synchronous spiking activity of functional clusters in ipsi- and contra-lateral CA3
regions promoted through the ventral hippocampal commissure (Fig. 5.10a, VHC).
Thus, we expect that packets of spikes codifying information can propagate from
CA3 to CA1 (left and right) and excite similar micro field potentials.

Accordingly, we consider two μfEPSP events detected in different CA1 regions
synchronous if they have similar durations and considerable overlapping in time. We
now introduce a formal criterion for the detection of synchronous events.

Let t1,2 and d1,2 be the staring times and durations of two μfEPSP events. Then,
the interval of their overlapping in time is

Δ = max
{
0,min{t1 + d1, t2 + d2} − max{t1, t2}

}
∈ [0,min{d1, d2}]. (5.50)

We now introduce the ratio of the durations and overlapping coefficient:

δ = d1
d2

∈ (0,∞), ω = Δ

max{d1, d2} ∈ [0, 1], (5.51)

and define:

Definition 5.1 Two μfEPSP events are synchronous, if ω ≥ ω0, where ω0 ∈ (0, 1)
is a threshold.

Such a one parametric definition yields the region delimited by ω0 ≤ ω ≤ δ, and
ω ≤ δ−1. In particular, it implies that δ ∈ [ω0, ω

−1
0 ] and hence we can satisfy the

qualitative conditions imposed on the synchrony of μfEPSP events. Indeed, without
loos of generality, we can assume that d1 ≤ d2, then the condition ω ≥ ω0 yields:
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ω0d2 ≤ Δ ≤ d1 ≤ d2, (5.52)

and hence the duration d1 and the overlapping intervalΔ are bounded from below by
ω0d2 and from above by d2. Figure5.10c shows the regions in the parameter space
corresponding to synchronous and asynchronous events for ω0 = 0.5.

By applying this criterion to the events detected in the left and right generators, we
can classify them into synchronous and asynchronous. Figure5.10b (right) illustrates
synchronous events by colored curves and asynchronous (i.e., appearing on one or
another side) by gray areas.We observe that there are synchronous and asynchronous
events of different amplitudes and durations.

5.5.2 Analysis of Bilateral CA3-CA1 Pathways

To test the bilateral complementariness, we detected and classified into synchronous
and asynchronous μfEPSP events in the time courses of the left and right Schaffer
generators over a recording of 160 s long. Setting ω0 = 0.67, we found 47% of
synchronous and 53% of asynchronous events. This percentage was the same for the
right and left hippocampal lobes.

We found a notable bilateral asymmetry. In particular, waves on the right sidewere
significantly larger in amplitude AR = 0.210 ± 0.003mV (mean± confidence inter-
val) vs AL = 0.133 ± 0.002 mV. Figure5.11a (left plot) shows the mean amplitudes
for synchronous and asynchronous events on the left and right sides. In general,
asynchronous events are smaller on both sides, but the right lobe exhibits signifi-
cantly stronger events. Even asynchronous events on the right side are larger than
synchronous ones in the left lobe. The difference between synchronous and asyn-
chronous events can be explained by summation of ipsilateral and contralateral inputs
during synchronized spiking of clusters in bilateral CA3 regions.

The duration of gamma waves was relatively stable and did not change much
between left-asynchronous (La), left-synchronous (Ls), and right-synchronous (Rs)
events (Fig. 5.11a, middle plot). The only significant difference was observed for
right-asynchronous events, which were shorter on average. We then also cross-
checked the crosscorrelation between the starting times of events of different types
(Fig. 5.11a, right plot). In general, synchronous events are highly correlated with
their twins on the contralateral side, as expected. Then, there was a silence in asyn-
chronous events on both sides (blue and red curves) in the interval [−20, 20]ms. It is
also expectable since, in the interval [0, 20] ms, we have synchronous events excited
on both sides, which last about 27 ms. Silence in [−20, 0] interval is less obvious. It
indicates a relatively strong periodicity (due to gamma rhythm) of synchronous and
asynchronous events excited on both sides. Secondary peaks at ±23 ms support this
conclusion. We found no other peaks at larger time lags, which indicates the absence
of coupling at time scales larger than gamma rhythm. This result is compatible with
the experimental recording of spontaneous irregular activity under anesthesia.
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Fig. 5.11 Quantification of main characteristics of bilateral μfEPSP events. a Left:. Mean ampli-
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We now quantify the synchronous events. In this case, one μfEPSP event appears
on one side, and with a small enough time lag (the limit is defined byω0), there arises
another event on the contralateral side. Although either side may lead, waves in the
right side appear earlier in 57% of the pairs vs 43% of the left leading waves. Overall,
the time lag between right and left waves was 0.43 ± 0.07 ms. We also observed that
left waves were longer by 0.61 ms but smaller by 0.076 mV on average (Fig. 5.11a).
We then studied possible covariances between these parameters.

Figure5.11b shows plots of the increments of amplitudes (ΔA = AL − AR), dura-
tions (ΔD = dL − dR), and starting times (ΔT = tL − tR) of left events in respect
to right ones. We observe no correlation between pairs (ΔT,ΔA) and (ΔD,ΔA).
The corresponding correlation coefficients were r = −0.03 and r = −0.004, respec-
tively. However, there is a strong negative correlation between the time lag and the
increment of the duration of left event events (r = −0.45). Fitting a linear model by
the principal component analysis (it takes into account errors in both axes; Fig. 5.11b,
middle plot, red line) yields:

ΔD − μD = K (ΔT − μT ), (5.53)
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Table 5.2 Effect of compensation of initial asynchrony of synchronous μfEPSP events in the left
and right CA1

Case Initial Asynchrony, ΔT , (ms) Final Asynchrony, ΔE , (ms)

Left lead −2.91 0.06

Right lead 2.96 1.89

CA3

Left Right

Asynchronous (53%)

CA1

Synchronous (47%)
Right leads (57%)                Left leads  (43%)

µfEPSP

0.
1 

m
V

10 ms

3 ms 1.9 ms 2.9 ms 0.06 ms

27.3 ms 25.8 ms

Fig. 5.12 Schematic representation of bilateral information processing in CA3-CA1 pathways

where μD = 0.61 ms, μT = 0.43 ms, and K = −2.06.
Equation (5.53) suggests that synchronous events can tune their durations in such

a way that if the right side leads (i.e., ΔT > 0), then the difference in the event
durations becomes negative (i.e., ΔD < 0). Thus, for a given pair of events, we can
have ΔT + ΔD ≈ 0. In other words, the events compensate the initial asynchrony
(ΔT ) and synchronize their ends (EL − ER = ΔT + ΔD). The same effect occurs
for left side-leading events. IfΔT < 0, thenΔD > 0. The data analysis confirms the
hypothesis (Table5.2). For the left side-leading events, the asynchrony practically
vanishes, while for the right-leading ones, it is reduced significantly.

Figure5.12 schematically summarizes our results. First, we note that under irreg-
ular activity, the probability of generating asynchronous (one side) events is about
the same as the probability of synchronous (two sides) events. On average, the ampli-
tude of the asynchronous left and right events is significantly smaller than that of
synchronous μfEPSPs. Such a difference can be explained by either the cumulative
contribution of ipsi and contra-lateral inputs for paired events or by stronger recruit-
ment of ipsilateral CA3 cells into a cluster provoking μfEPSP under synchronous
activity. A direct contralateral driving of gamma waves in the CA1 via commissural
fibers is less likely. The commissural pathway contributes little to field potentials due
to anatomical and geometrical factors [41]. Curiously, the duration of asynchronous
events on the right side is significantly smaller than the durations of synchronous
and left asynchronous events.
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Second, synchronous events exhibit variable time lag between left and right lobes.
Moreover, the right side leads more often (57% vs 43%), and μfEPSP events have
significantly higher amplitude on the right side.

Since the fate of Schaffer waves is to excite CA1 units where they integrate with
input from the contralateral side, it is crucial to optimize the temporal overlap of
the respective excitatory envelopes. Therefore, the short mean lag between paired
bilateral waves indicates that the system is so finely adjusted.

A significant finding is that both CA3 are required for short-term memory. Yet,
inactivation of the left CA3 impairs performance in an associative spatial long-term
memory task and plasticity [46]. Along with the present observations of independent
gamma strings upon the VHC blockade [53], it becomes clear that the left and right
sides do not convey equivalent information. Whether lateralization is devoted to
different sensorymodalities, features of a scene, or perceived/recalled nature remains
unknown.

5.6 Conclusions

This chapter has introduced two methods for quantifying gamma waves in the activ-
ity of micro-field potentials excited by CA3 pyramidal cells in the CA1 region of
the hippocampus. To isolate the contribution of the CA3 neurons to the common
LFPs recorded in CA1, we have used the independent component analysis, previ-
ously adapted to the use with LFPs [11] and further theoretically tested [16, 54] and
experimentally validated [12, 55, 56].

The ICA approach represents each pathway’s activity as a product of the spatial
part (weights on individual electrodes) and time activation. The time activation of
the isolated Schaffer generator (ipsilateral CA3-CA1 pathway) exhibits an ordered
succession of micro field excitatory postsynaptic potentials, μfEPSPs, at gamma
frequency rate (40−50 Hz). Each μfEPSP appears to be generated by a functional
cluster of CA3 pyramidal neurons, to which individual cells are recruited variably.
Thus, we assumed that the observed gamma pattern in CA1 is composed of individual
μfEPSPs created by spike packets coming to CA1 neurons from the CA3 region.

To investigate such packets, we have developed two wavelet-based methods. The
first method processes gamma waves by the Haar continuous wavelet transform,
and the output is further rectified. The obtained wavelet measure represents a two-
dimensional surface in the coordinates: time localization-scales. We have described
how local maximums of this surface can be used to detect individual μfEPSP events
and quantify their time instants, durations, and amplitudes.

Then, we observed that the proposed method tends to underestimate the durations
and amplitudes of μfEPSP events, while the starting times appear to have a positive
time lag. To overcome this problem, we have introduced the second method. It
uses as an initial approximation the results provided by the first method. Then,
the parameters of the μfEPSP events are optimized by maximizing a likelihood
function. The optimization process employs the expectation-maximization approach.
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In simulations, we have shown that this method approximates the parameters of
the μfEPSP events significantly better than the first method, although it requires
additional computational resources. Both methods have been used for the analysis
of real electrophysiological data.

We have shown that μfEPSP events can reveal causal relations between spikes
of individual CA3 and CA1 pyramidal cells. It is improbable that a single CA3
spike depolarizes a target cell in CA1 beyond threshold since CA3 cells form a few
contacts on each of the CA1 neurons [57, 58]. Our results support the hypothesis that
a functional cluster of synchronously firing CA3 neurons generates an elementary
μfEPSP, in agreement with previous findings [15, 59]. For example, only a fraction
of spikes of a single CA3 pyramidal cell is related toμfEPSPs. Therefore, if the firing
of a CA3 cell is not in synchrony with the other cells in the ensemble, no μfEPSP
will be generated. Overall, functional clusters of CA3 neurons are synchronized in a
chain of one-at-a-time activations under supra-cluster oscillatory gamma dynamics.

Earlier studies of spike trains showed no significant correlation between CA3 and
CA1 pyramidal cells [60, 61]. Such observations favor a stochastic model of spike
initiation whereby the synaptic noise details define the output code. However, the
availability of the mediating μfEPSPs allowed us to narrow the output of individual
CA1 pyramids to spikes specifically driven by the Schaffer input. The entire synaptic
chain (triple correlations) thus revealed cell-to-cell specific impact to be explored in
nonstimulated conditions. We have shown that CA3 pyramidal neurons contribute
to monosynaptic μfEPSPs in CA1, and about 10% of spikes in CA1 are fired in
response to input from CA3.

We then investigated the bilateral integration of gamma-parsed information in the
two lobes of the hippocampus. Electrophysiological recordings were simultaneously
obtained from the left and right sides. We processed raw LFPs by the ICA approach
and identified μfEPSPs on both sides by the likelihood enhanced wavelet (LeW)
method. We have shown that gamma waves are generally larger and lead from the
right hemisphere. Synchronous (two sides) events drive CA1 pyramidal units more
strongly than asynchronous unilateral waves.

In general, synchronous bilateral events exhibit a variable delay between the
initiation of μfEPSPs on the left and right sides. We then observed the effect of
compensation of the initial asynchrony. The event durations are “tuned” in such away
that if one side leads, then the duration of the event on this side is larger than that of
the contralateral event. Thus, both events tend to finish synchronously. Summarizing,
our findings support the hypothesis that inter-hippocampal connections integrate
different aspects of information that flow through the left and right lobes.
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Chapter 6
Wavelet Approach to the Study of
Rhythmic Neuronal Activity

Abstract This chapter considers the main definitions and principles of electroen-
cephalography (EEG) that are needed to get a good grasp of next chapters. We
describe the general physical andmathematical approaches to time–frequency analy-
sis of rhythmicEEGactivity using the continuouswavelet transform.Besides that, we
review some recent achievements ofwavelet-based studies of electrical brain activity,
including (i) time–frequency analysis of EEG structure, (ii) automatic detection of
oscillatory patterns in pre-recorded EEG, (iii) classification of oscillatory patterns,
(iv) real-time detection of oscillatory patterns in EEG, (v) detection of synchronous
states of electrical brain activity, (vi) artifact suppression/rejection in multichannel
EEG, (vii) the study of cognitive processes.

6.1 Introduction

Let us take the next step in the application of wavelet analysis to neurophysiology
and consider practical aspects of this mathematical tool for retrieving information
about rhythmic brain activity. From a physical viewpoint, the brain is an extremely
complex object, consisting of a huge number of elements (neurons) with their own
oscillatory dynamics, organized in networks with complex topologies [1–8]. The
traditional and highly effective method for studying electrical brain activity is based
on registration of electroencephalograms (EEG), which sum the average electrical
fields of synaptically interconnected neuronal ensembles located in the vicinity of the
recording electrode. In humans, EEG is usually recorded by small metal disks (elec-
trodes or sensors), placed on the scalp. In rats, EEG is usually recorded by intracranial
electrodes implanted at the cortical surface or in deep subcortical structures, and this
approach can procure more detailed information about electrical activity in relatively
small groups of neurons.

Chapters7–9 will discuss different aspects of time–frequency characteristics of
EEG and the main results from continuous wavelet analysis of EEG as regards
automatic processing of EEG recordings, i.e., the development of new techniques
to remove the need for routine visual inspection of EEG and diminish subjective
factors. Nowadays, advanced practical methods for automatic processing of multi-
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channel EEG data are given a high priority in modern neuroscience. For example,
wavelet-based EEG analysis can be used to identify functional relationships between
various brain areas, to explore underlying mechanisms of different types of rhythmic
brain activity, and to better understand the fundamental principles of brain function.
Moreover, EEG comprises awide variety of rhythms and periodic oscillations, whose
frequencies are important characteristics of the functional activity of neuronal struc-
tures [3, 9–11]. The frequency content of the EEG recorded in the local brain area
depends on the functional activity of this area and its interactions with other areas.
New mathematical approaches have important theoretical significance for the study
of rhythmic brain activity, underlying, for example, integrative (cognitive) functions
of the brain. In addition to that, these new approaches can be widely applied in
practical work, for example, in developing effective diagnostic tools and monitoring
systems in clinics, in specific brain–computer interfaces, etc. [12–18].

This chapter provides a brief introduction to wavelet analysis of EEG. It starts
with the basic definitions and principles of electroencephalography in order to give
the reader a better understanding of subsequent chapters. In general, this chapter
describes the physical and mathematical bases of the wavelet transform used to
investigate rhythmic brain activity.

6.2 Basic Principles of Electroencephalography

EEG is an acronym for electroencephalogram (electro= electrical signals, encephalo
= the brain, graph = a recording).

Electroencephalogram. Record of electrical activity of the brain taken by means of elec-
trodes placed on the surface of the head, unless otherwise specified [19].

Electroencephalogram. Electrical potentials recorded from the brain, directly or through
overlying tissues [20].

Electroneurophysiology has a history of more than a hundred years [21]. In 1875, a
Liverpool physician and medical school lecturer Richard Caton first demonstrated
that electrical signals could be measured directly from the surface of the animal
brain. The father of clinical electroencephalography, the German psychiatrist Hans
Berger, recorded electrical activity from human brain and introduced the term ‘elec-
troencephalogram’. The first published EEG data from humans appeared in 1929,
when Hans Berger published a paper in which he presented 73 recordings [22].

Between Caton and Berger, Adolph Beck in 1890 found that sensory stimuli
(flashes or sounds) induced slow changes in electrical brain activity (slow wave
response, evoked potentials). Fleischl von Marxow (1890) made a similar obser-
vation. A Russian scientist, Vasili Yakovlevich Danilevsky, in his doctoral thesis
(1877), described electrical brain activity in dogs. Another Russian physiologist,
Nikolai Evgenjevich Wedensky, recorded electrical activity from peripheral nerves
and the central nervous system using a telephone (the results were published in his
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master’s thesis in 1884). In 1913, Vladimir V. Pravdich-Neminsky published pho-
tographic recordings of electrical brain activity in dogs and introduced the term
electrocerebrogram.

From that time, electroencephalographic investigations have led tomajor advances
in studying sleep and epilepsy. Electroencephalography is the most popular method
for the analysis of spontaneous brain oscillations and evoked (event-related) poten-
tials, and changes in electrical brain activity during anesthesia and sleep, during
sensory perception, and during voluntary activity, etc. Nowadays, EEG investigation
has become a necessary part of clinical practice for the diagnosis and prognosis of
various neural disorders, especially in epileptic patients.

Several spontaneous rhythms are encountered in EEGs of animals and humans
during different behavioral states, whereas peculiar (paroxysmal) patterns appear
in EEG during epileptic seizures. Mechanisms that underlie spontaneous rhythmic
activity in the brain were studied byV. V. Danilevski (1875) andA. Beck (1890), who
described EEG desynchronization in animals, by I. M. Sechenov, who found spon-
taneous rhythms in medulla oblongata in the frog, and by H. Berger, who described
alpha and beta rhythms in human EEGs.

6.2.1 Electrical Biopotential: From Neuron to Brain

According to the traditional viewpoint, brain functions are associated with contin-
uous processes of integration and disintegration of functional associations within
neuronal circuits. These neural associations are temporary and they represent syn-
chronized network activity of neuronal assemblies located in different parts of the
brain. Although neural associations are functional, they have an anatomical substrate,
viz., synaptic contacts between neurons. Neural connections can be readily reorga-
nized, so different neural circuits can be linked together into a single unit, a so-called
functional system. A functional system is a neuronal entity that accomplishes spe-
cific functions [23] and disintegrates when the result has been successfully achieved.
One of the signs of neuronal integration is synchronization of local electrical field
potentials. Synchronized neuronal activity can be recorded locally in the brain, for
instance, at the surface of the cerebral cortex, by means of an invasive intracranial
electrocorticogram, or on the scalp by non-invasive extracranial EEG [9]. An EEG
contains a variety of rhythms and periodic oscillations whose frequencies provide
important information about functional activity of the neural system. The state when
different brain areas sustain oscillations with the same frequency is called the neu-
ronal synchronization state. It accounts for the processes of neuronal association
and information exchange between these brain areas [24, 25]. Synchronization of
rhythmic activity in multi-channel EEG can manifest the binding processes (active
associations) between neurons and neuronal ensembles [26].

Synchronization between some cortical areas characterizes normal cognitive
brain functions. Pathological processes in the central nervous system can selec-
tively increase the level of synchronization between interconnected brain structures.



214 6 Wavelet Approach to the Study of Rhythmic Neuronal Activity

Abnormally high synchronization can underlie seizure activity that can be recorded
in EEG as hypersynchronized rhythms. In particular, absence epilepsy, which is ana-
lyzed by means of wavelets in Chap.7, results from hypersynchronization of the
thalamo-cortical network. Up to now, thalamo-cortical interactions have not been
fully explored because they require invasive implantation of electrodes in the tha-
lamus (intracranial EEG). This operation could not be performed on patients with
absence epilepsy for ethical reasons (the patients do not have clinical indications for
this operation).

During the last decade, non-invasive neuro-imaging and neuro-mapping tech-
niques, such as magnetic resonance imaging (MRI), positron emission tomography,
and photoemission computer tomography have been widely used in patients with
absence epilepsy. These modern methods have several disadvantages, the main one
being that the time resolution is too low and there is no reliable procedure for process-
ing the resulting data. An additional problem with neuro-imaging data comes from
the fact that reconstruction of neuronal activity is based on indirect measurements,
such as changes in the hemodynamic response, tissue metabolism, blood flow, and
blood oxygen saturation, etc. These processes are influenced bymany factors, besides
neuronal processes. The absence of effective tools for analysis of neuro-imaging data
and the high probability of errors in reconstruction of neuronal activity often lead to
false conclusions. Thus, two different approaches to analysis of MRI signals during
absence epilepsy may lead to different results [27].

In this situation, EEG is preferable in humans as a reliable, cheap, and easily
available technique, and application ofEEG in animals can be extendedby implanting
intracranial electrodes in deep structures. Chapter7 presents the results of time–
frequencywavelet analysis (continuouswavelet transform) of electrical activity in the
cortex and thalamus during absence epilepsy in animals with a genetic predisposition
to this disease.

6.2.2 Application of EEG in Epilepsy Research

Since this monograph focuses on features of the wavelet-based analysis of brain
dynamics in animals and patients with epilepsy, we briefly discuss the practical
application of EEG in epileptology. Fifteen years before H. Berger published his
landmark report (1929), in which he described spontaneous electrical activity in
the human brain, N. Cybulski and S. Jelenska-Macieszyna (1914) at the University
of Krakow in Poland published the first photographs of paroxysmal activity during
experimental focal seizures in dogs (cited in [21]). In 1931, H. Berger demonstrated
the first recordings of spike-and-wave activity obtained in epileptic patients (Fig. 6.1).
Two years later, in 1933, he published an EEG recording during a brief episode of
“simple automatic activity with no other movement” (cited in [21]). Note that it was
H. Berger who first suggested applying EEG in clinical practice (cited in [28]).
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Fig. 6.1 EEG record made by H. Berger in an 18-year-old girl during a seizure. High voltage
spike-and-wave complexes appear with a frequency of about 3 per second. From [21]

In 1935, Frederick Gibbs, Hallowell Davis, and William G. Lennox at Boston
City Hospital demonstrated spike-and-wave complexes in EEG that manifested clin-
ical absence seizures [29]. Since that time, clinical application of EEG has increased
rapidly and the EEG recording technique has been profoundly improved. Over the
years, EEG has helped in making short- and long-term prognoses of various neuro-
logical and psychiatric disorders. EEG investigation is necessary for the diagnosis of
epilepsy (especially in patients with atypical epileptic syndromes), and it also offers
important prognostic information.

In clinical practice, EEG is recorded with open and closed eyes using special
techniques to provoke epileptic activity (such as photo-stimulation, hyperventila-
tion). Comparative analysis of EEG shape during the states with open and closed
eyes provides the most important information. Some paroxysmal activity appears
only when the eyes are open, and some under closed eye conditions or immediately
at the moment of opening/closing the eyes (alpha rhythm can mask the abnormal
activity that can be seen in EEG, when the eyes are open and the alpha rhythm is
suppressed). Only in about 50% of adult patients with epilepsy can photo-stimulation
and hyperventilation provoke epileptic activity in EEG during the waking state. This
percentage can be increased up to 92% if 4 consecutive EEG sessions are used. EEG
monitoring during sleep increases the chances of identifying epilepsy in patients
(from 50% up to about 80%).

The area of clinical application of EEG is rather broad. Changes in EEG structure
can be used to evaluate the effectiveness of drug medication. Changes in EEG may
also carry prognostic information and can be for short- or long-term prediction of
neurological diseases.

Routine non-invasive EEG studies provide an opportunity to localize sources of
epileptic activity and to determine which areas of the brain could benefit from surgi-
cal correction. In complicated cases, localization of pathological brain areas requires
intracranial recordings with deep electrodes placed under the dura mater. Electrical
activity recorded intracranially from the surface of the cortex is called an electro-
corticogram (ECoG), or alternatively, a subdural EEG (sdEEG), or an intracranial
EEG (icEEG). An advantage of ECoG over EEG is its high spatial resolution (ECoG
reflects the local electrical field potential). Furthermore, high-frequency components
are present in ECoG, but they are reduced in EEG, since the electrical current passes
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through high-resistance structures, such as meninges, bone, soft tissue, and the scalp.
Despite the harmful effect of the invasive procedure, ECoG still remains a standard
for the localization of epileptic focus, and it is often used before surgical treatment of
epilepsy, when pharmacological treatment appears ineffective. We hope that, in the
future, invasive methods will be excluded from clinical practice, to be replaced by
new effective noninvasive brain imaging techniques. These new noninvasivemethods
should provide a high quality of data (spatial resolution and information content),
whilst remaining as simple and cheap as possible, and should be easily combined
with subsequent data processing techniques.

6.3 General Principles of Time–Frequency Analysis of EEG

6.3.1 The Need for Mathematical Analysis of EEG

Since the days of Hans Berger, the method for recording the EEG has improved
substantially. Progress in this area was achieved by development of engineering
and computer technologies. The ink recorder was replaced by the digital recording
system, which was able to record multi-channel EEG with high temporal resolution.
In fact, the availability of analogEEGdatamade it necessary to find a newapproach to
the analysis of digital recordings, where the EEG signal is represented as a sequence
of discrete values of the electric potential measured in the millisecond range. [In this
book, we usually operate with the sample rate 1024 Hz, i.e., a discretization step of
1/(1024Hz), or approximately 1msec.] Digital recording systemswith high-capacity
and digital memory meant that one could operate with large volumes of information
and perform the subsequent analysis of the EEG. Nowadays, it is necessary to find
better ways to store, share, and analyze EEG data.

New computer technologies promote an interdisciplinary approach to the inves-
tigation of brain functions under normal conditions and in pathological cases. EEG
studies are still attractive for experts in experimental and theoretical neurobiology,
psychophysiology, cognitive neuroscience, biophysics, physics, nonlinear dynam-
ics, etc. There is an interdisciplinary field of knowledge called neuroinformatics and
computational neuroscience that combines mathematical methods of neural network
modeling, time–frequency and structural analysis of neuronal signals, the theory
of dynamic chaos, and nonlinear dynamics. The interdisciplinary approach to EEG
analysis led to the development of unique methods which helped to unravel certain
mechanisms of perception and sensorimotor integration (see, e.g., [30–32]), and to
understand some fundamental aspects of sleep, epilepsy (e.g., [7, 33]) and cognitive
functions [34].
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It is profitable to apply powerful tools of physics and mathematics to EEG anal-
ysis. However, interpreting the results of mathematical analysis in the context of
neurobiology is often a complex and ambiguous matter. Any result derived from the
mathematical analysis of EEG, which may look obvious to the mathematician, can
appearmeaningless to the physiologist.Difficulties in interpreting the results ofmath-
ematical analysis may be caused by a considerable gap in understanding between
the biological and mathematical sciences. We believe that new knowledge resulting
from cooperation between these disciplines will help to solve many mysteries about
brain functions. But success in this venture is only possible through close coopera-
tion (despite all the difficulties) between theory and practice, i.e., between experts
in the exact sciences (applied mathematics, physics, nonlinear dynamics, etc.) and
practitioners in neurophysiology. Without a deep understanding of the physiological
basis of the problem, it would be impossible to develop adequate mathematical tools
for further processing and analysis of the relevant experimental EEG records, at least
such as would be easily acceptable to physiologists [35].

An interdisciplinary approach is beneficial for any research, but in neurophys-
iology it is particularly important, because the subject of study—the brain—is an
extremely complex one. A better understanding of brain functions requires the coop-
eration of biologists, physicists, chemists, mathematicians, information specialists,
and even the humanities—philosophers, linguists, and so on. One thing is certain:
the key to the success of such an interdisciplinary trend in modern neuroscience is
the clarity and meaningfulness of the statements of physiological problems.

6.3.2 Time–Frequency Analysis of EEG: From Fourier
Transform to Wavelets

The main difficulty with the practical application of physical and mathematical
approaches in neuroscience is the strict compliance with the conditions under which
the mathematical operations can be considered to be correct and justified with regard
to the answers they provide to the relevant questions.

In terms of physics andmathematics, an EEG record is a time series which appears
as a sequence of amplitude values for a certain quantity (in the case of EEG, it is a
measure of electrical potential), measured at discrete points of time. This representa-
tion allows one to take advantage of the considerable theoretical basis of time series
analysis developed in mathematics, physics, and nonlinear dynamics, as well as the
powerful mathematical tools of statistical analysis.

Among the methods widely used for EEG analysis, we should note the methods
of time domain measurements. This concerns primarily auto- and cross-correlation
analysis, which should be considered as statistical methods. In the frequency domain
(Fourier space), attention should be paid to spectral or Fourier analysis and wavelet
analysis (applicable in both the time and frequency domains). The latter approach is
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of particular interest in the this book. It is relatively new and has been successfully
applied in neurodynamics and neurophysiology.

In contrast, the spectral (frequency) analysis of EEG recordings is still widely used
in clinical practice, as well as in neuroscience. The fast Fourier transform (FFT) or
its modifications are typically used for neurophysiological signals [36–38]. EEG
spectral analysis results are usually presented in the form of a power spectrum, in
which the frequency content of EEG is depicted as the power value of each frequency
component.

The Fourier transform can only be applied to stationary signals, which are infinite
in time. The term “stationary” means that the spectral composition and statistical
characteristics of the signal do not change over time. However, EEG is essentially a
non-stationary signal, whose characteristics change over time.1 In particular, certain
rhythms constantly appear and disappear in EEG. Each of them is characterized by
its own frequency in Fourier space and by a typical form in the time domain.

In order to illustrate all the characteristicmentioned above, Fig. 6.2 gives an exam-
ple of an electrical activity record from the frontal cortex of a WAG/Rij rat with a
genetic predisposition to absence epilepsy.2 Large variations can observed in both the
amplitude and the frequency parameters of EEG, even in this short fragment. Firstly,
one can select the segments of background activity, so-called desynchronized EEG
(area F in Fig. 6.2). Secondly, in this EEG segment, the periods that differ from the
background EEG by the amplitude, shape, and characteristic frequency can be eas-
ily distinguished. Hereinafter we will refer to such EEG fragments as oscillatory
patterns. The oscillatory patterns can be classified by shape and by frequency com-
position. These two classifications are traditionally used by neurophysiologists for
analysis and “decoding” of EEG [37, 42]. Taken together, they represent an accurate
formal tool for analysis and classification of EEG rhythms. In the signal shown in
Fig. 6.2, several oscillatory EEG events are highlighted, such as sleep spindles, short
episodes of 5–9 Hz oscillatory activity, K-complexes (delta waves followed by a
sleep spindle), and spike-wave discharges (SS, TR, K, SWD, respectively).

Thus, different rhythmic and oscillatory patterns can be distinguished in EEG. In
other words, EEG is characterized by a complex time–frequency structure [1]. Tra-
ditional electroencephalography subdivides the frequency content of EGG in several
bands from about 0.5 to 200–500 Hz (Fig. 6.3a). The presence of EEG oscillations
with certain frequencies (frequency bands) is associated with certain states of vig-
ilance (specific brain activity), so the frequency characteristics of EEG correspond
roughly to specific brain functions [43–45]. EEG oscillations with different frequen-
cies can co-exist in one structure or present the same time in different brain structures
[44, 46, 47].

1Although the non-stationarity of EEG signals causes difficulties for spectral analysis, Fourier
transformalgorithms have been successfully adapted toEEGanalysis (see, e.g., the technicalmanual
[39]).
2WAG/Rij rats are a special inbred line with a genetic predisposition to absence epilepsy [40, 41].
This animal model of epilepsy will be discussed in Sect. 6.3.3, and also in the following chapters
of the book.
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The spectral power density P of an EEG signal is inversely proportional to the
frequency f (see Fig. 6.3b). The observed 1/ f law of the spectral power suggests that
the system exhibits self-organized critical dynamics [1, 48, 49], where disturbances
at low frequencies result in sequential transmission of oscillation energy at high
frequencies [50, 51]. So high-frequency EEG events superimpose on low-frequency
oscillations in EEG [44, 46, 52].

These properties of oscillations are determined by the physical architecture of the
neuronal network, as well as by the limited propagation speed of electrical signals
between neurons due to synaptic delay [53]. Since the majority of neuronal connec-
tions are local (small in size [54]), the period of oscillation depends on the size of
neuronal ensembles involved in the oscillatory activity. High-frequency oscillations
in EEG (which oftenmanifest cognitive processes [55]) are underlain by synchronous
activity in relatively small neural networks that occupy a limited region of space,

 0.1  1  10  100
Frequency [Hz]

EE
G

 fr
eq

ue
nc

y 
ba

nd
s

Delta 0.5-4 Hz

Alpha 8-14 Hz

Theta 4-8 Hz

Beta 14-40 Hz

Gamma 40-80 Hz

High frequencies >80 Hz

Low frequencies <0.5 Hz

1/f

Lo
g 

P(
f)

Log f [Hz]
0 0.5 1.0 1.5 2.0

(a) (b)

Fig. 6.3 a EEG frequency bands distinguished by traditional electroencephalography. b Power
spectrum of an EEG recorded from the human right frontal lobe during sleep. Figures are based on
the data from [1]



220 6 Wavelet Approach to the Study of Rhythmic Neuronal Activity

while relatively widespread neural networks are involved in low-frequency oscilla-
tory activity [44, 56]. Considering spatial and temporal scales of neuronal network
activity, the relationship between network anatomy and frequency of oscillations
(which reflects brain activity) should be taken into account.

It is obvious that analysis of complex non-stationary signals, such as electroen-
cephalograms, requires specific methods with good resolution in both the frequency
and time domains. Before the introduction and development of wavelet analysis,
the only method to study the time–frequency structure of non-stationary signals was
the short-time Fourier transform (2.4) considered in Sect. 2.1. In practice, two types
of short-time Fourier transform procedure were used to analyze neurophysiological
signals.

The first approach was based on the decomposition of the non-stationary EEG
signal into fragments of length 2T, where signal parameters did not change with time,
i.e., the EEG fragments were treated as stationary. These EEG fragments overlapped
in order to minimize the undesirable effect of boundary artifacts. This procedure
could provide the power spectrum at any given time. The second method was based
on multiplying the EEG signal by a given window function, e.g., Gauss function,
Hamming window, Hann window, etc., which takes a nonzero value for some short
period of time. In fact, the Fourier transform (2.3) was performed in a short time
interval corresponding to thewidth of the selectedwindow function. Then thewindow
function was shifted along the time axis, and the next interval of EEG provided the
major contribution to the resulting spectrum. The fixed time window is the main
disadvantage of the short-time Fourier transform (as already discussed in Chap.2).
Furthermore, the window size could not be adapted to the local properties of the
signal.

The mathematical apparatus of the wavelet transform provides a better alternative
to the Fourier transformwhich is free from the above-mentioned shortcomings. From
the various physical applications of wavelets, it is well known (see, e.g., [57–63]) that
wavelet analysis is well suited for studying non-stationary signals. It is characterized
by the following important features:

• It decomposes the signals in the time and frequency domains, which allows us to
localize the particularities of a signal in both domains.

• It is suitable for short intervals. One can effectively analyze a short time series
containing a small number of characteristic periods of oscillatory activity.

• It is flexible. One can choose the wavelet basis that best takes into account the
peculiarities of the analyzed data.

• It is less sensitive to noise.Wavelets are highly effective for analyzing “noisy” data,
i.e., signals in which important information is superposed with additive noise.

These advantages make wavelet analysis attractive for studying EEG signals, which
are characterized by non-stationarity, the simultaneous presence of oscillatory activ-
ity with different shapes and frequencies (which requires an adaptive approach to
examining the EEG structure), a high level of noise, and a relatively short length
(either due to the limited time of registration or short duration of fast processes in
the brain) [64–67].
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The significant advantage of wavelets is that the analysis is not limited to the
selected time scale of the observation. Indeed, since the frequency of a signal is
inversely proportional to its period, the information about high-frequency compo-
nents could be obtained from the relatively small time intervals, whereas information
about low-frequency components could be obtained from the longer periods of time.

6.3.3 Time–Frequency Analysis of Spike-Wave Discharges
by Means of Different Mother Wavelets

Here we discuss the application of wavelet analysis to the description of the structure
of the spike-wave discharges in EEG. As pointed out above, in the structure of
the EEG, one can distinguish different forms of rhythmic activity and oscillatory
patterns which reflect the nature of the neural activity and hence the functional state
of the brain. Importantly, many pathological processes in the brain may also be
manifested in EEG. For example, during epilepsy, which is characterized by the
hypersynchronous activity of brain neurons [40, 68], there are high-amplitude EEG
discharges of characteristic shape [69, 70].

There are many types of epileptic disorder (more than 30), and each of them
corresponds to a specific epileptic EEGpattern.At the same time, there are difficulties
in the diagnosis of certain types of epilepsy, and as a consequence, these diseases
remain unnoticed. According to World Health Organization data, about 1% of the
world’s population suffers from epilepsy and more than 30% of patients do not
receive health care [70, 71]. In this section we focus on absence epilepsy (petit mal
or childhood absence epilepsy), which is a common neurological disease, the main
clinical manifestation of which is a brief loss of consciousness with the absence of
the convulsive component (the automatisms of the mimic muscles may be observed)
[69, 71]. The attack of absence epilepsy (lower level of consciousness) can last from
a few seconds to tens of seconds. Epileptic seizure is accompanied by high-amplitude
spike-wave discharges in EEG [70, 71]. Spike-wave discharges (SWD) consist of a
relatively high-frequency component (the spike) with peak amplitude significantly
exceeding the background activity and the low-frequency “wave” [72].

There are several rat lines with a genetic predisposition to absence epilepsy [40],
such as the WAG/Rij rats used in our study. Electroencephalographical and clinical
signs of absence epilepsy can be observed in 90% ofWAG/Rij rats [40], and epileptic
activity is known to increase progressively with age. Despite some differences in the
manifestation of absence epilepsy in WAG/Rij rats and human patients (such as
different age-related dynamics and the main frequency of SWD), the WAG/Rij rat
model is recognized as reliable, since the clinical manifestations and response to
drugs in WAG/Rij rats is similar to that in patients with absence epilepsy [40].

Figure6.4 shows typical EEG fragments with spontaneous SWD, as recorded in a
symptomaticWAG/Rij rat (Fig. 6.4a) and for a human patient suffering from absence
epilepsy (Fig. 6.4b). In theWAG/Rij rat (1 year old), EEGwas recorded intracranially
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Fig. 6.4 EEG fragments with typical spike-wave discharges as recorded in a WAG/Rij rat (a) and
in a human patient with absence epilepsy (b)

by means of an electrode implanted at the surface of the frontal cortex. In the male
patient (23 years old), EEGwas recorded extracranially with skin electrodes attached
to the frontal cortex (F4 electrode in the right hemisphere in the system 10–20 [73]).
Enlarged fragments at the bottom of each EEG illustrate the detailed structure of
spike-wave discharges with the typical fast (spike) and slow (wave) components.
In the human EEG, the spikes are not pronounced, mainly because the signal was
recorded at the surface of the skull, and hence relatively far from the source of
electrical brain activity.

In the rest of this section, we consider in depth the wavelet analysis of spike-wave
discharges in humans and the WAG/Rij rat by means of different types of mother
wavelets (see Sect. 2.2.2). We start by considering the use of the complex Morlet
wavelet for the continuous wavelet analysis of the SWD. Equation (6.1) gives the
formula for the complex mother wavelet:

ψ0(η) = π−1/4eiω0ηe−η2/2 , (6.1)
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where the second term in the brackets of (2.33) is neglected and ω0 = 2π .
Figures6.5a and 6.6a show the wavelet spectra of a spike-wave discharge as

computed with the aid of the Morlet wavelet in the WAG/Rij rat and in a human
patient with absence epilepsy, respectively. In the wavelet spectrum of the rat SWD,
the complex frequency dynamics during an epileptic event is clearly visible. In order
to identify the frequency dynamics of the SWD, Fig. 6.7a displays the skeleton of the
wavelet surface shown in Fig. 6.5a. Typically, the frequency of spontaneous SWD is
approximately 12–15 Hz at the beginning, but it decreases rapidly to ∼10Hz during
the first 300ms and becomes stable at ∼10Hz with fluctuations of 1–3Hz, while the
period of fluctuations lasts approximately 0.7 s. In general, there is a steady trend
towards a decrease in frequency to 7–8Hz at the end of the SWD [74, 75].

Analysis of the skeletons of the wavelet surface reveals that there are three first
harmonics of the SWD fundamental frequency (shown in Fig. 6.7a) located in the
range of 7–15Hz, and that they tend to decrease in time. This kind of spectrum with
higher harmonics is typical for signals with complex shape and sharp peak compo-
nents (compare with Fig. 2.18, which shows a model pulse signal whose spectrum
contains higher harmonics, and see also the discussion in Sect. 2.2.4). It should be
noted that the frequency composition of a spike-wave discharge changes very quickly
(during one or two oscillation periods). As a consequence, the methods given in [75]
could not be used effectively to detect the time–frequency structure of SWDs.

The wavelet spectrum of the SWD in a patient with absence epilepsy is similar to
what was found in a rat (see Fig. 6.6). The wavelet spectra of SWDs in humans and
in animals differ quantitatively, since the frequency of the human SWD lies in the
range 3–4Hz, which is lower than the frequency in a rat. However, the tendency for a
rapid decrease of the main frequency from the beginning to the end of the SWD, and
further stabilization of the frequency in the middle of the discharge, is observed in
both rats andhumans.This canbe seen clearly in the skeletonofwavelet spectrum (see
Fig. 6.7b). Note also that, in humans, the wavelet spectrum and its skeleton display
less pronounced higher harmonics of the main frequency in comparison with the rat.
Therefore, in the skeletonof thewavelet spectrum inhumans, only thedynamics of the
second harmonic can be traced (Fig. 6.7b). This can be accounted for by a smoother
form of SWD in humans, i.e., low spike amplitudes, which contribute mainly to the
dynamics of high frequencies in EEG (the appearance of higher harmonics) during
SWD.

It should be noted that the complex Morlet wavelet provides the optimal relation-
ship between resolution in the frequency and time domains, and can be successfully
used to analyze the fine time–frequency structure and dynamics of the fundamen-
tal frequency of complex non-stationary neurophysiological signals. For example,
wavelet analysis has been successfully used to identify and describe the dynamics
of the intrinsic SWD frequency. The dynamics of EEG frequencies described in this
way reflects the functional activity of widespread neuronal networks during the pro-
cess of initiation and termination of the SWD, which is important for understanding
epileptogenesis mechanisms.

We turn now to the analysis of spike-wave discharges by means of real mother
wavelets. Figures6.5 and 6.6 illustrate the modulus |W ( fs, t)| of wavelet spectrum
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Fig. 6.5 Wavelet spectra of
a typical spike-wave
discharge in WAG/Rij rats,
as computed with the aid of
different mother wavelets:
complex Morlet wavelet with
ω0 = 2π (a), real MHAT
wavelet (b), WAVE wavelet
(c), and modified Morlet
wavelet (d)
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Fig. 6.6 Wavelet spectra of
a typical spike-wave
discharge in a person with
absence epilepsy, as
computed with the aid of
different mother wavelets:
complex Morlet wavelet with
ω0 = 2π (a), real MHAT
wavelet (b), WAVE wavelet
(c), and modified Morlet
wavelet (d)
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Fig. 6.7 Skeletons of the
wavelet spectrum of typical
spike-wave discharges
obtained with the aid of the
complex Morlet wavelet
(ω0 = 2π ). a Skeleton of a
spike-wave discharge in the
WAG/Rij rat. b Skeleton of
the discharge in a human
EEG. In skeletons, only
peaks exceeding the
threshold that corresponds to
the amplitude of the wavelet
spectrum of the background
EEG are shown. Harmonics
of oscillations during the
spike-wave discharge are
marked by numbers. The
vertical dashed line marks
the onset of the SWD
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coefficients obtained with the help of the standard real mother MHAT (2.40) and
WAVE (2.39) wavelets. The figures show the EEG with SWD in a WAG/Rij rat
(Fig. 6.5b and c) and in a human (Fig. 6.6b and c). In order to convert the wavelet
frequencies fs into the frequencies f of the Fourier transform, we determine the
relationship between f and fs in the way discussed in Sect. 2.2.3 (see the ratio f/ fs
in Table2.1).

Indeed, the wavelet spectra obtained by means of the MHAT or WAVE wavelets
are characterized by the low-frequency resolution and, as a consequence, the higher
harmonics and their frequency dynamics are not clearly distinguished from the back-
ground dynamics of the main frequency. At the same time, the characteristic features
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of these real wavelets lead to sharp peaks in the wavelet spectrum, so any EEG event
with a sharp waveform produces intense amplitude bursts in the frequency range of
interest in the wavelet spectrum. The disadvantage of real wavelets is the complexity
involved in determining the main frequencies in the wavelet spectrum, because the
maxima and minima of the wavelet surface correspond to an increase/decrease in the
EEG amplitude. Obviously, this form of wavelet spectrum of the SWDdoes not prop-
erly display the particularities of the signal, nor the dynamics of its frequency and
amplitude. An advantage of the WAVE and MHAT wavelets is good time resolution,
which allows one to track the rapid increase in amplitude of the wavelet spectrum
and the moment when the examined rhythm appears in the EEG. However, due to the
poor frequency resolution, sharp changes in amplitude of the wavelet spectra could
be missed, and that complicates the analysis of the time–frequency structure of the
signal. The above remarks concerning real wavelets are valid for the analysis of both
animal and human epileptic EEG.

As an example application of real wavelets in EEG analysis, wemention the paper
[76], which proposed a real wavelet mother function constructed on the basis of the
Morlet wavelet, especially for the analysis of spike-wave discharges inWAG/Rij rats.
This modified Morlet wavelet zeroizes the amplitude of the wavelet transform coef-
ficients corresponding to the fundamental EEG frequency in the time and frequency
domains.

The modified real Morlet wavelet used in [74, 76] has the form

ψ0(η) = η cos(Ωη)e−η2/2 , (6.2)

where the parameter Ω = 5. It can be shown [77] that the particularity of this
mother wavelet is that the frequencies fsmax corresponding to the maximum of
the wavelet surface |W | built with the classic wavelet basis satisfy the condition
|W ( fsmax, t)| = 0 when the modified basis (6.2) is used. So in this case the dynam-
ics of the fundamental frequencies in the EEG is not determined by the presence
of local maxima as we saw earlier (Chap.2), but by the zero values of the wavelet
surface (see Figs. 6.5d and 6.6d). The modified real Morlet wavelet (6.2) was used to
analyze the dynamics of frequency characteristics of typical SWD in patients with
child absence epilepsy, juvenile absence, or juvenile myoclonic epilepsy, as well
as to study the effect of various pharmacological substances on the time–frequency
structure of epileptic discharges.

Comparative analysis of results obtained with the modified real Morlet wavelet
(6.2) and standard complex Morlet wavelet (6.1) did not reveal any advantages with
the modified wavelet basis. Moreover, application of the real Morlet wavelet in the
continuous wavelet transform may just obscure features in the wavelet spectrum,
especially when the amplitude of the fundamental frequency was close to its maxi-
mum or did not reach the maximum. In this case, the wavelet coefficients were close
to zero, which was not convenient for digital signal processing and introduced unde-
sirable difficulties in the automatic processing of the wavelet spectra. Modification
of the mother wavelet function is potentially beneficial for signal analysis, because
it helps to adjust the method to solve specific problems and expands the area of
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practical application of the wavelet transform. However, considering the ambiguities
associated with real wavelet basis functions, we will modify the complex (not real)
wavelet basis function in this book, and demonstrate some profitable features of the
modified Morlet wavelet constructed on the basis of the standard complex mother
Morlet wavelet function (6.1), which provides good resolution in both the time and
frequency domains.

The effects of pharmacological treatment on the structure of spike-wave dis-
charges in WAG/Rij rats, as observed by means of wavelet analysis with a modified
real Morlet wavelet, are presented in [77, 78]. This study led to the following con-
clusions, which could be taken into account in clinical practice (antiepileptic drug
treatment).

Haloperidol (an antipsychotic drug) in small doses reinforces absence epilepsy
and causes numerous short spike-wave discharges in EEG. Rats under low doses of
Haloperidol had an SWD of mean duration of 5 s, characterized by a rapid change

f, Hz

t, s
Fig. 6.8 Short-lasting SWD inWAG/Rij rat under the influence of ketamine (from [78]). The SWD
has a specific waveform in EEG (top) with two parts, namely a “head” with frequency 6–7Hz and
“tail” with a frequency of about 9Hz. The corresponding wavelet surface obtainedwith themodified
Morlet wavelet (bottom) shows the time–frequency profile of this phenomena
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in intrinsic frequency from 15Hz at the beginning to 5Hz at the end of the SWD. In
high doses, Haloperidol induces long-lasting spike-wave discharges with relatively
low frequency, which varied between 6 and 9Hz with two types of modulation with
periods 0.5–0.6 s and 3–6s.

Vigabatrin (drug of choice for antiepileptic medication, anticonvulsant) in small
doses greatly increases the duration of SWDs (up to 20–45s). Under vigabatrin
treatment, the SWD started with short bursts of oscillatory activity with frequency
17–20Hz, and then the frequency decreased to 5Hz, and gradually reached a plateau
of 8–9Hz. Themain frequency of spike-wave discharges fluctuated between 4.5–5Hz
and 8–9Hz, and the major changes in frequency occurred approximately every 2 s.

Ketamine (a drug with an anesthetic and analgesic action) caused a biphasic effect
on spike-wave discharges. In the first phase, the number of discharges was reduced,
and during the second phase, short and long spike-wave discharges were usually
observed. The short-lasting discharges had a head–tail waveform (see Fig. 6.8). The
“head” consisted of high-amplitude spike-wave complexes with frequency 6–7Hz
and a duration of 1–1.5 s,whereas the “tail”was formedby low-amplitude oscillations
with a frequency about 9Hz and duration 1–3s.

In general, antiepileptic drug therapy altered the frequency characteristics of
SWDs, which are associated with changes in the neuronal network mechanisms of
absence epilepsy. These changes underlie the basic mechanisms of absence epilepsy
and, in particular, mechanisms involved in suppression of seizure activity.

6.4 Applications of Wavelets in Electroencephalography

An EEG contains many different rhythmic components whose frequencies pro-
vide important information about functional activity in different brain structures.
As already discussed, wavelet analysis is well suited to study complex processes
with time-varying characteristics, and it is widely used for time–frequency analy-
sis of EEG data (non-stationary signals that include a variety of oscillatory patterns
with significantly different waveforms and frequencies). Furthermore, the presence
of a high level of noise and the short duration of EEG recordings cause additional
difficulties in EEG analysis [20, 63–65, 67].

Careful attention should be paid to the specific forms of rhythmic activity asso-
ciated with specific brain and behavioral functions (episodes of epileptic activity,
sleep, etc.). It is known that rhythmic components in EEG reflect the synchronous
dynamics of a huge number of neurons integrated into ensembles [33, 72, 79], and
studies of rhythmic brain activity using wavelets are closely related to an important
task of nonlinear dynamics, viz., the study of synchronous behavior in networks with
complex topology [4–6, 80].

Sections6.4.1–6.4.7 overview the most important and actively developed appli-
cations of wavelets in studies of electrical brain activity and in diagnostics based on
EEG. In the heading of each part, we indicate the first and most important works
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from our point of view, but the bibliography given here is obviously incomplete due
to the large number of publications.

6.4.1 Time–Frequency Analysis of EEG Structure

One of the most obvious applications of wavelets in neurophysiology and elec-
troencephalography is identification of certain EEG patterns and analysis of the
time–frequency structure of EEG signals. This application takes into account the
basic properties of wavelets and the main areas of their use. The first wavelet-based
studies in neurobiology aimed to analyze characteristic time–frequency features of
various patterns in EEG [38, 81, 83]. Subsequently, specificmethodswere developed
to estimate different statistical characteristics of non-stationary signals such as time-
varying wavelet coherence, wavelet entropy, etc. [103–108]. Wavelet-based studies
were directed towards determining particular interactions between the cardiovascu-
lar system and the CNS using experimental data (ECoG and EEG) [109–111]. One
of the most effective applications of wavelets could be found in papers [76, 77, 85,
87, 98] with close attention to pathological electrical brain activity characterized by
short duration and complex frequency content (see Sect. 6.3.3), such as spontaneous
epileptic spike-wave discharges in EEG. Wavelet analysis has also been used to
identify the influences of medication on the time–frequency structure of SWDs [78]
and to describe the structure of characteristic “precursors” of epileptic activity [95].
Wavelet-based methods were also used to study other forms of oscillatory activity
(oscillatory patterns) in EEG, in particular, sleep spindles and 5–9Hz oscillations
[101].

6.4.2 Automatic Detection of Oscillatory Patterns and
Different Rhythms in Pre-recorded EEG

Simple methods of automatic pattern recognition in EEG (e.g., the threshold method,
method of templates, simple neural networks, etc.) often failed to be successful
because of high noise levels, nonstationarity of EEG signals, and/or the highly vari-
able time–frequency structure of oscillatory EEG events [119].

The following properties of wavelet analysis benefit its application in the auto-
matic processing of EEG data:

1. A representation of the time–frequency structure of signals that enables one to
localize signal features simultaneously in the time and frequency domains.

2. Effective analysis of short time series containing small numbers of characteristic
oscillations, as required for automatic diagnostics of short-lasting events in EEG.
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3. Flexibility in the choice of basis function for signal decomposition, a prerequisite
for successfully adjusting the mathematical apparatus of wavelet analysis to the
signal properties.

4. Highly effective analysis of noisy data, i.e., processes comprising a sum of useful
signals and additive noise.

Currently, there is a quite general approach to automatic processing of pre-recorded
EEG data using estimates of wavelet energy in characteristic frequency bands (with
standard mother wavelets and adaptive wavelet bases) [101, 114]. This method has
been successfully used to analyze the structure of sleep spindles in EEG, i.e., short
episodes of rhythmic activity in the EEG.

Automatic data processing methods facilitated further progress in the study of the
time-dependent dynamics of various rhythmic components in EEG. For instance, it
was shown that epileptic brain activity in WAG/Rij rats is an intermittent process
corresponding to on-off intermittency [114]. A similar intermittent dynamics was
also found in sleep spindles [101]. This type of dynamical behavior was observed
in coupled chaotic oscillators and in networks of nonlinear units at the boundary
of the synchronization region [120–125]. On-off intermittent behavior in neuronal
networks and applications of combination of wavelet and extreme events theory can
provide a deeper understanding of the dynamics of epileptic activity and, in particular,
the underlying mechanisms of epilepogenesis [126–128].

6.4.3 Classification of Oscillatory Patterns

The development of standardized databases of characteristic electroencephalograph
patterns is an important fundamental and applied problem [135–137]. A relatively
new approach to classification and standardization of oscillatory EEG patterns, sim-
ilar to the template matching technique, constructs complex adaptive wavelet bases
from original EEG segments [75]. This procedure was effective for identification and
classification of spindle-like oscillatory events in EEG. In particular, this methodwas
used to describe “spike-wave spindles” that occurred during desynchronization of
EEG and were considered as an immature form of epileptic spike-wave discharges
that combined some properties of sleep spindles and SWD [75]. More details will
be given in Sect. 7.4.3.

6.4.4 Real-Time Detection of Oscillatory Patterns in EEG

Online identification of characteristic oscillatory patterns in EEG is one of the most
interesting and intensively studied problems. Further progress in this area is impor-
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tant for monitoring human brain activity, and also for the development of special
brain–computer interfaces. One difficulty in identification of EEG patterns relates to
the problem of selectivity (different EEG patterns have similar spectra). It is difficult
to develop a universal method for online diagnostics of oscillatory patterns in EEG
due to the nonstationarity of experimental data. Application of wavelets for online
diagnostics in EEG may help to overcome this problem of nonstationarity, and we
shall discuss examples of how a wavelet-based method provides a way to monitor
seizure activity in the brain [141]. Let us note that current methods for extracting
characteristic EEG patterns using wavelets are increasingly used in developing pro-
totypes of brain–computer interfaces [134, 140, 143]. An advantage and at the same
time a disadvantage of these approaches is the use of the discrete wavelet trans-
form. Although it provides quick signal processing, allowing online analysis of a
large amount of experimental data, it is less appropriate for flexible recognition of
different patterns in EEG. Approaches like those described in [141] which use the
continuous wavelet transform can improve the quality of recognition. Section7.6
describes an algorithm for automatic online detection of spike-wave discharges.

6.4.5 Multichannel EEG Analysis of Synchronization of
Brain Activity

It is known that different areas of the cerebral cortex often exhibit synchronous
activity in both normal states (e.g., during cognitive activity) and pathological states
(Parkinson’s disease, epilepsy, paranoid schizophrenia, etc.). As shown in Sect. 2.2.5,
the corresponding synchronous dynamics can be analyzed using continuous wavelet
analysis with complex mother functions in an approach known as the time-scale
synchronization [152, 153]. This has been used to study synchronization phenomena
in different kinds of system [154–159].

Application of the continuouswavelet transform for analysis ofmultichannel EEG
revealed periods of synchronization in short and noisy data. Besides, synchronization
of time scales is quite stable to errors when estimating the characteristic frequencies
of analyzed processes and this is important for automatic processing of experimental
neurophysiological data during cognitive and motor processing in the brain (see
Chaps. 8 and 9 for detail).

6.4.6 Artifact Suppression in Multichannel EEG Using
Wavelets and Independent Component Analysis

Analysis of EEG essentially becomes complicated due to the presence of different
artifacts, in particular high-amplitude EEG components associated with eye move-
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ments, blinking,muscle activity, etc. Currently,wavelets have become a popular tech-
nique for artifact suppression [63, 166, 167]. For example, a new approach known as
wavelet-enhanced independent component analysis (wICA) [164] has been applied
to suppress artifacts caused by blinking eyes and heart beats. It is important to note
that wICA resulted in a tenfold reduction of movement artifacts in EEG without
significant influence on neuronal signals. This advantage can be used to develop
algorithms for automatic artifact rejection in EEG.

6.4.7 Study of Cognitive Processes

In addition to analysis of pathological dynamics in EEG, the wavelet transform is
widely used in studies of cognitive processes. Thus, interactions between different
areas of the cerebral cortex were investigated during cognitive tasks in [168]. This
study aimed to assess the strength of intracortical interactions using the degree of
synchronization of electrical EEG activity expressed in different brain areas. It used
a wavelet-based correlation method to measure the degree of synchronization during
short time intervals (comparable with the duration of mental operations, i.e., up to
100ms).

The discrete wavelet transform with Daubechies functions was used in [170]
to study spectral powers in the alpha and beta frequency bands in different brain
areas of healthy subjects who were solving simple arithmetic tasks. The continuous
wavelet transform of EEG data has been intensively used to study rapid cognitive
processes underlying the process of human face recognition. Short fragments of EEG
(800ms) were analyzed in [171] after emotionally valenced stimuli (expression of
angry and neutral faces). Analysis was performed using the Morlet function with
estimation of wavelet coefficients in the frequency range Δ f = 1–30Hz, reflecting
the amplitude dynamics of cortical potentials in the corresponding frequency range
Δ f . Statistical analysis of rhythmic components in the evoked EEG activity was
carried out in the alpha and theta frequency bands. It was shown that individual
differences in the perception of facial expressions correlatedwithwavelet coefficients
in the above-mentioned frequency ranges. Thus, changes in the alpha and theta bands
were important at the stage of stimulus perception. Emotional reaction is associated
with theta activity. Based on wavelet analysis, Yakovenko et al. [171] suggested that
emotional expressions are accompanied by different cortico-subcortical interactions
among different humans and at different stages of the experiment.

Finally, cognitive processes of human brain activity, accompanied by changes
in the waveform of evoked potentials in the EEG, were analyzed in [151] using
wavelets. Let us consider this work in more detail. The evoked potential represents
a structured fluctuation of electrical brain activity in response to external stimulus
[172]. Eight components of the evoked potential are traditionally introduced, taking
into account their polarity (P positive, N negative) and the latency, i.e., the time delay
from the onset of the stimulus. It is important to note that the evoked potential of a
certain modality (visual, auditory, somatosensory) is recorded at the corresponding
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Fig. 6.9 Waveform of acoustically evoked potential and ranges of the “cognitive” components N1,
N2, and P300. From [151]

projection area of the neocortex. Potentials at other brain regions are secondary
(associative) and may differ in waveform, latent period, and amplitude. For example,
the spatial organization of an acoustically evoked potential reflects the following
stages of cognitive processes:

• non-arbitrary perception—component N1,
• transition from non-arbitrary to arbitrary perception—component N2,
• information processing and decision regarding significance—component P300.

The purpose of the paper [151] was to develop an effective method for evaluating
phase synchronization to analyze acoustically evoked potentials in healthy human
subjects. It was shown that, in situations that do not require concentration (e.g.,
listening to sounds), spatial organization of the components of acoustically evoked
potentials had a diffuse character. Phase synchronization indexes fluctuated over the
range 0.5–0.8 and took similar values in all components N1, N2, and P300 (see
Fig. 6.9, reproduced from [151], which shows a typical waveform of the acoustically
evoked potential and variation of the “cognitive” components N1, N2 and P300).
Higher phase synchronization indexes in the studied components were found in the
frontal or temporal areas of the right hemisphere. Concentration (elicited by auditory
stimuli) increased this index up to 0.9 in components N1 and P300 (see Fig. 6.10).
The highest degree of synchronization was observed between associative areas of the
cortex (frontal, central, and parietal), between the hemispheres (often diagonally),
with a shift in the direction of the left hemisphere.

The described changes in the phase synchronization reflect the process of selective
involvement of the above-mentioned areas of neocortex in cognitive (acoustic) tasks.
Romanov et al. [151] used the good temporal resolution of the wavelet transform in
order to extract information about quick changes in the shape of the electric potential
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Fig. 6.10 Changes of phase synchronization (a) and wavelet power (b) while listening to sounds
(1) and while counting auditory stimuli (2) in the same subject. From [151]

(evoked potential) during mental activity. Wavelet analysis is thus in demand in
psychophysiology, where it is often necessary to analyze short fragments of EEG
and rapid processes of human brain activity.
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Chapter 7
Wavelet-Based Diagnostics of Paroxysmal
Activity in EEG and Brain-Computer
Interfaces for Epilepsy Control

Abstract This chapter considers basic problems of automatic diagnostics and pro-
cessing of epileptic EEG. We discuss the wavelet-based techniques in order to fully
automatize “routine” operations, such as visual inspection of EEG. In addition to
that, we exemplify some practical applications of wavelet methods for automatic
analysis of pre-recorded signals of neuronal activity (off-line diagnostics), and also
some examples ofwavelet-based EEGanalysis in real-time (on-line).We also discuss
principles of fast and precise detection of transient events in EEG and organization
of close-loop control systems that can be used in brain-computer interface.

7.1 Introduction

The electroencephalographic signal (EEG) reflects synchronous synaptic activity
generated by brain areas located close to the recording electrode (sensor). Informa-
tion obtained from EEG signals is widely used in cognitive and clinical studies and
other technologies such as automatic systems for detecting abnormal EEG patterns
(i.e., epileptic spikes or sharpwaves) [1], interactive systemsbasedonbrain-computer
interfaces [2], etc. Considering that EEG recording technique is non-invasive, low-
cost and readily available in clinical and research centers, it has a large number of
medical and technological applications. Therefore, development of advanced meth-
ods and expert systems for the analysis of EEG signals is an important trend in basic
neuroscience and in clinical practice. In this chapter we consider the continuous
wavelet transform as an appropriate method for time–frequency analysis of EEG
signal. It is advantageous that the CWT does not require stationarity, and therefore
it is an ideal tool for accurate analysis of short-lasting non-stationary events in EEG
of animals and humans, especially in subjects with epilepsy. Epilepsy is a chronic
disease that usually develops slowly in parallel with gradual changes in EEG—from
normal to epileptiformactivity.At the preclinical stage, subjects often show transitory
pro-epileptic EEG activity that includes some epileptiform components, but could
not be considered as a fully blown seizure. This has been very well demonstrated
in developmental studies of absence epilepsy in aging rats [3, 4]. Development of
absence epilepsy in rat models is known to be associated with partial substitution of
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normal sleep spindle oscillations by epileptic spikewave discharges [4, 120, 122].
We demonstrate that this process results to the occurrence of pro-epileptic activity in
EEG characterized by spindle-like waveform and spikewave elements (Sect. 6.3.3).

In this chapter we also discuss several automatic and semi-automatic methods
for wavelet-based processing of EEG signals. In the past few decades, the wavelet-
based approach has proven to be efficient tool for EEG data analysis. This is partly
explained by a certain degree of linearity in EEG signals that can be considered as a
linear mixture of coexisting oscillatory components generated by different sources.
Therefore, nonlinear effects can be neglected in the first approximation, thus allow-
ing linear models of EEG. This in turn facilitates decomposition of EEG by linear
methods (such as wavelet transform or independent component analysis) into spec-
tral and/or temporal components with the anticipated properties. For example, in
Sect. 7.3, we use a wavelet decomposition of EEG to identify specific patterns of
absence epilepsy in the gamma frequency band. It appears that this band, which is
not the most powerful in the spectrum of spikewave discharges, is in fact the most
representative due to themaximum differences in this range with other EEG patterns.

Advanced automatic methods could significantly improve systems monitoring
brain activity. In Sect. 7.4, we consider automatic detection and discrimination of
sleep spindles and 5–9 Hz oscillations by means of standard Morlet-based and adap-
tive wavelet analysis. Then we demonstrate the application of the methods to long-
term EEGs. Such methods significantly reduce the time of EEG analysis and errors
when dealing with large amounts of data. The identification of spikewave discharges
and sleep spindles in long recordings offers the possibility of studying their temporal
dynamics.

When speaking about automatic or semi-automaticmethods, onemust distinguish
off-line and on-line processing of EEG. For off-line processing of previously recorded
EEG, we have an access to the full data set. Thus, for a given time point t = t0, we
know not only the “past” (t < t0), but also the “future” (t > t0) data samples. This
allows one to compute the wavelet transform normally. In the case of on-line or real
time processing, we have two additional difficulties. First, the “future” data samples
are not available, which forces special adaptation of the wavelet transform. Second,
real time calculations impose strong limitations on algorithm complexity. It must be
fast enough to carry out the necessary calculations within the time window between
two consecutive data samples.

The use of on-line algorithms is a must in the study of BCIs [43, 49, 70, 75, 76].
In particular, the spectral characteristics of the activity of the sensorimotor cortex
are related to movements of the limbs [47, 99]. This finding underlies apparatus
improving the life quality of paralyzed patients and can be used for selection of let-
ters or phrases on a screen [20, 44, 94]. Methods capable of diagnosing pathological
brain activity in real-time are equally important [93]. In particular, on-line detection
of spike-wave discharges could be used to trigger the presentation of external stim-
uli to study information processing during periods of reduced consciousness [30],
or to trigger automatic electrical brain stimulation upon appearance of spikewave
discharges [10]. In Sect. 7.6, we provide an algorithm for real-time diagnostics of
epileptic seizures and discuss its experimental implementation.
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In Sect. 7.7, we consider a real-time absence seizure prediction algorithm, evalu-
ated and implemented in an on-line, closed loop stimulation system aimed to prevent
the for absence epilepsy typical SWDs in a genetic absence rat model. The proposed
wavelet-based algorithm correctly predicted 88% of SWD while the remaining ones
were quickly detected, but with a high number of false positives mainly during light
sleep. Implementation of the wavelet-based method into a closed loop brain stim-
ulation system resulted in a 72% decrease of seizure activity. In contrast to long
standing beliefs, these results demonstrate that absence seizures can be predicted
and that the development of closed loop seizure prediction and prevention systems
is an interesting and feasible future direction to strive for seizure freedom.

7.2 Mother Wavelet Function in the Continuous Wavelet
Transform

The continuous wavelet transform has several advantages over traditional FFT for
representing non-periodic and non-stationary signals that have sharp peaks or other
kinds of fast events. One limitation of FFT is that it characterizes the EEG signal
only in the frequency and not in the time domain, i.e., information regarding the
dynamic changes of spectral components. In wavelet space, the EEG signal power
is simultaneously represented as a function of time t and frequency fs. In the case
of a real mother wavelet function, the wavelet coefficients W represent the degree
of correlation of a prototype wavelet function ψ0 with the EEG signal on the given
time scale s (wavelet frequency fs = 1/s). The wavelet transform with complex
mother wavelet can be regarded as a bandpass filter whose transfer characteristic is
determined by the mother wavelet, and which also carries information about phase
relationships.

The wavelet prototypes (mother wavelets) are wave-like scalable functions which
arewell localized in both the time and frequencydomains [55]. Somemotherwavelets
provide better resolution in the time domain, and others in the frequency domain.
The choice of mother wavelet is of great importance and it is crucial for accurate
representation of the EEG signal in the wavelet space (t0, fs). Important character-
istics that were taken into account before making a choice of mother wavelet were
complex/real, width, and shape of the candidate wavelets ψ0.

First, complex or realmother wavelet function. A real waveletψ0 = Reψ0 returns
information about the amplitudes of the EEG signal and it may be sufficient for
isolating EEG spikes or other discontinuities (for example, various artifacts and
interferences during EEG registration), but not sufficient for detecting sustained
oscillatory processes. A complex wavelet returns information about both amplitudes
and phases (see Sect. 2.2.5) and this is more suitable for time–frequency analysis and
for representing oscillatory EEG phenomena in wavelet space [55, 62].

Second, the shape of mother wavelet function. Accurate results from the wavelet
decomposition are dependent on the shape of the chosen wavelet function, which
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should be similar to the shape of the analyzed EEG signal [69]. Rectangular func-
tions such as the Haar (2.42) or FHAT (2.41) wavelets are better for representing
EEG spikes (and other sharp events in the EEG), while the real Mexican hat (MHAT)
wavelet (2.40), which has a smoother shape than the non-smooth Haar and FHAT
wavelets, is particularly suitable for detecting epileptic spikes and spike-wave dis-
charges in EEG [5, 69]. Meanwhile, oscillatory EEG patterns can bemore accurately
represented with complex wavelet functions which are based on smooth harmonic
functions, and the Morlet wavelet (2.36) in particular is better suited for the detec-
tion of delta, theta, and alpha events, as well sleep spindles, because it mimics the
characteristic spindle waveform [14, 69, 124]. Although the Morlet wavelet has no
sharp elements equivalent to spikes in SWDs and its shape does not mimic SWDs, it
provides the best time–frequency representation and resolution of spike–wave dis-
charges (as well as other oscillatory EEG patterns) in comparison to other mother
wavelets (including the sharp-looking Mexican hat wavelet) [35, 124].

Third, width of mother wavelet function. If a candidate wavelet in Fourier space is
toonarrow, the frequency resolutionwill be poor, and if it iswide, the time localization
will be less precise. It is also important to take into account the reverse relationship
between time and frequency resolution. The higher the frequency resolution, the
lower the time resolution and vice versa. The time–frequency resolution can be
defined by the shape and width of the mother wavelet function in the frequency
domain. In the case of the complex Morlet wavelet, properties of the time–frequency
resolution of thewavelet transform can be controlled by changing themain frequency
ω0, which affects the width and position of the Fourier image of the Morlet wavelet
in Fourier space (see (2.36) and (6.1), Fig. 2.11, and Table2.1). Actually, in the
complex Morlet wavelet family the parameter provided by the central frequency
ω0 determines the shape and the width of the wavelet function in the frequency
domain. When ω0 < π , the temporal resolution is high, but little information is
available about the frequency content of EEG events (the frequency resolution is
low).Whenω0 > 4π , the frequency resolution is high, but the time resolution is low.
As the Morlet wavelet central frequency ω0 increases, the properties of the wavelet
transform approach the characteristics of the window Fourier transform. We chose
the complex Morlet wavelet with ω0 = 2π as the most appropriate basis, providing
optimal time–frequency resolution for the majority of observed EEG phenomena.
This basis function was particularly good in localizing the abrupt onset of SWD,
as well as gradual amplitude changes during the seizure train. A further advantage
in choosing this parameter value ω0 = 2π is that the frequency fs of the wavelet
transform is equal to the frequency f of the Fourier transform, viz., fs = f , which
facilitates the explication and comparison of results.
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7.3 Detection of Spike-Wave Discharges (Absence Epilepsy)
in WAG/Rij Rats

Around 20 percent of all epileptic seizures have a genetic background and classified
as genetic generalized epilepsies (formerly known as idiopathic generalized epilep-
sies [114], including childhood absence epilepsy, juvenile absence epilepsy, juve-
nile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone
(reviewed by Ratcliffe et al. [107]). An important hallmark of this type of epilepsy on
the electroencephalogram (EEG) is bilateral synchronous, symmetrical and general-
ized 3 Hz spike-wave discharges. Typical absence epilepsy or spike-wave epilepsy is
associated with brief and sudden lapses of consciousness that may be misinterpreted
as daydreaming or inattention (i.e., the state of “absence”) [11, 114, 116].

Rodents are widely used as models of human diseases. Apart from thousands
of genetically engineered strains, rat strains with natural genetic predisposition
to certain diseases. In particular, the inbreed Wistar-Albino-Glaxo from Rijswijk
(WAG/Rij) rat strain is genetically prone to develop absence epilepsy and it has been
validated as a reliable animal model of absence epilepsy [21, 23, 110].

EEGmanifestation of absence epilepsy inWAG/Rij rats were described as “spike-
wave complexes” [138]: “a discharge of this type lasts at least 1s and is characterized
by a train of sharp spikes and slow waves. The spikes are directed upwards with
an amplitude (mean 300µV; range 100–450µV) of at least twice the background
EEG activity. The spike-wave complexes are asymmetric, the repetition of spikes
within a burst varies from 7.5 to 9.5Hz with a mean frequency of 8.7 Hz. The mean
duration of the complexes is about 5 s (range 1–30 s) whereas the mean number
of discharges per hour is 18 (range 4–33)” (p. 395). Nowadays the term “spike-
wave complexes” with reference to rat’s EEG was replaced by the term “spike-wave
discharges” (SWD). SWD in WAG/Rij rats occurred during passive wakefulness,
drowsiness and light slow wave sleep [22]. During EEG seizures rats stay immobile
and sometimes demonstrating vibrissal twitching, myoclonic jerks of the eyelids
and facial muscles [23, 89, 138]. The electroencephalographic profile of SWD in
WAG/Rij rats is similar to that in human patients with absence epilepsy [126].

Spike-wave discharges (SWD) represent a complex of two components—the spike
and the wave (see Sect. 6.3.3 and Fig. 6.4). At first glance, the problem of automatic
detection of spikewave discharges may seem trivial. Indeed, one solution arises
directly from the definition of SWD since their amplitude significantly exceeded
the amplitude of background EEG. Thus one could monitor the oscillation ampli-
tude and simply detect events when it overcomes certain threshold. However, this
straightforward approach has poor performance due to three reasons. First, besides
SWD, the EEG contains other patterns with high amplitude, such as sleep spindles
and 5–9Hz oscillations [124] (see Fig. 6.2). Second, the amplitude of the background
EEG considerably changes during different vigilance states (e.g., during sleep or
wakefulness, and low-amplitude brain electrical activity appeared to only in wake
state—desynchronized EEG), therefore, it is difficult to define the threshold value
in background EEG. Third, some SWD-like pattern contain spike-wave elements,



248 7 Wavelet-Based Diagnostics of Paroxysmal Activity in EEG …

but does not match the definition of SWD, and should be excluded [125]. These
difficulties could be solved by means of computational techniques.

A great variety of different methods for recognition of spikewave discharges that
has been described in the literature can be divided in three classes. The first class uses
the nonlinear dynamics approach and quantifies different features of EEG signals,
such as Lyapunov exponents [6] or entropy [57]. The second class uses artificial
neural networks and learning algorithms for data classification [48]. The third class
of methods attempts to formalize the definition of the SWD and compares statistical
features of different typical epochs in the EEG [38, 87]. These methods have the
following drawbacks:

• They are not applicable for real-time signal processing, e.g., methods based on the
calculation of Lyapunov exponents or entropy.

• They provide low accuracy of detections, e.g., methods estimating statistical prop-
erties of different epochs.

• Their performance is unstable, and they require adjustment of parameters for each
individual EEG, e.g., methods based on artificial neural networks.

Applications of the discrete wavelet transform (DWT) to detection of epileptic
events in EEG [133] has serious limitations in comparison to the continuous wavelet
transform (CWT). Below we introduce the principles of CWT-based method for the
automatic detection of SWD applied for off-line and on-line recordings.

Let us consider an off-line method for automatic detection of epileptic spikewave
discharges in a previously recordedEEG[50, 124].Apractical implementation of this
method has been used to detect SWDs in long-term EEG recordings inWAG/Rij rats
with a predisposition to absence epilepsy. We used a single-channel EEG recorded
from the frontal cortex (the detailed experimental procedure can be found in [124]).

In WAG/Rij rats, the duration of SWD ranges from 1 to 30s, and their average
number in adult animals vary from 0 to more than 30 seizures per hour. Based on the
analysis of a large number of SWD, we defined some particular features in their time
frequency structure, namely, a sharp increase in the spectral power in the gamma
frequency range (20–50Hz). Importantly, such an increase did not appear during
high-amplitude regular normal EEG patterns, like sleep spindles. Therefore, a sharp
increase in the gamma spectrum can be considered as a marker for SWD.

CWT is an optimal tool to define an increase in gamma power. It allows to estimate
the instantaneous energy of the wavelet spectrum in gamma frequency band and to
compare it with a threshold. SWD is detected when the energy exceeds a certain
threshold value [42, 50, 64]. Figure7.1 shows a typical energy distribution of wavelet
spectrum E( f ) (see Eq. (2.33)) of SWD, sleep spindle, and background EEG. The
fundamental frequency of the SWD is about 8Hz, which corresponds to the major
peak in the wavelet spectrum. However, at low frequencies ( f < 15 Hz), this peak
overlaps with the spectral peak of spindle waves, whence SWD and spindle events
may be confused. Nevertheless, SWD epochs show high power at higher frequencies
f > 15 ÷ 20 Hz, i.e., in the gamma frequency band, due to the presence of the
second and third harmonics of the fundamental SWD frequency (see Figs. 6.7 and
7.1, harmonics of SWD fundamental frequency are marked by arrows). Thus each
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Fig. 7.1 Typical
distributions of the wavelet
spectrum energy E( f ) over
frequencies characterizing
different oscillatory patterns
in WAG/Rij rat EEGs.
(SWD) Spike-wave
discharge. Arrows mark the
fundamental frequency of
SWD oscillations and its
harmonics. (SS) Sleep
spindles. (BG) Background
EEG. Wavelet spectra were
calculated using the Morlet
wavelet
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individual peak, a part of the spike-and-wave complex, is displayed in the wavelet
spectrum as a local burst in the wavelet power (see, for example, Fig. 6.5 for epileptic
rats and Fig. 6.6 for human patients).

Let FSW D = 30 ÷ 50Hz be the characteristic frequency range of apparent struc-
tural differences between spikewave discharges and other oscillatory patterns. Since
we expect an increase in the energy in this frequency range during SWD, it is con-
venient to consider the following integral energy:

wFSWD(t) =
∫

FSWD

|W (t, f )|2 d f . (7.1)

If a spike-wave discharge occurs at a certain time t , then the following relation holds:

wFSWD(t) ≥ Ek , (7.2)

where Ek is the experimentally determined threshold energy.
For automated delimitation of epileptic events, we used the method of threshold

sorting. Time instants at which the value of wFs (7.2) exceeded the threshold Ek and
did not decrease within the following 1s were regarded as onsets of epileptic activity.
Time instants when the energy level dropped below the threshold were considered
as the ends of SWDs.

Figure7.2a shows an EEG epoch with five spike-wave discharges (grey rectan-
gles) corresponding to epilepsy paroxysms. Figure7.2b and c illustrate the modulus
|W ( f, t)| of the wavelet spectrum obtained with the Morlet wavelet with central fre-
quency ω0 = 2π and the corresponding integral energy wFSWD(t). Identification of
SWDs is carried out using the criterion (7.2). The threshold level Ek = 0.5 is indi-
cated by the dashed line in Fig. 7.2c. Thus in the integral wavelet spectrum, SWDs
(highlighted in grey) are easily recognized by simple thresholding.
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Fig. 7.2 Typical results from automatic recognition of SWDs using a wavelet-based method with
a Morlet wavelet with central frequency ω0 = 2π . a EEG fragment with spike-wave discharges
marked by grey rectangles. b Modulus |W ( f, t)| of the wavelet spectrum corresponding to this
EEG. The dome-shaped curve in the wavelet spectrum outlines a confidence (upper) area in which
boundary effects are significant (see Sect. 2.2.3.3). c Time-dependence of the instantaneous energy
w(t) (7.1) averaged over the characteristic frequency range FSWD = 30–50Hz. SWDs were recog-
nized automatically using the value of the wavelet energy w(t) when w(t) > Ek , where Ek is the
threshold level (dashed line)

The performance of the above-describedmethod has been evaluated bymeasuring
the percentage of true positive/negative and false positive/negative detections. We
also computed the sensitivity and specificity of the method. True positives (TP) are
defined as the number of correctly detected SWD.True negatives (TN) are the number
of correctly rejected SWD-like events. Then false positives (FP) and false negatives
(FN) represent the numbers of events wrongly identified as SWD and SWD missed
by the method, respectively. Primarily the accuracy of the automatic recognition of
absence epileptic oscillatory patterns was computed as

ρSWD = TP

Nexpert
× 100% , (7.3)
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Table 7.1 Results of automatic identification of SWD using the CWT with the complex Morlet
wavelet (ω0 = 2π rad/s)
Rat # Visual

detections
Nexpert

Automatic detections Performance of automatic detections

TP FP FN Accuracy
ρSWD (%)

Sensitivity β

(%)
Specificity δ

(%)

1 105 105 0 0 100.0 100.0 100.0

2 81 79 2 1 97.5 98.8 97.5

3 249 247 1 2 99.2 99.2 99.6

4 120 117 1 3 97.5 97.5 99.2

5 66 65 2 1 98.5 98.5 97.0

Mean±SD 98.5 ± 1.1 98.8 ± 0.9 98.7 ± 1.3

where Nexpert is the number of SWD events selected by an operator, expert in SWD
neurophysiology. Table7.1 summarizes the main results for the automatic identifi-
cation of spike-wave discharges.

Almost all SWD in all animals were selected with FSW D = 30 ÷ 50Hz and
Ek = 0.5. The obtained accuracy was 97.5 ÷ 100% (mean 98.5%, n = 5 rats). The
percentage of the incorrect detections or false positives did not exceed 1.8%. There-
fore, SWD events can be faithfully distinguished from the non-epileptic background
EEG using the described method. Noteworthy is that SWD in all animals were auto-
matically recognized with the same parameters (FSWD and Ek). Thus the parameter
choice is quite robust and requires no further tuning.

The quality of the algorithm’s performance, i.e. correctness of the “binary” solu-
tion on the presence/absence of an epileptic event (SWD) was statistically analyzed
using a criterion that provided false result with a certain degree of probability: the
sensitivity δ and specificity σ [18] using the formulae

δ = TP

TP + FN
× 100% , (7.4)

β = TP

TP + FP
× 100% . (7.5)

The sensitivity δ is used to estimate the sensitivity of the method, i.e., the per-
centage of recognized spikewave discharges out of the total number of SWDs in
the analyzed EEG fragment. The specificity β estimates the percentage of correct
detections of SWD out of the total number of events identified as SWD. These
characteristics also exceed 98% (see Table7.1 for details), which is acceptable for
automatic processing methods of neurophysiologic signals.
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In general, this CWT-based automatic method for recognition of SWD has advan-
tage over other standard techniques in terms of accuracy and simplicity of applica-
tion (no additional adjustments required). Moreover, this method can also be used
for detection of other oscillatory patterns in EEG.

7.4 Spindle-Like Oscillations and Spike-Wave Epilepsy

Sleep spindles are the hallmark of non-REM sleep in humans and animals (reviewed
in [25, 27, 37]. The name “spindle” refers to its characteristic waxing and waning
envelope. Sleep spindles were first described by Loomis et al. [73, 74]. The first
commonly accepted definition was given by Rechtschaffen and Kales [109]: waxing
and waning oscillations of 12–14Hz and of at least 0.5 s duration. In animals, the
frequency of sleep spindles tends to be slightly lower, 7–14Hz, than in humans [130].
Similarly to humans, there are two topographically specific types of sleep spindles
in rats: anterior and posterior [134]. However, anterior sleep spindles in rats only
partially resemble anterior spindles in humans, but posterior spindles seem to be
rather specific.

The idea that both sleep spindles and epileptic spike-wave discharges (EEGman-
ifestation of absence epilepsy) are produced by the thalamus has been proposed time
long. Initially, both spontaneous spindle waves and SWD were found to be “recruit-
ing” response evoked by repetitive stimulation of intralaminar thalamic nuclei [53,
91, 92]. Latter on, spindle waves appeared to be more similar to the “augmenting”
response (e.g. a pattern evoked by repetitive simulation of sensorimotor thalamic
nuclei) [90, 128, 129]. In 1968, Pierre Gloor introduced a cortico-reticular the-
ory of primary generalized absence epilepsy assuming that sleep waves could be
transformed into epileptic spike-and-wave activity in the neocortex due to cortical
hyperexcitability [40]. A variety of experimental and theoretical studies have further
supported the idea that sleep spindles are functionally related to SWDs [8, 65, 131,
137]. First, sleep spindles typically appear during slow-wave sleep and they are more
numerous at sleep onset similarly to spike-and-wave discharges that could usually
be recorded during drowsiness and the initial stages of sleep [29, 77]. Second, sleep
spindles and spike-and-wave discharges are generated in the same thalamocortical
circuit (Fig. 7.3).

Sleep spindles and spike-wave discharges share a common thalamocortical mech-
anism, but originate from different neuronal sources (Fig. 7.3) (reviewed in [71]).
Sleep spindles are triggered by thalamic neurons, whereas spike-wave discharges
are initiated locally in the neocortex as in human patients [141] as well as in genetic
ratmodels in (facial projection area in the somatosensory cortex, layers 5/6) [88, 106].
Recently it was found that the posterior thalamic nucleus (Fig. 7.3) was involved in
the initiation of spontaneous spike-wave discharges in WAG/Rij rats [81, 82]. The
posterior thalamic nucleus is a higher order thalamic nucleus of the somatosensory
system, which receives its main driving input from epileptic source in the cortex and
sends widespread projections to the neocortex and to the reticular thalamic nucleus
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Fig. 7.3 Thalamocortical networkmechanisms of sleep spindle and spike-wave discharges as estab-
lished in rat models of absence epilepsy. a Examples of the frontal EEG recorded in 8 months old
WAG/Rij rat. b The neocortical part of the network includes epileptic focus in the somatosensory
cortex (in orange); the thalamic part includes reticular, relay and posterior thalamic nuclei. The
posterior thalamic nucleus (orange) is a high order nucleus that specifically involved in generation
of spike-wave discharges, but its role in sleep spindles has not been investigated yet. VPm/VPl—
ventroposterior medial and lateral nuclei; MGN—medial geniculate nucleus; LGN—lateral genic-
ulate nucleus. From [118]

[reviewed in Ref. [81]]. The role of higher order thalamic nucleus, including the
posterior nucleus, in sleep spindles has not been explored.

A common thalamo-cortical network mechanism of sleep spindles and spike-and-
wave discharges suggests that some changes of spindle activity might appear due to
epileptogenic processes in the neuronal network. Only a few studies investigated
sleep spindles in patients with absence epilepsy. Myatchin and Lagae [95] found
fewer sleep spindles in stage 2 sleep in patients with childhood absence epilepsy.
Similarly, Kellaway at al. [60] demonstrated that the average rate of sleep spindles
was lower and their durationwas shorter in patientswith generalized absence seizures
(3Hz spike-and-wave discharges in EEG) as compared to the control group. Medical
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treatment (ethosuximide or valproate) was found to change sleep spindles, but con-
tradictory [60, 95]. Sleep spindles appeared to be altered even after the successful
treatment of childhood absence epilepsy. As it was found in 11-years boy with a
history of childhood absence epilepsy, sleep spindles were distorted three years after
cessation of his treatment (valproate monotherapy) [61]. In this boy, sleep spindles
were completely absent throughout the NREM period of the first sleep cycle; during
the following sleep cycles, the mean rate of occurrence and mean amplitude were
below the normal expected values for the boy’s age; and only during the brief ascend-
ing branches of NREM stage II sleep spindles were found to be normal. Considering
ethical and methodological limitations in human EEG research, investigations of
sleep spindles in genetic animal models with spontaneous absence seizures is highly
beneficial. During the last few decades, sleep spindles has been intensively explored
in vivo in WAG/Rij rats with genetic predisposition to absence epilepsy [40, 79, 89,
118, 124].

It is well known that sleep spindles and spontaneous SWDs (but not pharmaco-
logically induced seizures, see, e.g., [40, 65, 132] are characterized by a similar
temporal distribution across the sleep waking cycle. In particular, both EEG events
are predominant in the drowsy state and in the transition from wakefulness to sleep
(see, e.g., [29, 79, 130]). Sleep spindles are abundant during slow-wave sleep, and the
circadian dynamics of SWDs also correlates positively with the dynamics of slow-
wave sleep, as was demonstrated in theWAG/Rij rat model of absence epilepsy [29].
In human patients, absence epilepsy is sometimes dismissed as simple “daydream-
ing”. Absence epilepsy might be considered as a sleep-related disorder, inasmuch
as SWDs appear more often when the level of vigilance is low, e.g., passive wake-
fulness, drowsiness, and light slow-wave sleep in animal models [23, 29, 68], as
well as in epileptic patients [59, 111]. Absence seizures may be initiated by wake-
related processes (see [46, 101]). In particular, inGeneticRatswithAbsenceEpilepsy
(GAERS), “SWDs develop from wake-related 5–9 Hz oscillations, which are distinct
from spindle oscillations (7–15 Hz)” [102, p. 209]. Five to nine hertz oscillations
originate from the cortex (“launched by corticothalamic neurons” [102]), in contrast
to sleep spindles, whose pacemaker is well known to be located in the thalamus
[132]. Spontaneous medium-voltage 5–9 Hz oscillations are usually present in EEG
during waking immobility, but they do not always lead to spike-and-wave discharges
[103]. In addition to that, 5–9 Hz oscillations can be recorded in nonepileptic rats
and never give rise to SWDs [103].

Wavelet analysis provides very effective approach to accurate differentiation of
epileptic, nonepileptic and intermediate (pro-epileptic) oscillations in EEG. As it
has been shown in Chap.5, spontaneous spike-wave discharges (SWDs) are the elec-
troencephalographic hallmark of generalized idiopathic epilepsies, such as absence
epilepsy and other syndromes. Occurrence of SWDs in EEG is accompanied by brief
and sudden lapse of consciousness, i.e. the state of “absence” in humanpatients andby
similar absence-like state in rats with genetic absence epilepsy (i.e., immobility and
behavioral arrest). It is well known that SWDs are generated by the thalamo-cortical
neuronal circuit, which normally produces sleep spindles [28, 56, 130, 132]. Sleep
spindles are abundantly present in electroencephalograms during non-REM sleep in
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humans and animals. They can be recorded at the cortical surface, and also in the
thalamus as brief episodes of 9–14Hz oscillations (e.g., [7, 26, 132]).

Inasmuch as SWDs and sleep spindles originate from the same neuronal circuitry,
they seem to be functionally related [65, 132] and therefore SWDs have long be con-
sidered as pathologic alterations of sleep spindles [40, 71, 89, 113, 118]. More
recent data did not confirm genuine relationship between SWDs and sleep spindles
[67, 102]. It is likely that absence seizures might be initiated by wake-related mech-
anisms [45, 68, 79]. In particular, in Genetic Rats with Absence Epilepsy (GAERS),
SWDs are known to develop from wake-related 5–9 Hz oscillations, which are dis-
tinct from spindle oscillations (7–15Hz) [102]. Five–9 Hz oscillations originate from
the cortex (“launched by corticothalamic neurons” [23]), in opposite to sleep spin-
dles, whose pacemaker is well known to be located in the thalamus [28]. Spontaneous
medium-voltage 5–9 Hz oscillations usually present in EEG during awake immo-
bility, but they do not always lead to spike-and-wave discharges [59]. In addition to
that, 5–9 Hz oscillations can be recorded in non-epileptic rats and never give rise
to SWD [59]. In this Section we consider the characteristics and peculiarities of the
time frequency structure of sleep spindles and epileptiform spindle-like EEG events
in WAG/Rij rats with genetic predisposition to absence epilepsy.

7.4.1 Time–Frequency Analysis of Spindle-Like Oscillatory
Patterns

In the preliminary stage, we tested several mother wavelet functions for the continu-
ous wavelet transform of sleep EEG and identified the advantages and disadvantages
of each of them. We focused our attention on the real MHAT (2.40), and complex
Paul (2.37) and complex Morlet (6.1) mother wavelets. It is noteworthy that the
wavelet transform with each wavelet basis resulted in wavelet surfaces with spe-
cific frequencies fs that differ from Fourier frequencies f which are commonly
used in neurophysiology (see Sect. 2.2.3). More specifically, for the MHAT wavelet,
fs ≈ 3.97 f , for the Paul wavelet with parameter m = 4, fs ≈ 0.71 f , and for the
Morlet wavelet with central frequency ω0 = 2π , fs ≈ f .

The results of wavelet analysis of the EEG recorded in the frontal cortex during
sleep with numerous sleep spindles are shown in Fig. 7.4. This figure shows a typ-
ical EEG epoch (Fig. 7.4a) containing several sleep spindles and the corresponding
amplitude wavelet spectra |W ( fs, t)|, obtained with the mother MHAT (Fig. 7.4b),
Paul (Fig. 7.4c), andMorlet (Fig. 7.4d)wavelet functions. The dashed frames indicate
the sleep spindles in the EEG and the corresponding regions of the wavelet spectra.
Taking into account the fact that the main frequency of sleep spindle oscillations
varied between 10 and 15Hz (alpha range), this frequency range was selected to
analyze the amplitude distribution of the wavelet coefficients.

Analysis and comparison of different mother wavelet functions showed that the
complex Morlet wavelet is the optimal mother wavelet function to identify the time–
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Fig. 7.4 Fragment of EEG during sleep with numerous sleep spindles (marked by dotted frames)
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with different mother wavelets: real MHAT (b), complex Paul (c), and complex Morlet (d). The
dome-shaped curve on the wavelet surfaces marks the area of boundary effects (see Sect. 2.2.3)
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frequency structure of sleep spindles in EEG. The complex Morlet wavelet was
therefore used in an automatic system for identification of the sleep spindles [124]. In
thewavelet spectrumobtained bymeans of the realMHATwavelet (see Fig. 7.4b), the
frequency resolution is low.Correspondingly, the frequency range of sleep spindles in
the wavelet spectra is broad and it overlaps with the other types of oscillatory activity
in the EEG. At the same time, the real MHAT-based wavelet transform, spikes, and
other sharp components in theEEGcorresponded to a robust increase in the amplitude
|W ( fs, t)|of thewavelet coefficients in the alpha frequencybandof interest. The latter
feature impedes analysis of oscillatory activity in this range. Furthermore, the shape
of theMHAT-based wavelet spectrum does not allow one to track dynamic frequency
and amplitude changes in the spindle oscillations. The advantage with the MHAT
wavelet is the good temporal resolution, which determines a sharp increase in the
amplitude of the wavelet spectrum coefficients when the corresponding oscillatory
event appears in the EEG. However, it is a complex matter to classify the sharp jumps
in the wavelet spectrum amplitude due to the low-frequency resolution.

A similar situation is observed in the case of the wavelet transform with the Paul
mother function (m = 4), the results of which are shown in Fig. 7.4c. Likewise, its
frequency resolution does not permit precise determination of the dynamical features
of the EEG oscillations in the alpha band. In this frequency range in the wavelet
surface, we observed many high-amplitude components that are not sleep spindles
and complicate sleep spindle analysis.

At the same time, the Morlet mother wavelet with central frequency ω0 = 2π
combines a good resolution both in the frequency and time domains of the EEG
signal (see Fig. 7.4d). In the time–frequency wavelet spectrum obtained in the alpha
band,we can easily localize patterns corresponding to sleep spindle events, both in the
time and the frequency domains. This gives an opportunity to track the variations of
frequency and amplitude of the EEG oscillations which are typical for sleep spindles,
including the parameter identification in automatic mode.

Wavelet analysis of a large number of sleep spindles has shown that, in the EEG
recordings of WAG/Rij rats, two typical kinds of spindle-like patterns can be picked
out using the criterion provided by the fundamental frequency of their wavelet spec-
trum. As already mentioned above, the fundamental frequency of typical sleep spin-
dles lies in the 10–15Hz range, and the shape of their oscillations exhibits extreme
variability, so the fundamental frequency varies considerably in this frequency range
from spindle to spindle. Simultaneously, in the wavelet spectra we found spindle-like
oscillatory events, whose shape was close to the that of sleep spindles, but whose
fundamental frequencies were in the low-frequency range (5–9Hz).

Figures7.5 and 7.6 show EEG epochs, typical wavelet spectra obtained with the
Morletmotherwavelet function, and instantaneous energy distributions over frequen-
cies for several typical sleep spindles (10–15Hz) and 5–9Hz spindle-like oscillations,
indicating that peak frequencies of these phenomena lie in two clearly distinctive fre-
quency bands.

Indeed, according to Morlet-based wavelet analysis, sleep spindles in WAG/Rij
rats showed a markedly increased wavelet power in the range 10–15Hz (see Fig. 7.5,
where illustrations of typical sleep spindles are shown). The wavelet spectrum of
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Table 7.2 Main time–frequency characteristics of sleep spindles and 5–9Hz oscillations in EEG
registered in the frontal cortex during sleep. N , T , and f are the number, average duration, and
mean frequency of analyzed events in the EEG, respectively

Rat # Sleep spindle Five–9Hz oscillations

N T (s) f (Hz) N T (s) f (Hz)

1 3312 0.8 14.1 1378 0.73 7.2

2 5440 0.58 12.6 869 0.84 6.4

3 2776 0.69 13.2 974 0.85 6.1

4 2007 0.7 12.8 1096 0.76 8.3

5 3145 0.66 14.0 1511 0.86 7.4

6 4421 0.64 12.1 1827 0.81 7.8

Mean±SD 3517 ±
1227

0.68 ± 0.07 1276±363 0.81 ± 0.05

sleep spindles was often contaminated with additional low-frequency components
and high-frequency bursts (occasional spikes). There were substantial frequency
fluctuations within one spindle train (i.e., intra-spindle frequency variation) and the
mean frequency of different sleep spindles also varied (i.e., inter-spindle frequency
variations). The average sleep spindle frequency per rat varied from 12.1 to 14.1Hz
(inter-subject variations).

Five–9Hz oscillations (see Fig. 7.6) are characterized by a spindle-like waveform.
The frequency of these oscillations was lower than that in sleep spindles andmatched
the frequency of epileptic spike-wave discharges, i.e., peaks of wavelet power spectra
are in the 7–9Hz range.

Themain time–frequency characteristics of sleep spindles and 5–9Hz oscillations
in EEG registered during sleep are presented for 6 rodents in Table7.2. It can be seen
that sleep spindles appear in the EEG more frequently in comparison with 5–9Hz
spindle-like oscillations. Note that the number of spike-wave discharges observed in
the 6h EEG recordings under study is estimated to be on average approximately 300
events.

Comparing the instantaneous wavelet spectra E( fs) obtained with the help of
different mother wavelets and presented in Fig. 7.7, we can conclude that only the
Morlet wavelet allows one to identify and distinguish between the two kinds of
spindle-like activity (sleep spindles and 5–9Hz oscillations). It is clearly that the
use of real MHAT and complex Paul mother wavelets as basis functions does not
provide the required frequency resolution (the large width of the corresponding peak
in the averaged wavelet spectra in Fig. 7.7), so the peaks corresponding to the 8 and
12Hz frequencies merge and are not distinguishable using the wavelet analysis. Note
that the wavelet energy of the 5–9Hz oscillations is significantly lower (in fact, 2–3
times lower) than the energy of a typical sleep spindle, so it is difficult to select the
low-frequency spindle-like activity in the background EEG and to distinguish it from
the more frequent typical sleep spindles. This additionally impeded the process of
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automatic detection of sleep spindle oscillations using the real MHAT and complex
Paul mother wavelets.

At the same time, the wavelet analysis with the complex Morlet mother wavelet
was effective for selective detection of spindles and 5–9Hz oscillations. There are
several reasons for this. First, good frequency resolution of the Morlet wavelet,
therefore, the peaks in the wavelet spectra corresponding to each oscillation type did
not overlap. Second, in the Morlet-based wavelet spectrum, the amplitude of both
oscillatory patterns was comparable to each other. This approach allowed selective
recognizing these two types of oscillatory patterns in the EEG using the Morlet
mother wavelet.
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7.4.2 Wavelet-Based Approach for Detecting Sleep Spindles
and 5–9 Hz Oscillations in EEG

Sleep spindles and 5–9 Hz oscillations can be automatically detected in EEG using
method described in [120]. The method based on comparing the wavelet pow-
ers, EF1(t) and EF2(t), which were computed in the frequency range of 5–9 Hz
oscillations F1 ∈ [5, 9]Hz and in the range of sleep spindles F1 ∈ [10, 15]Hz (see
Eq. (2.33)):

EF (t) =
∫

F

|W ( f, t)|2 d f. (7.6)

Some EEG episodes with rhythmic activity in the frequency bands F1 and F2 were
neither associated with sleep spindles, nor with 5–9 Hz oscillations. This EEG activ-
ity corresponded to short-term increase of instantaneous wavelet energy and some-
times caused false detections. In order to prevent incorrect detections, instantaneous
wavelet energy, EF (t), was averaged across the empirically defined time window
T = 0.5s

w(t) = 1

T

t+T/2∫

t−T/2

EF (τ ) dτ. (7.7)

Selective detection of sleep spindles and 5–9 Hz oscillations in EEGwas based on
the value of the averaged wavelet energy w(t) as measured in the above-mentioned
frequency bands, F1 and F2, correspondingly, w1(t) and w2(t) (Fig. 7.8). In each
subject, the two threshold levels were determined individually: w1c for w1(t) and w2c

for w2(t). The value of w1c varied between 0.06–0.12 and w2c—0.07–0.14 depend-
ing on the stability of amplitude-frequency characteristics of EEG over time. Sleep
spindles were detected if the value of wavelet power in the frequency range 10–15
Hz, w2(t), exceeded the threshold value w2c, and the value of w2(t) was greater than
the value of wavelet power in 5–9 Hz, w1(t):

w2(t) > w2c ∧ w2(t) > w1(t). (7.8)

Five–9 Hz oscillations were recognized based on the following condition:

w1(t) > w1c ∧ w2(t) < w1(t), (7.9)

i.e., the value of wavelet power in 5–9 Hz, w1(t), exceeded the threshold value w1c,
and the value of wavelet power in 10–15 Hz, w2(t), was lower than the value of
wavelet power in 5–9 Hz.

The algorithm for selective identification of sleep spindles and 5–9Hz oscillations
is shown inFig. 7.9. Itwas based on the “floating” thresholdsmethod for identification
of EEG pattern introduced by Grubov et al. [42]. Briefly, the detection started at the
initial threshold levels of wavelet power, wc1 and wc2. When the criterion w > wcr
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Fig. 7.8 An illustrative scheme of wavelet-based detection of sleep spindles, 5–9 Hz oscillations
and their slow wave precursors. a The frontal EEG as recorded during sleep in WAG/Rij rat and b
corresponding continuouswavelet transform, inwhich arrows indicate high power in the frequencies
around 4 Hz before the onset of sleep spindles and 5–9 Hz oscillations. c Distribution of wavelet
power, w1(t) and w2(t), in the characteristic frequency bands F1 and F2, correspondingly. Vertical
lines outline automatically identified sleep spindles and 5–9 Hz oscillations. d Distribution of
wavelet power, w3(t) in the frequency band Fp ∈ [2, 7]Hz that was used for detecting slow wave
precursors. Based on data from Ref. [120]

was fulfilled, the threshold value wc was reduced to wc (i.e., c = 0.4wc), and on next
steps the value of wavelet energy was compared with this new threshold value (i.e.,
the criterion was changed to wc > wc). When the value of wavelet energy did not
reach the lowered threshold value wc, the threshold level was returned to the initial
value wc.

The quality of detection method was evaluated after the visual inspection of the
automatically recognized sleep spindles and 5–9 Hz oscillations in 1h EEG epochs.
The true positive (TP) was computed as the percentage of correct detections of
sleep spindles (or 5–9 Hz oscillations). The true negative (TN)—the percentage
of correct rejections of sleep spindles (or 5–9 Hz oscillations). False positive (FP)
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Fig. 7.9 Flow chart of the
algorithm for selective
identification of sleep
spindles and 5–9 Hz
oscillations in EEG. From
Ref. [120], supplementary
materials

represented the percentage of incorrect automatic detections of sleep spindles (or
5–9 Hz oscillations). The false negative (FN)—the percentage of events missed by
the automatic wavelet-based method. In sleep spindles, the sensitivity (7.4) of the
automatic recognition was δ = 87.4% and specificity (7.5)—β = 95.3%. In 5–9 Hz
oscillations, the sensitivity was 91.2% and specificity—93.6%.
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7.4.3 Classification of Normal and Abnormal Spindle
Oscillations by Means of Adaptive Wavelet Analysis

The classification of different kinds of oscillations in the EEG and the creation
of databases for the reference electroencephalographic patterns are very important
and actively investigated problems associated with fundamental research on brain
functions [63, 112, 115], and with applied tasks such as the development of brain–
computer interfaces (BCI) [58, 72, 98]. Nowadays various methods have been pro-
posed for solving these problems, based on different mathematical and cybernetic
approaches to pattern recognition and classification [9, 31, 66, 115].

7.4.3.1 Construction of Adaptive Wavelet Basis (“Spindle Wavelet”)

Sleep spindles in subjects with absence epilepsy are characterized by a variety of
waveforms, including normal spindle-like oscillations and abnormal spindles by
epileptic transformation (i.e., pro-epileptic oscillations or aberrant sleep spindles)
[113]. Therefore, the shape of sleep spindles and their electroencephalographic pat-
tern appear to be less stereotypic from normal to pro-epileptic spindle-like oscil-
lations. This embarrassed the automatic detection of sleep spindles. In [124], we
developed a new approach to examine the waveform of EEG using so-called adap-
tive continuous wavelet analysis. This analysis employed specifically selected EEG-
signal epoch as a mother wavelet function. This EEG-signal showed the highest
affinity for the analyzed pattern and it was used as a tool for the extraction and recog-
nition of non-standard complex shape oscillations. This strategy may be referred to
as an adaptive wavelet matching, is somewhat comparable with the matching pur-
suit technique [16, 32–34, 144], in which a template function was chosen from a
stochastic library that contains a set of Gabor, Dirac, and Fourier basis waveforms.
In adaptive wavelet analysis, we did not use preset templates, but our spindle wavelet
basis functions were adopted directly from the EEG signal. This approach can be
used both for effective automatic identification of sleep spindles and for standardiz-
ing the EEG structure and creating a database of reference electroencephalographic
patterns.

For the standardization of sleep spindle patterns, an adaptive wavelet basis func-
tion (spindle wavelet) was built using a sleep spindle prototype extracted from the
native EEG. Figure7.10 illustrates this approach to adaptive wavelet construction.
The EEG signalwas represented by the function S(t). The signal g(t)with eliminated
mean value was considered, viz.,

g(t) = S(t) − 1

ΔT

∫

ΔT

S(t) dt , (7.10)

and subsequently transformed into the complex form
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Fig. 7.10 Algorithm used for constructing adaptive spindle wavelets. Sleep spindle prototypes g(t)
are selected in the native EEG, converted into the complex form and normalized with a Gaussian
function. a Spindle wavelet type 1 and b type 2. The black line corresponds to the real part of the
spindle wavelets and the grey line to the imaginary part

ĝ(η) = g(η) + ig(η + T/4) , i = √−1 , (7.11)

where T denotes the typical period of a sleep spindle oscillation. The time shift
between the real and imaginary parts was T/4.

In order to construct a localized-in-time wavelet basis ψ S(η), the function ĝ(η)

was normalized with a Gaussian function:

ψ S(η) = αĝ(η) exp

[
− (η − T/2)2

2

]
, (7.12)

were α is the parameter determined from the normalization condition

α2

+∞∫

−∞
|ĝ(η)|2 exp

[
− (η − T/2)2

2

]
dη = 1 . (7.13)
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Both spindle wavelets fulfilled the requirements for wavelet bases, i.e., continuity,
zero mean amplitude, and finite or near finite duration (see Sect. 2.2.1). Note that the
same computational procedure is used for the harmonic function, e.g., sin(ω0t) [or
cos(ω0t)], in order to construct the complex Morlet wavelet [see (6.1)].

In order to select a typical spindle template, about 100 candidate spindle templates
were chosen in fiveWAG/Rij rats (15–25 spindles per rat). Each spindle template was
tested as a wavelet basis (spindle wavelet) which was used to calculate and analyze
the wavelet spectra of sleep spindles. We considered the dependencies of the wavelet
spectrum energy E(t) on time t , for a time scale s = 1.0. Peaks E(t) = Emax in the
wavelet energy dependencies E(t) correspond to sleep spindles with shape similar to
the shape of the considered spindle wavelet. Introducing a certain threshold Ek , we
could pick out the sleep spindles for which the characteristic energy value exceeded
the threshold: Emax > Ek . Sleep spindles showed different degrees of conformity to
two types of spindle wavelets, e.g., spindle wavelets type 1 and type 2.

7.4.3.2 Normal (Type 1) and Abnormal (Type 2) Sleep Spindles

Spindle wavelets type 1 and type 2 were adopted from sleep spindle events in the raw
EEG (i.e., spindle prototypes) and therefore they embraced the typical (or generic)
features of sleep spindles. The spindle wavelet type 1 had the highest affinity to
the maximum number of sleep spindles (85–90%) in EEG recorded in all WAG/Rij
rats with absence epilepsy (n = 9 rats). Therefore, the spindle wavelet type 1 was
considered as universal adaptive wavelet representing typical sleep spindle EEG
pattern with the fundamental frequency 10–14 Hz in rats with absence epilepsy
(Fig. 7.10a). The remaining 10–15% of sleep spindles were selected using the spindle
wavelet type 2 (Fig. 7.10b). A basis function for type 2 spindle wavelet had to be
selected in each rat individually. These type 2 spindles characterized by an increased
power in frequencies between 12 and 25 Hz, exhibited a deviant spindle waveform
and were considered as pro-epileptic events (i.e., a transitory waveform between
sleep spindles and spikewave discharges) [124].

In order to understand the physiological implication of these two spindle proto-
types, we performed a power spectrum analysis. It was found that spindle wavelet
type 1 had a fundamental frequency of 12.2 Hz (see Fig. 7.11) that corresponds pre-
cisely to the mean frequency of sleep spindles in rats [130], and in addition, it had
a spectral peak at around 7 Hz and elevations around 2 and 26 Hz. In contrast to
the spectrum of spindle wavelet type 1, the spectrum of spindle wavelet type 2 was
more complex with the main peak at the frequency of 21 ± 3Hz. Typically, spindle
wavelet type 2 showed several sharp peaks at the frequency of 1, 3, 16.7, and 21.3Hz,
and moderate elevations at 8.5, 11, 24.5, and 27 Hz (see Fig. 7.11). In conclusion,
atypical sleep spindles (type 2) were distinguished from sleep spindles type 1 by
(i) a higher individual variation (ii) more powerful beta component that might be
considered as a hallmark of type 2 spindles.

Our data indicated that sleep spindles represented a very heterogeneous group of
oscillations. The strong variability of sleep spindles between- and within-subjects



268 7 Wavelet-Based Diagnostics of Paroxysmal Activity in EEG …

0 10 20 30-30 -20 -10

f, Hz

0 10 20 30-30 -20 -10

General type
'Spindle-wavelet 1'

Individual type
'Spindle-wavelet 2'

Re y Re y

0.3 s10
0 

m
V

Type 1 Type 1 Type 1 Type 1 Type 2

h h

P, a.u. P, a.u.

f, Hz

Fig. 7.11 EEG waveforms of sleep spindles in WAG/Rij rats. Top: Native EEG in which the
majority of sleep spindles comprise characteristic repetitive elements that match spindle type 1.
Spindle wavelet type 1 is universal for all the animals. This type of oscillatory activity is a typical
sleep spindle. However, 10–15% of sleep spindles are not recognized by the adaptive wavelet type
1, and their recognition requires one to construct newwavelet bases separately for each animal. This
wavelet (referred to as the type 2 spindle wavelet) is characterized by a very complex form which is
specific to each animal. Type 2 sleep spindles display larger inter-subject variability and complex
structure and can be associated with pro-epileptic activity on the EEG. Bottom: Frequency power
spectra of spindle wavelets types 1 (left) and 2 (right). The type 1 spindle wavelet is characterized by
a predominant 8–14Hz frequency component (spindle range). The type 2 spindle wavelet frequency
spectrum consists of several frequency components in the spindle and non-spindle range

causes problems with spindle detection using traditional methods [13, 52, 108, 135,
143]. Adaptive wavelet analysis helped us to overcome difficulties with extraction,
recognition, and classification of spindle events in EEG. In all our rats, almost all
sleep spindles (95.5%) are extracted with joint application of two different types of
adaptive spindlewavelets. Spindlewavelets are adopted from spindle prototypes, i.e.,
from sleep spindle events in the EEG, and therefore they embrace the most typical
(or generic) features of sleep spindles. The frequency profile of these two types of
sleep spindles is crucially different.

The occurrence of type 2 sleep spindles with the powerful 16–25 Hz component
might be accounted for by processes of epileptogenesis in rats with genetic predis-



7.4 Spindle-Like Oscillations and Spike-Wave Epilepsy 269

position to absence epilepsy. Interestingly is that recent study [19] demonstrated that
epileptiform activity in four rat models of epilepsy characterized by a remarkably
similar profile of EEG power spectrum. In particular, kainic acid induced poststa-
tus epilepticus, the traumatic brain injury induced posttraumatic epilepsy, Genetic
Absence Epilepsy Rats from Strasbourg (GAERS) and Wistar Albino Glaxo from
Rijswijk (WAG/Rij) showed seizure activity with spectral peak within the frequency
range of 17–25 Hz. These frequencies are surprisingly close to abnormal elevation
of 16–25 Hz in the spindle wavelet type 2 [124]. Our previous data [125] showed that
frequency spectrum of SWDs characterized by the fundamental frequency (1012 Hz)
and its second harmonic (20–24Hz), while the onset of SWD was associated with a
profound increase of bilateral synchronization in 15–16 Hz. In type 2 sleep spindles,
the spectral peaks appeared to have the similar frequencies (16.7 and 21.3Hz) and
they might relate to an increased neuronal synchrony at 16.7 and 21.3Hz that is in
common to SWDs. So the type 2 sleep spindles might be considered as a transitory
oscillatory waveform between spindle and SWD in the EEG of WAG/Rij rats [119,
124].

7.4.3.3 Intra-Spindle Frequency Dynamics in Epileptic and
Non-epileptic Rat Strains

We emphasize that balanced time frequency resolution provided by the complex
Morlet wavelet (ω0 = 2π ) allows for effective analysis of frequency dynamicswithin
sleep spindles that would not be possible with the other mother functions. Figure7.12
shows the EEG epoch (and its wavelet spectrum obtained with the help of the Morlet
wavelet (Fig. 7.12b), and the instantaneous amplitude distributions of the wavelet
spectrum at different times (Fig. 7.12c), which correspond to the times 1–3 indicated
by arrows in Fig. 7.12a. In the given time interval of the EEG, we observe two sleep
spindles, but the first one that appears at time t = 4s is short and poorly visible in
the EEG signal. Therefore, the analysis was carried out for the second sleep spindle,
occurring in the time interval t = 9−11s as indicated by arrows.

The main frequency during spindle oscillations varied significantly and usually
increased from beginning to the end of sleep spindle. This can be seen in the wavelet
surface |W ( fs, t)| and the instantaneous wavelet energy distributions E(fs) plotted
at the three different times. In particular, the frequency of the sleep spindle was
close to 7.5Hz at the beginning (curve 1 in Fig. 7.12c). Then there was an increase
in amplitude of oscillations and a shift from slow to higher frequencies (curve 2).
Simultaneously, oscillatory components with smaller amplitude and frequency close
to 14 Hz were present in the wavelet spectrum. At the end of the sleep spindle, there
was a rapid increase in the frequency of spindle oscillations to about 12 Hz (curve
3). Noteworthy that 7.5 Hz component was present at the beginning of the spindle
and remained in the wavelet spectra during the spindle yet with a reduced amplitude.

Time frequency characteristics of sleep spindles were studied in EEG recordings
using CWT described in the previous section. For the time–frequency analysis and
observation of the dynamics of the dominant frequency during oscillatory events
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Fig. 7.12 Dynamics of oscillation frequencies during sleep spindle event at different timemoments
(indicated by arrows 1, 2 and 3). EEG signal recorded in the frontal cortex (a); wavelet spectrum
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in EEG we used the numerical method of construction of “skeletons” of wavelet
surfaces. In this case we analyzed the instantaneous wavelet energy distribution
Ei ( fs) = |W ( fs, t0)|2 for the fixed time moments t = t0 and found all the local
maxima of the Ei ( fs):

Emax, k( fs) = max[Ei ( fs)]. (7.14)

After thiswe found the largest peak inwavelet energydistribution at the considered
time moment t = t0 and determined the main frequency, fb, which is corresponded
the greatest maximum. This frequency was considered as the basic main frequency
of oscillations in EEG and plotted in skeletons of wavelet surfaces. Let us note, that
in each moment of time there is only one dominate frequency, fb, which is presented
on skeletons in Fig. 7.12. In fact, the skeleton is the dependence of the instantaneous
basic frequency on the time and allows conveniently representing and tracking the
dynamics of instantaneous frequency, fb(t), in the EEG recordings. In this paper, for
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Fig. 7.13 Wavelet spectra and corresponding skeletons of sleep spindles in EEG illustrating dynam-
ics of instantaneous intra-spindle frequency. Local maximum of the instantaneous frequency was
measured at the beginning ( f1) and the end ( f2) of a spindle. a Sleep spindle, in which instanta-
neous frequency increases from the beginning to the end ( fmean = 13.8Hz), and (b)—instantaneous
frequency decreases ( fmean = 13.1Hz)

the time–frequency analysis we exploited only skeletons of wavelet surfaces and did
not use the wavelet spectra that are allowed automated data processing. Using the
skeleton we can easy define both extreme frequency values at the beginning ( fstart

and the end ( fend ) of spindle train and mean frequency, fmean , as

fmean = 1

h

t1+h∫

t1

fb(t) dt, (7.15)

where h is the duration of the sleep spindle, t1 is the time of the beginning of sleep
spindle.

In Fig. 7.13 the wavelet spectra and corresponding skeletons of wavelet surfaces
are shown for the sleep spindles with typical dynamics of basic frequency: (a) with
increasing frequency from the beginning to the end of spindle, and (b) with dimin-
ishing frequency. One can easily see that the skeleton plot is very effective tool for
analyzing time–frequency peculiarities of oscillatory events in EEG.

Rapid changes of the dominant frequency during sleep spindles in EEG signals
recorded in non-epileptic and epileptic rat strains were examined using skeletons of
wavelet surfaces [4, 119, 121]. Age-related and epilepsy-related changes of intra-
spindle frequency dynamics was examined in a group of six male WAG/Rij rats. In
each subject, EEG signalswere recorded at the age of 5, 7 and 9months [121]. Epilep-
tic activity in these rats significantly increased between the age of 5 and 9 months:
the number of SWD increased from 3 to 38 discharges as counted in 6-h interval, as
well as the total duration of seizure activity—from 34 ± 20 s to 439 ± 281 s. At
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Fig. 7.14 Age-dependent
changes of the instantaneous
frequency of sleep spindles
in WAG/Rij rats as measured
at the beginning of a spindle,
fstart , and at the end, fend .
Asterisk indicates that
instantaneous frequency in
5-month-old WAG/Rij rats
was lower than in older ages,
and the effect fstart < fend
was significant only at the
age of 5 month (pairwise
Wilcoxon tests, p < 0.05).
Based on data from Ref.
[121]

the preclinical age (5-m), WAG/Rij rats showed significantly lower value of spin-
dle frequency at the beginning ( fstart ) as compared to that in older ages (7 and 9
months), when epileptic discharges became more numerous and epileptic activity
became longer (Fig. 7.14).

7.4.3.4 Slow-Wave Precursors of Spindle-Like Oscillations in Rats with
Spike-Wave Epilepsy

Detectionwas conducted after the automatic recognition of sleep spindles and 5–9Hz
oscillations using the algorithm described in Sect. 7.4.2. The analysis was performed
in 2 s time periods (Tt ) immediately before the onset of spindles/oscillations. Short
intervals (<1s) between the consequent oscillationswere excluded from the analysis.
If the interval between oscillations was between 1 and 2 , this very interval was
analyzed. The value of wavelet power w3(t) was computed during the time epoch
Tt in the frequency band Fp ∈ [2, 7]Hz using the formula (Eq.7.7) as shown in
Fig. 7.8. The averaging time window T = 1s was applied, taking into account the
low amplitude of the analyzed precursor frequency.

The onset of slow wave precursors was determined based on the condition:

w3(t) > ttc, (7.16)

where wtc = 0.5w2c. If the condition (7.16) was satisfied for several successive
events, the precursor was selected as the closest (in time) to sleep spindle/Five–
9 Hz oscillations. The instantaneous frequency of the slow wave precursor varied
between 2 and 7Hz and partly overlapped with the frequency of 5–9 Hz oscillations.
In fact, the low frequency component (2–7 Hz) did not disappear with the onset of
the automatically detected oscillations. At the moment when 5–9/10–15 Hz rhythm
appeared to be dominant, this low frequency component became subdominant as
it was described in Ref. [123]. The abovementioned study also indicated that the
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majority of sleep spindles and 5–9 Hz oscillations contained <5Hz as subdominant
slow frequency component.

In order to avoid false detections due to brief and abrupt changes in EEG power,
we used the “floating” thresholdmethod.With this approach, the end point was deter-
mined after comparison between the value of wavelet power of precursor activity and
the averaged value of wavelet power w0 in background EEG based on the condition:

w3(t) < 1.2w0. (7.17)

In the detected slow wave precursors, the averaged power, Ri , and averaged fre-
quency, fi , was computed by averaging their wavelet spectra and skeletons:

Ri = 1

tend − tstart

tend∫

tstart

E( fmax (t), t) dt, fi = 1

tend − tstart

tend∫

tstart

fmax (t) dt,

(7.18)
where tstart and tend are the beginning and end time points of precursor event, fmax (t)
is the frequency corresponding to the maximum energy in the frequency band F at
each time moments.

Slow-waveprecursorswere recognized in the frontal EEG in two rat strains,Wistar
and WAG/Rij, in 1-h sleep EEG. These animals were examined for the presence
of spike-wave discharges, i.e. EEG manifestation of absence epilepsy, and were
recognized as having “epileptic” and “non-epileptic” phenotypes.

WAG/Rij and Wistar rats showed the same portion of spindles with slow wave
precursors (56% and 44%, correspondingly). The higher percentage of spindles
with slow wave precursors (67%) was detected in “epileptic” subjects compared
with “non-epileptic” (41%, p < 0.001). In “epileptic” subjects, no correlations were
found between the SWDs number and the percentage of spindles with slow-wave
precursors (Spearman’s rank test, R = 0.08, p = 0.86). The intrinsic frequency of
spindle precursors in “epileptic” rats (4.8Hz) was higher than in “non-epileptic”
(3.8Hz, p < 0.05). The portion of slow-wave precursors of 5–9Hz oscillations in
WAG/Rij rats (18%) was significantly lower than in Wistar rats (63%, p < 0.0001).
The intrinsic frequency of slow wave precursors of 5–9Hz oscillations in WAG/Rij
rats was higher than in Wistar rats (4.2 and 3.1Hz correspondingly, p < 0.005). In
“epileptic” subjects, the percentage of slow-wave precursors of 5–9Hz oscillations
did not differ from that in the “non-epileptic” subjects, but the intrinsic frequency of
precursors in “epileptic” rats was higher than in “non-epileptic” rats (4.6 and 3.1Hz
correspondingly, p < 0.00005).

Amplitude changes in transition between slow wave precursor and consequent
oscillation:

ra =
√

fSS

f p

RSS

Rp
, (7.19)
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Fig. 7.15 Illustrative scheme of wavelet analysis of slow wave precursors and consequent oscil-
lations. The upper graph show raw electroencephalogram (EEG) recorded in the frontal cortex in
WAG/Rij rat. Wavelet power spectrum was obtained using continuous wavelet transform with com-
plex Morlet wavelet basis function. Two inserted plots display wavelet power spectra as computed
at the time moment t = 2.25 s (precursor) and t = 2.75 s (sleep spindle). From Ref. [120]

where index “p” referrers the the slow wave precursor, and “SS”—sleep spindle or
5–9Hz oscillations. The normalized factor

√
fSS/ f p takes into account the amplitude

differences in different scales in wavelet spectrum (see Sect. 2.1).
Amplitude changes in transition from precursors to oscillations using the CWT

demonstrated in Fig. 7.15. Statistical analysis indicated that “epileptic” rats showed
a weaker amplitude growth during transition from precursor to oscillations (both
types) in comparison to “non-epileptic” rats. The transition “precursor → 5–9Hz
oscillation” was accompanied by a greater increase in amplitude than the transition
“precursor → sleep spindle” [120].
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7.5 Pro-epileptic Activity and Undeveloped Spike-Wave
Seizures in Genetically Prone Subjects

Absence epilepsy has a strong genetic predisposition in human patients (for review,
see [24]), as well as in the WAG/Rij genetic rat model (for review, see [23, 139]).
Despite a genetic predisposition to absence epilepsy, WAG/Rij rats are characterized
by strong individual variations in EEG pattern of spike-wave seizures. Around one
third of WAG/Rij rats housed at our laboratory in Moscow did not develop absence
seizures throughout their entire life [120, 123]. Considering that non-epileptic phe-
notype in an inbreed WAG/Rij rat stain might result from a genetic drift, we started
breeding the “non-epileptic” substrain of WAG/Rij and examined the waveform of
underdeveloped seizures (or pro-epileptic activity) in their EEG.

In “non-epileptic”WAG/Rij rats, we distinguished intermediatewaveformswhich
were transitional from normal oscillations to epileptic discharges: the so-called pro-
epileptic activity that did not meet the criteria for SWDs [127]. Empirically we
defined the pro-epileptic activity as an immature epileptic discharge (or embryonic
SWD) which might develop into an epileptic discharge in epileptic rats or remain in
an embryonic latent state in “non-epileptic” rats. Five 9 Hz oscillations appeared to
be themost probable source of pro-epileptic activity on EEG in rat models, since they
were epileptogenic (pro-epileptogenic) in nature and were found to directly preceded
SWDs in Genetic Absence Epilepsy Rats from Strasburg [102, 103]. Spontaneous
medium-voltage 5–9Hzoscillations are usually present inEEGduringwaking immo-
bility, but they do not always lead to spike-and-wave discharges. In addition to that,
5–9Hz oscillations can be recorded in nonepileptic rats and never give rise to SWDs.
Moreover, immature epileptic discharges in rat models have a frequency of 5–7 Hz
and amplitude similar to that in normal sleep spindles [17, 121].

In this Section, we describe principles of automatic recognition of pro-epileptic
activity in “epileptic” and “non-epileptic” WAG/Rij rats introduced using the CWT
and construction of the skeleton of the wavelet surface. The outcomes of the CWT
were used to establish the main criteria of pro-epileptic activity, and skeleton of
the wavelet surface—to access the dynamics of instantaneous frequency and refine
selected pro-epileptic patterns.

7.5.1 Time–Frequency Characteristics of Pro-epileptic
Patterns in EEG in WAG/Rij Rats

Characteristic SWDs were recognized in the frontal EEG as a sequence of high-
voltage repetitive spike-wave complexes with a frequency of 8–10 Hz and a min-
imum duration of 1.5 s (Fig. 7.16, segment A). Pro-epileptic activity appeared as
immature/embryonic epileptic discharges (Fig. 7.16, segment a). Figure7.16 (seg-
ments b, c) demonstrates the results of CWT of pro-epileptic patterns with slightly
different time–frequency structure. The duration of each fragment is 6 s; wavelet sur-



276 7 Wavelet-Based Diagnostics of Paroxysmal Activity in EEG …

Fig. 7.16 Examples of epileptic spike-wave discharges a and pro-epileptic activity (b), (c) in EEG
recorded at the surface of the frontal cortex with implanted epidural electrode in 7-months old
WAG/Rij rat. Bottom plates show results of the CWT computed with complex Morlet wavelet

faces are plotted in the range of 2–30Hz. In general, pro-epileptic patterns showed the
following distinctive properties: (i) a sharp start; (ii) the main maximum frequency
in the range from 5 to 10Hz; (iii) the presence of occasional spikes or sharp waves
associated with an increased wavelet power in the range of the 1st harmonic from
10 to 20Hz. The following criteria of pro-epileptic activity were defined by means
of the CWT:

• The mean intrinsic frequency is 5–9 Hz.
• Duration more than 1.5 s.
• The presence of epileptiform elements (spikes or sharp waves).
• Decrease of the instantaneous frequency from beginning to the end of the pro-
epileptic pattern (optional).

7.5.2 Algorithm for the Automatic Detection of Pro-epileptic
Patterns in EEG

The proposed algorithm is based on the results of Sects. 7.3 and 7.4.3 and rely upon
the criteria of the fundamental frequency (5–9 Hz), duration (more than 1.5 s) and
high power in the range of 10–20 Hz (harmonic of the fundamental frequency),
indicating the presence of sharp “epileptiform” elements in the pattern (i.e., spikes
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Fig. 7.17 Block diagram of the proposed algorithm for the automatic identifiaction of pro-epileptic
patterns in rat’s EEG

or sharp waves). The algorithm consistent of four steps (three mandatory steps and
one optional step, see the block diagram in Fig. 7.17).

Step 1. Calculation of the wavelet energy over full-length EEG and averaging in
5–9Hz frequency band. Themaximumwavelet energywas around 0.2–0.3.However,
wavelet energy of EEG signals varied across subjects, and the threshold value in 5–9
Hz, Wcr, was fixed in each individual as 60–70% from the maximal value. Usually,
the threshold was around 0.11–0.18 therefore only EEG patterns with high energy
were selected (1st detection list).

Step 2. EEG patterns that lasted less than 1.5 s were removed (2nd detection
list). In these EEG patterns, rhythmic activity in 5–9 Hz was stable and continuously
present longer than 1.5 s.
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Step 3. Examination of time–frequency properties of EEG patterns using the
method of wavelet skeletons (i.e., skeleton criterion). For each EEG pattern from the
2nd detection list, two skeletonswere constructed at eachmoment in time: skeleton 1,
S1 ∈ [5, 9]Hz for the fundamental frequency of the pro-epileptic pattern and skeleton
2, S2 ∈ [10, 20]Hz for the harmonic of the fundamental frequency. Additionally, the
energy in 5–9Hz was greater than in 10–20 Hz (ES1 > ES2) at each moment in time.
Only EEG patterns in which >70% of points met the above mentioned criteria were
included in the 3rd detection list.

Step 4 (optional). Examination of instantaneous frequency and frequency dynam-
ics during EEG patterns using the method of wavelet skeleton. The instantaneous
frequency of the first skeleton (S1 ∈ [5, 9] Hz) was reduced, i.e., its values at the
current time moment was lower than at the previous moment. EEG patterns from the
3rd detection list in which >70% of points met the above mentioned criterion were
included in the 4th detection list.

An example of the proposed algorithm is shown in Fig. 7.18. Pro-epileptic EEG
patterns are highlightedby shaded rectangles (1, 2, 3) inFig. 7.18a. Steps 1 and2of the
proposed algorithmare demonstrated inFig. 7.18b:wavelet energies averagedover 5–
9Hz for eachEEG fragment (solid lines) and the threshold value of thewavelet energy
Wcr (dashed horizontal line). Rectangular frames outline EEG patterns included in
the 1st detection list (i.e., wavelet energy exceeded Wcr). On the Step 1 shown on
Fig. 7.18b, a presumably pro-epileptic pattern was identified on each of the three

Fig. 7.18 Application of the proposed algorithm for identification proepileptic patterns in rat’s
EEG. a Fragments of EEG signal containing presumed proepileptic EEG patterns 1, 2 and 3. b
Distributions of wavelet power EF averaged in 5–9 Hz frequency band (a) with the threshold value
of the wavelet energyWcr (dotted horizontal line, b) and the signal part included in the 1st detection
list (c). c The 1st and 2nd skeletons, S1 ∈ [5, 9]Hz and S2 ∈ [10, 20]Hz; rectangular frames outline
the part of signal included in the 2st detection list
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Table 7.3 Parameters of pro-epileptic EEG patterns automatically detected inWAG/Rij “epileptic”
and “non-epileptic” rats (mean ± stand. dev.)

Age,
months

3rd detection list 4th detection list

5 m 7 m 5 m 7 m

Parameters Wcr N Wcr N N N

“Epileptic”
rats

0.151 ±
0.022

55 ± 11 0.138 ±
0.028

44 ± 10 37 ± 7 29 ± 8

“Non-
epileptic”
rats

0.133 ±
0.019

46 ± 16 0.129 ±
0.017

36 ± 6 29 ± 8 24 ± 5

Here N is the number of events

EEG fragments shown on Fig. 7.18a. Duration of the pattern in fragment 1 was
less than 1.5 s, therefore, only patterns in fragments 2 and 3 were included in the 2nd
detection list (Step 2). Figure7.18c demonstrates the results of the Step 2 (rectangular
frame), skeletons S1 ∈ [5, 9] Hz and S2 ∈ [10, 20] Hz (marked with dots). Skeletons
were built only for those EEG sections that were included in the 2nd detection list,
therefore, no skeletons are shown for the fragment 1. Patterns on the fragments 2 and
3 met the criteria introduced on the Step 3, i.e., >70% of points of the first skeleton
fell in the frequency 5–9 Hz, >70% of points the second skeleton—the frequency
10–20 Hz, and the energy in S1 is greater than in S2. However, pattern in fragment
3 does not meet the criterion introduced on the optional Step 4 (i.e., reduction of
instantaneous frequency in >70% of points in the first skeleton); accordingly, only
the pattern in fragment 2 is included in the 4th detection list.

This algorithm was applied to electroencephalographic signals (EEG) recorded
in a group of 26 WAG/Rij rats. Analysis was performed in the frontal EEG channel
for the 6 h time interval. SWD were detected in 17 rats (“epileptic” phenotype) and
absent in 9 animals (i.e., less than 2 seizures during 6-h period, “non-epilpetic” rats).
In “epileptic” rats, the mean number of SWDwas 4.4 per hour at the age of 5 months
and 7.4 per hour—at the age of 7months. Table7.3 shows the results of the automatic
detection of pro-epileptic patterns in “epileptic” and “non-epileptic” rats. The value
of Wcr in “epileptic” rats was higher than in “non-epileptic” rats, suggesting that the
power in 5–9 Hz in “epileptic” rats was higher than in “non-epileptic”.

Statistical analysis revealed that the number of pro-epileptic EEG patterns sig-
nificantly decreased with age in both groups of rats. Interestingly that age-related
reduction in number of proepileptic EEG patterns in “epileptic” rats accompanied by
an increase in number of SWD. Perhaps pro-epileptic activity in these rats acquires
epileptic features between 5 and 7 months of age and transformed into SWD. This
suggests a certain “epileptization” of rhythmic activity in “epileptic” WAG/Rij rats.
The same age-related reduction in number of proepileptic patterns in “non-epileptic”
rats did not associate with the occurrence of SWD and this might be accounted for
elimination of proepileptic activity.
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In human patients with absence epilepsy and in WAG/Rij rats, the instantaneous
frequency of SWD is known to be maximal at the beginning, gradually decreases
during the seizure and reaches minimum at the end [15, 39]. Around 50–83% of
pro-epileptic patterns identified using the proposed algorithm in WAG/Rij rats char-
acterized by the same decrease in the instantaneous frequency. These patterns were
recognized on the optional Step 4 and were included in the 4th detection list. Mann-
Whitney test statistical analysis indicated that the number of pro-epileptic patterns
in which instantaneous frequency was reduced (i.e., included in the 4th detection
list) in “epileptic” rats was higher than in “non-epilpetic” at the age of 5 months
(p < 0.05). However, the number of patterns with other dynamics of instantaneous
frequency was the same in “epileptic” and “non-epileptic” rats and did not change
with age.

In general, this section introduces the principles of automatic recognition of pro-
epileptic activity on theEEG inWAG/Rij ratswith a genetic predisposition to absence
epilepsy by taking into account individual characteristics of paroxysmal oscillatory
activity. This approach is based on the continuous wavelet transformation of EEG
signal and construction of wavelet surface skeletons. The following criteria for detec-
tion of pro-epileptic EEG patterns were used: (i) the main frequency of 5–9 Hz, (ii)
duration of more than 1.5 s, (iii) the presence of epileptiform elements in the pat-
tern (i.e., spikes/sharp waves). It was found that the total number of pro-epileptic
patterns in WAG/Rij rats significantly decreased from 5 to 7 months of age in both
“epileptic” and “non-epileptic” subjects. This suggests that the pro-epileptic activity
in “epileptic” rats might develop in mature spike-wave seizures (i.e., transformed
into SWD), but in “non-epileptic” rats it might be eliminated (i.e., transformed into
healthy oscillatory pattern). A decrease of the instantaneous frequency during spike-
wave seizures is known from the literature [15, 39], and this property was used as
an additional criterion characterizing pro-epileptic EEG patterns in WAG/Rij rats. It
was found that the number of pro-epileptic patterns inwhich instantaneous frequency
decreased in “epileptic” rats was higher than in “non-epileptic” rats. Therefore, neg-
ative dynamics of instantaneous frequency during the pro-epileptic pattern relates
to the presence of epileptic discharges, and it can be considered as a sign of bad
prognosis.

7.6 Brain-Computer Interface for On-Line Diagnostics of
Epileptic Seizures

In Sect. 7.3, we described an off-linemethod for automatic identification and delimit-
ingof epilepticEEGepochs. It is restricted to usewith complete (previously recorded)
time series. Here we present a description and an experimental verification of a
real-time algorithm for detection of SWDs in the EEGs of a genetic rodent model
(WAG/Rij rats).



7.6 Brain-Computer Interface for On-Line Diagnostics of Epileptic Seizures 281

7.6.1 On-Line SWD Detection Algorithm

Diverse EEG patterns belonging to different classes may have similar spectral com-
position [58, 98]. Therefore, amethod used for pattern recognition should adequately
distinguish among such patternswith similar frequency content and, in addition,must
be numerically efficient to allow hardware or software implementation for on-line
EEG analysis [86, 98, 140].

Another significant problem stemming from the on-line data processing is a lack
of knowledge of the full time realization. Indeed, at a given time instant t0, only the
preceding time instants (t ≤ t0) are available for the analysis. Thus, the problem of
developing a universal method for diagnosis of oscillatory patterns in real-time is
extremely complex. Therefore, in this section we provide a brief description of an
already existing and tested method for on-line detection of spike–wave discharges
[63, 96, 97].

The first problem mentioned above can be reasonably solved by using a complex
Morlet wavelet. This wavelet offers optimal selectivity in terms of time-spectral
resolution and can distinguish similar oscillatory patterns. The second problem (data
restriction to t ≤ t∗) can be solved if we select a mother wavelet function ψ that
decays rapidly in time. Then the definition (2.18) can be replaced by (2.44) with high
enough accuracy (for details, see Sect. 2.2.3). In other words, to calculate the wavelet
coefficients for a given time scale s at some fixed time instant t∗, we need to have
a fragment of signal with t ∈ [t∗ − T, t∗ + T ]. Therefore, we can only determine
whether there was an SWD at t = t∗ when we reach time t = t∗ + T , i.e., with a
time lag T , which is essentially unremovable using this method. The value of T
depends on the mother wavelet and the time scale s (wavelet frequency fs ≈ 1/s).
In the case of the Morlet wavelet, we can take T ≈ 4 s.

Let us nowdiscuss the key features of an on-line diagnostic algorithm for detecting
oscillatory patterns in EEGs, as proposed in [96, 97]. The method is based on the
approach considered in Sect. 7.3. First, the wavelet transform (2.44) is calculated
using the Morlet wavelet with central frequency ω0 = 2π rad/s. Second, a measure
of the spectral energy within the frequency range FSWD is introduced [see also (7.1)]:

wFSWD(t) =
∫

FSWD

|W (t, f )| d f . (7.20)

This is the integral measure of the absolute value of wavelet coefficients over the
given frequency domain, i.e., the wavelet power over domain (WPOD).

As in Sect. 7.3, we selected the gamma frequency band FSWD = 30–80Hz, since
it is the most characteristic for distinguishing SWDs and spindle waves. The wavelet
power wFSWD(t) in this frequency range can be calculated with a delay of about
4 s ≈ 4 × 1/30 ≈ 0.14 s. If wFSWD(t) shows a drastic growth, then we can mark this
time instant as the beginning of an SWD. A similarly rapid decrease in the power
marks the end of the SWD. Thus fulfillment of the condition wFSWD(t) > Ek is the
basic guideline for detecting an SWD at time t = tcurrent − T .
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Fig. 7.19 a Fragment of an EEG containing a single pulse of high amplitude (arrow at 3 s) and a
spike-wave discharge (5.5–12.3 s). b Instantaneous WPOD energy wFSWD (t) with an artificial peak
(arrow) corresponding to the single pulse in the EEG (FSWD = 30–80Hz). c The artificial peak is
attenuated in the time-averaged measure 〈wFSWD (t)〉 ( = 0.2 s)

We note that an EEG is a complex signal, which may have relatively short bursts
provoked by motion artifacts, K-complexes, and other events [142]. Then the spec-
trum of bursting activity can overlap with FSWD and we can observe a rapid growth of
theWPODmeasure wFSWD(t), which may exceed the threshold Ek . Thus some burst-
ing activity in EEG can lead to false detection of spike-wave discharges, i.e., false
positive errors (FP). Figure7.19a and b show an example of this situation. An EEG
epoch has an SWD and an artifact (arrow). Then theWPOD wFSWD(t) calculated over
this epoch shows a strong pulse corresponding to the artifact. The pulse amplitude is
significantly higher than the background oscillations of wFSWD(t) and hence, during
on-line processing, we could wrongly detect such a pulse as the marker of an SWD
event.

To reduce the number of such false positive detections, we could use a higher
value of the threshold Ek . However, this may not help (as in Fig. 7.19b), but merely
increase the number of false negatives. Besides, a higher threshold would introduce
an additional time delay into the onset of the SWD.Anotherway to reduce the number
of false positives is to consider an averaged value of wFSWD(t) over some smoothing
window :

〈
wFSWD(t)

〉 = 1



t+/2∫

t−/2

wFSWD(τ ) dτ . (7.21)

Then the criterion for detecting a spike-wave discharge is



7.6 Brain-Computer Interface for On-Line Diagnostics of Epileptic Seizures 283

Set output low
output := log0

Acquire data 
point x(t)

Wavelet 
transform

w(t) := xiyi

w(t) := <|w(t)|>

w(t) > Ek?
No Yes

output = log0 ?
No No YesYes

output = log1 ?

Set output low
 output := log0

Set output high
 output := log1

Fig. 7.20 Flowchart of the on-line algorithm for detecting epileptic seizures (OSDS). w(t) is the
WPOD, Ek is the threshold for the WPOD, xi and yi are the discrete values of the EEG signal
and preliminary calculated mother wavelet function, respectively, and log0 and log1 are the logical
zero (absence of SWD) and one (presence of SWD) of the algorithm output, respectively

〈
wFSWD(t)

〉
> Ek . (7.22)

Figure7.19c shows this new measure 〈wFSWD(t)〉. One can see that the artificial peak
becomesmuch lower, sowe can detect SWDeventswith higher accuracy and exclude
incidental short EEG events. Increasing the averaging window , we can achieve
more accurate detection (better smoothing of short artificial events). However, aver-
aging introduces an additional delay of order/2 = 0.1s into the detection of SWD
patterns. There is thus a tradeoff between detection accuracy and detection delay.

Figure7.20 shows a flowchart for implementation of the on-linemethod for detect-
ing SWDs, called OSDS. To compute the wavelet transform we used the fast method
based on the vector product (2.47) discussed in Sect. 2.2.3.1. The program calculates
the corresponding wavelet power for a given frequency range (30–80 Hz) each time
a new data sample is acquired (e.g., every 2 ms for 500 Hz sampling rate). The cal-
culated power is compared with a threshold and a binary output (presence/absence
of SWD) is generated.
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More precisely, the program performs the wavelet transform for 15 scales (corre-
sponding to frequencies equally distributed in the range 30–80 Hz). Our results show
that increasing the number of scales above 15 provides no significant improvement
in the algorithm sensitivity, but rather requires additional calculation resources (the
calculation time must be kept within 2 ms). The sum of the calculated wavelet power
values provides wFSWD(t), which is further averaged and compared to the threshold
Ek . The result of the comparison is assigned to the output logical variable

Vout(t) ∈ {
log 0, log 1

}
.

At the beginning, it is set to logical zero, i.e., Vout = log 0. As soon as wFSWD(t)
exceeds the threshold Ek , the output is set to logical one, i.e., Vout = log 1. The
output is maintained until wFSWD(t) goes below Ek , at which point the output is
switched to logical zero, i.e., Vout = log 0.

7.6.2 Experimental Verification of the Algorithm and
On-Line SWD Diagnostics

To test the algorithm, we used differential recordings made in eight rats [97]. The
EEG was continuously acquired over 5h during the light phase (5–15h). In addition,
two of the 8 rats were subject to continuous 24h recording. Rats were connected to
EEG recording leads attached to a swivel contact, which allows registration of the
EEG in freely moving animals. Signals were recorded using theWINDAQ recording
system (DATAQ Instruments, Akron, OH, USA,www.dataq.com) with a constant
sample rate of 500Hz. Before digitizing, the EEG signal was amplified and filtered
by a band pass filter with cutoff frequencies set at 1 and 100 Hz. In addition, a 50Hz
notch filter was applied to reject power line hum. The digitized signal was sent to
the OSDS (Fig. 7.20).

Figure7.21 shows a typical example of on-line SWD detection. Whenever the
WPOD wFSWD(t) exceeds the threshold Ek = 0.8, an SWD is detected (Fig. 7.21b).
The threshold value Ek should be adjusted for each animal individually.A good initial
guess is 2.5–3.5 times the mean WPOD value at normal activity (i.e., non-epileptic
background). The algorithmoutputVout(t) (Fig. 7.21c) is sent to an additional channel
of theWINDAQrecording system.This channel has a digital-analog converter (DAC)
with two possible levels: high (log 1 := +2.5V) and low (log 0 := −2.5V).

The output signal Vout(t) of the OSDS delimits SWD events and, in general, can
also control some external device, such as a generator sending some stimuli to the
animal’s brain. Thus an organized feedback loop can be used, e.g., for studying
the effect of external stimuli on epileptic focus, synchronized with the onset of the
epileptic neuronal activity.

In experiments, we determined the most adequate individual threshold values Ek

using off-line analysis of EEG traces for each rat. One hour EEG fragments were
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Fig. 7.21 On-line detection of SWDs. a Example of an EEG epoch containing SWDs. b WPOD
averaged power in the 30–80Hz band. c Output of the detection algorithm (OSDS)

Table 7.4 On-line detection rates of spike-wave discharges in 8WAG/Rij rats recorded for 5h
Rat # Threshold Window

size (data
points)

No of
visual
detections

No of automated detections Quality of on-line detections

TP FP FN Sensitivity
β (%)

Precision
δ (%)

1 0.6 600 101 101 3 0 100 97.1

2 0.7 500 29 29 0 0 100 100

3 0.7 500 43 43 2 0 100 95.6

4 0.65 600 66 66 1 0 100 98.5

5 0.8 500 44 44 2 0 100 95.7

6 0.6 500 66 66 4 0 100 94.3

7 0.85 500 115 115 3 0 100 97.5

8 0.9 600 56 58 2 0 100 96.6

Mean±SD 65±29 65±29 2.1 ± 1.3 0.0 ± 0.0 100 ± 0 96.9 ± 1.8

analyzed and Ek was tuned. Ek varied between 0.6 and 1.0 for different animals. This
approach allowedus to achieve perfect sensitivity to SWDs for all animals, that is, δ =
100% (Table7.4), i.e., there were no false negative detections. The mean precision
was β = 96.9% (range 94.3–100%, n = 8) in the 5h data set. The average time
needed for SWD detection was 1.0 ± 0.55s following the SWD onset (smoothing
window size 500 data points and sample rate 500samples/s). The SWD detection
time is determined primarily by the length of the smoothing window and can be
reduced.
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Let us now consider the errors in the OSDS algorithm. False negative (FN) errors
(SWDevents skippedby the algorithm) appear in thefirst place due to small variations
in the dynamics of the brain in response to changes in environmental conditions.
In relatively short experiments with properly chosen parameters, FN errors do not
appear (Table7.4). In long-term experiments, FN events are rare and can be observed
when the physiological state of the animal changes significantly. The first missed
events begin to appear 4–8h after the beginning of the EEG recording. Such events
tend to group together, i.e., within a few hours after registration of the SWD with
subthreshold WPOD value, the probability of finding another one becomes greater.
At the same time, the total number of unrecognized SWDevents remains small (<1%
of all detected SWDs).
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Fig. 7.22 Illustrative examples of typical complexes in EEG (intermediate states) falsely detected
as SWDs and corresponding dynamics of the averaged WPOD 〈w(t)〉 versus time
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Another class of errors is false positives (FP), i.e., eventswrongly detected as being
SWDs. Figure7.22 illustrates detection of an underdeveloped SWD. Despite the fact
that the increase in theWPOD in this case was not as large as during a genuine SWD,
it was enough to exceed the threshold and hence lead to false detection of an SWD
event. Visual inspection of FP events showed that they correspond to intermediate
states or spiky phenomena [41]. It should be noted that, by increasing the size  of
the smoothing window, the number of false positives can be reduced significantly.
However, this will be achieved at the cost of increasing the time lag required for
reliable detection of SWD events. The results shown in Table7.4 were obtained
through a compromise between speed of detection and number of FP errors.

7.7 Brain Stimulation Brain-Computer Interface for
Prediction and Prevention of Epileptic Seizures

The ultimate goal of epileptology is the complete abolishment of epileptic seizures.
This might be achieved by a on-line seizure prediction system in combination with
a way to interfere [36, 54, 93, 117]. A long standing opinion is, that SWDs gen-
erated within the cortico-thalamo-cortical network [12, 51, 101] are unpredictable
and suddenly arise from a normal background EEG [117]. At the same time, off-line
analysis of available EEG data sets with advanced signal analysis techniques includ-
ing wavelet-based methods revealed that some changes in communication between
cortex and some thalamic nuclei can already be seen up to 2 s before seizure onset [81,
83], generalized epileptic seizures are the extreme events emerging from instability
accompanied by preictal noise amplification [38, 104], and that SWDs are preceded
by delta/theta precursors in the cortico-thalamo-cortical network [80]. In the current
work we present a new seizure prediction algorithm, which assesses in real-time the
synchoronicity between brain structures and by this automatically predicts SWD.
In this Section we consider the wavelet-based real-time absence seizure prediction
algorithm and based on them absence seizure control by a closed-loop precursor
detection [84].

7.7.1 Precursor Wavelet-Based On-Line Detection

The algorithm’s estimation of synchronicity between brain structures is based on
the analysis of both the synchronization of the electrical activity of the neurons in
the vicinity of the single electrode, local synchronization, and the synchronization
between the neuronal ensembles of cortex and thalamus, global synchronization [85].
This is achieved via the investigation of a multichannel EEG from cortex and tha-
lamus. Within the framework of the algorithm, each EEG recording was considered
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Fig. 7.23 a Schematic representation of the experiments with a rat. b The set of ECoG recordings
taken from subgranular layers 4 (Ctx4) and 5 (Ctx5) of the somatosensory cortex and postero/lateral
thalamus (Th) before and during onset of the epileptic spike-wave discharge (SWD). c Histological
verification of the electrode location in the somatosensory cortex (S1) and postero/lateral thalamus
(Th). Reprinted from [105]

as the macroscopic characteristic of the ensemble of interacting cells, located in the
vicinity of the recording electrode.

The seizure prediction algorithm was based on the ECoG signals recorded by
three electrodes in the cortex and the thalamus, as shown in Fig. 7.23. The obtained
ECoG recordings were simultaneously processed with the help of CWT with the
specially designed mother complex function

ψ0(η) = π1/4e2π iηe−5η4
, (7.23)

and the corresponding wavelet energies wi (s, t) were considered at every moment
of time. The used mother wavelet function (7.23) is the modification of the classical
Morlet wavelet (2.36), which is characterized by a better localization in time in
comparison with the standard Morlet wavelet and, therefore is more suitable for on-
line diagnostics due to better temporal resolution of local peculiarities of the EEG
signal [78]. Figure7.24 illustrates the dependency of the window length on the value
of frequency belonging to the analyzed frequency band (3, 20)Hz is shown both for
Morlet wavelet δ1 and modified wavelet δ2. It is seen that use of modified wavelet
allows to significantly reduce the window length and, therefore the delay. It is also
seen that the maximal window size, used for the calculation of the wavelet spectrum,
is about 600ms. The view of wavelet function of this case is shown for both Morlet
wavelet and modified wavelet. The delay is shown to be reduced from 1.2 to 0.3 s
which is enough to on-line detect precursor pattern.

With the proposed wavelet the distribution of the wavelet energy (2.33) was cal-
culated during a 600-ms window for the frequency range (3, 20)Hz. The resulted
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measure of wavelet spectra of multichannel EEG, G(s, t), was found as a product of
the spectra obtained for all EEG recordings of the set

G(s, t) = E1(s, t) × E2(s, t) × E3(s, t) (7.24)

at the every moment of time. Subscript 1, 2 and 3 represented two subgranual cor-
tical signals from the somatosensory cortex and from the thalamic PO as shown in
Fig. 7.23.

The analysis of the wavelet power spectra (Fig. 7.25b) of a single preictal EEG
channel (Fig. 7.25a), shows that the early signs of synchronization, developingwithin
each considered neural ensemble, occurred several seconds before SWD onset and
represented itself by a local increase of thewavelet energy in the 5–10Hz band.Along
with local synchronization, interactions between the cortex and thalamus increased
and considering the power G(s, t) (7.24) (Fig. 7.25c) an isolated pattern (circles
in Fig. 7.25c) corresponding with preictal precursor activity was noticed. Indeed,
considering the momentary distributions of the wavelet energy of each EEG, taken
for 4 (I) seconds and for 1 second (II) before the onset of SWD, one can see in
(Fig. 7.25d) that as the beginning of the SWD is approaching, the increase of wavelet
energy takes place in the timescale region 0.1–0.2Hz−1 (or equivalent frequency
5–10Hz band), and the main spectral components of the considered EEG signals
start to synchronize (II).

In order to automatically recognize the precursor the value Gs j , corresponded
to the spectral energy of the timescales s j , were given by the equation
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Fig. 7.25 a The set of EEG recordings taken from subgranular layers 4 (Ctx4) and 5 (Ctx5) of
the somatosensory cortex and postero/lateral thalamus (PO). b The CWT energy, corresponded to
the considered EEG, distributed over the range of the timescales s = 1/ f . c The resulting surface
G (7.24). The oscillatory pattern, which is considered as a precursor, is circled. d The momentary
distributions of the wavelet energy, taken for the 4 s (I) and 1 s (II) before seizure onset. Based on
the data from [84]
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Gs j (t) = 1

s j

∫

s∈s j

1

T

t∫

t−T

G(s, t) dsdt, j = 1, 2, 3, (7.25)

where the integration was performed both over the range of timescales and the time
interval T = 500ms chosen experimentally considering the minimal duration of the
precursor.

At the first step the wavelet energy Gs2 , corresponded to the frequency band
(5, 10)Hz, was considered. It was found that the value of Gs2 increased during
the onset of the seizure. According to this, the threshold value Gth was taken into
consideration. This value was determined for the individual rat according to the
preliminary analysis of the wavelet energy, corresponded to the preictal state and
to the different types of background activity. As the result the possibility to set the
threshold energy which exceeded the energy of wakefulness states, but, at the same
time remained less then the energy of the preictal state was found and the precursors
were detected via the condition Gs2 > Gth . Unfortunately, such criterion caused the
large amount of false alarms during the sleep due to the increase of the power of EEG
signals. In order to reduce the number of false alarms caused by any other patterns
of synchronized neuronal activity during sleep (first-of-all, the sleep spindles) the
additional “sleep criterion” was introduced. This criterion included the simultaneous
consideration of the three ranges of timescales corresponding to the common patterns
of synchronic neuron activity preceded the seizure onset [80]:

• s1—the range 7–20 Hz of sleep spindles;
• s2—the range 5–10 Hz of theta/alpha precursors;
• s3—the range 3–5 Hz of low-frequency oscillations (delta precursors).

For these ranges s j the values of mean energy Gs j was calculated using integral
(7.25).

According to Ref. [84] the using the threshold value Gth one can automatically
detect the precursor with the help of three addition conditions: (i) Gs2(t) > Gth ,
(ii) Gs2(t) > Gs1(t), and (iii) Gs2(t) > Gs3(t). The conditions (ii) and (iii)
were used to distinguish the precursor events from sleep spindles and low-frequency
delta activity. Similar to the seizure, these types of activities are also induced by
synchronous neuronal dynamics, but have higher (up to 20Hz) and lower (up to
5Hz) frequencies, respectively.

7.7.2 Absence Seizure Control by a Brain Computer Interface

The described in the previous Sect. 7.7.1 algorithm was subsequently implemented
in a closed-loop deep-brain stimulation system. In this system the EEG of a freely
moving WAG/Rij rats, recorded from two cortical and a thalamic site, were fed
via an amplifier to an acquisition system where they were analyzed on its level
of synchronicity in real time by the prediction algorithm. Whenever the level of
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Fig. 7.26 a The experimental setup of the brain-computer interface. The set of analog inputs 1–6
of the acquisition hardware correspond to the EEG recordings (1–3), the prediction marker (4), the
stimulation pulse train of 1 s (5) and the signal from the passive infrared registration systemmonitor
sensor (PIR) for movement detection (6), respectively. The dashed line corresponds to the digital
input of the PC, the feedback is shown by the shadow. b The prediction (upper case) and prevention
(lower case) of the absence seizure by delivering a pulse train of 1.0 s duration. Based on the data
from [84]

synchronicity exceeded a preset threshold value, a marker was set in an additional
channel of the recording system and a constant current stimulator was triggered to
deliver a 1 s lasting pulse train of 130Hz and low intensity to the rat (see Fig. 7.26a,
b).

The pulse train of 130 Hz might prevent the predicted SWD. Previously it was
established that this pulse train was rather effective (close to 90% in interrupting
an ongoing SWD) [136]. Comparison of seizure activity between a 1 h baseline
recording, in which no stimulation was applied, to seizure activity during a one
hour stimulation session showed that seizure activity was significantly reduced by
72% (±10%) (F(1, 5) = 48.52, p < 0.001) (Fig. 7.27a). The reduction in seizure
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Fig. 7.27 a The total
duration of the epileptic
activity and the activity level
during the baseline and the
stimulation session, averaged
over the group of rats. The
error bars show the standard
error of the mean of the
group. Based on the data
from [84]
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activity can be attributed to a combination of SWD prediction and prevention (in
45% of cases) and SWD detection and interruption. In support for the conclusion
that the reduction was not only the result of pure detection and disruption of SWDwe
again refer to the individual data, where in two rats reduction levels of up to 98% and
100% were achieved demonstrating total prevention of SWD activity by prediction
and stimulation.

In addition, inspection of corresponding wavelet energies, calculated for success-
ful SWD prediction and prevention periods, depicted a strong, momentary, increase
in wavelet energy within the 6–8Hz frequency band signaling the development of
an SWD in its preictal state, and triggering the delivery of an electrical pulse train.
During and following high frequency stimulation the wavelet energy within this fre-
quency band drastically drops, indicating that the electrical pulse train efficiently
desynchronized the EEG and by this successfully prevented the generation of the
hypersynchronous SWD (see Fig. 7.28).

To investigate whether the remaining false positive detections, which also trig-
gered the delivery of an electrical pulse train might have affected behaviour of the
animals, we compared the activity level of rats between baseline and stimulation
hour, which was measured by a movement detection system. There was no differ-
ence between activity of the rats during baseline and stimulation session (Fig. 7.27b)
(F(1, 5) = 0.476, p = 0.521), suggesting that the by stimulation induced decrease
in SWD time cannot be explained by an increase in behavioural activity. Further-
more, no other type of apparent activity was observed in the EEG recordings of the
animal, so that, given the low intensity stimulation provided to prevent and disrupt
the SWD and given the relative short stimulation session, it can be regarded as a safe
intervention strategy.

So, in contrast to the long standing opinions, SWD can be predicted to a substan-
tial degree and that such a prediction algorithm can successfully be implemented in
a closed-loop deep brain stimulation system which is able to greatly reduce seizure
activity based on a combination of seizure prediction and prevention and seizure
detection and disruption. The relative high number of false positive predictions indi-
cates that synchronization between brain structures is not unique for the generation of
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Fig. 7.28 The seizure prevention by means of electrical stimulation with the pulse duration: the
EEG signals, taken from postero/lateral thalamus (PO) and cortex layers (a), the distributions of the
wavelet energy G (b) and the pulse train (c) (the structure of pulse is also shown in detail). Based
on the data from [84]

an SWD. Probably the brain also “tries” to generate an SWD at the periods indicated
by false positive detections but fails to do so since another unknown requirement for
SWD generation is not met. In line with this, 5–9Hz oscillations have been reported
to preceded SWD in GAERS, another rat model of absence epilepsy, while not all
of these 5–9Hz oscillations are followed by SWD [100, 102].
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Chapter 8
Analysis of Visual Sensory Processing in
the Brain and Brain-Computer
Interfaces for Human Attention Control

Abstract This chapter describes using wavelet analysis to study mechanisms of
visual perception. First, we introduce an ambiguous visual stimulus, theNecker cube,
a useful visual perception analysis tool. Second, we demonstrate how the wavelet-
based methods reveal the local and network properties of the percept-related brain
activity. Then, we considered the effect of the human condition (motivation and
alertness) on the perceptive process. Finally, we review the basic principles of the
brain-computer interfaces that use thewavelet-based algorithm to evaluate the human
state in visual perception tasks.

8.1 Introduction

Perception and processing of sensory information are essential brain functions, ensur-
ing our interactionwith the environment. Humans and animals receive sensory inputs
of the different modalities (tactile, visual, auditory, etc.), process them, and use them
in the decision-making process, a process known as perceptual decision-making [36].
When performing perceptual-decision-making tasks, the brain dynamically adjusts
its functional network structure to maintain optimal behavioral performance under
the increasing cognitive demand [20, 83, 101]. Modern neurophysiological studies
emphasize the leading role of functional connectivity in human cognition, and behav-
ioral performance [106]. According to the functional magnetic resonance imaging
(fMRI) studies, the whole-brain network activity is generated through the interaction
of multiple functional subnetworks during either a resting state or task accomplish-
ing. These functional subnetworks include a dorsal attention network, a frontoparietal
network, an executive control network, a default mode network, etc. [112]. Although
functional networks have different anatomical locations, they interact with each other
and overlap during task accomplishing [121].
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Performance and neural activity during the sensory-processing tasks depend on
the person’s internal state, attention, and fatigue. In particular, the rest-state functional
connectivity can predict the subject’s ability to maintain sustained attention during
demanding tasks [89]. Next, fatigue causes reshaping the network structure, mak-
ing the brain regions more segregated and their communication less effective [56].
Increased cognitive demands result in a decrease in network modularity; the default
mode network enhances its connectivity with other networks, while the connectivity
inside the network itself decreases [27].

These processes also induce changes in the time-frequency properties of nonin-
vasive EEG signals. EEG is composed of various rhythms of neural activity, e.g.
δ-band (1–5 Hz), θ -band (5–8 Hz), α-band (8–12 Hz), β-band (15–30 Hz) and γ -
band (>30 Hz). According to neurophysiological studies, these rhythms contribute
to the coordination of neuronal activity in remote brain regions [30, 60]. The low-
frequency θ -rhythmmodulates electrical brain activity at the high-frequency γ -band
of the electrocorticogram (ECoG) [13]. Apart from the θ -band, according to [30], the
low-frequency α- and β-band neuronal activity in the visual cortex controls the neu-
ronal activity in the γ -band. The functional connectivity between neuronal ensembles
causes correlation or synchronization between the recorded EEG signals in the dif-
ferent frequency bands [30, 60]. As stated in [65], neuronal populations in remote
brain regions interact in the different frequency bands differently. Recent studies [10,
73] demonstrate that during the performance of visual tasks, neural populations in
the visual cortex communicate at frequencies in the joint α, β (830 Hz) and γ (5070
Hz) ranges. Moreover, an analysis of the functional connectivity between regions
of the parieto-occipital cortex performed on the EEG sensory level reveals a differ-
ent connectivity structure in separated α- and β-frequency bands. In contrast, the
functional connectivity in the β-band is affected by visual information complexity
[67]. Alongwith the neuronal communication in the visual cortex, accomplishing the
visual task also requires communication between the remote cortical regions. Thus,
during visual information processing, δ-activity in the frontal area and α-activity in
the parieto-occipital area are functionally coupled and jointly guide visual percep-
tion to integrate sensory evidence with current task demands [37]. During a sustained
attention task, long-range functional connectivity between different parts of the fron-
toparietal network is mediated by oscillations in the θ -band and connectivity within
these areas is subserved by γ -band oscillations [99]. The attention-related functional
connectivity also presents in the frontoparietal cortex in different frequency ranges
[17, 97].

Thus, perceptual decision-making task requires coordination of neural activity
across multiple brain areas. Coordination of neuronal activity in particular regions
is subserved by high-frequency rhythms, while the coordination of neural activity
between remote areas relies on low-frequency oscillations. Functional interactions
dynamically reconfigure the neuronal network structure to maintain sustained atten-
tion and avoid fatigue and distraction during task performance.

This chapter focuses on the recent results of the time-frequency EEG analysis
during the perceptual decision-making task, which requires sustained attention. Gen-
erally, sustained attention refers to focusing on relevant stimuli with repeated presen-
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tation over extended periods. Following [74], sustained attention tasks often involve
long series of exhibitions of target and non-target stimuli on computer screens. The
participants must respond to the targets and refrain from responding to the non-
target stimuli. Here, we considered a perceptual decision-making task implying a
binary classification of a large number of consistently presented ambiguous visual
stimuli (Necker cubes) with different degree of ambiguity [1, 41, 68]. In line with
Denison et al. [21], we suppose that processing each stimulus depends on atten-
tion at the moment of its presentation. If the stimuli are presented repeatedly with
a brief interval, the subject must continuously maintain a high level of attention to
respond to the stimuli. Usually, perceptual decision-making is not viewed as a clas-
sical cognitive domain like attention or memory. At the same time, this is mostly
true for near-threshold stimuli [118] or unambiguous stimuli when the subject has to
choose between two different stimuli. In turn, ambiguous stimuli cause uncertainty
in decision-making when ambiguity is high [41], and their interpretation appears to
be a cognitive decision process [41].

The neuronal activity in α- and β-bands represents two stages: a sensory-
processing and a decision-making [73, 98]. During the former stage, α- and β-
band activity is involved in top-down stimulus processing and subserves the neural
interaction within the visual cortex [73]. The β-band activity is also shown [98] to
coordinate the neuronal activity in the occipital and prefrontal areas during visual
stimulus processing. During the latter stage, the β-band activity subserves the neu-
ral interactions within the fronto-parietal network [15, 16]. The decision accuracy
also correlates with the power of the frontoparietal β-band activity registered during
the decision-making stage [103]. A wide body of literature shows that both α and
β-band activity is relevant to attention in general (i.e., not restricted to the visual
stimuli processing [2, 5, 6, 31]). Attention modulates the prestimulus α- and β-band
power [6, 31, 59] and affects the decision accuracy. Thus, either medium or low
α- and high β-band power during the prestimulus period is beneficial for sensory
perception [31, 113]. According to [35], not only the power but the prestimulus EEG
phase coupling in the α- and β-bands also affects visual perception performance.
Namely, better performance is associated with low phase coupling in the α-band and
high phase coupling in the β-band.

Having summarized, the neural activity in theα- andβ-bands subserves perceptual
decision-making process and reflects attentional modulation. Thus, we mostly focus
on these bands and describe the wavelet-based methods to estimate neural activity in
the single areas and analyze their functional interactions.We also review the wavelet-
based algorithms to evaluate attention in the real-time domain. Finally, we discuss the
possibility of using wavelets in the brain-computer interfaces that control attention
in visual processing tasks.
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8.2 Ambigous Stimuli as a Tool to Study Visual Perception

A practical approach to study visual perception uses the stimuli whose intensity lies
near a perception threshold. The threshold can reflect the value of stimulus intensity,
at which each subject detects 50% of the presented stimuli [25].

Another approach includes more complex stimuli which along with simple detec-
tion, require their classification based on the brief analysis of their morphology. In
this context the threshold parameter reflects the complexity of stimuli classification
[68].

This chapter describes the wavelet-based studies of visual perception that use
Necker cube as an ambiguous visual stimulus [43, 52]. Let us consider this stimulus
in detail. A subject without perceptual abnormalities interprets the Necker cube as a
left- or right-oriented 3D-object, depending on the inner edges’ contrast. The contrast
of three middle lines centered in the left middle corner serve as a control parameter a,
where a = 1 and a = 0 corresponded to 0 (black) and 255 (white) pixels’ luminance
according to 8-bit gray-scale palette. Therefore, we defined the control parameter as
a = g/255, where g was the brightness of the inner lines.

Figure8.1a demonstrates theNecker cube imageswith eight different values of the
control parameter. Half of them, a = {0.15, 0.25, 0.4, 0.45} correspond to the left-
oriented and another half, a = {0.55, 0.6, 0.75, 0.85}—to the right-oriented cubes.

For a ≈ 0 and a ≈ 1, the stimulus has a clearly identified left and right orienta-
tion. For a ≈ 0.5, the stimulus became ambiguous. This chapter does not consider the
Necker cube image with a = 0.5. In this situation, processing relies on the endoge-
nous factors rather than on the stimulus features [24].
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Fig. 8.1 a Set of visual stimuli, Necker cubes, with different degrees of ambiguity, a. b Schematic
illustration of the experimental sessions. τi is the duration of i th stimulus presentation, γi is the
time of the abstract image presentation between i th and (i + 1)th stimuli. RT is the response time
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Fig. 8.2 aResponse time (RT) to LA andHA stimuli (∗∗∗ p < 0.001, t-test). bMedian presentation
times of LA and HA stimuli. c Error-rate (ER) of LA and HA stimuli processing (∗∗∗ p < 0.001,
Wilcoxon test). Group data are shown as means±SD and individual values

Each Necker cube image is drawn by black and gray lines located at the center
of the computer screen on a white background. Subjects usually get instructions to
quickly define stimulus orientation and press the left or right key on the joystick.

The Necker cubes paradigm allows studying external (bottom-up) and the inter-
nal (top-down) effects on the perception. Figure8.1 evidences that LA left- and
right-oriented cubes have different edges structure. In the left-oriented stimuli, the
observer sees threemiddle edges centered in the right upper corner, while in the right-
oriented stimuli, they see mostly ones centered in the left lower corner. In contrast,
in the HA left- and right-oriented cubes, all inner edges have the same contrast, and
the observer sees them all simultaneously. Thus, perception of LA stimuli mostly
relies on the bottom-upmechanisms and perception of HA stimuli—on the top-down
mechanisms.

To study the effect of ambiguity on the perceptual process in the recent work [64]
400 Necker cube images appeared in random order, each stimulus with a particular
ambiguity a was presented 50 times. The whole experiment lasted 40 min, including
150 s recordings of the resting-state EEG before and after the main part. The i th
stimulus was presented during a time interval τi , followed by the abstract image pre-
sentation for a time interval of γi (Fig. 8.1b). The duration of the stimulus exhibition
varied in the range of 1−1.5 s. Lastly, to draw away the observer’s attention and
make the perception of the next stimulus independent of the previous one, different
abstract pictures were exhibited for 3−5 s between subsequent demonstrations of the
Necker cube images. The response time (RT), a time interval between the stimulus
onset and key pressing, determines processing speed and serves as the behavioral
response. Besides, response accuracy reflects a match between the actual stimulus
orientation and the subject’s response.

As a result, subjects responded faster to LA stimuli than HA stimuli (Fig. 8.2a).
The stimuli were presented randomly, and the median presentation time of HA and
LANecker cubeswas unchanged (Fig. 8.2b). The repeatedmeasures ANOVAused to
compareRT for the similar, and opposite orientation of the previous stimulus revealed
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an insignificant effect of the previous stimulus orientation (F1,19 = 1.86, p = 0.188)
and insignificant interaction effect of ambiguity×orientation (F1,19 = 0.434, p =
0.518). The results confirmed that the stimulus presentation times and the previous
stimulus (ambiguity and orientation) are randomized between the conditions and,
therefore, did not affect the RT bias between LA and HA stimuli.

Finally, there was no correlation between the age and RT to HA stimuli: r(20) =
−0.24, p = 0.3 and LA stimuli: r(20) = −0.31, p = 0.17. RT was similar for
males and females for both HA stimuli: t (18) = 0.79, p = 0.436 and LA stimuli:
t (18) = 0.96, p = 0.348. ER was higher for HA stimuli (M = 8.95%, SD = 11.5)
than for LA stimuli (M=1.65%, SD= 2.6): Z = 3.5, p < 0.001 via Wilcoxon test
(Fig. 8.2c). It confirmed that subjects’ characteristics did not affect their response to
the stimuli. At the same time, for a small group of subjects, there is a risk that the indi-
vidual characteristics of the people (such as sex, age, psychological traits) will influ-
ence the perception of ambiguous stimuli and decision-making (See Ref. [96] for the
literature review). Thus, the authors expected that another group of younger or older
subjects might demonstrate different scores on both behavioral and brain activity lev-
els. The subjects’ personality traits alsomay affect cognitive processes and behavioral
performance during cognitive tasks. In particular, the anxiety level is essential for
the perception of ambiguous situations. Previous studies documented that people
with anxiety tended to interpret ambiguous stimuli negatively (See Ref. [82] for
the review). Although, the processing of emotionally neutral Necker cube may be
less affected by anxiety. Furthermore, the presented stimuli are not wholly ambigu-
ous; therefore, their interpretation relied not entirely on the endogenous factors but
the processing of the stimulus morphology. The existence of objectively decision-
relevant features in the sensory information also reduces endogenous components,
such as the observer’s state. Nevertheless, to ensure that the observed effects are
not affected by the personality traits, the authors recommended the personality traits
assessment beforehand.

8.3 Local and Integrative Neural Activity During Visual
Sensory Processing

The different parts of the cortex process the different types of sensory information.
For example, visual stimuli are processed in the occipital and parietal regions, while
auditory input is processed in the temporal areas. However, the spatial localization
dominants mostly at the earlier (low-level) processing stages lasting for tens of mil-
liseconds. In the latter (high-level) stages, sensory processing is an integrative process
that combines various sensory modalities for decision-making.

Simultaneously, sensory processing is affected by top-down human factors such
as expectations, memory, and attention. These influences result in the activation of
neural assemblies of the prefrontal and parietal cortex. Along with the internal top-
down factors, sensory processing may also involve different neuronal ensembles due
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to the external bottom-up factors. These factors reflect the features of the sensory
input. When the sensory information becomes unexpected, complex, or ambiguous,
its processing demands more resources and activates neuronal populations in the
frontal cortex.

Earlier studies on perceptual decision-making in rodents and monkeys used
implanted micro-electrodes and identified spatially localized neuronal activity corre-
lated with their behavioral performance. Simultaneously, a limited number of record-
ing sites precluded revealing the interaction between distinct brain regions coordi-
nating perceptual decisions [34]. More recent work reported on recordings from
the multiple units in sensory, parietal, prefrontal, and motor cortex during the per-
ceptual decision-making task [102]. The authors demonstrated that perceptual deci-
sions resulted from complex temporal dynamics, including the coupling between the
frontal and posterior cortex. Large-scale cortical interactions play a critical role in
human perceptual decision-making. After reviewing plenty of neuroimaging studies,
Siegel et al. [103] concluded that perceptual decisions in humans relied on neuronal
activity in the high-frequency γ (>50 Hz) and low-frequency β (15−30 Hz) bands.
They specified that the localized γ -band activity in the sensorimotor cortex reflected
information encoding and motor planning. In turn, large-scale β-band activity across
widespread cortical areas coordinated these local networks’ activity.

According to the review [103], perceptual decision-making includes two stages,
sensory information processing and decision-making. Lange et al. [76] further
demonstrated that these stages involved different brain areas in different time-
intervals. While the sensory processing occurs in the occipital cortex during
130−320 ms post-stimulus onset, the decision-related process is more prolonged
and activates parietal and frontal areas. The other studies [49, 86, 120] reported on
temporal dissociation between the sensory processing and decision-making stages
for different types of stimuli. Philiastides and Sajda analyzed the influence of sen-
sory evidence quality on the neuronal activity during the processing stage [86]. The
authors concluded that the evidence accumulation process began after early visual
perception and lasted 290−440msdepending on the evidence’s strength. In the recent
study [63], authors considered the decision-making stage of the ambiguous stimuli
classification task. They observed that the emergence of a large-scale frontoparietal
network in the β-band preceded the perceptual decisions. The authors supposed that
the large-scale β-band network served to integrate decision-relevant sensory infor-
mation into decisions. The extraction of decision-relevant features, in turn, relied on
the earlier processing stages, and this process depended on the quality and strength
of the sensory evidence.

8.3.1 Local Activity

The local neural activity can be evaluated using wavelet power of the noninvasive
EEG signals recorded in different positions on the skull [64]. As described earlier
in the book, wavelet analysis provides a signal power with a reasonable resolution
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in the time-frequency domain. In turn, wavelet power peaking at the particular EEG
sensor may reflect that a neighboring neuronal ensemble participates in the infor-
mation processing. According to recent works, the neurons communicate due to the
phase synchronization of their spiking activity; thus, if their activity becomes phase-
locked, the summarized electrical signal’s wavelet power increases. We refer this
phenomenon to as the local neuronal synchronization [65].

To analyze the wavelet power during the Necker cube processing task, the authors
segmented EEG recordings into 400 trials. Each trial corresponded to a single pre-
sentation of the Necker cube, including a 1.5 s interval before the presentation and
a 0.5 s interval after the button pressing. The wavelet power for each trial was cal-
culated in the frequency range of 4−40 Hz using a Morlet wavelet. The number
of cycles n for each frequency f was defined as n = f . The wavelet analysis was
performed in Matlab using the Fieldtrip toolbox [79]. The 0.5 s intervals on each
side of the trial were reserved for the wavelet power calculation. As a result, the
wavelet power was considered in three time-intervals of interest (TOIs), including
prestimulus baseline, TOI1 (from −1.0 to −0.5 s), the stimulus-related activity after
the stimulus presentation, TOI2 (from 0 to 0.5 s), and the stimulus-related activity,
TOI3 (from RT−0.3 s to RT) preceded the response time. For TOI1 and TOI2, the
authors calculated the event-related spectral perturbations (ERSP) via the baseline
correction [stimulus-related activity–prestimulus baseline]/prestimulus baseline.

To minimize the additional effect of stimulus orientation, including the later-
alization effects associated with the motor response, they considered two condi-
tions: low ambiguity (LA) stimuli, including the Necker cube images with a ∈
{0.15, 0.25, 0.75, 0.85} and high ambiguity (HA) stimuli, including the Necker cube
images with a ∈ {0.4, 0.45, 0.55, 0.6} (See Fig. 8.1a). Each condition included 100
stimuli (25 per each ambiguity, 50 per each orientation).

Finally, each subject’s wavelet powerwas averaged across the trials and contrasted
between HA and LA stimuli in three TOIs. Contrasts between conditions were tested
for statistical significance using the permutation test in conjunction with cluster-
based correction for multiple comparisons.

8.3.1.1 A Time-Frequency Evolution of the Wavelel Power During the
Visual Stimuli Processing

At first, let us illustrate the evolution of the wavelet power during the stimulus pro-
cessing. For this reason, we can combine the trials corresponding to LA and HA
stimuli. To test how the power change in time, we segmented the stimulus pro-
cessing period (TOI2) into the 0.05 s intervals and applied the dependent-samples
F-test to compare ERSP on these intervals. As a result, we observed two signif-
icant clusters in the frequency bands of 4−14 Hz and 15.5−21.25 Hz. Based on
these results, we defined frequency bands of interest (FOI) as 4−8 Hz (θ -band),
8−14 Hz (α-band), and 15.5−21.25 Hz (β1-band). For θ -band, the observed cluster
included EEG sensors in the occipital, parietal, bilateral temporal, parieto-central,
central, fronto-central, and frontal areas (Fig. 8.3). For α-band, cluster included the
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Fig. 8.3 Topograms show the F-value and the channel clusters reflecting the significant change of
ERSP during 0.5 s post-stimulus onset in the θ , α, and β bands. Colored lines show the ERSP (group
means and 95% confidence interval) averaged over the θ , α, and β bands during 0.5 s post-stimulus
onset

occipital, parietal, temporal, parieto-central, central, right fronto-central, and left
frontal sensors (Fig. 8.3). The β-band cluster included sensors in the parietal, right
parieto-central, left-lateralized central, left fronto-central, left frontal areas (Fig. 8.3).
Analysis of the wavelet power in these clusters revealed that θ -band power increased,
peaking at 0.35 s post-stimulus onset (Fig. 8.3). The α- and β-band power decreased
gradually over the considered time interval (Fig. 8.3).

The θ -band activity characterizes the brain’s ability to transfer and coordinate
information over large distances [104] and prolonged periods [48]. Thus, high θ -band
power may confirm the critical role of large-scale networks in visual processing, pro-
viding evidence that perception depends not just on the external stimulus. Instead, the
brain integrates sensory evidence with other internal constraints, including expecta-
tions, recent memories, etc. [116]. In this respect, increasing stimulus-related θ -band
power across the large-scale cortical regions is supposed to coordinate information
in the brain networks, including visual sensory and higher-order areas [72].

The stimulus-relatedα-band power decreased over the EEG sensors in the parieto-
occipital and sensorimotor areas (Fig. 8.3). Reduced stimulus-related α-band power
in the occipital (visual) and parietal (attentional) areas may reflect the primary visual
processing, as well as cognitive processing and visual attention [85]. The most sig-
nificant change of the α-band power in the motor area was for C3 and C4 electrodes,
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manifesting themotor preparation process. Theβ-bandpower started decreasing after
0.25 s post-stimulus onset in the fronto-parietal and sensorimotor areas (Fig. 8.3). The
high β-band power may reflect a strong endogenous, top-down component [24]. In
particular, parietal β-band power grows during the processing of ambiguous stimuli
where the percept solely relies on endogenous factors, rather than stimulus features
[78]. The fronto-parietal β-band activity during the stimulus processing is a marker
of top-down attentional mechanisms that control the accumulation of the decision-
relevant sensory information [11]. These top-down mechanisms probably guide the
subject’s attention to the Necker cube details (e.g., the contrast of the inner edges),
supporting a correct decision about its orientation. The fact that β-band activity
decreased after 0.25 s might evidence that the information accumulation process
was complete and the perceptual ambiguity was unresolved. Finally, reduced senso-
rimotor β-band power usually reflects movement preparation in the decision-making
tasks where the choices are to be communicated via a motor response (See Ref. [108]
for the literature review).

In the 0.3 s interval preceding behavioral response (TOI3), there were two signif-
icant clusters in θ (4−7 Hz) and α (9.2−12.5 Hz) frequency bands. The observed
θ -band cluster included EEG sensors in the occipital and parietal areas (Fig. 8.4).
The α-band cluster had sensors bilaterally in the sensorimotor area (Fig. 8.4). The
wavelet power in these clusters decreased monotonically within the considered time-
interval (Fig. 8.4). The θ -band activity waned in the right-lateralized parietal and
occipital areas until the subject had pressed the button (Fig. 8.4). It might show that
occipito-parietal areas remained activated over the entire processing period, unlike
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Fig. 8.4 Topograms show the F-value and the channel clusters reflecting the significant change of
ERSP during 0.3 s before the response onset in the θ and α bands. Colored lines show the ERSP
(group means and 95% confidence interval) averaged over the θ and α bands during 0.3 s before
the response onset
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the frontal sites whose activity peaked during the earlier processing stage and rapidly
diminished. Theα-band power decreased bilaterally over the sensorimotor electrodes
(Fig. 8.4). It allows supposing that the α-band activity supported only the motor exe-
cution on this interval.

8.3.1.2 Effect of the Stimulus Ambiguity

In the next step, we consider the changes in wavelet power induced by the increasing
ambiguity (HA vs LA stimuli) following the methodology described in the work
[64]. In TOI1, the wavelet power in the frequency range 4−40 Hz did not change
between HA and LA stimuli.

In TOI2, there were three significant positive clusters (Fig. 8.5). The first cluster
extended from the stimulus onset to 0.15 s in the upper θ -frequencyband7.25−8.5Hz
and included midline central, right fronto-central, and right frontotemporal sensors
(Fig. 8.5a). The second cluster extended from approximately 0.02 to 0.2 s in the β1-
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frequency band 23−23.8 Hz and included the midline occipital, right parietal, and
parieto-central sensors (Fig. 8.5b). The third cluster extended from approximately
0.35 to 0.42 s in theβ2-frequency band 31−31.8Hz and included themidline parietal,
left central, midline frontal, and fronto-central sensors (Fig. 8.5c).

Obtained results show that increasing ambiguity induced higher θ -band power
over the anterior electrodes for 0.15 s post-stimulus onset. The previous studies
reported that anterior θ -band activity might control and influence posterior brain
sites, including early visual areas in the task requiring the reliable top-down con-
trol [9, 19, 55]. Anterior θ -band response exceded the posterior response during
the ambiguous task [72]. The anterior maximum of the θ -band power may evidence
the prevalence of expectations and prior experience in ensuring coherent object per-
ception when the sensory information is inconclusive and elicits an ongoing conflict
between perceptual interpretations. In line with the Ref. [72], we conclude that on the
earlier processing stage, ambiguous stimulus processing mostly relied on top-down
processes in contrast to the unambiguous stimulus. These top-down processes might
be related explicitly to expectations, memory, and perceptual conflict resolution.

Increasing stimulus ambiguity also caused higher β-band power on two differ-
ent time intervals over the different brain areas. First, β-band power grew in the
right occipito-parietal area for 0.02−0.2 s post-stimulus onset (Fig. 8.5b). The pre-
vious study of ambiguous Necker cube perception by Yokota et al. [122] revealed
that the right-occipital β-band power increased for 0.1−0.15 s after the onset of the
completely ambiguous stimulus only when its perception differed from that of the
previous unambiguous stimulus. These results linked activity in the right occipital
beta band with endogenous switching between rivaling percepts. The authors also
related their findings with the visual feedback circuits affecting early visual pro-
cessing within 0.1 s of stimulus onset [28]. They concluded that the enhancement
of early β-band activity might reflect the interaction between the visual cortex and
other occipital and parietal cortical regions necessary for stimulus disambiguation.
Finally, they proposed that the disambiguation process was complete within 0.25 s
after stimulus onset. In line with the Ref. [122], we supposed that high right occipito-
parietal β-band power at the earlier processing stage subserved the disambiguation
process.

Ambiguous stimuli processing also resulted in higher β-band power over the pari-
etal and midline frontal areas for 0.35−0.42 s post-stimulus onset (Fig. 8.5c). The
Ref. [122] also reported increased β-band power for 0.35−0.45 s during the ambigu-
ous stimulus processing. According to [87], this late component might reflect the
conscious processing of the perceptual information or maintenance of the percept
in working memory. The other studies provided evidence that the working mem-
ory demands could alter the β-band activity in the fronto-parietal cortical areas (see
Ref. [22] for the literature review). However, overall changes in oscillatory activity
during working memory processing are also often found in frequency bands other
than β, especially θ (See Refs. [90] for the literature review). We did not simulta-
neously observe higher θ -band power for the ambiguous stimuli. Therefore, we did
not report enhancing working memory demands in the later stages of ambiguous
processing.
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In turn, we supposed that high fronto-parietal β-band power might reflect the
decision-making process. A traditional view is that β-band activity in decision-
making reflects motor preparation only. The motor plan expresses the final step,
following the higher-order areas, based on sensory input. However, several stud-
ies pointed to the more direct involvement of β-band activity in decision forma-
tion, regardless of a specific motor plan. Also, decision-related predictions in the
β-frequency band can occur beyond sensorimotor regions, both within and between
distributed cortical areas, including fronto-parietal circuits (See Ref. [108] for the
literature review). In their recent work [16], Chand and Dhamala analyzed the neu-
ral interaction between the anterior cingulate-insula network and the fronto-parietal
network during the decision-making tasks. They reported that the fronto-parietal
network achieved control over the cingulate-insula network in β-band during a
0.22−0.42 s timeframe in the behaviorally more demanding decision-making tasks.

8.3.2 Functional Connectivity

The previous section shows how the wavelet power change over the separate sensors
under the stimulus ambiguity. This section describes using the wavelets to analyze
how ambiguity affects the interaction between the different brain regions. Let us
consider the EEG signals recorded by five occipito-parietal electrodes (O1, O2, P3,
P4, Pz) placed on the standard positions of the ten-twenty international system [77].
The wavelet energy spectrum En( f, t) = √

Wn( f, t)2 can be calculated for each
EEG channel Xn(t) in the frequency range f ∈ [1, 30] Hz. Here, Wn( f, t) is the
complex-valued wavelet coefficients calculated as

Wn( f, t) = √
f

t+4/ f∫

t−4/ f

Xn(t)ψ
∗( f, t)dt, (8.1)

where n = 1, . . . , N is the EEG chanel number (N = 5 is the total number of chanels
used for the analysis) and “*” defines the complex conjugation. The mother wavelet
function ψ( f, t) is the Morlet wavelet often used for analysis of neurophysiological
data is defined as [42]

ψ( f, t) = √
f π1/4e jω0 f (t−t0)e f (t−t0)2/2, (8.2)

where ω0 = 2π is the wavelet parameter.
Observation of the bistable Necker cube and its further interpretation as left

or right-oriented induces the stimulus-related response of the brain network. Such
response is usually accompanied by the decrease of the alpha-band power (8–12
Hz oscillations) and increase of the beta-band power (15–30 Hz oscillations). The
changes in alpha-band power are associated with the visual [93] or auditory attention
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[29], and changes of beta-band power relate to the stimuli processing [98] and shift
of the brain to an attention state [31, 119]. The percept-related neuronal activity in
the alpha and beta bands is also reported in the context of the information trans-
fer in visual areas [73]. Thus, the frequency bands of interest can be predefined as
Δ fα = [8−12] Hz (alpha-band), and Δ fβ = [20−30] Hz (beta-band).

For these frequency bands the corresponding wavelet energy values Eα(t) and
Eβ(t) are calculated by averaging the spectral energy En( f, t) over the corresponding
alpha and beta bands as

En
α,β(t) = 1

En∗ (t)

∫

Δ fα,β

En( f ′, t)d f ′, (8.3)

where En∗ (t) is the energy value En( f, t) averaged over the whole considered spec-
trum of the EEG signal

En
∗ (t) =

30Hz∫

1Hz

En( f ′, t)d f ′ (8.4)

The values of the wavelet energy (8.3) calculated for whole time of experimental
session are then averaged over the time segments τi and γi , related to the perception
of i th visual stimulus. and over all EEG channels used for the analysis, as follows

〈Eα,β〉τi ,γi = 1

N

N∑

n=1

∫

τi ,γi

En
α,β(t ′)dt ′. (8.5)

Finally, coefficients (8.5) are averaged over all M presentations

〈Eα,β〉τ,γ = 1

M

M∑

i=1

〈Eα,β〉τi ,γi . (8.6)

The values 〈Eα,β〉τ,γ are calculated for each experiment.
Along with the analysis of wavelet energy, the time-frequency structure can be

considered using wavelet “skeletons”—lines on a time-frequency plane, following
the spectral components’ position with maximal wavelet energy. For every moment
t∗, the set of three skeletons describes the behavior of the 1st, 2nd, and 3rd maximal
components of the wavelet spectrum. The skeleton of the first kind defined the value
of frequency f ∗

1 for which the value of wavelet energy E( f ∗
1 , t∗) reached maximal

value for t = t∗. Similarly, 2nd and 3rd skeletons correspond to the frequency f ∗
2,3

for which the wavelet energy E( f ∗
2,3, t∗) reached the values next to the maximal.
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8.3.2.1 Band-Specific Neural Activity During Stimulus Processing in
Occipito-Parietal Regions

Figure8.6 illustrates the evolution of wavelet energy before and after the beginning
of image presentation in the α and β frequency bands. Box-and-whiskers diagrams
in Fig. 8.6a present the median wavelet energy 〈Eα,β〉γ , calculated before the presen-
tation of the image compared to the values 〈Eα,β〉τ , calculated immediately after the
presentation. One can see that the α-band energy significantly decreases when the
subject starts to perceive the visual stimuli. At the same time,β-band energy increases
during visual perception.While a decrease inα-band energy is observed for all partic-
ipants, an increase of β-band energy is observed in 60% subjects. Such inter-subject
differences can be caused by the individual human condition, e.g., the ability to con-
centrate attention on the presented stimuli. According to [68], the stimulus-related
β-band energy grows for the highly-motivated subjects and when the complexity of
the visual task increases.

Obtained characteristics 〈Eα,β〉τ,γ are averaged over N = 5 EEG channels. Thus,
they can reflect only the global trend but do not give information about local changes
in the neural dynamics, i.e, processes of the interactions and coupling between the
neural subnetworks located in different parts of the occipito-parietal area.

Figure8.6b shows the typical EEG traces registered by these channels. With the
EEG fragments, one can see the location of the maximal spectral components. Lines
show the evolution of three maximal spectral components. The line’s color reflects
the appearance of the spectral component in the α (red) and β (blue) frequency
bands. The spectral components, which appear in neither α nor β frequency bands,
are excluded from the consideration.

First, one can see that when the stimuli appear, the maximal spectral components
change their locations—they move from the α-band to the β-band. It means that
the corresponded neural ensembles start to be involved in the generation of β-band
activitymore intensive than theα-band one. It can reflect the increase in the number of
neurons participating in the generation or increased synchronization. Taking together,
neuronal activity in the different bands start to interplay: a decrease of α-band energy
induces an increase of the β-band energy and vice-versa.

Second, similar stimulus-related behavior is observed in all considered EEG chan-
nels. It means that the oscillatory modes of the neural ensembles, located in the
vicinity of the corresponded EEG electrodes in occipital and parietal areas, begin to
be synchronized by the external intervention—presentation of the visual stimuli.

8.3.2.2 Functional Interactions Between the Neural Ensembles in the
Occipito-Parietal Areas

Understanding how the occipital and parietal brain structures interact is an essential
issue [109]. In particular, an increase of parieto-occipital interactions was observed
during the visual stimuli processing with the help of functional magnetic resonance
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Fig. 8.6 Alpha- and beta-band activity. a Left: median alpha- and beta-band power on the intervals,
preceded (γ ) and followed by (τ ) the stimuli presentation (n = 12, ∗p < 0.05 via paired-sample
t-test). b Typical EEG traces, associated with the perception of a single visual stimulus, and the
wavelet skeletons, reflecting the location of the spectral components with maximal power. The
curve’s color defines the frequency band, in which the spectral component appears: red corresponds
to alpha band, blue-beta band. Vertical dashed line defines the beginning of stimulus presentation

imaging [44]. In Ref. [75], ERP analysis revealed parieto-occipital interactions asso-
ciated with the processing of multisensory (auditory-visual) information.

Estimating the coupling strength between different brain areas based on the analy-
sis of corresponding EEG orMEG signals is a fundamental issue, and many different
techniques are applied. In particular, the different features of brain connectivity are
revealed by means of Granger causality [73, 114], nonlinear associations [105],
recurrence-based methods [80] and entropy transfer methods [115]. Here we focus
on the wavelet-based approach. Continuous wavelet analysis is a well-established
time series processing method that allows extracting the time-frequency structure of
the nonstationary signals. In neuroscience, wavelets are successively used to detect
the specific patterns of oscillatory activity [42], including estimation of the coupling
strength between the brain areas [65].
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The degree of interaction between the neural ensembles, whose collective dynam-
ics is described by corresponded EEG signals, is estimated via wavelet bicoherence.
This method provides insight into nonlinear interactions of different nature and often
applied for the analysis of biological signals [42, 94] such as electrocardiogram [100],
EEG [54], MEG [91] etc.

To calculate the degree of interaction between two dynamical systems, whose
states are described by the variables x1(t) and x2(t), the corresponded complex-
valued wavelet coefficients W1( f, t) = a1 + ib1 and W2( f, t) = a2 + ib2 should be
considered.

Wavelet bicoherence is estimated based on themutualwavelet spectrumW1,2( f, t)
of the signals x1(t) and x2(t). Similarly to [4] the coefficients cos [Δφ( f, t)] and
sin [Δφ( f, t)] represented as real and imaginary parts of mutual wavelet spectrum
can be calculated via Eqs.

cos [Δφ( f, t)] =

= a1( f, t)a2( f, t) + b1( f, t)b2( f, t)
√

a2
1( f, t) + b2

1( f, t)
√

a2
2( f, t) + b2

2( f, t)

(8.7)

and

sin [Δφ( f, t)] =

= b1( f, t)a2( f, t) − a1( f, t)b2( f, t)
√

a2
1( f, t) + b2

1( f, t)
√

a2
2( f, t) + b2

2( f, t)

(8.8)

Here Δφ( f, t) = Δφ2( f, t) − Δφ1( f, t) is the phase difference, calculated for
considered signals x1(t) and x2(t) in time-frequencydomain. For further calculations,
values (8.7) and (8.8) have to be averaged over time intervals, for which the degree
of coherence is considered.

Here the wavelet bicoherence is applied to analyze the degree of coherence
between the different EEG signals recorded in occipital and parietal brain areas
during the rest state and visual stimuli perception. For the stimulus-related brain
state Eqs. (8.7) and (8.8) were averaged over time intervals τi = 1s for each stimulus
perception. For the rest state, averaging was performed over time intervals γi = 1.

As the result, for i th interval (both for percept-related and background EEG)
coefficients (cos [Δφ( f )])τi ,γi and (sin [Δφ( f )])τi ,γi were obtained as

(cos [Δφ( f )])τi ,γi =
∫

τi ,γi

cos [Δφ( f, t)] dt (8.9)

and
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(sin [Δφ( f )])τi ,γi =
∫

τi ,γi

sin [Δφ( f, t)] dt. (8.10)

Based on coefficients (8.9) and (8.10) the degree of coherence between the EEG
signals on the i th interval was estimated based on the value of σ( f )τi ,γi , calculated
as the amplitude of mutual wavelet spectrum.

σ( f )τi ,γi =

=
√

(cos [Δφ( f )])2τi ,γi
+ (sin [Δφ( f )])2τi ,γi

.

(8.11)

The σ( f )τi ,γi function takes the values from 0 to 1, containing the information
about the degree of phase coherence of the two signals x1(t) and x2(t) for the par-
ticular frequency. Thereat σ( f )τi ,γi = 0 implies that there is no phase coherence at
the current frequency, while for σ( f )τi ,γi > 0 coherence takes place.

Obtained values (8.11) were then averaged over M intervals and over frequency
bands (α and β). As the result, coefficients σ

α,β

per,bcg, defined the coherence between
EEG signals during perception (per) and rest-state activity (bcg) inα and β frequency
bands were analyzed.

σ
α,β

per,bcg = 1

M

M∑

i=1

∫

α,β

σ ( f )τi ,γi d f (8.12)

Finally, in order to estimate the stimulus-related activity changes in the the degree
of coherence, the differences Δσα,β = σ

α,β
per − σ

α,β

bcg were calculated for each pair of
EEG recordings.

In Fig. 8.7 box-and-whiskers diagrams correspond to the median difference
between σper and σbcg, calculated for the group of 12 subjects in the α (a) and β

(b) frequency bands. Symbol “*” defines the channel pairs for which the significant
change (p > 0.05) is observed. Links between such pairs are shown schematically.
The line width illustrates the mean value of Δσ (degree of the change of the cou-
pling strength between corresponded EEG traces caused by the processing of the
stimuli). One can see that in both α and β frequency bands, most channel pairs
demonstrate an increase of the coupling strength during the Necker cube observa-
tion, which coincides with the results of functional magnetic resonance imaging [44].
It also coincides with [73], where the increase of interaction between areas of the
visual cortex has been observed across the α and β frequency ranges. However, in
Refs. [10, 73] such stimulus-related activity has been associated with the frequency
band 10–30Hz included bothα andβ frequencies. Simultaneously, presented results,
similarly to [32, 33], reveal the differences in α and β activity. Namely, the difference
is observed in the structure of the links in these bands. To quantify these differences,
we demonstrate the sum of Δσ values related to each EEG channel. This coefficient
illustrates the change of each node’s weight (in our case, the corresponded brain
region) caused by the stimulus processing.
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Fig. 8.7 Group analysis of stimulus-related differences in inter-channel interactions. a α-band, b β-
band: box-and-whiskers diagrams showmedian of the difference between the degrees of coherence,
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histogram shows the sum change in the degree of interaction for each EEG channel; Schematic
visualization demonstrates the change in the degree of coherence by the width of line and excludes
the links, for which such change is judged as insignificant

The values Δσ are shown in Fig. 8.7 by the histograms. One can see that in the
α-band (Fig. 8.7a)Δσ is distributed homogeneously within the occipital and parietal
EEG channels. In the β-band (histogram in Fig. 8.7b), unlikely one can observe a
sharp increase of Δσ for occipital channel O2. It means that the alpha activity is
produced by the network of interconnected brain regions, with the links’ homoge-
neous structure, which is similar to the structure, associated with background neural
activity (but with the increased weights of the links). β-band activity is produced
by the network, where one can see the formation of the hub in the occipital area,
which plays key functional roles in inter-regional interactions. This result is in good
agreement with earlier work of Wróbel et al. [119] which describes the hypothesis
about the leading role of β-band oscillations in perception. The revealed impact of
the occipital area can be explained by the leading role of this area in the perception
of stimuli with different spatial orientation [107].

Having considered the stimulus-related change in the degree of coupling strength,
one can conclude: (i) processing of visual stimuli results in the increase of the degree
of coupling strength between EEG channels belonging to occipital and parietal lobes
both in α and β frequency bands; (ii) In the α-band interaction between all EEG
channels increases equally and one cannot extract the brain area where the increase
of the inter-region coupling is the most pronounced; (iii) In the β-band one can find
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Fig. 8.8 Multiscale
interaction between brain
rhythms in occipital and
parietal area. a Location of
EEG electrodes in occipital
and parietal brain lobes. b
Left: median of the alpha
rhythm energy, calculated
based on occipital (O) and
parietal (P) EEG
(∗p < 0.05); right: median
of the beta rhythm energy,
calculated based on occipital
(O) and parietal (P) EEG
(∗p < 0.05). c Mean energy
in the α and β bands,
calculated for each channel
during background state. d
Mean energy of α- and
β-bands, calculated for each
channel during perception.
Dashed lines show the mean
spectral energy, calculated in
1–30Hz frequency band 0.8
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occipital channel O2 which demonstrates a sharp increase of the coupling strength
with other EEG channels. Obtained results confirm the formation and coexistence of
different regimes of neuronal activity in different frequency bands. These regimes
are characterized by the different structure of the links between brain areas in the
occipital and parietal lobes.

Considering the ratio between the α- and β-band energy in these brain areas
during the rest-state, one can see that α-band energy is higher in the parietal area.
In contrast, the β-band energy prevails in the occipital part. In Fig. 8.8b box-and-
whiskers plot shows the median wavelet energy in the α and β frequency bands in
occipital (O) and parietal (P) areas (*p < 0.05). In Fig. 8.8c the values of wavelet
energy, characterizing generation of α- and β-rhythms during the rest state are shown
for each EEG channel (presented data are averaged over 12 subjects). In the rest-
state, despite the difference in the α- and β-band energy in different channels, the
difference between these rhythms’ energy is more pronounced. During the stimulus
processing situation is changed. Theβ-band energy in the occipital area (channels O1
and O2) increases. In the parietal area (channels P3, P4, Pz), α-band activity remains
more pronounced, but its power becomes much less than during the rest state (see
Fig. 8.8d). According to earlier EEG and functional magnetic resonance imaging
(fMRI) study, such differences in the neural dynamics of in parietal and occipital
area can be associated with the existence of “visual” areas in the occipital lobe and
“attentional” areas in the parietal region [53]. Taking into accountRef. [95],where the
stimulus-related generation of β-waves in the visual cortex has been observed, one
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can conclude that the occipital area first exhibits the excitation in the β-band and then
causes the increase of β-wave activity in the parietal region. Simultaneously, for each
channel (occipital and parietal), the increase of the β-band power is accompanied by
a decrease in the α-band power.

One can propose that in the neural ensembles, located in the vicinity of the cor-
responding electrodes, during the rest state, most of the neurons are involved in the
generation of α-band activity, while a much smaller amount of neurons are acting in
the β frequency range. In the occipital area, the neural ensemble generating β-band
activity is larger than in the parietal region, which can be caused by excitation of
the “visual” center by the visual information. During the perception of ambiguous
stimuli, the amount of visual information may grow. In this case, a large proportion
of the occipital neurons starts acting in the β-band. The α-band power in this region
starts decreasing (see Fig. 8.8d). According to the connectivity analysis, the occipital
ensembles play a leading role in the occipital-parietal network dynamics, leading
to increased β-band activity in the parietal area. An increase of β-band power in
occipital and parietal areas accompanies decreased α-band power in these regions.
Such changes in theα-band power is thereby observed in all EEG channels belonging
to occipital and parietal brain areas. This also causes increased coupling strengths
between the channels in these areas in the α-band.

8.3.2.3 Effect of the Stimulus Ambiguity of the Occipito-Parietal
Functional Interactions

The features of stimulus-related brain activity are known to depend on the parameters
of the stimuli. For Necker Cube, the difference in the time-frequency structure is
observed for different values of ambiguity a. For instance, in [68] perception of
the cubes with high ambiguity (a ∼ 0.5) induced a more pronounced increase of
the spectral energy above 30 Hz. Thus, the coupling strength between the regions
of the parieto-occipital brain network may also depend on the ambiguity. To verify
this hypothesis, the degree of interaction between the pairs of EEG channels was
compared during the perception of the Necker cubes with high ambiguity (HA)
(0.6 > I > 0.4) and low ambiguity (LA) (I > 0.8 or I < 0.2). Figure8.9 illustrates
differences ΔσHA−LA in beta (a) and alpha (b) frequency bands. One can see that in
the alpha bandmean value ofΔσHA−LA ismostly negative. This evidences that in this
band increase of image ambiguity results in a decrease of inter-channel interaction. In
the beta frequency band, some channel pairs are characterized by the negative value
of ΔσHA−LA, while for others ΔσHA−LA is positive. One can see that significant
difference ΔσHA−LA > 0 is observed for P3–P4, Pz–P4, P3–O2 channel pairs as
shown in the inserts in Fig. 8.9. This means that processing of the images with high
ambiguity increases human attention and, therefore, causes the increase of the neural
interactions in the parietal lobe, where “attentional” center is located [53].
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8.4 Visual Sensory Processing and the Human Factors

Cognitive brain function is usually affected by individual human physiological fea-
tures, i.e., the same type of human activity can be associated with different scenarios
of cognitive brain processes, depending on the motivation, alertness, health status,
weariness, etc. of the person [12, 18, 45, 117]. Therefore, along with the knowledge
of basic features of the brain activity in solving particular tasks, it is of great practical
importance to study the influence of the human factors.

It is known that visual information processing activates the occipital and pari-
etal cortex. Simultaneously, the visual perception is affected by the human factor,
such as motivation, alertness, attention, responsibility, health conditions, etc. [7].
The influence of attention on perception was studied using event-related poten-
tial (ERP) recordings [62] in electroencephalographic (EEG) or magnetoencephalo-
graphic (MEG) data by averaging over many EEG (or MEG) traces associated with
the perception of stimuli. Scientists often analyze visual attention using the ERP.
According to the Ref. [23], the specific brain response to a particular stimulus is too
small to be distinguished in a single EEG. Even though the findings based on the ERP
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are useful for identifying characteristic features of the brain activity during a long
experimental session, they are useless for the analysis of its variation in time. To study
howmotivation and attention affect alpha activity, Vázquez et al. [70] applied tempo-
ral spectral evolution technique. They discovered that increasing attention resulted
in a decrease in alpha-band power. Later, it was found that alpha-band activity was
related to anticipatory and temporal attention [14]. The suppression of alpha activity
was connected to sensory attention [50]. It was also shown that changes in attention
induced by special auditory stimuli could modulate alpha-band power [38].

In this section, we consider the influence of motivation and alertness on the visual
processing of the Necker cube stimuli, similarly with the Ref. [69]. Reference [69]
suggests that the brain may process visual stimuli in different ways (scenarios)
depending on attention, which, in turn, could be affected by the motivation of the
subject and the complexity of the task.

In line with the previous sections, we focus on the EEG analysis in the α-band (8–
12Hz) and β-band (20–30 Hz) before and during the presentation of each stimulus to
find appropriate criteria for the classification of each perception into one or another
scenario. If the perception of individual stimuli could be effectively classified in
different scenarios according to the attention, one would be able to identify the
ratio between the the occurrence of one or another scenario in real-time based on
the spectral properties of multichannel EEGs. The relationship between different
scenarioswould allowone to estimate the degree of alertness during visual perception
and analyze the effect of motivation and task complexity.

8.4.1 Different Scenarios of Visual Perception

Ten subjects participated in the experiment. During the experiment, the Necker cubes
with different contrasts were presented 400 times to each subject. EEG signals were
recorded by five electrodes (O1, O2, P3, P4, Pz), and subjected to the wavelet analysis.
The wavelet energy spectrum En( f, t) = √

Wn( f, t)2 was calculated for each EEG
channel Xn(t) in the frequency range f ∈ [1, 30]Hz. Here, Wn( f, t) is the complex-
valued wavelet coefficients calculated as

Wn( f, t) = √
f

t+4/ f∫

t−4/ f

Xn(t)ψ
∗( f, t)dt, (8.13)

where n = 1, . . . , N is the EEG channel number and * defines the complex conju-
gation. The mother wavelet function ψ( f, t) is the Morlet wavelet,

In Ref. [69], authors estimated the value of frequency fmax (t) corresponding
to the maximal energy in the wavelet spectrum for every moment of time. The
whole experimental series were split into Ntr 3-s trials associated with perception of
each stimulus. Each trial consisted of three subsequent segments: (I) before image
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Fig. 8.10 a The typical set of registered EEG traces. Different segments of the EEG recording
are named I, II, III, which correspond, respectively, to the 1-s time interval preceding the cube
presentation (before perception),∼1-s interval of the cube observation (perception), and 1-s interval
after the cube observation (after perception) and b The values of L I

α/L I I
α (triangles) and L I

β/L I I
β

(circles) illustrating the relation between the power of alpha and beta waves in intervals I and II
obtained by the statistical analysis of the 40-min experimental session of each of the ten subjects.
The horizontal dashed lines indicate threshold values defining a >40% decrease of alpha-activity
(line 1) and a>20% increase of beta-activity (line 2) used to identify different perception scenarios.
The solid red boxes highlight the subjects (2, 3, 9) following the first scenario. Other subjects are
associated with the second scenario

presentation, (II) during presentation, and (III) after presentation, as illustrated in
Fig. 8.10a. Then, every trial was split into Nδt = 15 time intervals of δt = 0.2 s long,
and its power spectrum was split into Nδ f = 15 bands of δ f = 0.2 Hz width. For
the considered time-frequency plane (t ∈ [0, 3] s, f ∈ [1, 30] Hz) the distribution of
frequency fmax corresponding to the maximum energy was calculated as follows

L( f, t) =
∑

Ntr

∑

NΔt

∑

NΔ f

γ, γ =
{
1, fmax (t) ∈ δ f ∧ t ∈ δt
0, otherwise.

(8.14)

In order to quantitatively characterize the distribution L( f, t), for each participant
the ratios L I

α/L I I
α and L I

β/L I I
β were calculated as

L I,I I
α,β =

∫

ΔtI,I I

∫

Δ fα,β

L( f ′, t ′)d f ′dt ′, (8.15)

where Δ fα,β is the range of alpha and beta activities and ΔtI,I I is the duration of
segments I and II.

Figure8.10 illustrates L I
α/L I I

α and L I
β/L I I

β in the group of 10 subjects, by circles
and triangles, respectively. One can see that the subjects can be divided into two
groups, according to two different scenarios of the perception process. Each subject
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Fig. 8.11 The distribution of the statistical measure L( f, t) calculated by Eq. (8.14) which indi-
cates the location of the maximal spectral component during the 40-min session for two subjects
demonstrating the a first and b second perception scenarios

was classified into one or another group based on a set of threshold values (dashed
lines in Fig. 8.11) defined by a >40% decrease in alpha activity (line 1) and a >20%
increase in beta activity (line 2). For the subjects 2, 3, and 9 L I

α/L I I
α and L I

β/L I I
β

satisfy the threshold values. These subjects were associated with the first scenario,
while other subjects belonged to the second scenario.

Figure8.11a and b show the typical distributions L( f, t) for the first (subject #9)
and the second (subject #7) perception scenarios, respectively. The first scenario
illustrated in Fig. 8.11a) is characterized by significantly low power of the 8–12
Hz oscillations (α-wave) during the cube observation (segment II) and relatively
high power of the 20–30 Hz oscillations (β-wave). The second scenario (Fig. 8.11b)
implies a strong contribution of theα-rhythm andmuch lower pronounced generation
of the β-rhythm during all segments, while the low-frequency δ-rhythm (1–4 Hz)
has low activity in segment II during the cube presentation.

8.4.2 Spectral Properties of the Different Scenarios

For the observed scenarios, the EEG signals were analyzed in three frequency bands:
Δ fδ = [1−4] Hz (δ-rhythm), Δ fα = [8−12] Hz (α-rhythm), and Δ fβ = [20−30]
Hz (β-rhythm). The EEG power spectrum was characterized by the location of the
dominant (most pronounced) spectral components. In particular, the first (maximal)
spectral component in the nth EEG channel occurred at frequency f n

1 (t) at which
the global maximum En( f n

1 (t), t) took place. Respectively, the second, third, . . . ,
M th spectral components appeared at frequencies f n

2,...,M(t), where En( f n
2,...,M(t), t)

exhibited subsequent local maxima.
Using the values f n

2,...,M(t) the EEG spectral properties were characterized by
spectral coefficients Fn

α,β,δ(t) calculated for each channel at every moment of time
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Fn
α,β,δ(t) =

M∑

j=1

Θn
α,β,δ( j, t), Θn

α,β,δ( j, t) =
{
1/j, if f n

j ∈ Δ fα,β,δ,

0, if f n
j /∈ Δ fα,β,δ.

(8.16)

The obtained spectral coefficients Fn
α,β,δ(t)were averaged over all channels and time

intervals for each segment (I, II, III) as follows

〈Fα,β,δ〉ΔtI,II,III = 1

N

N∑

n=1

∫

ΔtI,II,III

Fn
α,β,δ(t

′)dt ′. (8.17)

Then, for every subject the values of 〈Fα,β,δ〉ΔtI,II,III were averaged over K = 400
trials associated with individual perceptions:

〈Fα,β,δ〉ΔtI,II,III = 1

K

K∑

i=1

〈Fα,β,δ〉Δt i
I,II,III

, (8.18)

where Δt i
I , Δt i

II, Δt i
III are the time intervals of segments I, II, III, associated with the

i th perception event, and F defines the averaging over all presentations.
The obtained results are shown in Fig. 8.12a and b for group 1 and group 2,

respectively. The error bars define the standard deviation of the considered values
within all subjects in the group. One can see from Fig. 8.12a that the subjects of
group 1 exhibit a decrease in alpha activity from 0.81 ± 0.23SD in segment I to
0.36 ± 0.16SD in segment II and an increase in beta activity from 0.44 ± 0.22SD in
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segment I to 0.78 ± 0.21SD in segment II. According to the statistical analysis based
on paired t-test such changes are judged as significant (pα,β < 0.05) and marked by
stars in Fig. 8.12a. For the subjects in group 2 (Fig. 8.12b), no significant changes
were found in alpha and beta activity (pα = 0.23, pβ = 0.36). Instead, the statistical
analysis of 〈Fα〉ΔtI,II and 〈Fβ,〉ΔtI,II for each subject, based on a large number of image
perceptions, showed the existence of significant changes between the subjects in
group I. So, each subject in group I demonstrated pα,β-value less than 0.05, whereas
for the subjects in group II the pα value varied from 0.085 to 0.43 and pβ from 0.175
to 0.492.

8.4.3 Single-Trial Analysis

To analyze the effect of human factor on the type-1 or type-2 events, the additional
experiments were carried out. All subjects were divided into two groups (10 subjects
in each group) according to the degree of their motivation. The members of the first
group (GROUP I) were financially motivated and instructed to focus their attention
on every cube as much as possible until the experiment ended. For the participants
from this group, the experiments were arranged at the most convenient time for each
subject. In contrast, the secondgroupmembers (GROUPII)were unpaid volunteering
students and staff, subjected to experimental sessions at random times. They got the
task to press a button based only on their first impression. It was supposed that due
to the long duration of the session and high similarity of the cubes, the unmotivated
subjects would lose their attention since it was not a special requirement.

Similarly to the first stage of the experiment, all participants were subjected to
40-min sessions during which the Necker cube was presented about 800 times. The
number of type-1 and type-2 events was calculated according to the spectral proper-
ties described above. The results are shown in Fig. 8.13a where the colors mark the
areas containing dependencies of the percentage of type-1 events on the number of
cube presentations for subjects belonging to GROUP I (upper region) and GROUP
II (lower region). The first 500 presentations can be considered as transients charac-
terized by considerable fluctuations. After the transient process was accomplished,
the percentage of the events in each group remained constant. The histogram in
Fig. 8.13b show the percentage of type-1 events averaged over time, and the error
bars indicate the deviation of this value within each group. One can see that the per-
centage of type-1 events varied from 73% to 87% in GROUP I and from 47% to 77%
in GROUP II, and the averaged percentages were ∼81% and ∼62%, respectively.
These results demonstrated the experimental evidence that GROUP I, affected by
the financial motivation and the opportunity to choose the most convenient time for
the experiment, processed the visual object much more carefully than GROUP II.

To study how ambiguity affects perception, the additional experiment with ten
extra volunteers was carried out. Subjects participated in two 20-min sessions for
which the cubes with low and high ambiguity were presented. It was expected that
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high ambiguitywould increase the alertness so that the subject wouldmake a decision
more carefully.

The results of the analysis are presented in Fig. 8.14. Figure8.14a shows the per-
centage of type-1 events depending on the number of presentations. After some
transients, these dependences approach 30% and 50% for low and high ambigu-
ity, respectively. Figure8.14b shows the percentage of type-1 events generated by
the cubes with low and high ambiguity for all participants. The error bars indicate
the deviation of these values among all participants. The obtained results confirm
the hypothesis that an increase in cube ambiguity improves attention leading to an
increasing number of type-1 events.
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8.5 BCIs for the Control of Human Condition During
Sensory Processing Tasks

Summarizing the results of the experiments described above, one can see that human
alertness can vary during perception of bistable images depending on the motivation
level and the task complexity. The results also suggest that alertness can be estimated
by the ratio between the number of perception trials classified into type-1 and type-2
events, according to the EEG spectral properties. Thus, classifying perceptions into
one of the two types makes it possible to estimate how the alertness changes in time.

Latter underlies the brain-computer interface (BCI) for estimation and control of
human alertness. The experimental setup of such BCI is shown in Fig. 8.15.

BCI’s general aim is to repair or enhance human performance in solving different
tasks, including visual processing. They require the information exchange between
the brain and computer. The information coming from the brain to the computer
allows continuous monitoring of the brain state and generation of control commands.
The information coming back to the operator is used either by the operators for
their brain activity self-control or by computer to affect the brain directly. Such
an exchange of information between brain and computer is known as biological
feedback.

Biological feedback is a key component for different BCI. For instance, in neu-
roprosthetics, sensory feedback allows the user to “feel” rigidity and elasticity of
the object and effectively modulate a prosthesis’s grasping force. Along with motor-
related brain activity, feedback enables controlling psycho-physiological states, espe-
cially those associated with high mental functions.

In this section, we consider how feedback affects human visual attention during
the perception of ambiguous stimuli. We will follow the experimental paradigm
described in Ref. [66]. Reference [66] suggested that during a long experiment,
the subject’s attention weakened, and the audio signal might let them know that
attention decreased. One could expect that such feedback increased the mean level

Fig. 8.15 Schematical
illustration of the
experimental setup

O1 O2

P3 P4Pz

EEG recording

ALARM
(low attention)

auditory
feedback

evaluating
attention
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of attention during the experimental session. However, the result showed a rather
unexpected outcome. The feedback led to an enlargement of the time intervals with
a relatively high level of attention; however, the level of attention on these intervals
decreased.

8.5.1 Wavelet-Based Approach to Estimate Attention in BCI

The algorithm flowchart is schematically illustrated in Fig. 8.16. It includes six steps:

EEG acquisition
O2
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Fig. 8.16 Algorithm flowchart. a a typical set of EEG recordings from five channels (ti is the
starting time of i th presentation). b Wavelet energy spectrum calculation and typical fragment of
wavelet energy distribution during perception of i th stimulus. c Extracting spectral components and
typical dependence of main spectral components on time during the transition from background
EEG (ΔtI ) to the perception of the visual stimulus (ΔtI I ). Red and blue colors indicate α (red) and
β (blue) frequency bands, respectively. d Histogram showing the values of A and B calculated by
Eqs. (8.19) and (8.20) in time intervals ΔtI and ΔtI I . e Temporal evolution of the value I which
quantifies the degree of visual attention during an experimental session. The threshold value Ith = 0
is shown by the horizontal dashed line. f Logical condition for feedback control activation



8.5 BCIs for the Control of Human Condition During Sensory Processing Tasks 333

1. EEG acquisition. As mentioned above, the EEG signals were recorded by five
electrodes (O1, O2, P3, P4, Pz) with a 250-Hz sampling rate. The typical recording
set is shown in Fig. 8.16a. A vertical dashed line shows the starting time of the
i th image presentation in the right panel.

2. Time-frequency EEG analysis. We used the continuous wavelet transform [84].
The wavelet energy spectrum En( f, t) = √

Wn( f, t)2 was calculated for each
EEG channel Xn(t) in the f ∈ [1, 30]-Hz frequency range. Here, Wn( f, t) is the
complex-valued wavelet coefficients, n = 1, . . . , N is the EEG channel number.
Themotherwavelet functionwas the complexMorlet wavelet. Figure8.16c shows
a typical wavelet spectrum during visual stimulus representation.

3. Extracting spectral components. To follow the dynamics of the main spectral
components, one can extract the frequencies ( f1, . . . , f5) characterized by max-
imal values of wavelet energy E( f1), . . . , E( f5). According to recent works,
visual attention induces changes of the wavelet energy in the α (8–12 Hz) and β

(15–30 Hz) frequency bands in occipital and parietal areas. Therefore, one can
check whether f1, . . . , f5 belong to these bands. Figure8.16c shows the typical
time dependency of frequencies f1, . . . , f5 in the α and β frequency bands, dur-
ing the transition from background EEG (ΔtI ) to the stimulus perception (ΔtI I ).
Different colors indicate α (red) or β (blue) frequency bands.

4. Quantification of perceptual process. To quantify visual attention the EEG
spectral features we compared on 1-s intervals before and after the stimulus pre-
sentation. For this purpose, we calculated the values A1

i , A2
i , B1

i , B2
i during the

presentation of i th stimulus, which statistically described the location of the max-
imal spectral components using EEG data taken from all occipital and parietal
channels before and after the onset of image presentation, as follows:

A1,2
i =

N∑

n=1

∫

t∈Δt i
1,2

[
K∑

k=1

ξ n
k (t ′)dt ′

]

, ξ n(t) =
{
1/k, if f n

k ∈ Δ fα,

0, if f n
k /∈ Δ fα.

(8.19)

B1,2
i =

N∑

n=1

∫

t∈Δt i
1,2

[
K∑

k=1

ξ n
k (t ′)dt ′

]

, ξ n(t) =
{
1/k, if f n

k ∈ Δ fβ,

0, if f n
k /∈ Δ fβ.

(8.20)

Here, N = 5 is the number of EEG channels, f n
k is the location of kth maximal

spectral component, belonging to nth channel, K = 5 is the number of analyzed
spectral components, and Δt i

1,2 indicate the 1-s time intervals preceding and fol-
lowing the i th image presentation (see Fig. 8.16c). The histogram in Fig. 8.16d
shows typical A and B values calculated for each image presentation.

5. Assessment of subject’s attention. As described above, visual attention is asso-
ciated with the activation of an “attentional center” in the parietal cortex, which
operates at 15–30 Hz frequencies, i.e., increased visual attention activates the
β-waves in the parietal area. Also, visual stimuli processing strengthens connec-
tivity between occipital and parietal regions in α and β frequency bands, causing
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the growth of β-activity in the occipital cortex. Finally, visual attention causes
a percept-related increase in β-activity with an accompanying decrease in α-
activity. Thus, the attention during visual stimulus processing can be quantified
as

I (ti ) = (A
1
i − A

2
i ) + (B

2
i − B

1
i )

2
, (8.21)

where A
1,2
i and B

1,2
i define the values of A1,2

i and B1,2
i averaged over six preceding

events (i − 6, . . . , i). Such averaging is performed since the subject sometimes
exhibits low attention I during a single event, even while demonstrating overall
high attention during the whole session. One can see that I (ti ) reaches a max-
imal positive value, if the values in both brackets in Eq. (8.21) are high and

positive. It corresponds to a state of high attention when A
1
i > A

2
i and B

2
i > B

1
i ,

ii.e., α-activity decreases and β-activity increases. On the contrary, I (i) reaches

a minimal negative value when A
1
i < A

2
i and B

2
i < B

1
i . Finally, I (i) is zero when

changes in α- and β-activity are insignificant. Figure8.16e shows a typical dis-
tribution of attention I during the experiment.

6. Feedback activation. The value of attention I was calculated after each visual
stimulus was processed by the subject and compared to the threshold value Ith
(see Fig. 8.16f). Ith was set to zero, and the feedback was organized as a short
audio tone after the stimulus was processed, each time when I ≤ Ith. The subject
was previously instructed to associate this sound message with a low attention
state.

8.5.2 Testing the Feedback Effect

To test feedback effect, ten subjects were divided into two groups, five in each group.
The first group served as the control group, while the second group as the experimen-
tal group. For each subject, the experimental procedure consisted of two sessions.
The subjects from the control group took part in the first and second sessions without
feedback control, whereas the subjects from the experimental group participated in
the first session without feedback control and in the second session with feedback
control. The design of the experiment was similar to the one described in the previous
section.

Figure8.17a shows the change in the attention value I for one subject from the
control group during the first (red line) and second (blue line) experimental sessions.

At the first stage, the mean degree of attention during first (I I ) and second (I I I )
experimental sessions for every subject from the control (GROUP1) and experimental
(GROUP2) groups to find the differenceΔI = I I I − I I . Figure8.17b shows that the
mean difference between I I and I I I in the experimental group is positive (ΔI > 0),
while in the control group it is negative (ΔI < 0). To define whether the change
between I I and I I I is significant for these groups, we applied the Wilcoxon signed-
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Fig. 8.17 a Typical time evolution of the degree of visual attention I during first (red) and second
(blue) experimental sessions for one subject from the control group. b Changes in the mean value of
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I I obtained for the first and second sessions for subjects from control (white
box) and experimental (black box) groups. Data are shown as mean±SD (*p < 0.05)

rank test, usually used to compare two related short samples. As a result, we obtained
p = 0.345 and p = 0.51 for the experimental and control groups, respectively. This
evidences that the changes in the mean level of visual attention between the first and
second sessions in both groups are insignificant. This result was expected for the
control group because the subjects demonstrated more or less the same mean value
of I in two different sessions. The experimental group is rather surprising for the
experimental group. The reason for this kind of behavior can be understood if we
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suppose that the cognitive resource to maintain sustained attention for a long time is
limited so that the subject needs to rest to recover his/her resource.

Then time evolution of I was considered in detail. For each experimental session,
we extracted time intervals where I > 0. Such intervals are shown in Fig. 8.17c. One
can see that attention I oscillates with an average period of T ≈ 150 s. During this
time interval, the subject processes about 20 visual stimuli. For every such interval,
we calculated its length δ and the mean value of I as

γ (δ) =
∫

t ′∈δ

I (t ′)dt ′. (8.22)

The pair of values (δ, γ (δ)) characterize each extracted interval, as shown in
Fig. 8.17d and e, where we plot the two-parameter diagrams for subjects from the
control and experimental groups, respectively. The red and blue colors indicate the
values obtained during the first and second experimental sessions, respectively. We
remind the feedback was only applied in the second session for the experimental
group (blue dots in Fig. 8.17e). One can see that in the control group, there is no
difference between the distributions obtained in different sessions. Instead, in the
experimental group, there is a notable difference. While in the first session (without
feedback) in the experimental group, all points are distributed in the range of δ < 100
s (red dots), in the second session (feedback is applied), some points lie in the time
intervals of δ > 100 s. This means that the feedback control forces the subject to
focus his/her attention on the visual stimuli for a longer time than the first session
(without feedback).

Since the cognitive brain resource is limited, the occurrence of prolonged intervals
of sustained attention led to a decrease in the mean value of attention I calculated
for these intervals, as clearly seen from Fig. 8.17d, e. While in the control group, the
subjects sometimes exhibited high mean values of attention (γ (δ) > 100) in both
sessions (Fig. 8.17d), in the experimental group, the subjects had high mean values
of attention (γ (δ) > 100) in the first session only (without feedback), but not in
the second session with feedback (Fig. 8.17e). Nevertheless, the relative number of
time intervals (the ratio between red and blue dots), where the mean attention took
positive value (γ (δ) > 0), was higher in the experimental group than in the control
group. This means that the feedback control increased not only the duration of time
intervals of sustained attention but also the number of these intervals.

Finally, to statistically analyze changes in the values δ and γ (δ) calculated for
the first and second sessions in both groups, we extracted their maximal values δmax

I,I I
and γmax

I,I I obtained in the first and second sessions. Then, we calculated the ratios
between these maximal values in the first and in the second session, i.e. γmax

I I /γmax
I

and δmax
I I /δmax

I . The obtained results are presented in Fig. 8.17f as mean±SD for
subjects from the control (white box) and experimental (black box) groups. One can
see that the ratio δmax

I I /δmax
I for the subjects from the experimental group is higher

than that for the subjects from the control group (1.6 ± 0.52 versus 1.1 ± 0.51). This
evidences that feedback control increased the maximum duration of the state of high
attention for the subjects from the experimental group. The statistical analysis of
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the values δmax
I,I I obtained in the first and second sessions, performed via Wilcoxon

signed-rank test yielded p < 0.05 for the experimental and p = 0.893 for the control
group.

While the maximal duration of the time interval for which I > 0 increased in the
presence of feedback, the maximum mean value of I , which was achieved on this
interval, decreased. This decrease of attention is demonstrated via the ratioγmax

I I /γmax
I

in Fig. 8.17f. One can see that the ratio γmax
I I /γmax

I is equal to 0.71 ± 0.08 and 1.13 ±
0.44 for the experimental and control groups, respectively. TheWilcoxon signed-rank
test provided p < 0.05 for the experimental and p = 0.686 for the control group.

Thus, feedback led to an increase in time intervals. The subject maintained a
high level of sustained attention (length of the maximal interval was about 100 ± 20
s without feedback versus 150 ± 40 s with feedback). Simultaneously, the degree
of attention during these time intervals was 27% lower than in the group without
feedback. The obtained results evidence that the brain’s cognitive resource is limited,
and therefore when the subject is asked to provide high performance for a long time,
it switches to a “safe-mode” regime.

8.5.3 Cognitive Load Distribution via BCI

As mentioned above, BCIs may increase human performance in solving different
tasks. In this particular case, the “computer” controlled by human’s brain activity,
assumes the part of the cognitive or physical human load. The feedback information
acquired from sensors allows controlling the machine power following the load
subjected by the human.

Similarly to this “human-machine” interaction, a human-human interaction may
also enhance human performance. In this situation, the machine component of tradi-
tional BCI can be replaced by another human linked to the first one by an interface.
As a result, assistance would enhance the subject’s performance in managing a par-
ticular task. This would help a group of people subjected to a joint job task that
requires sustained attention and alertness. In everyday practice, this is a common
occurrence, for example, among pilots of a military [26], or a civil aircraft [92],
or a power plant operators, whose routine work includes continuous monitoring of
instrument readings that requires sustained alertness, and concentration [3, 46, 111].
A human-human interface could help them have effective interactions by estimating
andmonitoring each person’s physical conditions, particularly degree of alertness, to
distribute workloads among all participants according to their current physiological
status.

This section describes a BCI to heighten human-human interaction while per-
forming collective tasks requiring visual attention. BCI’s efficiency is estimated in
experimental sessions, where subjects participate in the prolonged task of classifica-
tion of ambiguous visual stimuli (Necker cubes) with different degrees of ambiguity.
Finally, we discussed the perspectives and limitations of the human-human interac-
tion via BCIs.
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8.5.3.1 Experimental Paradigm

Figure8.18 illustrates The scheme of BCI, which allows human-human cognitive
interaction.

Ambiguous visual stimuli with different degrees of ambiguity were consistently
presented to participants who had to classify them. The complexity of the task was
determined by the degree of ambiguity. As shown above, the higher the ambiguity,
the higher the observer’s attention. First, each stimuluswas simultaneously presented
to a pair of subjects (subject 1 and subject 2) using a special software running on the
corresponding client personal computers (PC1 for subject 1 and PC2 for subject 2).
Then, the subjects’ EEGs were simultaneously recorded and transmitted to the PCs.
The performance was estimated using stimulus-related brain response I (i) to every
presented ith stimulus (see the algorithm described in the previous section)

The brain responses I1(i) and I2(i) of subject 1 and subject 2 were transmitted
to the computational server for the comparative analysis. Depending on the result of
their comparison, the corresponding control command is sent to each PC to adjust
the stimuli ambiguity for each subject. For example, if I1(i) > I2(i), then subject 1
receives a stimulus with high ambiguity, while subject 2 perceives a stimulus with
low ambiguity. Thus, the feedback signal from server manages the task handout
depending on the stimuli complexity and the human performance.

The proposed BCI was tested in two experiments. During the first experiment
(EXP1), a pair of participants interact through a non-delayed coupling, i.e., task
complexity is distributed based on the instantaneous alertness level of participants;
the partner with higher alertness receives stimuli with high ambiguity (HA), while
another partner is tasked with low ambiguity stimuli (LA). Unlike EXP1, during the
second experiment (EXP2), there was a delay in the coupling between the partici-
pants. Thus, if the difference in degrees of alertness between them exceeded 10%,
the partner with higher alertness received HA stimuli. Both EXP1 and EXP2 were

EEG RECORDING

PC1 PC2

SERVER

SUBJECT1
LEADER (L)

SUBJECT2
ASSISTANT (A)

CONTROL OF 
TASK COMPLEXITY

ESTIMATION OF
COGNITIVE LOAD

EEG ANALYSIS

Fig. 8.18 Schematic illustration of human-human interaction
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preceded by the non-coupled session where both subjects perceived a whole set of
stimuli, i.e., ambiguity was randomly chosen from the range [0, 1], and the feedback
signal from the computational server was absent. This preliminary experimental ses-
sion measured the individual brain response level before the coupling was applied.

For each session, average performance 〈I 〉was calculated for each subject by aver-
aging his brain response I over 200 image presentations. According to 〈I 〉 estimated
during the preliminary non-coupled session, subjects in each pair were classified
as a leader (L) (subject with higher 〈I 〉) and an assistant (A) (subject with lower
〈I 〉). Then, 〈I 〉 of L and A obtained during non-coupled and coupled sessions are
calculated and compared.

8.5.3.2 Results of the Cognitive Load Distribution

The results of this comparison for the first experiment (EXP1) are presented in
Fig. 8.19a in the form of box-and-whiskers diagrams, which show average perfor-
mance 〈I 〉 for leaders and assistants in all pairs. According to the group analysis,
the interaction between subjects in EXP1 does not bring a significant effect on the
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Fig. 8.19 a Schematic illustration of human-human interaction; b Left, average leader’s brain
response 〈I 〉 during first experiment (EXP1): session 1 (S1) (no link between subjects, p = 0.938)
and session 2 (S2) (no delay in coupling between subjects, p = 0.965) (p = 0.67); right, average
assistant’s brain response 〈I 〉 during EXP1: S1 (no link between subjects, p = 0.402) and S2 (no
delay in coupling between subjects, p = 0.485) (p = 0.37). c Left, average leader’s brain response
〈I 〉 during second experiment (EXP2): S1 (no link between subjects, p = 0.131) and S2 (delayed
coupling between subjects, p = 0.889) (*p < 0.05); right, average assistant’s brain response 〈I 〉
during EXP2: S1 (no link between subjects, p = 0.099) and S2 (delayed coupling between subjects,
p = 0.169) (p = 0.06). d Left, mean brain response 〈I 〉 for pairs during EXP1: S1 (no link between
subjects, p = 0.979) and S2 (no delay in coupling between subjects, p = 0.847) (not significant,
n = 10, p = 0.48 by paired sample t-test); right, mean brain response 〈I 〉 for pairs during EXP1: S1
(no link between subjects, p = 0.108) and S2 (no delay in coupling between subjects, p = 0.622)
(*p < 0.05 by paired sample t-test). Medians (yellow bars), 25 ÷ 75 percentiles (box) and outlines
(whiskers) are shown
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Fig. 8.20 a Typical oscillations of the brain response value (I ) depending on the number of pre-
sented visual stimuli during the experimental session. b Detailed illustration of a single period of
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value (I ) depending on the number of presented visual stimuli during the perception of the images
of high degree of ambiguity (solid curve) and low degree of ambiguity (dashed curve)

performance of leaders and assistants. On the contrary, a considerable increase in
the leader’s alertness was observed in EXP2, where the task complexity is changed
with a delay (Fig. 8.19b). Simultaneously, the observed changes in the assistants’
alertness are insignificant. Such an increase in the leader’s performance causes an
enhancement of the overall pair’s performance (Fig. 8.19c).

To explain the obtained result, let us consider the evolution of the brain response
during an experimental session. The typical dependence I (i) reflects a change in
the amplitude of the brain response as the number of presented Necker cubes i is
increased. The result shows oscillations whose period varies from 15 to 40 presented
stimuli (see Fig. 8.20a). The brain response evolution can be associated with the
existence of the brain restoration state caused by the relaxation of the neural ensemble
(Fig. 8.20b). The degree of image ambiguity (complexity of the visual task) strongly
affects the brain response’s amplitude. Figure8.20c shows the average values of
the brain response calculated for the preliminary experimental session conducted
individually for each participant, where visual stimuli with a low degree of ambiguity
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have been presented. The base value is chosen when the observer is subjected to
ambiguous stimuli. One can see that increase in the degree of image ambiguity (an
increase in the task complexity) leads to a corresponding increase in the average
amplitude of the brain response 〈I 〉. According to our recent study [69], such a
change in the brain response is caused by an increase in alertness. In this case, theEEG
signals’ time-frequency structure exhibits significant changes for each subsequent i th
stimulus. The origin of these changes lies in the contribution ofα andβ brain rhythms.
From the viewpoint of neural dynamics, this means that large neural populations take
part in image classification [65]. As the image ambiguity grows, the average response
I (i) increases. Figure8.20d illustrates I (i) oscillations for the participant subjected
to HA and LA stimuli. In the case of high ambiguity, the oscillation amplitude
significantly increased (solid curve). The value of I (i) reached much higher values
and lower values than the values obtained in the case of low ambiguity. For low
ambiguity, I (i) oscillates near some average value with a smaller amplitude (dashed
curve). We suppose that for HA stimuli, neural ensemble in the brain are effectively
involved in perception and requires much more time to be restored. For LA stimuli,
visual perception requires less intensive neural participation. This reflects in the
lower amplitude of the response and less time of the restoration.

According to the above result, the performance increases if the image ambiguity
is adjusted according to the brain response. This can be implemented with the help
of biological feedback and the following algorithm: (i) in case of high operator
performance defined by a high value of the brain response baseline, the operator is
subjected to the stimuli with a high degree of ambiguity, i.e., the task complexity is
being increased with the corresponding cognitive load increment, (ii) as the cognitive
load increases, it leads to an augmentation in neuronal tiredness which immediately
causes a decrease in the brain response, (iii) in contrast, with a low brain response,
the operator is subjected to stimuli with a low degree of ambiguity, i.e., the level
of cognitive load decreases, and (iv) a decrease in cognitive load causes a faster
restoration. Thus, high performance has to be correlated with increased complexity
and restoration phase with low complexity defined by the I (i) oscillations frequency.

To check how this criterion is satisfied in two conducted experiments, EXP1
and EXP2, the corresponding experimental sessions are analyzed in detail. When
comparing the sub-plots in Fig. 8.21a, one can see that during EXP2, where the task
complexity is switched immediately as the amplitude of the brain response of one
subject (I1(i)) starts to exceed the brain response of the other subject (I2(i)), there are
a lot of short switchings for which the value of Δ < 5 presents stimuli smaller than
the period of I (i) oscillations. In this case, the dependencies I1(i) and I2(i) obtained
for both subjects do not demonstrate an antiphase mode. On the contrary, the values
of I (i) obtained for subjects in experiment EXP2 behave mostly in antiphase, and
switchings appear less. In Fig. 8.21b the box-and-whiskers diagram compares the
mean number of switchings 〈NT C 〉 averaged over the subjects during the experiments
EXP1 and EXP2. One can see that in experiment EXP2, the number of switchings
significantly decreases (significance is judged from p < 0.05 estimated via paired
t-test).
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Fig. 8.21 a The detailed illustration of the structure of experiments (EXP1) and (EXP2): solid
curves represent the brain response for both subjects (I ), dashed lines, marked as (HA) and (LA)
indicate the two types of visual tasks, associated with high and low complexity, solid lines appeared
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outlines (whiskers) are shown. c Distribution of time intervals between switches Δ calculated by
taking into account 4 ranges: rapid switches (1–4 units); medium switches (5–10 units); optimal
switches (11–20 units); long switches (>20 units)

One can surmise that in EXP1, the multiple unnecessary spontaneous switch-
ings, caused by low-frequency fluctuations of I (i), interfere with an antiphase mode
between oscillations of the values I1 and I2 of the leader and assistant in the pair.
Unlike experiment EXP1, during experiment EXP2, such switchings appear more
scarcely. The interval Δ between two successive switchings matches the period of
the I (i) oscillations, which is estimated to vary from 15 to 40 stimuli presenta-
tions. For both experiments, the intervals distribution is calculated for Δ ∈ [0, 40]
and compared (see Fig. 8.21c). This distribution shows a significant number of rapid
switches (<5 presented cubes) observed during EXP1, whereas medium (5–10 pre-
sented cubes) and optimal (11–20 presented cubes) intervals between the switches
dominate in EXP2. Considering that the period of I (i) oscillations appears in the
same range, we can conclude that the switching regime in experiment EXP2 mostly
satisfies the criteria described above, leading to an increase in performance.
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8.5.3.3 Role of the Human Condition in BCI

The possibility of estimating and controlling the human psychophysiological condi-
tion via a brain-computer interface is of significant fundamental and practical interest
[8]. In this context, the estimation and control of such human factor as alertness is
essential [51, 57, 61]. Alertness is an active attention state marked by high sensory
awareness, such as being watchful and ready for any potential danger or emergency
or responding to it fast. The neurophysiological studies showpeople who have to be
alerted during their jobs, such as air traffic controllers or pilots, often have trouble
maintaining their alertness. In some situations, people use drugs to increase their
attention, but a safer and more effective way is to use BCI to improve the ability to
maintain alertness. Such BCI can give rise to the development of training systems,
in particular, for children with attention deficit hyperactivity disorder [40, 57], as
well as assistant systems, which allow controlling the attention during long-lasting
job tasks. Moreover, they can be used for the development of BCI for completely
paralyzed people [39, 47].

A core feature of such type of BCI is the possibility to objectively monitor the
degree of human attention at any time point based on the analysis of neurophysi-
ological data, e.g., multichannel EEG using different approaches, such as artificial
neural networks [58], vector machines [110] and time-frequency analysis [69]. These
techniques allow estimating changes in the degree of alertness in real-time during
one experimental session.

In this regard, we have previously shown that the degree of alertness can be
estimated in real-time based on changes in the time-frequency structure of human
EEG [69]. We have also demonstrated that the degree of alertness can be controlled
by biological feedback. Based on the obtained results, here we study the possibility
to improve human-human interaction by sharing cognitive load based on detecting
and comparing alertness of interacting people in real-time.

It should be noted that human-human interaction has recently become a very
hot topic in neuroscience, physics, and IT-technologies. Recently, the possibility
of human-human interaction via a brain-to-brain interface was performed in a way
where motor information registered in the cortical region was transmitted to the
motor cortex region of another subject with the help of brain stimulation. Such
possibility was first demonstrated by Pais-viera et al. [81] in rats. One year later,
human-human interactions have been considered by Rao et al. [88], who proposed
a noninvasive interface that combined EEG with transcranial magnetic stimulation
(TMS) for delivering information to the brain. Their brain-to-brain interface detected
motor imagery in EEG signals recorded from one subject (the “sender”) and trans-
mitted this information over the Internet to the motor cortex region of the other
subject (the “receiver”). The brain-to-brain interaction was also implemented in the
form of human-animal interaction [123], where the human volunteer’s intention was
translated to stimulate a rat’s brain motor area responsible for the tail movement.
Another type of the brain-to-brain interface was demonstrated by Mashat et al. [71]
in a closed-loop form, where the intention signal from one subject (“sender”) was
recognized using EEG and sent out to trigger transcranial magnetic stimulation of the
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other subject (“receiver”) to induce hand motion; meanwhile, transcranial magnetic
stimulation resulted in a significant change in the motor evoked potentials recorded
by electromyography of the receiver’s arm, which triggered functional electrical
stimulation applied to the sender’s arm and generated hand motion.

Although these studies provided experimental evidence of the information trans-
mission between brains, they did not demonstrate the possibility of improving the
performance of a “sender” and a “receiver”. The control command was translated to
the receiver’s brain in any case, not considering its willingness to perform an action.
In other words, previously proposed systems did not take into account the brain
states of interacting people. Instead, in our study, we analyze and compare human
brain states as a core feature of the human-human interaction. We demonstrate that
such type of human-human interaction improves human performance in tasks that
require sustained attention, in particular, image classification, which perceiving con-
secutively presented ambiguous stimuli. At the same time, possible applications of
the proposed BCI are widespread. In any type of human-human interaction aimed
to increase performance, the cognitive or physical load is distributed unequally over
participants depending on their current psychophysiological conditions.

References

1. J. Kornmeier, M. Pfäffle, M. Bach, Necker cube: stimulus-related (low-level) and percept-
related (high-level) EEG signatures early in occipital cortex. J. Vis. 11(9), 12 (2011)

2. K. Anderson,M. Ding, Attentional modulation of the somatosensorymu rhythm. Neuroscience
180, 165–180 (2011)

3. T.l. Baker, S.C. Campbell, K.D. Linder, M.C. Moore-Ede, Control-room operator alertness
and performance in nuclear power plants. Report EPRI-NP–6748 United States vol. 23 no. 13
(1990)

4. A. Bandrivskyy, A. Bernjak, P.McClintock, A. Stefanovska,Wavelet phase coherence analysis:
application to skin temperature and blood flow. Cardiovasc. Eng.: Int. J. 4(1), 89–93 (2004)

5. M. Bauer, S. Kennett, J. Driver, Attentional selection of location and modality in vision and
touchmodulates low-frequency activity in associated sensory cortices. J. Neurophysiol. 107(9),
2342–2351 (2012)

6. T.J. Baumgarten, A. Schnitzler, J. Lange, Prestimulus alpha power influences tactile temporal
perceptual discrimination and confidence in decisions. Cereb. Cortex 26(3), 891–903 (2014)

7. A.L. Beer, B. Röder, Attending to visual or auditory motion affects perception within and
across modalities: an event-related potential study. Eur. J. Neurosci. 21(4), 1116–1130 (2005)

8. G. Borghini, P. Aricò, G. Di Flumeri, G. Cartocci, A. Colosimo, S. Bonelli, A. Golfetti, J.P.
Imbert, G. Granger, R. Benhacene, S. Pozzi, F. Babiloni, Eeg-based cognitive control behaviour
assessment: an ecological study with professional air traffic controllers. Sci. Rep. 7(1), 547
(2017)

9. A.W. de Borst, A.T. Sack, B.M. Jansma, F. Esposito, F. De Martino, G. Valente, A. Roebroeck,
F. Di Salle, R. Goebel, E. Formisano, Integration of what and where in frontal cortex during
visual imagery of scenes. Neuroimage 60(1), 47–58 (2012)

10. E.A. Buffalo, P. Fries, R. Landman, T.J. Buschman, R. Desimone, Laminar differences in
gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. 108(27), 11262–
11267 (2011)

11. T.J. Buschman, E.K. Miller, Top-down versus bottom-up control of attention in the prefrontal
and posterior parietal cortices. Science 315(5820), 1860–1862 (2007)



References 345

12. R.D. Calcott, E.T. Berkman, Neural correlates of attentional flexibility during approach and
avoidance motivation. PloS One 10(5), e0127,203 (2015)

13. R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger,
N.M. Barbaro, R.T. Knight, High gamma power is phase-locked to theta oscillations in human
neocortex. Science 313(5793), 1626–1628 (2006)

14. J. Carp, R.J. Compton, Alpha power is influenced by performance errors. Psychophysiology
46(2), 336–343 (2009)

15. G.B. Chand, M. Dhamala, The salience network dynamics in perceptual decision-making.
Neuroimage 134, 85–93 (2016)

16. G.B. Chand, M. Dhamala, Interactions between the anterior cingulate-insula network and the
fronto-parietal network during perceptual decision-making. Neuroimage 152, 381–389 (2017)

17. M.S. Clayton, N. Yeung, R.C. Kadosh, The roles of cortical oscillations in sustained attention.
Trends Cognit. Sci. 19(4), 188–195 (2015)

18. B. Clemens, M. Zvyagintsev, A. Sack, A. Heinecke, K. Willmes, W. Sturm, Revealing the
functional neuroanatomy of intrinsic alertness using fmri: methodological peculiarities. PloS
One 6(9), e25,453 (2011)

19. M.X. Cohen, S. Van Gaal, Dynamic interactions between large-scale brain networks predict
behavioral adaptation after perceptual errors. Cereb. Cortex 23(5), 1061–1072 (2013)

20. E.N. Davison, K.J. Schlesinger, D.S. Bassett, M.E. Lynall, M.B. Miller, S.T. Grafton, J.M.
Carlson, Brain network adaptability across task states. PLoS Comput. Biol. 11(1), e1004,029
(2015)

21. R.N. Denison, W.T. Adler, M. Carrasco, W.J. Ma, Humans incorporate attention-dependent
uncertainty into perceptual decisions and confidence. Proc. Natl. Acad. Sci. 115(43), 11090–
11095 (2018)

22. N.M. Dotson, R.F. Salazar, C.M. Gray, Frontoparietal correlation dynamics reveal interplay
between integration and segregation during visual working memory. J. Neurosci. 34(41),
13600–13613 (2014)

23. M. Eimer, sensory gating as a mechanism for visuospatial orienting: electrophysiological evi-
dence from trial-by-trial cuing experiments. Percept. & Psychophys. 55(6), 667–675 (1994)

24. A.K. Engel, P. Fries, Beta-band oscillations signalling the status quo? Curr. Opin. Neurobiol.
20(2), 156–165 (2010)

25. T. Ergenoglu, T. Demiralp, Z. Bayraktaroglu, M. Ergen, H. Beydagi, Y. Uresin, Alpha rhythm
of the eegmodulates visual detection performance in humans. Cogn. Brain Res. 20(3), 376–383
(2004)

26. A. Estrada, A.M. Kelley, C.M. Webb, J.R. Athy, J.S. Crowley, Modafinil as a replacement for
dextroamphetamine for sustaining alertness in military helicopter pilots. Aviat Space Environ,
Med. 83(6), 556–64 (2012)

27. K. Finc, K. Bonna, M. Lewandowska, T. Wolak, J. Nikadon, J. Dreszer, W. Duch, S. Kühn,
Transition of the functional brain network related to increasing cognitive demands. Hum. Brain
Mapp. 38(7), 3659–3674 (2017)

28. J.J. Foxe, G.V. Simpson, Flow of activation from v1 to frontal cortex in humans. Exp. Brain
Res. 142(1), 139–150 (2002)

29. J.J. Foxe, A.C. Snyder, The role of alpha-band brain oscillations as a sensory suppression
mechanism during selective attention. Front. Psychol. 2, 154 (2011)

30. P. Fries, Rhythms for cognition: communication through coherence. Neuron 88(1), 220–235
(2015)

31. M. Gola, M. Magnuski, I. Szumska, A. Wróbel, Eeg beta band activity is related to attention
and attentional deficits in the visual performance of elderly subjects. Int. J. Psychophysiol.
89(3), 334–341 (2013)

32. G.G. Gregoriou, S. Paneri, P. Sapountzis, Oscillatory synchrony as a mechanism of attentional
processing. Brain Res. 1626, 165–182 (2015)

33. S. Haegens, H. Cousijn, G. Wallis, P.J. Harrison, A.C. Nobre, Inter-and intra-individual vari-
ability in alpha peak frequency. Neuroimage 92, 46–55 (2014)



346 8 Analysis of Visual Sensory Processing in the Brain …

34. T.D. Hanks, C. Summerfield, Perceptual decision making in rodents, monkeys, and humans.
Neuron 93(1), 15–31 (2017)

35. S. Hanslmayr, A. Aslan, T. Staudigl, W. Klimesch, C.S. Herrmann, K.H. Bäuml, Prestimulus
oscillations predict visual perception performance between and within subjects. Neuroimage
37(4), 1465–1473 (2007)

36. H.R. Heekeren, S. Marrett, P.A. Bandettini, L.G. Ungerleider, A general mechanism for per-
ceptual decision-making in the human brain. Nature 431(7010), 859 (2004)

37. R.F. Helfrich, M. Huang, G. Wilson, R.T. Knight, Prefrontal cortex modulates posterior alpha
oscillations during top-down guided visual perception. Proc. Natl. Acad. Sci. 114(35), 9457–
9462 (2017)

38. K.T.Hill, L.M.Miller, Auditory attentional control and selection during cocktail party listening.
Cereb. Cortex 20(3), 583–590 (2010)

39. N.J. Hill, B. Schlkopf, An online brain computer interface based on shifting attention to con-
current streams of auditory stimuli. J. Neural Eng. 9(2), 026,011 (2012)

40. B. Hillard, A.S. El-Baz, L. Sears, A. Tasman, E.M. Sokhadze, Neurofeedback training aimed
to improve focused attention and alertness in children with adhd: a study of relative power of
eeg rhythms using custom-made software application. Clin. EEG Neurosci. 44(3), 193–202
(2013)

41. A.E. Hramov, N.S. Frolov, V.A. Maksimenko, V.V. Makarov, A.A. Koronovskii, J. Garcia-
Prieto, L.F. Antón-Toro, F. Maestú, A.N. Pisarchik, Artificial neural network detects human
uncertainty. Chaos: Interdis. J. Nonlinear Sci. 28(3), 033,607 (2018)

42. A.E. Hramov, A.A. Koronovskii, V.A. Makarov, A.N. Pavlov, E. Sitnikova, Wavelets in Neu-
roscience (Springer, Berlin, 2016)

43. A.E. Hramov, V.A.Maksimenko, S.V. Pchelintseva, A.E. Runnova, V.V. Grubov, V.Y.Musatov,
M.O. Zhuravlev, A.A. Koronovskii, A.N. Pisarchik, Classifying the perceptual interpretations
of a bistable image using eeg and artificial neural networks. Front. Neurosci. 11, 674 (2017)

44. I. Indovina, E.Macaluso, Occipital-parietal interactions during shifts of exogenous visuospatial
attention: trial-dependent changes of effective connectivity. Magn. Reson. Imaging 22(10),
1477–1486 (2004)

45. M. Ingre, W. Van Leeuwen, T. Klemets, C. Ullvetter, S. Hough, G. Kecklund, D. Karlsson, T.
Åkerstedt, Validating and extending the three process model of alertness in airline operations.
PloS One 9(10), e108,679 (2014)

46. R.C. Jensen, Alertness-supporting activities for control room operators in automated industrial
plant. Hum. Factors Ergon. Soc. Ann. Meet. Proc. 43(12), 752–756 (1999)

47. J. Jin, H. Zhang, I. Daly, X. Wang, A. Cichocki, An improved p300 pattern in bci to catch users
attention. J. Neural Eng. 14(3), 036,001 (2017)

48. C. Kayser, R.A. Ince, S. Panzeri, Analysis of slow (theta) oscillations as a potential temporal
reference frame for information coding in sensory cortices. PLoS Comput. Biol. 8(10) (2012)

49. S.P. Kelly, R.G. O’Connell, Internal and external influences on the rate of sensory evidence
accumulation in the human brain. J. Neurosci. 33(50), 19434–19441 (2013)

50. W. Klimesch, Alpha-band oscillations, attention, and controlled access to stored information.
Trends Cogn. Sci. 16(12), 606–617 (2012)

51. L.W. Ko, O. Komarov,W.D. Hairston, T.P. Jung, C.T. Lin, Sustained attention in real classroom
settings: an eeg study. Front. Hum. Neurosci. 11, 388 (2017)

52. J. Kornmeier, E. Friedel, M. Wittmann, H. Atmanspacher, Eeg correlates of cognitive time
scales in the necker-zeno model for bistable perception. Conscious. Cogn. 53, 136–150 (2017)

53. H. Laufs, J.L. Holt, R. Elfont, M. Krams, J.S. Paul, K. Krakow, A. Kleinschmidt, Where the
bold signal goes when alpha eeg leaves. Neuroimage 31(4), 1408–1418 (2006)

54. M. Le Van Quyen, J. Foucher, J.P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie, F.J. Varela,
Comparison of hilbert transform and wavelet methods for the analysis of neuronal synchrony.
J. Neurosci. Methods 111(2), 83–98 (2001)

55. T.G. Lee, M. D’Esposito, The dynamic nature of top-down signals originating from prefrontal
cortex: a combined fmri-tms study. J. Neurosci. 32(44), 15458–15466 (2012)



References 347

56. J. Li, J. Lim, Y. Chen, K. Wong, N. Thakor, A. Bezerianos, Y. Sun, Mid-task break improves
global integration of functional connectivity in lower alpha band. Front. Hum. Neurosci. 10,
304 (2016)

57. C.G. Lim, T.S. Lee, C. Guan, D.S.S. Fung, Y. Zhao, S.S.W. Teng, H. Zhang, K.R.R. Krish-
nan, A brain-computer interface based attention training program for treating attention deficit
hyperactivity disorder. PLoS ONE 7(10), 1–8 (2012)

58. C. Lin, L. Ko, I. Chung, T.-Y. Huang, Y. Chen, T. Jung, S. Liang, Adaptive eeg-based alertness
estimation systemby using ica-based fuzzy neural networks. IEEETrans. Circuits Syst. I Regul.
Pap. 53(11), 2469–2476 (2006)

59. K. Linkenkaer-Hansen, V.V. Nikulin, S. Palva, R.J. Ilmoniemi, J.M. Palva, Prestimulus oscil-
lations enhance psychophysical performance in humans. J. Neurosci. 24(45), 10186–10190
(2004)

60. J.E. Lisman, O. Jensen, The theta-gamma neural code. Neuron 77(6), 1002–1016 (2013)
61. N.H. Liu, C.Y. Chiang, H.C. Chu, Recognizing the degree of human attention using eeg signals

from mobile sensors. Sensors (Basel) 13(8), 10273–10286 (2013)
62. S.J. Luck, G.F. Woodman, E.K. Vogel, Event-related potential studies of attention. Trends

Cogn. Sci. 4(11), 432–440 (2000)
63. V.A. Maksimenko, N.S. Frolov, A.E. Hramov, A.E. Runnova, V.V. Grubov, J. Kurths, A.N.

Pisarchik, Neural interactions in a spatially-distributed cortical network during perceptual
decision-making. Front. Behav. Neurosci. 13, 220 (2019)

64. V.A. Maksimenko, A. Kuc, N.S. Frolov, M.V. Khramova, A.N. Pisarchik, A.E. Hramov, Disso-
ciating cognitive processes during ambiguous information processing in perceptual decision-
making. Front. Behav. Neurosci. 14 (2020)

65. V.A. Maksimenko, A. Lüttjohann, V.V. Makarov, M.V. Goremyko, A.A. Koronovskii, V.
Nedaivozov, A.E. Runnova, G. van Luijtelaar, A.E. Hramov, S. Boccaletti, Macroscopic and
microscopic spectral properties of brain networks during local and global synchronization.
Phys. Rev. E 96(1), 012,316 (2017)

66. V.A. Maksimenko, A. Pavlov, A.E. Runnova, V. Nedaivozov, V. Grubov, A. Koronovslii, S.V.
Pchelintseva, E. Pitsik, A.N. Pisarchik, A.E. Hramov, Nonlinear analysis of brain activity,
associated with motor action and motor imaginary in untrained subjects. Nonlinear Dyn. 91(4),
2803–2817 (2018)

67. V.A. Maksimenko, A.E. Runnova, N.S. Frolov, V.V. Makarov, V. Nedaivozov, A.A.
Koronovskii, A. Pisarchik, A.E. Hramov,Multiscale neural connectivity during human sensory
processing in the brain. Phys. Rev. E 97(5), 052,405 (2018)

68. Maksimenko, V.A., Runnova, A.E., Zhuravlev, M.O., Makarov, V.V., Nedayvozov, V., Grubov,
V.V., Pchelintceva, S.V., Hramov, A.E., Pisarchik, A.N.: Visual perception affected by moti-
vation and alertness controlled by a noninvasive brain-computer interface. PloS one 12(12),
e0188,700 (2017)

69. V.A.Maksimenko,A.E.Runnova,M.O.Zhuravlev,V.V.Makarov,V.Nedayvozov,V.V.Grubov,
S.V. Pchelintceva, A.E. Hramov, A.N. Pisarchik, Visual perception affected by motivation and
alertness controlled by a noninvasive brain-computer interface. PLoSONE 12(12), 1–20 (2017)

70. M.V. Marrufo, E. Vaquero, M.J. Cardoso, C.M. Gomez, Temporal evolution of α and β bands
during visual spatial attention. Cogn. Brain Res. 12(2), 315–320 (2001)

71. M.E.M.Mashat,G. Li,D. Zhang,Human-to-human closed-loop control based on brain-to-brain
interface and muscle-to-muscle interface. Sci. Rep. 7(1), 11,001 (2017)

72. B. Mathes, K. Khalaidovski, C. Schmiedt-Fehr, C. Basar-Eroglu, Frontal theta activity is pro-
nounced during illusory perception. Int. J. Psychophysiol. 94(3), 445–454 (2014)

73. G. Michalareas, J. Vezoli, S. Van Pelt, J.M. Schoffelen, H. Kennedy, P. Fries, Alpha-beta and
gamma rhythms subserve feedback and feedforward influences among human visual cortical
areas. Neuron 89(2), 384–397 (2016)

74. N. Miodrag, R.M. Hodapp, Chronic stress and its implications on health among families of
children with intellectual and developmental disabilities (I/DD), in International Review of
Research in Developmental Disabilities, vol. 41 (Elsevier, 2011), pp. 127–161



348 8 Analysis of Visual Sensory Processing in the Brain …

75. S. Molholm, W. Ritter, M.M. Murray, D.C. Javitt, C.E. Schroeder, J.J. Foxe, Multisensory
auditory-visual interactions during early sensory processing in humans: a high-density electri-
cal mapping study. Cogn. Brain Res. 14(1), 115–128 (2002)

76. P. Mostert, P. Kok, F.P. De Lange, Dissociating sensory from decision processes in human
perceptual decision making. Sci. Rep. 5, 18,253 (2015)

77. E. Niedermeyer, F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applica-
tions, and Related Fields, Nonlinear Dynamics (Lippincott Williams &Wilkins, Philadelphia,
2014)

78. M. Okazaki, Y. Kaneko, M. Yumoto, K. Arima, Perceptual change in response to a bistable
picture increases neuromagnetic beta-band activities. Neurosci. Res. 61(3), 319–328 (2008)

79. R. Oostenveld, P. Fries, E.Maris, J.M. Schoffelen, Fieldtrip: open source software for advanced
analysis of meg, eeg, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011
(2011)

80. G. Ouyang, X. Li, C. Dang, D.A. Richards, Using recurrence plot for determinism analysis of
eeg recordings in genetic absence epilepsy rats. Clin. Neurophysiol. 119(8), 1747–1755 (2008)

81. M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, M.A.L. Nicolelis, A brain-to-brain interface
for real-time sharing of sensorimotor information. Sci. Rep. 3, 1319 EP – (2013)

82. G. Park, M.W. Vasey, G. Kim, D.D. Hu, J.F. Thayer, Trait anxiety is associated with negative
interpretations when resolving valence ambiguity of surprised faces. Front. Psychol. 7, 1164
(2016)

83. E.L. Parks, D.J.Madden, Brain connectivity and visual attention. Brain Connect. 3(4), 317–338
(2013)

84. A.N. Pavlov, A.E. Hramov, A.A. Koronovskii, Y.E. Sitnikova, V.A. Makarov, A.A. Ovchin-
nikov, Wavelet analysis in neurodynamics. Phys. Usp. 55(9), 845–875 (2012)

85. G. Pfurtscheller, C. Neuper, W. Mohl, Event-related desynchronization (erd) during visual
processing. Int. J. Psychophysiol. 16(2–3), 147–153 (1994)

86. M.G. Philiastides, P. Sajda, Temporal characterization of the neural correlates of perceptual
decision making in the human brain. Cereb. Cortex 16(4), 509–518 (2005)

87. M.A. Pitts, J. Britz, Insights from intermittent binocular rivalry and eeg. Front. Hum. Neurosci.
5, 107 (2011)

88. R.P.N. Rao, A. Stocco, M. Bryan, D. Sarma, T.M. Youngquist, J. Wu, C.S. Prat, A direct
brain-to-brain interface in humans. PLoS ONE 9(11), 1–12 (2014)

89. M.D. Rosenberg, E.S. Finn, D. Scheinost, X. Papademetris, X. Shen, R.T. Constable, M.M.
Chun, A neuromarker of sustained attention from whole-brain functional connectivity. Nat.
Neurosci. 19(1), 165 (2016)

90. F. Roux, P.J. Uhlhaas, Working memory and neural oscillations: alpha-gamma versus theta-
gamma codes for distinct wm information? Trends Cogn. Sci. 18(1), 16–25 (2014)

91. V. Sakkalis, Review of advanced techniques for the estimation of brain connectivity measured
with eeg/meg. Comput. Biol. Med. 41(12), 1110–1117 (2011)

92. M. Sallinen,M. Sihvola, S. Puttonen, K. Ketola, A. Tuori,M.Härmä, G. Kecklund, T. Akersted,
Sleep, alertness and alertness management among commercial airline pilots on short-haul and
long-haul flights. Accid. Anal. Prev. 98(Supplement C), 320–329 (2017)

93. P. Sauseng,W.Klimesch,W. Stadler,M. Schabus,M.Doppelmayr, S. Hanslmayr,W.R. Gruber,
N. Birbaumer, A shift of visual spatial attention is selectively associated with human eeg alpha
activity. Eur. J. Neurosci. 22(11), 2917–2926 (2005)

94. K. Schiecke, M. Wacker, F. Benninger, M. Feucht, L. Leistritz, H. Witte, Matching pursuit-
based time-variant bispectral analysis and its application to biomedical signals. IEEE Trans.
Biomed. Eng. 62(8), 1937–1948 (2015)

95. J.T. Schmiedt, A. Maier, P. Fries, R.C. Saunders, D.A. Leopold, M.C. Schmid, Beta oscillation
dynamics in extrastriate cortex after removal of primary visual cortex. J. Neurosci. 34(35),
11857–11864 (2014)

96. L. Scocchia, M. Valsecchi, J. Triesch, Top-down influences on ambiguous perception: the role
of stable and transient states of the observer. Front. Hum. Neurosci. 8, 979 (2014)



References 349

97. M. Scolari, K.N. Seidl-Rathkopf, S. Kastner, Functions of the human frontoparietal attention
network: Evidence from neuroimaging. Curr. Opin. Behav. Sci. 1, 32–39 (2015)

98. P. Sehatpour, S.Molholm, T.H. Schwartz, J.R.Mahoney, A.D.Mehta, D.C. Javitt, P.K. Stanton,
J.J. Foxe, A human intracranial study of long-range oscillatory coherence across a frontal-
occipital-hippocampal brain network during visual object processing. Proc. Natl. Acad. Sci.
105(11), 4399–4404 (2008)

99. K.K. Sellers, C. Yu, Z.C. Zhou, I. Stitt, Y. Li, S. Radtke-Schuller, S. Alagapan, F. Fröhlich,
Oscillatory dynamics in the frontoparietal attention network during sustained attention in the
ferret. Cell Rep. 16(11), 2864–2874 (2016)
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Chapter 9
Analysis and Real-Time Classification of
Motor-Related EEG and MEG Patterns

Abstract This chapter describeswavelet analysis of themotor-related cortical activ-
ity. First, it introduced real and mental motor activity in the young and the middle-
aged healthy subjects. The real motor acts, or motor execution (ME), enables inter-
action with the environment and induces the motor-related changes in 8–12 Hz and
15–30Hzwavelet power in themotor cortex.Thementalmotor acts, ormotor imagery
(MI), did not include muscle control but may have a motor-planning stage, similar to
ME. Detecting the ME and MI brain states underlies the brain-computer interfaces
(BCI) for motor control. The ME-BCIs can be used to control exoskeletons and
robots. The MI-based BCIs may detect the motor intentions in the paralyzed patients
to recover their motor abilities. Second, we described two types of motor imagery:
kinesthetic and visual. Visual imagery (VI) corresponds to the self-visualization of
the subject moving a limb that does not require special training. Kinesthetic imagery
(KI) is the feeling of muscle movement that can only be realized by athletes or spe-
cially trained persons. Finally, we considered how the ME brain states change with
age representing criteria for an objective assessment of the motor abilities in elderly
adults.

9.1 Real and Imagery Movements

Recent work analyzes spatio-temporal and time–frequency characteristics of elec-
trical brain activity associated with real and imagery motor actions in the group
of untrained subjects, using the wavelet-based approach. As a result, the authors
revealed characteristic oscillatory patterns, which occurred in different brain areas
and interacted with each other when the motor action (or imagery) took place.
Obtained results allowed detecting real and imagery motor actions in the real time.

Twelve untrained healthy volunteers participated in the experiments. Their brain
activity signals (EEG) were recorded at a 250 Hz sampling rate from 31 electrodes
with two reference electrodes placed at the standard positions of the 10–10 inter-
national system. Each participant was subjected to one experiment, lasting approx-
imately 30min. Participants were instructed to perform two types of tasks: to lift
slowly the right hand (in the shoulder joint) (RAM) and imagine such a movement

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. E. Hramov et al.,Wavelets in Neuroscience, Springer Series in Synergetics,
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Fig. 9.1 Experimental design. a Two types of tasks: (left) real movement of the right arm (RAM)

and (right) imaginary movement of the right arm (IAM). b The structure of experimental sessions:
RAMi and IAMi (i = 1, M being the number of an individual event in the session) define a single
real and imaginary movement, respectively. M = 20 is the total number of events in the session,
Δt = 4 s is the time interval reserved for the task. Each session is preceded by a video message
with instructions, and each event in the session is preceded by an audio message. RE j and IM j

( j = 1, N being the session number) correspond to the sessions in which the real and imaginary
movements take place, respectively, N = 5 is the total number of sessions, associated with each
type of movement. The experiment starts with a 5-min background EEG recording (BCG1) and
ends with a 5-min background recording (BCG2)

during a given time interval (IAM) (see Fig. 9.1a). The whole experiment comprised
ten sessions, five sessions (RE j ) of real movements and five imagery movements
(IM j ). Each RE session followed by a IM session. The experiment started with
a 5-min background EEG recording (BCG1) and ended with a 5-min background
recording (BCG2) (see Fig. 9.1b). Each session started with a short visual message
with instructions and contained M = 20 similar events. Each event in the session
began with a short sound message and should be performed within a reserved time
interval Δt = 4 s.
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9.1.1 Wavelet-Transform Modulus Maxima (WTMM)

The obtained EEG signals were analyzed with wavelet-based approaches. First, the
Wavelet-transformmodulus maxima (WTMM)was applied to estimate the complex-
ity of the EEG signals. This method describes scaling phenomena in nonstationary
time series [65]. It gives the singularity spectrum of a signal x(t) based on the con-
tinuous wavelet transform

W (a, τ ) = 1

a

∫ ∞

−∞
x(t)ψ

(
t − τ

a

)
dt (9.1)

with parameters a and τ characterizing the scale and translation of wavelet function
ψ . In the multifractal analysis, real-valued wavelets are mainly used, such as the
MHAT-function

ψ(t) = (1 − t2) exp

(
− t2

2

)
. (9.2)

Near the singularity point t∗, the power-lawdependenceof thewavelet-coefficients

W (a, t∗) ∼ ah(t∗) (9.3)

takes place with the Hölder exponent h. The value of h characterizes the singularity
strength and varies with the signal x(t). To provide a statistical analysis of singular-
ities, the an approach based on the partition functions is mainly applied. It assumes
the extraction of all skeleton lines (the lines of local maxima of |W (a, t)|) and the
construction of the functions

Z(q, a) =
∑
l∈L(a)

(
sup
a′≤a

|W (a′, tl(a′))|
)q

∼ aτ(q) (9.4)

with L(a) being a full set of skeleton lines at the scale a, tl(a) being the position of
the maximum related to the line l and τ(q) being the scaling exponents.

The values τ(q) can be found by the analysis of the dependence (9.4) in the
double-logarithmic plot. After their estimation, the Hölder exponents h(q) and the
singularity spectrum D(h) are obtained as

h(q) = dτ(q)

dq
, (9.5)

D(h) = qh − τ(q). (9.6)

The function D(h) is the Hausdorff dimension D of singularity points characterized
by the exponent h(t) = h. The position of the singularity spectrum is determined by
the mean Hölder exponent H = h(0), while the width of the singularity spectrum
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Fig. 9.2 aMean Hölder
exponents related to real
(RE) and imaginary (IM)
movements of the right arm,
estimated from EEG channel
“Cz” for all subjects. b
Hölder exponents related to
real (RE) and imaginary (IM)
movements and background
EEG (BCG) calculated from
EEG channels Cz and C3
and averaged over all
subjects. All data are shown
as mean ± SE
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quantifies the degree of inhomogeneity of the analyzed data. It is often used as a
complexity measure of nonstationary processes.

WTMM combines complexity and correlation analysis representing a power-
ful tool for studying nonstationary and inhomogeneous processes. Application of
wavelet-transform at the first stage of the method allows ignoring polynomial trends
presented in the analyzed data. As a result, there is no need to pre-process experi-
mental EEG data before applying the WTMM-method. Computing the singularity
spectrum D(h) provides two main measures: the spectrum width characterizing the
degree of inhomogeneity (complexity) of data, and the mean Hölder exponent H
reflecting correlation properties. The performed analysis has revealed the main dis-
tinctions in the second quantity. WTMM provides a faster convergence of estimated
quantities than the standard correlation analysis and, therefore, a better characteri-
zation of complex processes based on short data sets. The latter improves the quality
of separation between different physiological states for limited amounts of physio-
logical data [40].

Mean Hölder exponents were calculated for each 4-s EEG trial, associated with
motor execution HRE and motor imagery HIM. The obtained values were then aver-
aged over 100 EEG trials and mean values HRE and H IM were used to characterized
real and imagery movements. The background activity was analyzed by averaging
the mean Hölder exponent HBCG over the 5-min background EEG (BCG1), pre-
ceding the motor-related experimental sessions. Analysis of the singularity spectra
revealed significant distinctions between real and imagery movements reflected in
the position of D(h), i.e., in the mean Hölder exponent H illustrated in Fig. 9.2.

Figure9.2a shows the mean Hölder exponents for the real (RE) and imagery (IM)
movements of the right arm, estimated from the EEG channel Cz for all subjects and
averaged over a large number (N = 100) of events. The error bars indicate the stan-
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dard error, which quantifies the deviation of the mean Hölder exponent within indi-
vidual events. According to the presented results, the multifractal analysis allowed
us to distinguish between real and imaginary armmovements using Cz EEG channel.

Along with the distinctions between motor execution and motor imaginary, the
possibility to extract the brain state associated with both ME and MI from the back-
ground EEG is also of great interest. For this purpose the mean Hölder exponents
corresponding tomotor execution HRE ,motor imaginary H IM, and backgroundEEG
HBCG were considered. The difference between ME and BCG was well-pronounced
in all channels, while the distinction between BCG and MI depended on the elec-
trode position. As an example, Fig. 9.2b shows the values of the mean Hölder expo-
nents related to real and imaginary movements and background calculated from
EEG channels Cz and C3 (the data are averaged over all subjects and the bars define
the standard error). One can see that for the Cz-channel, the mean Hölder expo-
nent increased for motor execution and decreased for motor imagery. The statistical
analysis based on paired t-test showed that both these changes were judged as sig-
nificant (p < 0.05). At the same time, the mean Hölder exponent calculated from
the C3-channel demonstrated significant (p < 0.05) changes for motor execution,
but changes in H -values between background EEG andmotor imaginary were found
to be insignificant (p = 0.12). Thus, according to Fig. 9.2b, imagery movements of
all subjects can be effectively classified from background EEG based on the Hölder
exponents calculated from the Cz-channel, while the difference between imaginary
movements and background EEG extracted the C3-channel was insignificant.

Figure9.2c illustrates the differences between the mean Hölder exponents cor-
responding to real/imaginary movement and background EEG averaged over all
subjects. The results show that the largest differences between ME and background
EEG and betweenMI and background EEG in untrained subjects occur in the frontal
brain area. Motor execution resulted in a significant increase in the mean Hölder
exponents calculated from EEG channels located in the frontal area, whereas motor
imaginary led to a decrease in H -values.

The obtained results revealed a significant influence of the frontal brain areas
on the mean Hölder exponents calculated for the EEG segment associated with
motor execution and motor imaginary. Simultaneously, the analysis of the EEG data
from other brain areas, e.g., temporal and central, did not reveal any changes in the
Hölder exponents. The observed behavior of the Hölder exponents may suggest the
complex interaction between different oscillatory patterns in these brain areas in the
time–frequency domain.

Time–frequency analysis used the continuous wavelet transformation where
complex-valued Morlet-wavelet was chosen as the mother function (2.36) with
ω0 = 2π being the central frequency of the Morlet and i = √−1.

Thewavelet energy spectrum E(t, f ) = W 2(t, f )was calculated in the frequency
band f ∈ [1, 30] Hz ( f = 1/a). For each EEG channel the values of whole wavelet
energy ERE, EIM, EBCG associated with motor execution, motor imaginary and back-
ground EEG, respectively, were calculated by averaging E(t, f ) indicated frequency
band and over the experimental sessions (RE), (IM) and (BCG)
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Fig. 9.3 a Differences between the values of wavelet energy calculated for real movement ERE
and background EEG EBCG. b Imaginary movement EIM and background EEG EBCG. c Real ERE
and imaginary EIM movements. The values of energy (E) were calculated by averaging W ( f, t)
over the frequency band from 1 Hz to 30 Hz, time interval t = 4 s, and 100 trials. 〈. . . 〉 denotes
group averaging over all subjects

ERE
IM
BCG

=
∫

t ∈ RE
t ∈ IM
t ∈ BCG

⎡
⎣

30Hz∫

1Hz

E(t ′, f ′)d f ′
⎤
⎦ dt ′. (9.7)

In the frequency ranges of δ-band (1–5 Hz), μ/α-band (8–13 Hz), and β-band (10–
30 Hz), the energy values Eδ(t), Eμ(t) and Eβ(t) were calculated for each EEG
channel by averaging the value E(t, f ) over the corresponding frequency band

Eμ,β,δ(t) =
∫

f ∈ μ − band
f ∈ β − band
f ∈ δ − band

E(t, f ′)d f ′. (9.8)

In the first stage, the differences between motor execution/imagery and back-
ground EEGwere judged based on the calculation of the coefficients 〈ERE − EBCG〉,
〈EIM − EBCG〉, 〈ERE − EIM〉 describing the change of the whole spectral energy
associated with the considered states. These values were calculated for each EEG
channel and averaged over the group of participants.

Figure9.3 displays the revealed differences distributed over the brain surface.
One can see that compared to background EEG, real movements were characterized
by an increase in the energy over most of the EEG channels (Fig. 9.3a). Imaginary
movements, on the contrary, resulted in a decrease in the energy in the correspond-
ing brain areas (Fig. 9.3b). In particular, real movements were associated with a
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significant increase in the energy in frontal and temporal areas, whereas imaginary
movements decreased the energy in the same areas. As a result, real and imagi-
nary movements in untrained subjects can be effectively distinguished by analyzing
frontal and temporal EEG signals these results of energy analysis correlated with the
behavior of the Hölder exponents.

9.1.2 Time–Frequency Analysis

Then, the time–frequency structure of EEG signals was analyzed in detail.
Figure9.4 we present the time–frequency dependencies which illustrate the

changes in the value of wavelet energy E( f, t), f ∈ (1, 30) Hz, t ∈ (0, 4) s associ-
ated with (a) real and (b) imaginary movements with respect to the background EEG.
Presented datawere averaged over 100EEG trials recorded from all 21 EEG channels
of one subject. The time–frequency plots are labeled and located on the head-like
layout, according to the position of the recording electrodes. Red and blue colors
indicate time–frequency plane forwhich the energy value, respectively, increased and
decreased during real or imaginary movement. Color saturation shows the degree of
changes.
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Fig. 9.4 Time–frequency plots of changes in wavelet energy E( f, t), f ∈ (1, 30) Hz, t ∈ (0, 4) s
associated with (a) real and (b) imaginary movements with respect to the background EEG. Pre-
sented data were averaged over 100 trials and shown for each of 21 EEG channels. Red and blue
colors indicate the time–frequency plane for which the energy value, respectively, increased and
decreased during real or imaginary movements. Color saturation shows the degree of changes
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One can see that a significant increase for realmovement and a significant decrease
for imaginary movements of wavelet energy in frontal and temporal lobes were
mainly determined by the low-frequency (1–5 Hz) δ-waves. The energy of δ-waves
exhibited a significant change in the frontal area, which decreased rapidly while
moving from the frontal to the parietal area. This resulted in a significant change
in wavelet energy. At the same time, the time–frequency structure of the EEG sig-
nal was much more complicated. The features of real and imaginary movements
were characterized by the transition and distribution of the energy between different
frequency bands. Considering real movement (Fig. 9.4a) one can see that electrical
activity in the temporal area together with an increase in δ-waves’ amplitude was
characterized by a decrease of the wavelet energy for f ∈ [8, 12] Hz (μ-rhythm)
and decreasing energy in f ∈ [15, 30]Hz (β-activity). This effect is known in scien-
tific literature as event-related desynchronization (ERD) [17]. The ERD associated
with motor activity was previously observed in the frequency bands of 8–10, 10–
12, 12–20, and 20–30 Hz [99]. It is known that motor execution is characterized
by both event-related desynchronization and event-related synchronization (ERS).
The ERD was usually observed in α (or μ) and β-bands [11], while such effect in
δ-band was much less studied [32]. At the same time, according to Fig. 9.4a, event-
related synchronization of δ-activity took place duringmotor execution together with
event-related desynchronization of μ/α)- and β-rhythms.

In Fig. 9.4a the colored areas A, B indicate the brain segments where the consid-
ered event-related behavior was the most pronounced. One can see that the observed
ERD in μ-rhythm prevailed in temporal, central, and parietal lobes (colored area A),
where the motor area took place [10]. It should be noted that this area is shifted from
the center to the left side, which is connected with hemispheric asymmetry, asso-
ciated with arm movements [98]. An accompanying event-related increase in the
amplitude of the low-frequency δ-activity was more pronounced in frontal region
(shaded area B).

Motor imaginary, in turn, induced changes in δ-activity, in the frontal region
(colored area B in Fig. 9.4b. However, the energy of δ-waves decreased due to event-
related desynchronization. While ERD took place in δ-band, μ-rhythm exhibited
event-related synchronization in most areas of the brain with the maximal value in
the central and parietal areas and decreased in temporal regions (colored area A in
Fig. 9.4b).

Aswe alreadymentioned above, the brain activity associatedwithmotor functions
is characterized by the interaction between different brain rhythms. Figure9.5 illus-
trates this process for the motor execution. In Fig. 9.5a shows the typical EEG traces
recorded in parietal and occipital lobes during a single experimental session (RE)
associated with alternating motor executions. In Fig. 9.5b the location of the spectral
components characterized by the maximal energy is shown for the considered EEG
recordings. In Fig. 9.5c the mean values of the spectral energy averaged over α-band
〈E〉α , δ-band 〈E〉δ and the set of EEG signals, are shown. It is seen that the motor
execution was accompanied by the transition of the spectral energy between α- and
δ-bands. It was demonstrated by both the location of the most pronounced spectral
components and changes in mean (band-related) spectral energy. In Fig. 9.5b demon-
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Fig. 9.5 a Set of EEG signals recorded from occipital and parietal lobes during experimental
session RE when alternating real movements were performed. The vertical dashed lines indicate
the moments when the actions start. The considered brain area is shown by the shadow. b Location
of most pronounced spectral components and changes in mean (band-related) spectral energy

strated that the spectral components with the high energy appeared in δ-band during
motor execution and disappeared in α-band. Vise-versa, such components occurred
again in α-band after the motor execution finished. At the same time, the values of
spectral energy < E >α , < E >δ calculated for these bands, evolved in anti-phase,
i.e., the value of 〈E〉α decreased during motor execution and 〈E〉δ increased (see
Fig. 9.5c).

It is important to note that, according to Fig. 9.5, the characteristic features associ-
ated with motor executions in α- and δ-bands can be identified for every single event.
This was exciting since most studies on motor execution and imaginary judged ERS
and ERD from the data obtained by averaging over a large number of events. Pre-
sented results show that for a single event, changes in the motor-related energy in
α- and δ-bands can be extracted from EEG trials by averaging them over particular
brain areas. One can expect that taken into account the identified brain areas, where
the effects of ERD and ERS are the most pronounced (see Fig. 9.4) it is possible to
detect a single motor execution or imagination in real-time.
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9.2 Visual and Kinestetic Motor Imagery

Revealing brain activity features during motor imagery is very important for the
brain-computer interfaces (BCIs) which can help in rehabilitation of patients after
trauma or stroke and noninvasive brain-controlled exoskeletons and bioprostheses
[20, 64, 73]. Motor imagery [43] results from the rehearsal of a given motor act
in the working memory without any overt movement of the corresponding muscle.
Generally, MI follows two categories: visual imagery (VI) and kinesthetic imagery
(KI). VI corresponds to the self-visualization of the subject moving a limb, that does
not require a special training. In contrast, KI is the feeling of muscle movement, that
can only be realized by athletes or specially trained persons [63].

MI was studied by many researchers who used different experimental techniques
(for comprehensive review see [23]). The most popular are the functional magnetic
resonance imaging (fMRI) [30, 91], positron emission tomography (PET) [6, 61,
94], electroencephalography (EEG) [13, 33, 69, 75, 76, 100], transcranial magnetic
stimulation (TMS) [41, 46, 53, 63, 95], and magnetoencephalography (MEG) [27,
28, 48, 83, 84]. Previous fMRI studies [30, 91] indicated that brain activity duringKI
is similar to real movement because it includes control of muscle contractions which
are then blocked at some level of the motor system by inhibitory mechanisms. Thus,
MI shares a part of the neuronal network involved in the movement execution, but
without any corresponding muscle movement. TMS studies [41, 46, 53, 63, 95] also
confirmed the overlapping activity in the brain areas during KI and real movement.

To understandMI,manymethods of time–frequency and spatio-temporal analyses
are used. Among them, the most common techniques are event-related synchroniza-
tion (ERS) and event-related desynchronization (ERD) [45, 83, 97, 103], power
spectral density, wavelet transform, empirical mode decomposition, common spatial
patterns, spatio-decomposition, as well as their combinations [19, 72, 89]. Also, to
classify the brain states, the methods of machine learning and artificial intelligence
are applied to EEG and MEG data [35, 36, 59].

MI is actively studied to classify the brain states corresponded to the different
MI limbs [27, 28, 48, 83, 84]. A relatively good accuracy has been achieved in
classification between left-hand and right-hand MI and between MI and rest-state
using the combination of spatio-spectral decomposition and common spatial patterns
analyses by Halme and Parkkonen [27]. Recently, they used both MEG and EEG
in brain-computer interfaces for training MI classifiers [28]. In their study, authors
demonstrated rather efficient classification of MI even without separation of partic-
ipants into KI and VI categories. At the same time, KI and VI scenarios affect the
classification accuracy, e.g., the accuracy rate obtained for KI is usually better than
the results for VI [69]. Finally, untrained subjects often demonstrate VI imagery
mode. The possibility to increase the accuracy rate for VI is in demand for BCI
applications. This chapter considers brain activity associated with MI in untrained
subjects and describes the distinctive features of VI and KI imagery.

To analyze brain activity, 306 MEG signals (102 magnetometers and 204 planar
gradiometers) were recorded with a sampling frequency of 1000 Hz and a bandpass
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Fig. 9.6 a Sketch of the participant during MEG experiment on MI and b schematic representation
of experimental paradigm. RMIi and LM Ii denote right motor imagery and left motor imagery
respectively, i indicates the number of repetition and Δt denotes the duration of each repetition

filter between 0.1 and 330 Hz. During the experimental session, participants were
sat in a comfortable chair inside the Vectorview MEG system as shown in Fig. 9.6a
and performed motor imagery following the experimental paradigm illustrated in
Fig. 9.6b.

To distinguish the participants into VI and KI categories, we applied time–
frequency and hierarchical cluster analysis (HCA) to MEG recordings obtained dur-
ing the experimental procedure. It is known, that motor imagery affects the neural
activity in μ (8–12Hz) and β (15–30Hz) frequency bands [76, 78].
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9.2.1 Wavelet Analysis

The time–frequency structure of MEG signals was analyzed with the help of a
wavelet-based approach. For each limb, the Morlet wavelet with f0 = 1Hz cen-
tral frequency and 3-s full width at half maximum (FWHM) was used to evaluate
the time–frequency spectrogram (TFS) for all extracted epochs of that limb. Then,
the TFS was also averaged over the desired motor-related frequency ranges of μ (8–
13 Hz) and β bands (15–30 Hz). The same process was repeated over the background
resting state using the same parameters. To evaluate ERS/ERD, we took a difference
between the spectrogram for the trials and the averaged-over-time spectrogram of the
background and then normalized it to the background. This normalized difference
was positive for ERS and negative for ERD. The values of wavelet energy En

μ(t) and
En

β(t) were calculated, respectively, in frequency bands 8–13Hz, and 15–30Hz for
each nth MEG channel as

En
μ,β(t) = 1

Δ f

∫

f ∈μ,β

En( f, t)d f. (9.9)

The event-related potentials (ERPs) L An
μ(t) and L An

β(t), RAn
μ(t) and RAn

β(t),
BCn

μ(t) and BCn
β(t) were extracted for each limb by averaging the values En

μ(t)
and En

β(t) over the trials corresponding to left arm (LA) and right-arm (RA) motor
imagery, and background activity (BC), respectively.

Finally, in order to estimate ERD (or ERS) associated with left- and right-arm
imagery, we calculated integral differences dL An

μ, dL A
n
β and dRAn

μ, dRAn
β between

MI and background activity as

dL An
μ,β =

∫

t∈T

(
L An

μ,β(t) − BCn
μ,β(t)

)
dt, (9.10)

dRAn
μ,β =

∫

t∈T

(
RAn

μ,β(t) − BCn
μ,β(t)

)
dt, (9.11)

where T = 3s is the trial length.

9.2.2 Cluster Analysis

To distinguish KI and VI, we applied the hierarchical cluster analysis (HCA) [102].
Suppose that each participant is characterized by a point in theM-dimensional feature
space, where M is a number of features necessary to describe MI of the subject. To
perform HCA, we used a complete-linkage clustering, which belongs to the agglom-
erative (“bottom-up”) group of clustering methods [102]. At the beginning of the
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algorithm, each participant represents its cluster and during further iterations exist-
ing clusters are joined into larger clusters until all points are combined in one cluster.
The link between two clusters is a farthest distance in a feature space between two
elements, each in its own cluster. In the mathematical form, the complete-linkage
function D(X,Y ) is

D(X,Y ) = max
x∈X,y∈Y d(x, y), (9.12)

where X and Y are considered clusters, x and y are objects in X and Y , respectively,
and d(x, y) is a distance between two objects in a feature space. We calculated this
distance using Euclidean metric as

d(x, y) = 1

M

√√√√ M∑
i=1

(xi − yi )2, (9.13)

where xi and yi are an i th feature of the x and y objects, respectively.
Concerning the stated problemof theMI-type clustering, we considered the differ-

ences dL An
μ,β and dRAn

μ,β (i = 1, . . . , N ) as a feature set of the MI process for left
and right arms, respectively. In addition, for HCA we averaged the wavelet energy
differences over the limb types as follows:

dEn
μ = dL An

μ + dRAn
μ

2
, (9.14)

dEn
β = dL An

β + dRAn
β

2
. (9.15)

The dimensionality of the feature space in the case of MEG measurements is
equal to 2N = 204 for each limb. It is clear that the number of dimensions is quite
large. To reduce the dimensionality of the feature space, we averaged dEn

μ,β over the

channels, so that overall wavelet energy difference dEμ,β = 1/N
∑N

n=1 dE
n
μ,β .

Hence, each subject is described by a point in the two-dimensional MI feature
space (dEμ, dEβ ). We will show below that solving the MI clustering problem in a
given two-dimensional feature space is more demonstrative and easy for interpreta-
tion.

Figure9.7a shows the coefficients dEn
μ, dE

n
β which characterize changes in the

ERPamplitudes inμ andβ frequency bands of nthMEGchannel, associatedwithMI.
The colored clouds of small dots correspond to the values (dEn

μ, dE
n
β) obtained for

each of 102 MEG channels. The dot color defines the subject. The horizontal dashed
line indicates dEn

β = 0 when the energy does not change. All dots located above
this line correspond to the MEG channels where an increase in the ERP (or ERS)
amplitude in the β-frequency band is observed, while the dots located below this
curve correspond to the channels where the ERP (or ERD) amplitude decreases. In
turn, the vertical dashed line separates ERDandERS in theμ-band; ERS corresponds
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Fig. 9.7 Results of HCA illustrating the clustering of subjects belonging to KI and VI types.
a Wavelet energy differences during MI in the feature space (dEμ, dEβ). Here, different colors
indicate different subjects, clouds of small dots represent wavelet energy differences for i th channel
(i = 1, . . . , N ) and big dots show individual wavelet energy differences averaged over the channels
(big red and black dot highlight the belonging to KI and VI types, respectively). b Dendrogram
showing formation of two subgroups (KI and VI) in the group of participants in terms of Euclidean
distances between clusters in the feature space (dEμ, dEβ). c Wavelet energy differences during
MI plotted in the feature space (dEμ, dEβ) colored with respect to the belonging of each subject
to either KI (big red dots) or VI (big black dots) type. d Stars show centroids of KI and VI clusters
obtained by k-means clustering

to the positive values of dEμ, while ERD to the negative values. The closed circles
in Fig. 9.7a show the overall difference between wavelet energies in μ, and β ranges
averaged over MEG channels individually for each subject. Therefore, each circle is
an individual MI characteristic of each participant.

The dendrogram in Fig. 9.7b shows the arrangement of clusters obtained by HCA
applied to the colored bold circles in Fig. 9.7a. Considering the first row of the
dendrogram, all participants of the MEG study can be well divided into two large
clusters; subjects 2, 3, and 6 are arranged in the KI group (big red dots), while the
rest are arranged in the VI group (big black dots). It should be noted that the links
between the subjects inside each group are much smaller than the links between
the clusters. Thus, we suppose that HCA provides a good enough precision of the
clustering. Comparing the dendrogram with subjects’ positions in the feature space
(dEμ, dEβ ) (see Fig. 9.7c), one can see that the brain activity during MI of the
subjects belonging to the red dot group is characterized by well-pronounced ERD in
both μ- and β-frequency bands. This indicates that in this group, the motor-related
activity dominates duringMI. On the contrary, for the subjects belonging to the black
dot group, the MI process is accompanied by ERS (or close to ERS) in the μ and
β bands that determine a key role of imagination and self-visualization of the limb
movement. Moreover, the subjects arranged by HCA in the red dot group are more
prone to regular physical training. In contrast, the subjects from the black dot group
are more likely to experience a high cognitive load and intellectual work. Finally,
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using k-means clustering, we obtained the centroids of the red and black dot groups
(Fig. 9.7d). This proximity determines the belonging of the subject to a particular
cluster and consequently the type of MI.

According to the cluster analysis, the untrained subjects demonstrate different
brain activity scenarios while trying to imagine motor activity. Depending on the
behavior of the ERP amplitude in the motor-related μ- and β-frequency bands, these
scenarios can be classified as KI or VI.

9.2.3 Neurophysiological Aspects of Motor Imagery

The literature reports on different brain regions involved in MI, including pri-
mary motor cortex (M1), posterior parietal cortex (PPC), supplementary motor area
(SMA), prefrontal cortex, and subcortical areas.

Abulk of literature associatedMIwith the primarymotor cortex.Many researchers
previously followed Talairach and Tournoux’s atlas, referred to the M1 cortex as the
posterior region of the precentral gyrus. Other scientists used the term “precentral
knob which is only a subset of M1 representing hand movements [29]. Also, the
presence of methodological differences in the experiments and the difficulty of mon-
itoring compliance with the MI instructions [86] only made things worse. It is not
surprising that there exists a controversy in the involvement of M1 during MI with
studies both in favor [8, 21, 56, 80, 91] and against [18, 30] its involvement. Keeping
the controversy aside, the studies still seem to suggest that M1 is indeed activated
during MI, but much weaker as compared to real movement [23]. The role of M1 in
timing the neuronal network activity is also highlighted [12, 50].

Numerous neuroimaging studies [14, 18, 30, 31, 39, 66] indicate that PPC
actively involves in MI. When patients with lesions in PPC were asked to predict
beforehand the time needed to perform movement tasks, they typically underes-
timated/overestimated [88]. This strongly contrasts with patients with precentral
motor cortical dysfunction, who exhibit impaired movement, but retain the ability to
estimate motor performance times [87]. This result suggests that there is a separate
mechanism for choreographing the movement and to mentally simulate the move-
ment for estimating the movement time and that this time analysis mechanism is
localized near the parietal cortex. It is intriguing to note that bilateral parietal lesions
can cause a person to accidentally execute movements when asked to imagine them
and be completely unaware about it [85]. This result hints towards the possibility that
the mental MI simulation is inhibited by a mechanism also localized near the parietal
lobe (in one of two hemispheres or both) that fails to give way to actual movement
execution during MI. Sensory modalities related to the movement can also stimulate
the brain activity, such as vibratory stimuli, to induce illusion of kinesthetic activity
in the primary somatosensory areas and in the M1 region [67, 68]. The temporo-
parietal junction has been linked with own-body imagery and self-location [5, 38].
It is not surprising that KI activates motor associated areas and the inferior parietal
lobe, whereas VI activates visual-related areas (Occipital lobe) and the superior pari-
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etal lobe (Precuneus) [22]. It should be noted, that a TMS study also reveals that the
inferior parietal lobe exerts inhibitory control in the M1 region during MI [52].

Recent fMRI experiments [71] identified SMA to be the best predictive region to
distinguish between hand rotation and grasping movements which seems to suggest
that the role of SMA is to augment the content of signals rather than mediating the
signal. It was reported that electromyographic (EMG) activity during MI experi-
ments, associated with failures of inhibitory control, was observed in both agnostic
and antagonistic muscles as a function of weight to be lifted in the imagination [3]
and a type of muscle contraction [24]. This seems to suggest that the imagination
content affects the inhibitorymechanism. Furthermore, Kasess et al. [47] highlighted
the contribution of supplementary motor area (SMA) in the inhibition of M1 during
MI. Therefore, inhibitory mechanisms should be taken into account to explain the
rest of the results. The underlying structure seems to be dissociable and hierarchical
for neural representations of observed, imagined and imitated actions [57]. Thus, the
differential analysis of each of the brain regions mentioned above must be used to
understand their contribution to the brain functioning during MI.

Prefrontal areas, such as ventrolateral prefrontal cortex and anterior cingulate
cortex,were also found to be involved inmovement suppression, aswell as in decision
making on the movement [12, 49].

The results of Hanakawa [29] indicate that cerebellum and basal ganglia also
participate in movement suppression. In particular, Parkinson disease affects basal
ganglia causing the patients to slow down MI [9]. This indicates that basal ganglia
only mediates the signal and not affect the MI content [29].

In their famous work, Pfurtscheller and Neuper [76] found that mental imagery of
motor actions can produce replicable EEG patterns over primary sensory and motor
areas. These patterns are associated with ERD in motor-related μ- and β-frequency
bands, similar to those associated with motor executions [78]. At the same time,
some papers report that many participants do not exhibit the expected motor-imagery
related changes in their EEG [60, 77, 100]. According to Annett [2], this is caused by
the existence of different types of mental imagery of motor actions, namely, visual
and kinesthetics imagery modes. The knowledge of key principles of MI is needed
for effective classification of EEG/MEG trials corresponding to different types of
imagination and its implementation in BCI systems. It was shown [69] that KI and
VI scenarios affect the classification accuracy, e.g., the rates obtained for KI (67%)
were shown to be better than the results for MI (56%).

9.3 Age-Related Distinctions in EEG Signals During
Execution of Motor Tasks Characterized in Terms of
Wavelet Spectra

One of the important problems associated with the analysis of neural activity during
the executions of certain motor acts is the problem of age-related changes. It is obvi-
ously that aging causes great changes in the human life, which often include physical
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and mental impairments, psychological, and social changes. Research on aging is
commonly associated with abnormal brain dynamics and the related diseases, such
as Alzheimer’s disease and dementia. The physiological mechanisms accompanying
the development of these disorders of brain activity have been clearly established
[1, 55, 93, 105, 106], but some features of pathological dynamics are revealed even
in healthy aging [54], and their analysis can provide markers of hidden stages of
disorders. Healthy aging alters the neurochemical and structural properties of the
brain, that leads to decreased cognitive and motor functions during daily activities in
older adults. Age-related neural impairments are quantitatively assessed by a longer
reaction time, reduced coordination, and motor control [58, 92], which limit the per-
formance of complex motor tasks [44, 90, 104]. Several studies [4, 15, 34, 51] have
established additional brain areas involved during the motor activity with aging to
overcome structural changes in brain dynamics. This involvement serves as a com-
pensatory mechanism [82, 101]. Due to this, execution of motor tasks is expected to
differ between younger and elderly subjects.

In this Sectionwe consider the differences in cortical activity during the controlled
execution of fine motor tasks between elderly adults and young adults using wavelet
method applied to EEG [16]. First, consistent with the dedifferentiation theory [58,
62], we discuss that the motor cortex of younger adults (YA) activated much faster
during the dominant hand task, while in elderly adults (EA), the time required for
motor activation was equal for both hands and approached the level of the non-
dominant hand of younger adults. Second, the significant differences in cortical
activation are observed during the time interval preceding themotor action. In elderly
adults, as well as in young adults performing the non-dominant hand task, theta-
band power is increased in the frontal, central, and central-parietal EEG sensor rows,
whereas theta-activation is insignificant in young adults during the dominant hand
task.

9.3.1 Experimental Study and Motor Brain Response Time
Analysis

The experimental design included the sequence of simplest motor tasks. Each task
required squeezing one of the hands into a wrist after the audio signal and holding it
until the second signal (30 tasks per hand). The duration of the signal determined the
type of movement: short beep (0.3 s) was given to perform a non-dominant hand (left
hand, LH) movement and long beep (0.75 s) was given to perform a dominant hand
(right hand, RH) movement. The timeline of a single task movement included time
interval between the signals during the task and the pause between the tasks were
chosen randomly in the range 4–5s and 6–8s, respectively. The types of tasks were
mixed in the course of the session and given randomly to exclude possible training
or motor-preparation effects caused by the sequential execution of the same tasks.
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To acquire EEG signals the the monopolar registration method (a 10–10 system
proposed by the American Electroencephalographic Society [70]) was used. Accord-
ing to this, the EEG signals with 31 sensors (O2, O1, P4, P3, C4, C3, F4, F3, Fp2,
Fp1, P8, P7, T8, T7, F8, F7, Oz, Pz, Cz, Fz, Fpz, FT7, FC3, FCz, FC4, FT8, TP7,
CP3, CPz, CP4, TP8) and two reference electrodes A1 and A2 on the earlobes were
recorded. The obtained raw EEG signals were sampled at 250Hz and filtered by a
50-Hz notch filter by embedded hardware-software data acquisition complex. Addi-
tionally, eyes blinking and heartbeat artifact removal was performed by the ICA [37].

Two groups of healthy volunteers, including 10 elderly adult subjects (EA
group; age: 65±5.69 (MEAN±SD)) and 10 young adult subjects (YA group; age:
26.1±5.15), participated in the study. All subjects were right-handed and had no
history of brain tumors, trauma or stroke-related medical conditions. Thus, we can
concluded the data of a mixed-design experimental study with the movement type
(LH and RH conditions) as within-subject factor and the age (EA and YA groups) as
between-subject factor. As consequence, the recorded EEG signals were segmented
into four sets of epochs according to the (group [YA, EA], condition [LH, RH])
combinations: (YA, LH), (YA, RH), (EA, LH), and (EA, RH). Each epoch was 10s
long, including 2s baseline activity and 8s motor-related activity.

On the first stage of the experimental data processing, the motor brain response
time (MBRT) was esimated. A priory knowledge about the cortical activation dur-
ing movements execution implies that motor brain response is determined as a pro-
nounced event-related desynchronization (ERD) of alpha/mu-oscillations in the con-
tralateral area of the motor cortex. Notably, a wide body of EEG studies reports that
symmetrical C4 and C3 sensors evidence brain motor response in case of the LH
and RH movements, respectively [17, 74, 79]. Here, we used alpha/mu-band event-
related wavelet power (ERWPμ) at C4 and C3 sensors to estimate MBRT associated
with LH and RH conditions for each subject of both groups. MBRT were defined
as the first minimum of the mu-band spectral power below the 2.5th baseline level
as shown in Fig. 9.8a which illustrates this procedure. Thus, four sets of MBRT
corresponding to each (group, condition)—set were collected.

Let us consider the effect of aging on the MBRT, i.e., the duration of the time
interval required for the brain to activate a corresponding motor area for both EA and
YA groups. We estimated MBRT for each subject in both experimental conditions
(Fig. 9.8d) and compared the results taking into account age and movement type
factors together. The mixed-design ANOVA test revealed the significant effect of
the movement type on the MBRT (F(1, 18) = 26.748, p < 0.001) while the factor
of age was insignificant (F(1, 18) = 2.626, p = 0.123). Post hoc comparison via
paired t-test indicated that the meanMBRT for the LH condition (M = 1.173, SD =
0.341) was significantly higher than the RH condition (M = 0.691, SD = 0.248).
Thus, in the case of the dominant hand movement (RH condition), the motor cortex
activated faster in 19of 20 subjects excluding 1EAsubject (Fig. 9.8c andd).Also, two
EA subjects demonstrated almost close motor response times in both experimental
conditions.

Moreover, there was a significant interaction between the Movement Type and
the Age of the participants (F(1, 18) = 4.967, p = 0.039). We could interpret this
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Fig. 9.8 a An illustration of the MBRT estimation. The blue curve shows single-subject ERWPμ

at the C4 sensor averaged over 15 LH epochs. Black solid and red dashed horizontal lines indicate
mean and 2.5th percentile level of the baseline ERWPμ, respectively. Black solid and black dashed
vertical lines show the beginning of the audio command and estimated motor brain response,
respectively. b Distribution of MBRT across subjects in each (group,condition)-set. Here, ‘*’
indicates p < 0.05, ‘***’ indicates p < 0.001 and ‘n.s.’ stands for insignificant difference. c
Stripcharts of linked observations MBRT(LH) and MBRT(RH) within each group. d Scatterplot
of paired observations MBRT(LH) versus MBRT(RH) for each subject. Here, the diagonal line
is MBRT(LH)=MBRT(RH), pink diamonds indicate subjects from YA group, and blue squares—
subjects from EA group. Based on data from [16]

interaction as meaning that the Movement Type influenced MBRT differently in
EA and YA groups. Particularly, MBRTs were similar in the LH condition (EA:
M = 1.139, SD = 0.219; YA: M = 1.206, SD = 0.427), while YA group reacted
significantly faster in RH condition (EA:M = 0.865, SD = 0.230; YA:M = 0.516,
SD = 0.098).

9.3.2 Time–Frequency Analysis of Brain Response on Motor
Activity

The time–frequency analysis of the generated array of epochs was carried out using
the CWT with the Morlet basis function in the range [4, 40]Hz. The obtained values
of the signal spectral power E(t, f ) were normalized to the mean level of the pre-
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stimulus spectral power Epre( f ) as follows:

E ′(t, f ) = [E(t, f ) − Epre( f )]/Epre( f ). (9.16)

The obtained values of the normalized spectral power show an increase or decrease in
the spectral power in the post-stimulus period relative to the pre-stimulus level. The
greatest interest from the point of view of neuronal activity associatedwith the perfor-
mance of movements is the desynchronization of the alpha/mu-rhythm ([8, 14]Hz
frequency band) of the electrical activity of the brain [74, 79]. Simultaneously, we
analyzed activity in the theta-range ([5, 8]Hz), which underlying the majority of
the processes exhibits significant age-related changes—abnormally increased theta
activity in elderly people indicates subjective cognitive dysfunction and suspected
dementia [81, 96].

With this aim, we performed within-subject spatio-temporal clustering analysis
of the spectral power in the theta and alpha/mu frequency bands for each (group,
condition)—set in the premotor period (0 ÷ 1.2 s). Figure9.9 shows the results of
within-subject clustering analysis in the LH condition for both groups of subjects.
It is seen that in the LH condition (non-dominant hand movement), brain activation
in both YA and EA groups proceeds similarly. Specifically, the suppression of mu-
rhythm in the motor cortex at 0.8 ÷ 1.2 s related to the motor execution control was
preceded by the theta-band activation during the period 0.2 ÷ 0.8s. In the YA group,
pre-motor theta-band activation involved sensors in the motor, frontal, and bilateral
temporal areas. In the EA group, strong theta-band synchronization spanned widely
across the frontal and motor areas. Thus, in LH condition, both groups shared the
same activation mechanism and timing of the motor initiation process.

On the contrary, the way of cortical activation during the pre-motor period in the
RH condition (dominant hand movement) was different in considered age groups
(Fig. 9.10). In the YA group, the theta-band spectral power did not change signifi-
cantly during the pre-motor period and the mu-band suppression in the motor cortex
began earlier compared to the LH condition (0.6 ÷ 0.8s instead of 0.8 ÷ 1.0 s). At
the same time, in the EA group, the pre-motor brain dynamics in the RH condition
completely reproduces the LH condition scenario in terms of spatio-temporal local-
ization of synchronization and desynchronization in the theta and alpha/mu bands,
respectively.

Based on the above MBRT analysis, we assumed that age-related changes affect-
ing the speed of brain motor activation should be found in the pre-motor period.With
this aim,weperformedwithin-subject spatio-temporal clustering analysis of the spec-
tral power in the theta and alpha/mu frequency bands for each (group, condition)-set
in the premotor period (0 ÷ 1.2 s). Figure9.9 shows the results of within-subject
clustering analysis in the LH condition for both groups of subjects. It is seen that
in the LH condition (non-dominant hand movement), brain activation in both YA
and EA groups proceeds similarly. Specifically, the suppression of mu-rhythm in
the motor cortex at 0.8 ÷ 1.2 s related to the motor execution control was preceded
by the theta-band activation during the period from 0.2 s to 0.8 s. In the YA group,
pre-motor theta-band activation involved sensors in the motor, frontal, and bilateral
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Fig. 9.9 Sensor-level within-subject analyses of the pre-motor activity for LH condition. Baseline-
corrected topomaps of the theta-band (upper row) and alpha/mu-band (lower row) spectral power
for the YA (a) and EA (b) groups. Red and blue dots indicate clusters of significant spectral power
increase and decrease respectively. Pairwise comparison is performed via t-test for related samples
with ppairwise = 0.01 (dF = 9, tcri tical = ±2.821) and cluster-based analysis is performed via
non-parametric permutation test with pcluster = 0.01

temporal areas. In the EA group, strong theta-band synchronization spanned widely
across the frontal and motor areas. Thus, in LH condition, both groups shared the
same activation mechanism and timing of the motor initiation process.

On the contrary, the way of cortical activation during the pre-motor period in the
RH condition (dominant hand movement) was different in considered age groups
(Fig. 9.10). In the YA group, the theta-band spectral power did not change signifi-
cantly during the pre-motor period and the alpha/mu-band suppression in the motor
cortex began earlier compared to theLHcondition (0.6 ÷ 0.8s instead of 0.8 ÷ 1.0 s).
At the same time, in the EA group, the pre-motor brain dynamics in the RH condition
completely reproduces the LH condition scenario in terms of spatio-temporal local-
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Fig. 9.10 Sensor-level within-subject analyses of the pre-motor activity (RH condition).
Baseline-corrected topomaps of the theta-band (upper row) and alpha/mu-band (lower row) spec-
tral power for the YA (a) and EA (b) groups. Red and blue dots indicate clusters of significant
spectral power increase and decrease respectively. Pairwise comparison is performed via t-test for
related samples with ppairwise = 0.01 (dF = 9, tcri tical = ±2.821) and cluster-based analysis is
performed via non-parametric permutation test with pcluster = 0.01

ization of synchronization and desynchronization in the theta and alpha/mu bands,
respectively.

To address the age-related changes of the pre-motor theta-band activation in detail,
we provided a between-subject analysis of spectral power topo-maps. Figure9.11a
shows the results of between-subject spatio-temporal clustering analysis performed
separately in each experimental condition. In LH condition, the significant between-
subject difference in the theta-band activation was not observed. On the contrary, the
between-subject differences were found in the spatial cluster, which included Cp3,
Cpz, and Cp4 sensors (dorsal stream region of the sensorimotor area) in 0.4 ÷ 0.6s
window before the RH movement execution. Thus, we localized the effect in the
spatio-temporal domain.
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(group, condition)—set. Here, * indicates p < 0.05 and n.s. stands for insignificant difference. c
Strip-charts (left) and scatterplot (right) of paired observations within each group. Here, diamonds
indicate subjects from YA group and squares indicate subjects from EA group

To estimate age-related differences of theta-band activation taking into account
both Age and Movement Type factors, we compared mean theta-band spectral
power over the evaluated spatio-temporal cluster via mixed-designed ANOVA (see
Fig. 9.11b). The mixed-design ANOVA test revealed the significant effect of the Age
on the pre-motor theta-band power (F(1, 18) = 4.636, p = 0.045), while the fac-
tor of Movement type was insignificant (F(1, 18) = 4.158, p = 0.056). Post hoc
comparison via unpaired t-test indicated that the mean pre-motor theta-band spectral
power for the EA group (M = 0.636, SD = 0.429) was significantly higher than
the YA group (M = 0.294, SD = 0.336). Also, similarly to the MBRT analysis,
there was a significant interaction between the Movement Type and the Age of the
participants (F(1, 18) = 4.770, p = 0.042). We interpret this interaction as follows:
pre-motor theta-band power was similar for LH condition the EA and YA groups
(EA LH: M = 0.631, SD = 0.524; YA LH: M = 0.446, SD = 0.376), while the
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YA group demonstrated higher pre-motor theta-band power in RH condition (EA
RH: M = 0.641, SD = 0.365; YA RH: M = 0.142, SD = 0.242).

9.3.3 Classification of Wavelet Spectra by Machine Learning
Techniques

To localize the statistically significant effect of alpha/mu-rhythm desynchronization
obtained with the help of CWT (9.16), a nonparametric cluster test in the space-
time domain was performed in all subjects with the significance level of pairwise
comparisons p < 0.001 (d f = 30, tcri tical = −2.745). The statistical test showed the
presence of two clusters: the first cluster, covering all EEG sensors and localized at
the interval 0.45–3.42 s, and the second cluster, including all EEG sensors except for
the occipital and parietal lines and localized at the interval 3.468–7.448 s. It should
be noted that the most pronounced ERD effect is observed in the left hemisphere of
the motor cortex (FC3, C3, Cp3 sensors), but also there is a less pronounced effect in
the right hemisphere on symmetric sensors FC4, C4, Cp4. Such bilateral activation
of the motor cortex may be associated with the presence in the sample of elderly
subjects, characterized by the attraction of additional neuronal populations of the
ipsilateral hemisphere during motor control [34].

According to the results of the statistical analysis of the spatiotemporal evolution
of the alpha/mu-rhythm, it was proposed to divide the subjects into groups using
cluster analysis based on the property of lateralization of the suppression of the
alpha/mu-rhythm in the interval 0.45 ÷ 7.45s. Thus, each subject was characterized
by two features: (i) the average ERD of the alpha/mu-rhythm in the left hemisphere
of the motor cortex (FC3, C3, Cp3 sensors, and the certain time interval), and (ii)
the average value of ERD of the alpha/mu-rhythm in the right hemisphere of the
motor cortex (FC4, C4, Cp4 sensors, and the certain time interval). For the cluster
analysis, the k-means algorithm was used [42]. The division of subjects into groups
for different values of the number of identified clusters n shown the satisfying results
for n = 5. In this case, 3 rather large groups of subjects were identified (Cluster0: 7
subjects; Cluster1: 11 subjects; Cluster2: 7 subjects), in which the age differences are
statistically significant (p = 0.017, F(2.22) = 4.904) (see Fig. 9.12). The Cluster0
group includes only young subjects, the Cluster2 group includes 6 elderly subjects
and 1 young subject. At the same time, the Cluster1 group includes 5 young and 6
elderly subjects.

A statistically significant effect of the alpha/mu-rhythm desynchronization
between the groups of subjects was localized using a nonparametric cluster test
in the space-time domain with a significance level of group comparisons p < 0.005
(d f 1 = 2, d f 2 = 22, Fcritical = 6.8064). The statistical test showed the presence of
two clusters: the first cluster, covering all EEG sensors {Fz, FC3, FCz, C3, Cz, C4,
Cp3, Cpz} at the interval (1.78 ÷ 2.53s, corresponding to wrist flexion (Fig. 9.13a,
c), and the second cluster including practically all the EEG sensors of the occipital,
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Fig. 9.12 a Optimal distribution of subjects across clusters using the k-means algorithm for n = 5,
and b distribution of the age of subjects in the largest Clusters 0, 1 and 2

parietal, central, temporal and frontal areas and localized at the interval 4.53 ÷ 7.27s,
corresponding to wrist extension (Fig. 9.13b, d). The topograms shown in Fig. 9.13a,
b, show that the most significant effect in both clusters is demonstrated by channel
C3, which belongs to the left hemisphere of the motor cortex and is associated with
normal neuronal activation during movements of the right limb. From the dynamics
of the normalized wavelet power in the detected clusters (Fig. 9.13c, d) it can be seen
that, while the Cluster0 (YA subjects) and Cluster2 (EA subjects) groups demon-
strate pronounced alpha/mu-rhythm desynchronization, the Cluster1 group, which
includes subjects of both age groups, does not demonstrate changes in the level of
the wavelet power of the alpha/mu-rhythm in relation to the prestimulus state.

Let us consider the averaged patterns of the spatial distribution of the normalized
wavelet power of the alpha/mu-rhythm at time intervals corresponding to statisti-
cally significant differences between the groups of subjects during movements of
the right hand (see Fig. 9.14). YA subjects in the Cluster0 group (18–33 years old)
demonstrate the most pronounced alpha/mu-rhythm desynchronization localized in
the motor cortex (Fig. 9.14, left column). At the same time, while flexion of the hand
activates both hemispheres of the motor cortex (sensor C3 in the left hemisphere,
and sensors C4 and Cp4 in the right one), the subsequent extension of the hand acti-
vates the suppression of the alpha/mu-rhythm strictly in the left hemisphere (sensor
C3). The described neural activity is normal for healthy people without neurological
pathologies. As consequence, we can considered the Cluster0 group as a control
group.
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Fig. 9.13 Topograms a, b illustrate the distribution of F-statistics values in spatio-temporal clusters
obtained in the course of a nonparametric test aimed at identifying areas of statistically significant
differences in alpha/mu-rhythm desynchronization between groups of subjects determined on the
basis of cluster analysis. Panels c, d show the time series of the wavelet power of the alpha/mu-
rhythm averaged over the identified clusters. Orange areas indicate time intervals corresponding to
statistically significant differences, and the horizontal line—the background level of wavelet energy

Fig. 9.14 Topograms illustrate the spatial distribution of the wavelet power of the alpha/mu-rhythm
at time intervals corresponding to statistically significant differences between the groups of subjects
during squeezing (top line) and unclenching (bottom line) of the right hand. The columns correspond
to different groups of subjects identified using cluster analysis
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In turn, the Cluster2 group, consisting mainly of EA people (53–67 years old),
demonstrates significantly less pronounced suppression of oscillations in the 8–14Hz
band, however, it covers amuchwider range of EEG channels, including the occipital
and parietal sensors during flexion as well as parietal and frontal sensors when
extending the right hand (Fig. 9.14, middle column). The Cluster2 group is also
characterized by less pronounced lateralization of neuronal activity, which is also
an important feature on the basis of which these subjects were combined into one
group at the stage of cluster analysis. Such the changing of normal activation can
be associated with age-related neurodegenerative processes progressing under the
influence of healthy aging [101]. There are two competing hypotheses explaining the
described extensive activation from the standpoint of (i) compensatory mechanisms
that use more distributed neural ensembles of neighboring regions of the brain to
maintain the proper level of motor control [82], or (ii) dedifferentiation of brain
functions in the elderly, associated with a gradual loss of the expressed functional
role of local neural networks [7].

Finally, Cluster1, which includes subjects of both YA and EA groups, showsweak
activation in the motor cortex during hand flexion and does not show alpha/mu-
rhythm suppression during hand extension (Fig. 9.14, right column). It should be
noted that this group includes the oldest participants in the experiments (68–72 years
old), which may explain the statistically insignificant level of desynchronization of
the mu rhythm in comparison with the prestimulus activity. Perhaps this may be
due to a shift in the activation of the motor cortex to a higher frequency range of
beta waves (15–30 Hz) under the influence of GABA inhibitors, which appear under
the influence of neurochemical changes in the brain during healthy aging [25, 26].
However, this group also includes subjects of the younger age group (25–27 years
old), which can potentially be a wavelet-based biomarker for them of violations of
the normal functioning of the brain, namely, structural, neurochemical or functional
changes.
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Chapter 10
Conclusion

Wavelet analysis remains a somewhat exotic method in contemporary neuroscience
and neurophysiology. It seems that new mathematical or experimental methods,
despite all their benefits and technological advantages, need time to become accepted
as a convenient tool for routine applications. It is particularly noticeable in the clin-
ical and biological sciences, where novel mathematical tools must undergo a thor-
ough examination, adaptation, and verification, and only then can they be accepted
for practical use. In this context, it should be emphasized that wavelet analysis is
suitable for time–frequency analysis of neurophysiological signals, and can also be
incorporated into more complex algorithms for experimental data processing that
increase the efficacy of data analysis in neurophysiological studies. We believe that
the wavelet-based analysis will naturally evolve into a family of standard methods
for signal processing in biology andmedicine. This does not mean replacement of the
conventional by new techniques, but improvement of existing approaches to make
wavelet analysis more widely applicable in experimental neuroscience.

The present monograph addresses just a few problems that are frequently encoun-
tered in neuroscience and neurophysiology. Even this brief review demonstrates
several beneficial ways and promising perspectives for using wavelet analysis in
neurophysiological research. Applications of the powerful mathematical analysis
of nonlinear dynamics to neuronal systems, both at the micro- and macrolevels of
the central nervous system, opens new perspectives for the study of the extremely
complex mechanisms of brain functions. At the same time, interpretation of results
obtained by this interdisciplinary approach is difficult in the context of neurophysiol-
ogy due partly to the extreme complexity of the explored object (the nervous system
of living organisms), and partly to the difficulty in identifying the appropriate phys-
iological meaning of results obtained by such sophisticated mathematical methods.
Here we would like to quote A. M. Ivanitskii and A. I. Lebedev, who commented
that “[. . .] the integration of mathematics and physiology gives the best result when
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the application of a specified mathematical transform is underlain by a fruitful phys-
iological idea” [1]. Indeed, success in developing new data-processing technologies
in any interdisciplinary field including contemporary neuroscience depends on the
introduction of new neurophysiological ideas and clearly defined goals, along with
appropriate ways to achieve them.

There can be little doubt that the number of neurophysiological studies using
wavelet-basedmethodswill continue to grow, because it provides a solution formany
challenging problems, such as the principles of information coding and presentation.
Further progress in understanding the functions of the central nervous system requires
not only the development of experimental research facilities (where considerable
progress has been made in the last few decades), but also the introduction of new
mathematicalmethods for decodingneural signals. The extraordinary complexity and
intricacy of brain processes make it impossible to decipher neural signals using only
the methods of statistical analysis. From the viewpoint of nonlinear dynamics, the
adaptation of living systems (organisms and their neural systems) to the environment
is accompanied by changes in their dynamics, whereupon neurophysiological signals
recorded at this time should be considered as time series of nonstationary processes
produced by dynamical systems with an unlimited number of degrees of freedom.
If we ignore this fact, we may miss important information about the neural system,
whereas understanding adaptive processes facilitates the study of the basic principles
of neural activity.

Wavelet analysis can be expressed by the metaphor of a “mathematical micro-
scope”, highlighting the fact that we need to use appropriate magnification in order
to disclose certain hidden features that cannot be detected by the naked (or inade-
quately armed) eye. There is still great (yet hidden) potential for this research tool.
The present monograph describes some modifications to the mathematical process-
ing of experimental data and addresses some problems of neural system dynamics,
but also tries to inspire the reader by describing the promising new prospects for
wavelets in neurophysiological applications. In the coming years, wavelet analysis
should become an effective research tool that will help to improve the quality of
research in the field of neuroscience. Moreover, the wavelets become an effective
tool for the development of the different neurotechnologies, including systems for
automatic processing of neurophysiological data and brain-computer interfaces.
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