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The control of movement in living organisms represents a fundamental task that the brain has 
evolved to solve. One crucial aspect is how the nervous system organizes the transformation 
of sensory information into motor commands. These commands lead to muscle activation 
and subsequent animal movement, which can exhibit complex patterns. One example of such 
movement is locomotion, which involves the translation of the entire body through space. Central 
Pattern Generators (CPGs) are neuronal circuits that provide control signals for these movements. 
Compared to the intricate circuits found in the brain, CPGs can be simplified into networks of 
neurons that generate rhythmic activation, coordinating muscle movements. Since the 1990s, 
researchers have developed numerous models of locomotive circuits to simulate different types 
of animal movement, including walking, flying, and swimming. Initially, the primary goal of 
these studies was to construct biomimetic robots. However, it became apparent that simplified 
CPGs alone were not sufficient to replicate the diverse range of adaptive locomotive movements 
observed in living organisms. Factors such as sensory modulation, higher-level control, and 
cognitive components related to learning and memory needed to be considered. This necessitated 
the use of more complex, high-dimensional circuits, as well as novel materials and hardware, in 
both modeling and robotics. With advancements in high-power computing, artificial intelligence, 
big data processing, smart materials, and electronics, the possibility of designing a new generation 
of true bio-mimetic robots has emerged. These robots have the capability to imitate not only 
simple locomotion but also exhibit adaptive motor behavior and decision-making. This motivation 
serves as the foundation for the current review, which aims to analyze existing concepts and 
models of movement control systems. As an illustrative example, we focus on underwater 
movement and explore the fundamental biological concepts, as well as the mathematical and 
physical models that underlie locomotion and its various modulations.
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Nomenclature

Acronyms

AHRS attitude heading reference system
AI artificial intelligence
AMPA 𝛼-amino-3-hydroxy-5-methyl-4-isoxazole propi-

onic acid-type glutamate
CIN contralateral inhibitory neuron
CMOS complementary metal oxide semiconductor
CNS central nervous system
CPG central pattern generator
DLR diencephalic locomotor region
DMCU decision mechanism-motion combination unit
DSP digital signal processor
DTM discrete time map
EDPU environmental data processing unit
EIN excitatory interneuron
ENS electronic nervous system
GA genetic algorithm
GABA gamma-aminobutyric acid

GPS global positioning system
I&F integrate-and-fire
IINs inhibitory interneurons
IMU inertial measurement unit
IPSPs inhibitory postsynaptic potentials
LIN lateral inhibitory neurons
MLR mesencephalic locomotor region
MN motor neuron
NMDA N-methyl-D-aspartate
nMLF nucleus of the medial longitudinal fascicle
NOs neural oscillators
ODEs ordinary differential equations
PD proportional-derivative
PID proportional-integral-derivative
PNS peripheral nervous system
RL reinforcement learning
RS reticulospinal
SN sensory neuron
SNNs spiking neural networks

1. Introduction

Motor control in living organisms represents one of the fundamental tasks that the brain has had to optimize for different creatures 
throughout evolution. In a general sense, motor control is organized by three main components: (i) neuronal circuits distributed in 
a hierarchical structure, (ii) the actuator system comprised of muscles, and (iii) a set of sensors that inform the control neuronal 
circuits about the environment and the current state of the actuators. The neuronal component can be further divided into lower-
level subsystems typically located at the periphery, such as the spinal cord in vertebrates, and higher-level components in the central 
nervous system, such as the head and brain stem [8]. Spinal cord networks provide robust patterns of muscular activation that 
result in movement, while central nervous system (CNS) networks contribute to command-level control and fine-tuning. Locomotion 
represents a fundamental type of movement that involves the motion of the entire body in space. It is crucial for survival and, 
therefore, needs to be organized in a reliable and robust manner. Consequently, locomotion involves the repeated rhythmic activation 
of the body’s strongest muscles. This activation is controlled by a relatively simple and robust neuronal circuit located in the spinal 
cord, known as the central pattern generators (CPGs) [94,63,3]. CPGs provide the basic type of animal movement in space, which can 
be realized without explicit command control or sensorial feedback. In critical situations, such as when an animal needs to escape, 
the central pattern generator (CPG) can work autonomously to generate locomotion patterns without requiring fine-tuning, energy 
optimization, or other higher-level modifications. On the other hand, higher-level control is organized in a more complex manner 
and is still an active topic of discussion in modern neuroscience [62,151].

The ability of animals to generate locomotion without relying on higher-level brain control has stimulated the design of 
biomimetic robots [125]. These robots imitate the bodies of animals and are driven by relatively simple and robust controllers 
that mimic the Central Pattern Generator (CPG). In many cases, these controllers are implemented using oscillatory electronic cir-
cuits that model motor neurons. These circuits have successfully tackled basic tasks involving robot movement in various conditions, 
including walking robots, flying robots, and swimming robots [142,208].

In the realm of autonomous motor control, swimming robots have become a focal point of interest for both fundamental scientists 
and engineering robotics. In comparison to other types of locomotion, the movement of underwater animals and corresponding robots 
does not involve the control of body position. Unlike walking creatures, swimming animals and robots do not need to maintain a 
specific “vertical pose” to prevent falling. In the case of flying animals, such as birds, gravity compensation is intricately linked 
to body translation in space. However, for water-dwelling creatures, the task of the CPG is solely focused on the locomotion of 
body translation in space. Furthermore, the aquatic medium is denser in comparison to air, which means that high-speed actuators, 
like those required for insect wings in the air, are not necessary for swimming control. Swimming can be more easily and reliably 
implemented in aquatic robots since it can operate at a slower pace.

Fishes, being aquatic creatures, rely on swimming as their fundamental mode of locomotion. In this review, we discuss the state-
of-the-art concepts regarding the organization of fish swimming. We first explore the key aspects of motor control physiology, which 
encompass the features of fish body structure, actuators, brain and spinal cord organization, and the underlying CPG circuitry, in-
cluding sensory feedback mechanisms. Additionally, we review mathematical models of CPGs, ranging from biophysically motivated 
neuronal circuits with feedback loops to more simplified oscillatory models used in the simulation of animate entities, such as virtual 
robots. These models also serve as a basis for engineering solutions aimed at controlling hardware robots for various types of aquatic 
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Fig. 1. Neural control structure for fish locomotion. Schematic representation of the brain, brainstem and spinal components that coordinate locomotor activity. 
Locomotion can be initiated by stimulating the diencephalic and mesencephalic locomotor regions (DLR, MLR), which receive input from the telencephalon and 
tectum. The DLR and MLR project excitatory signals to reticulospinal (RS) neurons, which then activate the spinal CPG responsible for generating rhythmic locomotor 
activity. The RS neurons excite all classes of CPG interneurons and motor neurons. The excitatory interneurons (E) stimulate all types of CPG neurons, including the 
inhibitory glycinergic interneurons (I) that cross the midline and inhibit all neuron types on the contralateral side, as well as the motor neurons (M). Sensory feedback 
to the CPG is provided by stretch receptor neurons. Two types of stretch receptor neurons exist: excitatory ones that activate ipsilateral CPG neurons, and inhibitory 
ones that suppress the activity of contralateral CPG neurons.

2. Neurobiology of fish locomotion system

In this section, we outline the conceptual framework of the fish motor system organization, including central networks, CPGs, 
and sensory control, focusing on one example from the lamprey. Due to its relative simplicity, the lamprey serves as a model of a 
swimming vertebrate nervous system and provides one of the few examples in which detailed knowledge about intrinsic organization 
of the spinal locomotor CPG networks is available. Since lampreys CPG is the most well-understood, it has been most modeled. For 
a comprehensive review of the cellular basis of motor behavior, we refer readers to Refs. [19,63,66].

Fish locomotion is controlled by the interplay between the central (CNS) and peripheral (PNS) nervous systems (Fig. 1). The CNS 
comprises the brain and spinal cord, which integrate and process information from the environment and control movements. The 
peripheral nervous system (PNS) includes the nerves that branch out from the brain and spinal cord, carrying sensory stimuli from the 
periphery to the CNS and motor commands from the CNS to the muscles [100,132]. In fish, the tectum, which is a part of midbrain, 
plays a central role in processing sensory information and generation of behavioral reactions. It integrates and coordinates different 
sensory modalities, such as visual, auditory, lateral line, somatosensory, and electrosensory, to provide a multimodal representation of 
the sensory environment [135]. Based on the received sensory input, the higher brain centers (the telencephalon and tectum) quickly 
make decisions to adjust behavioral movements to the dynamic environment. To initiate these movements, the higher brain centers 
send commands to the mesencephalic locomotor region (MLR) and diencephalic locomotor region (DLR). These two areas project 
independently to reticulospinal (RS) neurons in the middle and posterior reticulospinal nuclei, which in turn activate the spinal 
neural networks called the locomotor central pattern generators (CPGs) that generate locomotor activity [145,144,86,14,67,69]. The 
activation level of the locomotor regions defines the input signal to the spinal CPGs and therefore the locomotion speed.

The locomotion CPG is considered to be divided into segments according to the number of vertebrae. The spinal nerves originate 
from each vertebra, emerging from the ventral (abdominal) and dorsal (spinal) roots of the spinal cord. The ventral roots originate 
from motor cells located in the ventral horns of the spinal cord, and through these roots, excitation spreads to the periphery, activating 
the muscle fibers. The dorsal roots transmit sensory information from the fish’s body to sensory neurons in the spinal cord, providing 
feedback. Thus, ventral roots contain motor nerve fibers, while dorsal roots contain sensory fibers. Fig. 1 illustrates the schematic 
interaction between the elements of the CNS and PNS that govern the control, initiation, and generation of swimming locomotion.

In the following sections, we will discuss in detail the roles of the main brain structures and spinal cord in fish motor control from 
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2.1. Fish brain

Movement control involves several brain structures such as telencephalon, mesencephalon (midbrain), diencephalon, meten-
cephalon (cerebellum), and myelencephalon (medulla oblongata) (Fig. 1) [180]. The telencephalon, or forebrain, is involved in 
complex behaviors such as learning, memory and decision-making [100,132]. The midbrain is involved in motor control and pro-
cessing of sensory information. The diencephalon integrates sensory information, controls hormone release, is related to regulating 
body temperature, hunger, and thirst. The cerebellum coordinates movement and balance. After muscle action has been initiated, the 
cerebellum governs the timing and coordination of muscle interactions [134]. The medulla oblongata regulates autonomic functions 
such as breathing, heart rate, and blood pressure [132,53].

In the midbrain, two subregions can be distinguished that are actively involved in the control of motor patterns: tectum and 
mesencephalic locomotor region (MLR) [146]. The tectum is the primary visual center in fishes and plays a central role in interfacing 
between sensory stimuli and behavioral reactions [24]. Situated dorsally in the midbrain, the tectum consists of two neuronal layers 
with specific cell types and connectivity. The superficial layer receives input from different sensory modalities (visual, auditory, 
lateral line somatosensory, electrosensory); and the deeper layer processes and integrates this information leading to a multimodal 
representation of the sensory environment in order to provide coherent orienting responses. Tectum, via its connections to premotor 
centers, controls eye movements, and behavioral motor patterns associated with survival and reproduction.

While tectum plays the main role in processing sensory stimuli, the MLR is believed to be a key brain region involved in goal-
directed locomotion mainly due to its strategic location between higher brain centers and hindbrain neurons directly projecting 
to the spinal CPGs [126]. Located in the caudal mesencephalon the MLR receives signals from the higher brain structures, such 
as the telencephalon and tectum, in order to control locomotor initiation, locomotor speed and gait transitions (for recent review, 
[156,159,60]). Electrical stimulation of the MLR was able to elicit controlled swimming in lamprey [166], zebrafish [29], stingray 
[11] and salamander [25]. Wherein, the frequency of the movements and the force of muscle contractions were controlled by the 
stimulation strength.

Based on the processed sensory information the tectum via descending projections modulates the activity of the MLR neurons 
[52,161]. In particular, the tectum provides sensory feedback to the MLR about the orientation and movement of the fish in its 
environment, allowing the MLR to adjust its activity and generate appropriate motor outputs [70]. The exact nature of this feedback 
and the mechanisms by which it is integrated with other sensory and motor inputs in the MLR are still the subject of ongoing research 
[52]. Thus, the tectum and MLR work in tandem to generate adaptive locomotion in response to changes in the environment.

The exact organization and function of the MLR can vary between different species of fish and other lower vertebrates, and further 
research is needed to fully understand its role in locomotion control. The MLR consists of several nuclei, including the nucleus of the 
medial longitudinal fascicle (nMLF) and the adjacent area surrounding it [67,10]. These nuclei contain cholinergic and glutamatergic 
neurons. The glutamatergic neurons release glutamate, which activates the spinal cord neurons responsible for locomotion pattern 
generation. The inhibitory neurons release gamma-aminobutyric acid (GABA), which helps to fine-tune and coordinate the swimming 
movements by inhibiting some spinal cord neurons and exciting others.

When the MLR is activated, it generates a rhythmic pattern of neuronal activity that drives the swimming movements. The 
frequency and amplitude of this pattern can be modulated not only by signals from the higher-level brain regions, but also by 
sensory inputs received directly from the spinal cord and other sensory pathways, allowing the fish to adjust its ongoing motor 
activity to changing environmental conditions [4,16,136,159].

To control locomotion the MLR provides direct glutamatergic input to reticulospinal (RS) neurons in the medullary reticular 
formation (MRF)—as demonstrated in lamprey [14,143], zebrafish [29], salamander [157]. RS neurons in turn drive the interneurons 
of the locomotor CPG, as shown in lamprey [21]; for review, [66,107].

The mechanisms of the connections between the MLR and RS neurons has been extensively studied in lampreys [166]. Interest-
ingly, it was shown that the strength of the connectivity between the MLR and RS cells posses the regional variation. Excitatory inputs 
from the MLR to RS cells are largest in those located in the rostral half of the hindbrain. As RS cells are situated further caudally, 
the strength of the inputs decreases. Additionally, stimulating RS cells with increased MLR strength follows a specific pattern, with 
cells located in the rostral hindbrain requiring the least amount of stimulation intensity, while those located more caudally require 
greater stimulation forces [14]. Thus, the MLR can activate different patterns of activity in the spinal cord to produce different types 
of swimming behaviors, such as forward swimming, turning, or escape responses [25,26,164].

In the diencephalon has been identified another region involved in controlling movement. The diencephalic locomotor region 
(DLR) is also involved in activating locomotion by providing the descending projection to neurons in the hindbrain. MLR and DLR 
project independently to RS neurons, which in turn activate the spinal CPGs that generate locomotor activity. Both pathways are 
glutamatergic and project bilaterally [1,195].

2.2. Fish spinal cord

The spinal cord is a long, tubular structure that runs along the length of the fish’s body through the nerve channel of the spinal 
column and is protected by it. The spinal cord contains the neuronal networks that produce coordinated rhythmic patterns of motor 
neuron activity without receiving rhythmic inputs from sensory feedback or higher control centers. Such networks are referred to 
as CPGs. CPGs are distributed networks made up of multiple coupled oscillatory centers. The most basic CPGs underlie protective 
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of the brainstem locomotor center, which produces the locomotor pattern in close interaction with sensory feedback. With increased 
activation of the locomotor centers, the drive to the spinal locomotion CPGs increases, and therefore the locomotion speed increases.

In this section, we will describe the cellular bases of locomotion CPGs using the example of a lamprey’s swimming CPG because 
it has been the most studied. The lamprey is a primitive eel-like fish and belongs to the class of lower vertebrates.

The lamprey nervous system can be considered a prototype for vertebrates, and it is convenient for neurophysiological study 
due to its simplicity and ability to be maintained in vitro. The isolated brainstem and spinal cord of lampreys can display normal 
electrophysiological properties and exhibit reflexes and swimming locomotion for several days. The lack of myelin in lampreys 
makes their brainstem and spinal cord relatively transparent, allowing for the visualization of nerve cell bodies and axons using a 
stereomicroscope. The spinal cord of the lamprey contains about 100 segments, with approximately 1000 nerve cells in each segment. 
Segmentation of the spinal cord is nominal and corresponds to the number of regularly occurring ventral and dorsal roots [19]. Since 
there is little apparent segmental organization beyond the nerve roots, and no distinctive clustering of nerve cells or their processes 
that would allow the recognition of segmental boundaries [149,150,162,174].

2.2.1. Locomotor rhythm generation by CPG

The lamprey’s swimming pattern consists of rhythmic bursts of action potentials with a frequency ranging from 0.1 to 8–10 Hz 
in ventral roots that alternate between the left and right sides of the spinal cord. Each segment of the CPG represents a symmetrical 
oscillatory center responsible for the movement of a specific body part [30,63,52]. The core of the lamprey CPG network is formed by 
ipsilateral glutamatergic excitatory interneurons (EIN in Fig. 1), glycinergic inhibitory interneurons (IIN in Fig. 1) with contralateral 
axons, and motor neurons (MN in Fig. 1). In a single CPG hemisegment, the rhythmic bursts are generated by the activity of the 
ipsilateral excitatory interneuron population. The excitatory interneurons release glutamate that activates 𝛼-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid-type glutamate (AMPA) and N-methyl-D-aspartate (NMDA) receptors on postsynapses of all spinal 
neuron types. They excite not only nearby excitatory interneurons and ipsilateral motor neurons, but also the glycinergic inhibitory 
neurons, whose axons cross the midline to inhibit all neuron types on the contralateral side [61,119,18,121]. There are two types 
of neurons that are involved in crossed inhibition. The first type is made up of larger neurons which have long descending axons. 
The second type is made up of smaller interneurons which have much shorter axons. These smaller interneurons provide larger 
inhibitory signals, known as unitary inhibitory postsynaptic potentials (IPSPs), compared to the larger neurons [138]. In addition 
to these two main types of neurons, there are also small glycinergic interneurons that are activated alongside motor neurons, likely 
by excitatory interneurons. These glycinergic interneurons provide monosynaptic inhibition to both motor neurons and crossed 
inhibitory interneurons (IINs) [138,22]. Glycinergic ‘lateral interneurons’ have a large cell body, prominent lateral dendrites, and 
fast-conducting, long ipsilateral axons projected caudally. They locate rostrally in the spinal cord and probably subserve mainly a 
propriospinal function.

RS glutamatergic neurons drive the CPG network by activating AMPA and NMDA receptors on motor neurons, excitatory in-
terneurons and crossed inhibitory interneurons. The voltage-dependent NMDA receptors induce the plateau-like depolarizations of 
the neurons that play a key role in the generation of long-lasting bursts and a slow, regular locomotor activity.

2.2.2. Sensory feedback to the CPG

The sensory feedback to the CPG is provided by stretch receptor neurons, also known as edge cells. They have a dendritic tuft 
that mediates stretch transduction. During each swim cycle, lateral bending movements are detected by stretch receptors located 
at the lateral margin of the spinal cord. As the muscle fibers in one hemisegment contract, the stretch receptors on the opposite 
side are extended. There are two types of stretch receptor neurons: inhibitory glycinergic stretch receptor neurons with contralateral 
axon projection that terminate the activity of the contralateral CPG neurons (on the side that is actively contracted), and excitatory 
glutamatergic stretch receptor neurons that excite the ipsilateral CPG neurons, which become active after the cessation of activity 
on the opposite side. This sensory input is strong enough to synchronize the rhythmic activation of the stretch receptor neurons with 
the CPG-produced locomotor rhythm through alternating movements. Several experiments have shown the crucial role of sensory 
feedback in shaping CPG activity. It has been demonstrated that mechanically moving the lamprey’s tail induces the generation of a 
CPG rhythm that is frequency-locked with the stimulation frequency.

In the lamprey spinal cord, the dorsal cells are primary mechanosensory neurons that respond to skin touch [36,130]. They are 
classified into two types: touch and pressure cells [120,34,35]. These cells participate in local reflexes and are activated during 
lamprey’s fictive swimming caused by electrical stimulation [17,23,1,117,7].

2.2.3. Intersegmental coordination

Swimming vertebrates such as lamprey, fish, salamanders swim by producing a mechanical undulatory wave that propagates 
along its body and pushes it forward through the water. This movement is generated due to the delay between the activation of 
consecutive segments along the spinal cord (Fig. 2). This phase lag remains constant and is equal a certain proportion of the cycle 
duration. As it has been shown in most fish species, standard coordination during swimming requires that the phase lag between the 
most rostral and the most caudal segments is always constant, usually around 100% of cycle duration. The phase lag can be modulated 
by sensory signals that directly come to spinal cord. Experiments with isolated spinal cord have revealed that the generation of a 
constant phase lag between segments is an inherent feature of spinal cords, both in the case of forward locomotion when the rostral 
segments lead with a constant rostro-caudal phase lag and for backward locomotion when the phase lag is reversed into a caudo-
rostral lag. Such intersegmental coordination on the cellular level is organized by connectivity of excitatory interneurons, which 
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extend their axons over a few rostral and a greater number of caudal segments.
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Fig. 2. The lamprey swims by propagating a mechanical wave, transmitted along the body. Consecutive segments of the spinal cord are activated with a phase lag 
that is a fixed proportion of the cycle duration. Source: adapted from [63].

2.2.4. Steering

Forward locomotor activity is induced by symmetrical bilateral activation of the RS neurons. Asymmetrical activation results in 
left-right turning [124,57,46]. Greater activation of RS neurons on one side leads to the generation of longer bursts on ventral roots on 
this side, causing the movement direction to shift towards that side. Similarly, vertical deviations are caused by asymmetric activation 
of ventral or dorsal myotome neurons by RS neurons. Head movements are induced by vestibular input through interneurons on 
contralateral RS neurons. Left-right turning of the head results in asymmetric activation of the RS neurons, producing an automatic 
correction of body orientation [44,45]. The vestibular input plays a major role in postural control for fish.

3. Locomotion CPG models

While knowledge of the various neural networks present in the lamprey motor system, including their interneuron connectivity, 
types of synaptic transmission, and subcellular properties, is essential for understanding CPGs, it is not sufficient on its own. The 
dynamics of interactions, spanning from molecular to network levels, are highly complex. Therefore, computational approaches 
are necessary to investigate whether intuitive explanations can account for experimental findings. In the section, we will attempt 
to review all of the basic models that are used to build and simulate a CPG of the fishes and swimming animals, such as turtles or 
salamanders, moving from the simple to the complex. Fig. 3 illustrates the hierarchy of models used in the fishes’s CPGs development, 
while being the outline of our review.

It should also be noted that the problem of creating CPGs based on coupled nonlinear oscillating elements exhibiting complex 
patterns of collective dynamics has a close connection with the problems of signal propagation in complex networks, which has been 
recently addressed in the reviews [87,88]. In this context, we can consider the problem of constructing CPGs from both modeling-
driven approaches and data-driven methods. Following the first approach, knowing the required motion patterns of body segments of 
a swimming organism or a swimming robot, we can, based on the interplay between the structure of connections between oscillators 
and their dynamics, try to form the required motion pattern. We can even optimize the motion pattern with this approach by changing 
the configuration and strength of the links between oscillatory nodes, for example, to achieve the maximum swimming speed. Such a 
modeling-driven method is conveniently applied using abstract oscillatory models known from nonlinear dynamics to design CPGs of 
swimming robots. The second data-driven approach appears to be an inverse problem for identifying the hidden biological features 
of real fish or waterfowl animal CPGs from known biological data. This approach allows us to construct biologically plausible models 
of CPGs that describe the organization of neural networks of different fish species. We then consider these issues related to the CPGs 
model classification in more detail in Section 3.1.

3.1. CPG models classification

CPG models are typically constructed as systems of interconnected segments, each exhibiting specific collective dynamics. The 
architecture of a CPG model enables the establishment of the desired pattern of rhythmic activity, corresponding to the movement 
of different body parts in swimming animals or the moving components of floating robots (if we consider artificial objects rather 
than biological ones). The topology of CPG model architectures can be highly diverse, but the most commonly employed structures 
include one-dimensional (1D) chains, two-dimensional (2D) lattices, and network-like (3D) arrangements of CPG segments.

The simplest CPG models consist of 1D chains of connected segments, where each segment is linked to its two nearest neighbors. 
This topology is often used to simulate CPGs involved in basic locomotion behaviors, such as swimming forward. In contrast, a 
2D topology refers to a lattice-like organization of segments, where each segment is connected to its three closest neighbors. This 
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Fig. 3. A hierarchy of CPG models for floating animals and their development to create CPGs for floating robots that are considered in the review.

sensory information to perform adaptive actions like obstacle avoidance or prey capture. A network of segments represents an even 
more intricate 3D structure, where each segment is connected to a larger number of neighbors. The arrangement of segments in these 
complex networks is defined by an adjacency matrix and described in terms of graph theory. The wide range of dynamics exhibited 
in such complex networks allows for a vast variety of dynamic and synchronous modes to be realized. Furthermore, these networks 
can be utilized to create biologically plausible models of CPGs.

The paper [133] compares the performance of the three CPG topologies in terms of their ability to generate stable and coordinated 
motion, their resilience to disturbances and perturbations, and their computational efficiency. The results of the study demonstrate 
that the 3D CPG topology outperforms the other two topologies in terms of stability, reliability, and efficiency. The 3D topology 
is able to produce coordinated motion with minimal intersegmental coupling, making it more robust to disturbances and easier to 
control. Niu et al. [133] conclude that the 3D CPG topology is a promising approach for controlling the locomotion of underwater 
vehicles and could have potential applications in areas such as marine exploration, underwater robotics, and biomimetic locomotion. 
However, for the construction of simple CPGs for technical robotic applications this complexity and richness of oscillatory modes 
looks redundant, so simpler 1D and 2D topologies remain also very much in demand in practice.

It should be noted that the CPG segments themselves may have different intrinsic dynamics and may be described by different 
mathematical models. The corresponding segment models can be both abstract models that is unrelated to the biological context 
but demonstrates the necessary dynamics. In this case, the most commonly used models are models of self-sustained oscillators with 
limit cycles (see Section 3.2) those oscillatory modes do not depend on initial conditions (in the absence of multistability [139]]) and 
whose characteristics (primarily frequency and phase of oscillations) can be controlled within certain limits by external signals due 
to the effect of synchronization. There are also works [188,193] that use linear differential equations as the mathematical models 
of the CPG segment. For a more flexible adjustment of the dynamics of such segments, it is convenient to use coupled oscillators 
[83,84,98,204,104], which have wider possibilities for controlling the phase characteristics of oscillations in them by fine-tuning the 
parameters of coupled systems or communication channels between them.

More advanced models already have a biologically plausible form and include various mathematical models of connected neurons 
organised into neural ensembles, both birst-firing and spiking neural networks [12,111,113,81,9,75,98] (see Section 3.3). Such 
models approximate those real CPGs that are implemented by nature in the different fish species. We specifically focus in the 
Section 3.4 on the biophysically detailed, full-scale computational model of the fish CPG and its forebrain control [101], which 
was one of the first fully realistic models based on biophysical data of the lamprey locomotor CPG. Two other biologically relevant 
CPG models of the brainstem-spinal cord network in lampreys [102] and a detailed model of the complete neuronal circuit of frog 
tadpoles [58] are also reviewed in the Section 3.4. In the latter, the role of the interplay between receiving sensory signals, decision 
making, and locomotion generation in the operation of CPGs was considered. Such models offer significant opportunities to study 
the biophysical mechanisms of locomotion rhythm generation in the central and peripheral nervous system of swimming animals. 
However, for use in applied robotic tasks, such the models prove to be too complex and poorly controllable in terms of the need for 
closed-loop control systems. In the closed-loop CPGs, sensory information and the commands generated from its processing influence 
the dynamics of CPGs, self-consistently changing the rhythm and pattern of robot movement depending on the external environment 
and commands to change the direction of the swimming robot. Models that include additional segments for self-consistent description 
of fin and limb movements also belong to such the systems.

Therefore, to develop models of CPGs that can be applied in robotics tasks for creating either simulated biomechanical models 
(animates) or floating robots, it is necessary to base the models on the simpler models with 1D or 2D topologies. In robotics tasks, 
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simple abstract oscillatory models, which are much easier to implement and program, are often used as model systems in individual 
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segments of CPGs. Such models have now been developed for virtually all types of fish and waterfowl locomotion. We also discuss 
these in our review in Section 4.3.

3.2. Abstract ODE-based oscillator models

The simplest and most common approach to modeling CPGs is to use systems of coupled oscillators described by the ordinary 
differential equations (ODEs). In these models, the activity of a neural population in a complete CPG segment is represented by an 
oscillator, rather than a single neuron or a small circuit. Nonlinear oscillators are employed to describe nonlinear dynamics, which 
may not be bioinspired or biologically meaningful, unlike neural oscillators (NOs) that typically have clear biological meanings. 
Nonlinear oscillators commonly exhibit self-sustained limit cycle generation and selective entrainment. As swimming of fish can be 
characterized by rhythmic patterns, nonlinear oscillators would be an ideal tool to control the swimming motion [221].

The purpose of these models is not to explain rhythmogenesis, as oscillatory mechanisms are assumed to already exist. Instead, the 
models aim to investigate how inter-oscillator couplings and differences in intrinsic frequencies affect the synchronization and phase 
lags within a population of oscillatory centers. This modeling approach is motivated by the fact that the dynamics of populations of 
oscillatory centers primarily depend on the type and topology of couplings, rather than the local mechanisms of rhythm generation, 
which are well-established in dynamical systems theory. In biophysics, a key to understand the rhythm generation is the concept 
of the half-center (or bipartite) model proposed in [15] and refined in [170]. According to this concept, the rhythmic pattern of 
alternating bursts of flexor and extensor activities is produced by two symmetrically organized excitatory neural populations that 
drive alternating activity of flexor and extensor motoneurons and reciprocally inhibit each other via inhibitory interneurons. The 
oscillator model is based on the assumption that the CPG segment consists of two populations of neurons that mutually inhibit each 
other. When one population is active, it inhibits the other, causing it to become inactive. This, in turn, allows the first population to 
become active again. The activity of the two populations of neurons can be described by two variables that represent the strength of 
their respective inhibitory connections. The dynamics of the system can be described by a set of ODEs that govern the evolution of 
these variables.

The self-sustained oscillators are often used for modeling and engineering of fish CPGs because they are simple, easy to analyze and 
can produce complex and flexible patterns of activity. Such models have the capability to generate a wide range of output patterns, 
including irregular and chaotic activity. For instance, self-sustained oscillators can produce asymmetrical or irregular swimming 
patterns, which are commonly observed in fish that navigate complex environments or engage in complex social interactions [21]. 
They can also respond to changing sensory inputs and modulatory signals by adjusting their output patterns in real time. This 
flexibility is crucial for fish that need to navigate dynamic and unpredictable environments, where they may encounter obstacles, 
predators, or prey [82]. Another advantage of ODE-based models is their ability to generate multiple output patterns from a single 
oscillator. For example, Zhou and Low [221] shown that the use of Hopf oscillators as the segments of CPG makes it possible to 
realise a quick transition of the motion pattern during the online tuning of the controlling parameters. Another approach here is 
incorporating nonlinear feedback loops or coupling multiple oscillators together, enabling the system to generate a wider range of 
behaviors with fewer components [56,73].

3.2.1. Hopf oscillator-based CPG model

Let us take a look at a few popular and widely used individual segment oscillatory models for CPG development. One of the 
popular nonlinear oscillator models used in development of CPGs is the Hopf oscillator. First, the rhythmic output pattern of Hopf os-
cillator has a clear relationship with its parameters that facilitate the easy shaping of the output pattern by modulating corresponding 
parameters. Second, it is easier to develop coupling terms for multiple coupled Hopf oscillators in which the phase difference between 
the oscillators can be arbitrarily chosen [198]. The coupled Hopf oscillators dynamics is illustrated in Fig. 4A and is described by the 
following ODEs [221]:

𝐗̇𝑖 = 𝐹 (𝐗𝑖) +𝐂𝑖 =

((
𝜌2 −

(
𝑢2
𝑖
+ 𝑣2

𝑖

))
𝑢𝑖 −𝜔𝑣𝑖,(

𝜌2 −
(
𝑢2
𝑖
+ 𝑣2

𝑖

))
𝑣𝑖 +𝜔𝑢𝑖,

)
+

(
𝑐𝑢,𝑖,

𝑐𝑣,𝑖,

)
, (1)

where 𝐹 (𝐗𝑖) is the nonlinear operator defined by the Hopf oscillator, the state vector in Cartesian space are represented by 𝐗𝑖 =
(𝑢𝑖, 𝑣𝑖)𝑇 , the coupling term is determined by a coupling vector (𝑐𝑢,𝑖, 𝑐𝑣,𝑖)𝑇 ), the amplitude of the oscillation is controlled by positive 
number 𝜌, and 𝜔 is the intrinsic oscillation frequency. The steady-state outputs of the single Hopf oscillator with 𝐂 = 0 produces 
harmonic-like oscillations 𝑢 and 𝑣 that can be illustrated by Fig. 4B. The only attractor of Hopf oscillator is its limit cycle, as shown in 
Fig. 4B. When the evolution starts from different initial conditions (states 1–8), the Hopf system state always asymptotically converge 
to a limit cycle with radius A as time increases.

Usually, the Eq. (1) are considered as a chain of oscillators with different coupling vectors 𝐂𝑖 depending on the problem to be 
solved. In particular, in Refs. [221,222] considered a model of CPGs with a chain structure and mutual couplings as shown in Fig. 4A) 
where 𝑐𝑢,𝑖 = 0, 𝑐𝑣,𝑖 = 𝜀(𝑢𝑖−1 sin𝜑𝑖 − 𝑢𝑖 sin𝜑𝑖+1 + 𝑣𝑖−1 cos𝜑𝑖 − 𝑣𝑖 cos𝜑𝑖+1). In this case, the control signal of each oscillator is written as

Θ𝑖 = 𝐴𝑖𝑢𝑖, (2)

where 𝐴𝑖 is the amplitude of each segment oscillations. It is common to impose constraints on the amplitudes of all segments due to 
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the fact that the waveform of a live fish with an elongated propulsion shape usually has gradually increasing amplitudes from head 
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Fig. 4. CPG based on the Hopf oscillator. (A) Structure of CPGs with a chain structure and mutual couplings. (B) Oscillations and limit cycle of the single Hopf 
oscillator (𝐂 = 0). (C) Examples of optimal profiles of control signal amplitude 𝐴𝑖 at different times in one undulation cycle associated to the optimal speed. Sources: 
adapted from [222] (panels A and C) and [221] (panels A and B).

to tail [93]. The shape of body motion is believed to be related to high energy efficiency of swimming [179]. The constraint can be 
simply defined as follows

0 ≤ 𝐴1 ≤⋯ ≤𝐴𝑖−1 ≤𝐴𝑖 ≤⋯ ≤𝐴𝑛, (3)

where 𝐴𝑛 is characterized by the upper amplitude, which is decided by the maximum power of actuators. The specific parameters of 
the amplitudes 𝐴𝑖 are determined as a result of one or another CPG optimization, for example, the shape of the profile 𝐴𝑖 = 𝐴(𝑖Δ𝑥)
may be determined by the condition of achieving the maximum fish speed, where Δ𝑥 is the spatial pitch of the fish segments, each 
of which is controlled by its own Hopf generator. In Ref. [222], the optimization was performed using a genetic algorithm and the 
optimal waveform associated with the maximum speed was found 𝐴𝑆 (𝑥) = −0.1323𝑥3 + 0.2125𝑥2 − 0.0194𝑥 −0.0001656. Fig. 4C shows 
examples of optimal profiles generated by the CPG (1) and ((2) at different times in one undulation cycle. Numerous experimental 
and numerical simulation studies on robotic fish have shown that CPGs based on Hopf oscillators exhibit high stability, controllability 
and feasibility in the form of electronic circuits for robot control robots [222,198,200,213,190,78,221,218,212,110,163,220].

3.2.2. Matsuoka oscillator-based CPG model

Another widely used model for CPG segment dynamic is the Matsuoka oscillator [122,123]. Matsuoka has studied the self-
sustained oscillations generated by mutually inhibiting neurons with adaptation, and has discovered some of the mechanisms of 
frequency and pattern control in the neural rhythm generators. The Matsuoka oscillator describes a pair of mutually inhibiting 
neuron oscillators (NOs) as shown in Fig. 5A and is represented by:

𝑇𝑟𝑥̇𝑖 = −𝑥𝑖 − 𝑏𝑓𝑖 −
𝑛∑

𝑗=1
𝑎𝑖𝑗𝑦𝑗 − 𝑖 + 𝑠𝑖,

𝑦𝑖 = 𝑔(𝑥𝑖) = max(0, 𝑥𝑖),

𝑇𝑎
̇𝑓𝑖 = −𝑓𝑖 + 𝑦𝑖,

(4)

where 𝑛 = 2, 𝑥𝑖 is a neuronal membrane potential, 𝑓𝑖 is the variable that represents the level of neuronal adaptation or fatigue and 
𝑎𝑖𝑗 (≥ 0 for 𝑖 ≠ 𝑗 and = 0 for 𝑖 = 𝑗) is a weight for inhibitory synaptic connection from the 𝑗-th neuron to the 𝑖-th neuron. An impulse 
“rate” of the tonic or slowly varying input is given by 𝑠𝑖 and 𝑦𝑖 represents output of the neuron or firing rate. The parameter 𝑏 specifies 
the steady-state firing rate for a constant input. 𝑇𝑟 and 𝑇𝑎 represent a time constants for the rise time and the adaptation time lag, 
respectively. Additionally, 𝑖 corresponds to feedback signal from the robot. Fig. 5B demonstrates oscillations generated by cyclic 
inhibition networks consisting of two neurons without any feedback 𝑖 = 0. All NOs of a network receive the same magnitude of 
excitatory stimuli from the outside of the network 𝑠𝑖 = 1 (𝑖 = 1, 2), and inhibitory stimuli from the inside neurons. Excited oscillations 
are periodic and occur in counter-phase on both neurons.

The Matsuoka model is of particular interest due to the possibility of realising sensorimotor feedback and, consequently, control-
ling the CPGs in an unpredictable environment. In Ref. [172,71] the bipedal and quadrupedal locomotion of a robot was considered. 
It was shown that stable and flexible locomotion is realised as a limit cycle generated by the global coordination of the rhythmic 
activity of the nervous system, consisting of coupled neural oscillators, and the rhythmic movements of the locomotor apparatus 
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involving interaction with the environment. Coordinated movements are formed not by explicitly representing the exact movement 



Physics of Life Reviews 47 (2023) 211–244S.Y. Gordleeva, I.A. Kastalskiy, Y.A. Tsybina et al.

Fig. 5. CPG based on the Matsuoka NO. (A) The Matsuoka model with two mutually inhibiting NOs. (B) The rhythmic activity of Matsuoka model consisting of two 
neurons. Parameters 𝑇 = 12, 𝑎 = 2.5, and 𝑏 = 2.5. Excited oscillations are periodic and occur in counter-phase on both neurons. (C) General structure of CPG based on 
Matsuoka neural network model with force sensors. (D) Spatio-temporal oscillations showing the emergence of a rostral-caudal traveling wave in the output of the 
NOs of the left and right sides that is sent as activation to the muscles in the case of the decoupled configuration with removing intersegmental coupling of CPGs NO 
(top) and the oscillator-free configuration with removing the mutual inhibition within segments of CPG (bottom). Sources: adapted from [122] (panels A and B) and 
[175] (panels C and D).

trajectories of each part, but by the dynamic interaction between the nervous system, musculoskeletal system and the environment. 
Stepping movements that are robust to mechanical perturbations and environmental changes were obtained. Moreover, the Matsuoka 
model generated not only walking movements but also the running movement by changing a single parameter nonspecific to the 
movement.

Due to this feature, the Matsuoka model (4) has also been used in swimming locomotion systems to study locomotion control 
during swimming [175,79]. In [175], undulatory swimming is considered as a model for studying locomotion control during self-
organized swimming. Many vertebrate swimmers have CPGs and local pressure-sensitive receptors that provide information about 
the surrounding fluid. The authors [175] used a specially designed robot that transmits the basic components of the animal’s neu-
romechanical system and numerical simulation of Matsuoka model (4) based CPG to investigate the sensed hydrodynamic pressure 
forces can control body movements through local feedback loops. Fig. 5C illustrates a CPG model based on a modified Matsuoko NOs 
with feedback from left and right force sensors that controls the motion of a robot with undulatory motion. Two simpler configura-
tions were considered: (i) the decoupled configuration implemented by removing intersegmental coupling, and (ii) the oscillator-free 
configuration was explored by removing the mutual inhibition within segments. Fig. 5 D shows the dynamics of activation of left 
and right neurons corresponding to the traveling waves of body undulations emerging thus showing that the t neural couplings from 
the force-sensing neurons can successfully entrain neural activation to obtain needed swimming locomotion.

3.2.3. Coupled oscillators as CPG model

Using a pair of oscillators as a CPG segment is also very effective for the formation of movement patterns of swimming animals. 
Very often in this case, coupled phase oscillators are used, which allow, by controlling their amplitude and coupling, to realise 
various rhythmic patterns, including even switching between activity types. In particular, in Ref. [84], Ijspeert et al. proposed a CPG 
model describing fast switching between two locomotion modes: swimming and walking on the example of a salamander robot. This 
model had a significant impact on such studies and later this model and its various modifications have been used in a large number 
of studies as a CPG model [42,116,43,105,211,191,201,32,203,41,49,48,207].

Ijspeert et al. used a pair of coupled phase oscillators as the salamander CPG segment: one for left and one for the right side of the 
body [84]. The oscillators in the model have a phase-resetting property, which allowed the model to adapt to different conditions 
and generate a wide range of locomotion patterns from swimming to walking. Configuration of the CPG model is shown in Fig. 6A. 
The model is composed of 20 amplitude-controlled phase oscillators and can be divided on two parts. First, it is a body CPG including 
a double chain of 16 oscillators with nearest-neighbor coupling for driving the spine motors. Second, it is a limb CPG corresponding 
to 4 oscillators for driving the limb motors. The bursting properties of an oscillatory center, in other words the oscillations between 
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bursts of motoneuron activity and periods of rest, are modeled by means of a phase oscillator with controlled amplitude
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Fig. 6. (A) Configuration of the CPG model based on coupled phase oscillators and schematical representation of a salamander robot under the CPG control. (B) Gait 
transition from walking to swimming with the salamander CPG model: (top) output signals from the left body CPG oscillators (phase oscillators of body and limbs on 
the right side demonstrate anti-phase oscillations). The red lines illustrate the transition from standing waves (with synchrony in the trunk, synchrony in the tail, and 
an anti-phase relation between the two) to traveling waves. (medium) output signals from the left limb CPG oscillators. (bottom) Linear increase of the stimulation 
signal applied to all oscillators. Source: adapted from [84].

𝜃̇𝑖 = 𝜔𝑖 +
∑
𝑗

𝑟𝑗𝑤𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖 − 𝜙𝑖𝑗 ),

𝑟̈𝑖 = 𝑎2
𝑖
(𝑅𝑖 − 𝑟𝑖)∕4 − 𝑎𝑖𝑟̇𝑖,

𝑥𝑖 = 𝑟𝑖(1 + cos(𝜃𝑖)),

(5)

where the state variables 𝜃𝑖 and 𝑟𝑖 represent the phase and the amplitude of oscillator 𝑖, 𝜔𝑖 and 𝑅𝑖 denote its intrinsic circle frequency 
and amplitude, respectively. 𝑎𝑖 is a positive constant determining how quickly the variable 𝑟𝑖 converges to 𝑅𝑖. The weights 𝑤𝑖𝑗 and 
phase biases 𝜙𝑖𝑗 define the couplings between oscillators. 𝑥𝑖 is a positive oscillatory signal that represent the burst produced by the 
center.

The chain of oscillators receive a drive signal representing the descending stimulation from the MLR in the brainstem. The 
outputs of the CPG are desired joint angle positions 𝜑𝑖 that are used by a proportional-derivative (PD) feedback controller (𝑉𝑖 are 
the voltages applied to the motors and 𝜑̃𝑖 are the actual joint angles measured from incremental encoders as shown in Fig. 6A). 
Tuning the parameters of such a model is a complex process and involves a number of assumptions about the dynamics of the CPG 
of living organisms. (i) The body CPG is like that of the lamprey and spontaneously produces traveling waves when activated with 
a continuous stimulation. The limb CPG, when activated, forces the whole CPG into the walking mode [37]. (ii) The strengths of 
the couplings from limb to body phase oscillators are stronger than those from body to body phase oscillators and from body to 
limb phase oscillators. This allows the limb CPG to switch the mode of operation of the body CPG from traveling wave generation 
to standing wave production if necessary. (iii) Under the same stimulation, limb oscillators have lower intrinsic frequencies than 
the body oscillators. Limb oscillators cannot oscillate at high frequencies, that is, they saturate and stop oscillating at high levels 
of stimulation. This provides a mechanism for automatically switching between walking and swimming when the stimulation from 
brain is varied [25] and explains why swimming frequencies are systematically higher than walking frequencies [59,47]. Finally, 
it is known [25,65] that in the swimming animals, the amplitude and frequency of bursts depend on the amount of stimulation. 
Therefore, depending on the intensity of stimulation we can talk about three modes of CPG: (i) a subthreshold phase without bursts; 
(ii) an oscillating phase where the frequency and amplitude of bursts increase with the stimulation intensity; and (iii) a saturation 
phase where centers stop oscillating. This can be described mathematically by introducing a piecewise linear saturation function, 
which similarly modulates the intrinsic frequency 𝜈𝑖 and amplitude 𝑅𝑖 according to a stimulation signal 𝑑 between a lower oscillation 
threshold, 𝑑𝑙𝑜𝑤, and an upper one for limb, 𝑑𝑙𝑖𝑚𝑏

ℎ𝑖𝑔ℎ
, and body, 𝑑𝑏𝑜𝑑𝑦

ℎ𝑖𝑔ℎ
. Limb and body oscillators are provided with different saturation 

functions, with the limb oscillators systematically oscillating at lower frequencies than body oscillators for the same stimulation and 
saturating at a lower threshold 𝑑ℎ𝑖𝑔ℎ.

Fig. 6B illustrates the dynamics of the above CPG model when the stimulation intensity 𝑑 is varied. It can be clearly seen that 
there is a sharp transition between gaits at time 20 s by linearly increasing stimulation. During walking (i.e., at low stimulation levels 
𝑑𝑙𝑜𝑤 < 𝑑 < 𝑑𝑙𝑖𝑚𝑏

ℎ𝑖𝑔ℎ
), the strong couplings between limb and body oscillators cause the body’s CPGs to exhibit low-frequency oscillations 

in the form of a standing wave. At 𝑡 = 20 s when 𝑑𝑙𝑖𝑚𝑏
ℎ𝑖𝑔ℎ

< 𝑑 < 𝑑
𝑏𝑜𝑑𝑦

ℎ𝑖𝑔ℎ
there is a suppression of limb oscillator oscillations and a rapid 
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transition of the gait into a higher frequency swimming mode. In doing so, the CPG of the body exhibits a running wave mode for 
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Fig. 7. (A) Configuration of the CPG model based on coupled phase oscillators with curvature feedback. Each oscillator is connected to every other oscillator on the 
same lateral (“Left” (L) and “Right” (R)) side (solid green lines). Within one segment the Left and Right oscillators are also coupled together and with muscles on the 
same lateral side (solid black lines). The curvature at each segment is calculated such that positive curvature curves in the direction of the right side measured from 
head to tail (oscillators are numbered from head to tail) (dotted gray lines). (B) Construction of a muscle activation wave from the CPG model. Source: adapted from 
[73].

swimming. These running waves increase in amplitude and frequency as the stimulation level is further increased, until the body 
oscillators stop oscillating at 𝑑 > 𝑑

𝑏𝑜𝑑𝑦

ℎ𝑖𝑔ℎ
.

3.2.4. CPG model based on coupled oscillators with curvature feedback

Another model of the CPG based on the coupled phase oscillators was proposed in the work [73]. This model was inspired to 
analyze a curvature feedback in the energetics and dynamics of lamprey swimming. To develop the lamprey CPG the authors used a 
pair of sinusoidaly coupled phase oscillators (one for the left lateral side and one for the right, see Fig. 7) to model the CPG segment:

Θ̇𝑘,𝑖 = 𝜔+
𝑛∑

𝑗=1
𝛼𝑖,𝑗 sin(Θ𝑘,𝑗 −Θ𝑘,𝑖 −𝜓𝑖𝑗 ) + 𝛼𝑐 sin(Θ𝑘,𝑖 −Θ𝑘∗ ,𝑖 + 𝜋) + 𝜂(𝑘𝑖), (6)

where Θ𝑘,𝑖 is the phase of the 𝑖-th oscillator, on the 𝑘-th side, where 𝑘 = 1 correspond to the right side, and 𝑘 = 2 correspond to 
the left side. The designation 𝑘∗ determine the opposite. Side (in other words, if 𝑘 = 1, then 𝑘∗ = 2, and vice versa). The parameter 
𝜔 = 2𝜋 is the natural frequency of these oscillators. The 𝑖-th oscillator on the 𝑘-th side is coupled to the other oscillators on the same 
side with strength given by

𝛼𝑖,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝐴𝑎 exp

(
− |𝑖− 𝑗|

𝜆𝑎

)
, (𝑖− 𝑗) < 0,

𝐴𝑑 exp
(
− |𝑖− 𝑗|

𝜆𝑑

)
, (𝑖− 𝑗) > 0,

(7)

where |𝑖 − 𝑗| is the number of segments between oscillator 𝑖 and oscillator 𝑗, 𝐴𝑎, 𝐴𝑑 , 𝜆𝑑 , and 𝜆𝑎 is the control parameters of coupling 
between oscillators. The asymmetry in the coupling strengths 𝐴𝑎 and 𝐴𝑑 is consistent with known experimental data [141,95]. The 
term 𝛼𝑐 sin(𝜃𝑘,𝑖 − 𝜃𝑘∗ ,𝑖) in Eq. (6) represents the observed antiphase behavior between left and right segments which couples oscillator 
𝑖 on the 𝑘-th side to oscillator 𝑖 on the opposite side. The term 𝜂(𝑘𝑖) captures proprioceptive feedback to the CPG system. Here 𝑘𝑖 is 
the curvature of the lamprey midline at segment 𝑖, and the approach to choice of the functional form of feedback 𝜂 can be found in
Ref. [73].

Finally, the signal that the CPG sends to activate the muscle segment is modeled based on the phase of the oscillator on that side 
as shown in Fig. 7. Fig. 7B shows a typical bursting pattern from a typical CPG neuron in the lamprey [38] (top panel) and result of 
taking the sinusoidal signal of the phase of a model phase oscillator of the CPG (medium panel). Muscle is innervated when a signal 
from the CPG reaches a pre-defined threshold. Given a phase Θ(𝑡), we define the time interval that corresponds to the segment being 
“active” to be those times when sinΘ(𝑡) is above a prescribed threshold 𝛾 . Fig. 7B, bottom panel, shows the procedure of extraction 
of an “on-off” activation signal 𝜎(𝑡) from the phase Θ(𝑡). For the phases along the segments on the lateral sides of the lamprey model 
(6), we have intervals of the muscle activation:

𝜎(𝑡) =

{
0, sin(Θ) < 𝛾,

1, sin(Θ) ≥ 𝛾.
(8)

In Ref. [175] we have already discussed in Section 3.2.2, it is assumed that local pressure sensation from lateral mechanoreceptor 
cells (such as the lamprey dorsal cells) forms local sensory-motor loops by proposing a simple feedback mechanism that is added 
to a CPG circuit. The feedback mechanism is determined by the relationship between animal body deformation and hydrodynamic 
forces during swimming movements. Thandiackal et al. shown that local body deformation and hydrodynamic forces are nearly 
in phase, with peaks of hydrodynamic forces arriving slightly before peaks of deformations. Motivated by this local phase locking, 
authors proposed a mechanism that entrains the swimming robot actuator activation that drives body deformation by constantly 
modifying its timing depending on the measured force signal. They implemented this mechanism in a coupled phase oscillator 
222

system represented by the following equations that describes the dynamics of the local activation 𝑥𝑖 in a segmental circuit
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𝜃̇𝑖 = 𝜔+
∑
𝑗

𝑤𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖 −𝜙𝑖𝑗 ) + 𝜖𝑖𝑧𝑖,

𝑧𝑖 = cos(𝜃𝑖 + 𝜉),

𝑥𝑖 = cos(𝜃𝑖).

(9)

The local activation signals 𝑥𝑖 determine the muscle activity and hence the torque in the local joint of fish. The timing of 𝑥𝑖(𝑡) is 
controlled by the phase 𝜃𝑖(𝑡) of oscillators, whose time evolution is defined by intrinsic circle frequency 𝜔 (the same for all the 
segments); nearest-neighbor coupling weights 𝑤𝑖𝑗 (𝑤𝑖𝑗 ≠ 0 for 𝑗 = 𝑖 −1 and 𝑗 = 𝑖 +1), phase lag bias 𝜙𝑖𝑗 , and the feedback mechanism 
based on the entrainment of the phase 𝜃𝑖 by the local hydrodynamic force 𝑖 and a given feedback strength 𝜖. 𝑖 is the resultant 
normal force on a segment obtained from the difference of force readings from the left and right sensor plates. The feedback 
mechanism is defined by the sensitivity function 𝑧𝑖 characterizing the response of the oscillator with phase 𝜃𝑖 to an external stimulus 
[85]. The phase delay 𝜉 is determined by the way the stimulus perturbes the oscillator. In the animal, this phase delay is determined 
by the strength and sign (excitatory or inhibitory) of the synaptic connections from the dorsal cells to segmental circuits and by 
conduction delays. The model (9) is similar to the model (5) of Ijspeert et al. [84] of swimming CPG circuits already discussed above, 
but it differs from that work in the feedback mechanism.

All the models discussed above were characterised by the fact that they used nonlinear self-sustained oscillators as segments, 
which exhibit limit cycle behavior. However, Chen Wang et al. set out to design a much simpler CPG model for the locomotion 
control of the robot based on a system of coupled linear oscillators [188]. This design differs significantly from the usual CPG models 
in which nonlinear oscillators are commonly used. While other CPG keeps all the basic features of its biological counterparts and is 
capable of producing coordinated patterns of rhythmic activity, thanks to the linearity of the oscillators used, the computational costs 
of the CPG are greatly reduced and all the structural parameters can be selected easily. Wei Wang et al. showed the effectiveness 
of using a CPG model based on coupled linear systems to control the motion of an ostraciform fish robot [193]. This model allows 
generating different swimming modes and controlling the gait transition with only two input signals. CPG allows the robot to perform 
manoeuvrable swimming in three-dimensional space and automatically switch between thoracic and caudal gaits at different speeds.

3.3. Spiking neural network models

Following its biological counterpart, a CPG can be modeled by spiking neural networks that communicate through individual 
sequences of spikes. Instead of utilizing abstracted information signals, these networks employ pulse-coding mechanisms that enable 
the incorporation of spatial-temporal information. Theoretically, it has been demonstrated that these models are even more compu-
tationally powerful compared to those constructed with abstract neurons [115]. Furthermore, spiking neural networks (SNNs) offer 
promising solutions to problems in applied engineering while providing power-efficient capabilities, making them well-suited for 
applications in robotics [106]. However, CPG models based on spiking neural networks are relatively uncommon for implementation 
in robots compared to systems of coupled oscillators.

CPG models based on spiking neural networks are constructed using the Hodgkin-Huxley type of neuron models. Mathematically, 
the original Hodgkin-Huxley model consists of a set of nonlinear ordinary differential equations involving four variables: membrane 
voltage, activation and inactivation variables of the Na+ current, and an activation variable of the K+ current [77]. However, this 
model is computationally complex and expensive for simulating large populations of neurons. As a result, several simplified neuronal 
models such as the FitzHugh-Nagumo, Leaky Integrate-and-Fire model [167], and the Hindmarsh-Rose models have been used. 
These simplified models facilitate large-scale simulations of interconnected neurons that form a neural network. Most models based 
on neural networks investigate the problem of rhythmogenesis [148,178,103,111] and how rhythmic activity is generated by network 
properties, such as half-center networks [12,155]. They also explore how different oscillatory neural circuits become synchronized 
through interneuron connections [96,55], whether for intra-limb or inter-limb coordination.

A modeling study by Bicanski et al. (2013) [12] using spiking neural network approach demonstrated that a lamprey-like CPG 
network could potentially serve as a building block for axial and limb oscillators involved in swimming and stepping behaviors in 
salamanders. The study utilized a Hodgkin-Huxley type neuron model to describe the individual neurons. The CPG hemisegments 
consisted of sparsely connected populations of excitatory and inhibitory neurons, and were coupled to their contralateral counter-
parts. The model successfully replicated the experimentally observed effects of synaptic transmission blockade and modulation of 
ionic currents. Interestingly, the model demonstrated that modifications to neuronal conductance could control the frequency range 
of segmental oscillations. As a result, the lamprey-like CPG segmental circuit can be transformed into a salamander network, aligning 
with the idea of evolutionary conservatism in the locomotor systems from limbless vertebrates to tetrapods.

One of the early works that proposed an integrated approach combining the design of neuromorphic networks of spiking neurons 
with lamprey CPG models of motor control is the study by Donati et al. (2014) [50]. In their work, the CPG segment was modeled 
as a symmetrical network consisting of various groups of sparsely interconnected neurons, including motor neuron (MN), excitatory 
interneuron (EIN), lateral inhibitory neurons (LIN), and contralateral inhibitory neuron (CIN) (see Fig. 8). To capture the dynamics 
of a single neuron, the authors employed the classical adaptive-exponential integrate-and-fire (I&F) neuron model [13]:

𝐶
𝑑𝑉

𝑑𝑡
= 𝑓 (𝑉 ) −𝑤+ 𝐼, (10)

where the parameter 𝐶 is the membrane capacitance, and 𝐼 denotes the synaptic current. The function 𝑓 (𝑉 ) describes the passive 
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properties and the spiking mechanism and is defined as follows:
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Fig. 8. (A) Configuration of the neuromorphic hardware lamprey CPG model [50]. The upper box represents an oscillatory network comprising two pools of neurons: 
osc left and osc right. The bottom box shows the CPG segment organisation, which includes the different types of neurons (EIN - Excitatory Interneuron, LIN - Lateral 
Inhibitory, CIN - Contralateral Inhibitory, and MN - Motor neurons. (B) Hardware model measurements. The oscillatory network produced spikes, alternating between 
the two populations: osc dx, osc sx. The right side of the segment is represented by a shaded background, while the left side is depicted with a white background. 
Source: adapted from [50].

𝑓 (𝑉 ) = −𝑔𝐿(𝑉 −𝐸𝐿) + 𝑔𝐿Δ𝑇 𝑒𝑥𝑝

(
𝑉 − 𝑉𝑇

Δ𝑇

)
, (11)

where 𝑔𝐿 denotes the leak conductance, 𝐸𝐿 is the resting potential, Δ𝑇 represent the slope factor, and 𝑉𝑇 is the threshold potential.
𝑤 is the adaptation current, which can be represented by the following equation:

𝜏𝑤

𝑑𝑤

𝑑𝑡
= 𝑎(𝑉 −𝐸𝐿) −𝑤, (12)

where 𝜏𝑤 is a positive constant, and 𝑎 denotes the level of subthreshold adaptation. The spiking CPG network model proposed in 
the study was implemented in real-time hardware using neuromorphic electronic circuits. This implementation allowed for direct 
control of the actuators in an artificial bio-inspired lamprey robot.

It has been demonstrated that a well-established CPG model [84], initially formulated as a system of coupled abstract oscillators, 
can be transformed into a spiking neural network that can be readily simulated using neuromorphic platforms [2]. The proposed 
spiking CPG neural network was successfully implemented on neuromorphic hardware and utilized to generate swimming gaits for a 
simulated lamprey robot model across various scenarios. Another study describes the design and implementation of a hardware-based 
neural network that emulates the oscillatory burst firing observed in the lamprey nervous system [128]. The authors introduce a 
novel hardware architecture capable of simulating the spiking behavior of lamprey neurons. Through their network, they successfully 
reproduce the coordinated oscillatory activity observed in the lamprey’s CPG.

3.4. Biologically plausible and detailed CPG models

Due to the relative simplicity of the lamprey motor system as compared to mammals, it has been feasible to develop a compre-
hensive computational model based on experimentally derived facts ranging from the molecular-cellular level to that of networks 
and locomotion behavior. Simulations of this nature serve as an indispensable analytical tool, allowing us to assess the contributions 
of various components, such as different subtypes of ion channels [80]. This iterative process of modeling and biological experi-
mentation enables researchers to investigate and refine their understanding of the system. Biophysically realistic models have been 
successfully developed for both the lamprey and the frog embryo systems.

In their seminal study [101], Kozlov and coauthors presented the first biophysically detailed, full-scale computational model of 
the lamprey locomotor CPG and its forebrain control. The simulated CPG consisted of 100 segments, each containing 100 neurons. 
The entire neural network was divided into two populations in a ratio of 60% excitatory and 40% inhibitory neurons. Each neuron 
was simulated using an spiking multi-compartmental biologically detailed lamprey spinal cell model [80]. Within each pool of model 
neurons, variability in neuronal size and membrane properties were experimentally proven. The architecture of synaptic connections 
between neurons in a segment and between segments was chosen based on experimental data. All 10,000 neurons were connected 
via 760,000 synapses, and the synaptic delay for each connection was estimated based on the distance between the neurons. In 
the model, the authors also presented the brainstem command system, as well as forebrain control from the basal ganglia with an 
additional 3,500 neurons. Supercomputer technologies were used for such large-scale simulations. These simulations showed that 
asymmetric anteroposterior synaptic connectivity in interneuronal populations, as well as variability in response properties within 
each neuronal population, play a crucial role in forming a constant phase lag along the spinal cord for different locomotor speeds. 
The study also revealed that the locomotor wave direction and steering can be flexibly controlled by local synaptic effects limited 
to only the very rostral part of the cord. To study visually guided lamprey locomotion, the reduced version of this CPG model was 
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applied to a simulated animal swims around in a virtual environment containing visually detectable objects [89].
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Fig. 9. Examples of a biologically realistic full-scale computational studies of CPG-based swimming. (A-C) Neuromechanical simulation of swimming in lamprey 
adapted from [102]. (A) The neuron model consists of 16 cylindrical compartments and includes multiple ionic channels. These channels are activated by synaptic 
inputs and are located on both the soma and dendrites of reticulospinal (RS) cells. Inhibitory synapses are depicted in red, excitatory synapses are represented in 
green. (B) The coordination of various neuronal populations is involved in the spinal and supraspinal locomotor networks. Tectal neurons (TL and TR), as well as 
symmetrically projecting neurons from the MLR, play a role in activating RS neurons on both sides. RS neurons provide excitatory input to the locomotor circuits in 
the spinal cord, depicted in gray. These circuits consist of a combination of excitatory cells (E), inhibitory cells (I), and motoneurons (M). The firing activity of the 
model motoneurons is integrated and directed towards 10 pairs of motor outputs. Additionally, information regarding locomotor activity in the rostral part of the 
spinal cord is fed back to the RS populations, represented by the large circles, through both excitatory and inhibitory afferent connections (indicated by green and 
red lines). (C) The lamprey body is modeled with 11 segments. The activation of a muscle at a specific joint, labeled as “𝑖”, is simulated by applying two opposing 
torques to the adjacent links. (D-F) Detailed modeling of frog tadpoles adapted from [58]. (D) Tadpole. (E) When touched (arrow), the tadpole first flexes to one side 
and then swims off. (F) The functional diagram depicts a CNS model network with 12 neuron types forming 5 layers.

In 2014, the authors used the detailed lamprey CPG model [101] as a basis to introduce a model of the brainstem-spinal cord 
network in lampreys [102] (Fig. 9A-C). A detailed control from higher brain centers is not required for the CPGs to generate the 
appropriate locomotor pattern. RS neurons in the brainstem activate CPG and these neurons also transfer commands from higher 
brain regions, such as turning signals from the optic tectum. It was shown experimentally that in both vertebrates and invertebrates, 
descending systems are phasically modulated via feedback from the CPG network during ongoing rhythmic movements. However, the 
physiological role of this modulation remained unclear. To explore this, Kozlov and co-authors used a biophysically detailed large-
scale computational model of the lamprey brainstem-spinal cord network, which consisted of 19,600 multi-compartment spiking 
neurons and 646,800 synapses. The neuronal lamprey models can generate alternating activity patterns corresponding to forward 
and backward locomotion as well as steering to avoid obstacles. They discovered that the phase modulation of the reticulospinal 
activity from the CPG is crucial in generating steering/turning commands, and ensures reliable steering/turning commands without 
the need for precise timing of on- or offset. The simulations also predicted that steering/turning signals from the tectum can be gated 
by a CPG-related modulation of the reticulospinal neuron activity. This gating ensures that the steering commands are transmitted in 
the appropriate phase of a swimming cycle and suppressed out-of-phase. Finally, a biomechanical model of lamprey swimming was 
used to verify that the simulated neural network can control fish movements, including turning.

Another example of a biologically realistic full-scale computational study is recent modeling work that explored the role of the 
interplay between receiving sensory signals, decision making, and locomotion generation in a detailed model of the complete neu-
ronal circuit of frog tadpoles [58] (Fig. 9D-F). The model includes the swimming CPG to generate rhythmic patterns, the brainstem, 
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and sensory pathways upstream to make decisions. In particular, the model of the tadpole nervous system consists of approximately 
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Fig. 10. (A) Boxfish’s and (B) Turtle’s CPG scheme. Sources: adapted from [43] (panels A) and [163] (panels B).

2300 neurons of 12 types of brain and spinal cord neurons that control swimming. To study tadpole responses to touch, the model 
includes two skin touch sensory pathways to initiate swimming, an inhibitory head skin pressure pathway to stop it, and hindbrain 
populations of sensory memory neurons that prolong signals from sensory pathways and activate RS neurons in the swimming CPG. 
Signals from the model were fed to a virtual tadpole biomechanical model of the whole-body musculoskeletal system to produce 
movements. Based on [137], the 3D virtual model reconstructs detailed anatomical and physical measurements of the shapes and 
mass distribution of the organs of real tadpoles. This model demonstrates realistic muscle innervation, body flexion, movement, 
body-water interaction, and, as the study results showed, provides reliable and realistic swimming.

3.5. CPG models with fins and limbs

Fish fins have evolved to serve several important functions. Let’s dive into some key functions of fish fins:
1. Locomotion: Fish fins are primarily employed for swimming and maneuvering in the water. Different types of fins have distinct 

roles in movement. The dorsal fin aids in stabilizing the fish during swimming, while the caudal fin propels the fish forward.
2. Balance and stability: Fins also play a crucial role in helping fish maintain balance and stability in the water. The pectoral fins, 

situated on either side of the fish’s body, act as stabilizers and enable the fish to make quick turns.
3. Temperature regulation: Certain fish, such as sharks, utilize their fins to regulate their body temperature. These fish possess 

specialized fins known as “gill slits”, which allow them to pump water over their gills, effectively cooling their body temperature.
4. Communication: Fins can also serve as a means of communication for fish, enabling them to convey messages through specific 

fin movements or displays.
5. Protection: Some fish have developed specialized fins that provide protection against predators. For example, catfish have 

spines on their dorsal fin that can be deployed to deter predators from attacking.
When it comes to modeling central pattern generators (CPGs) with fins and limbs, there are a few different approaches. Fin 

segments can be incorporated as an addition to the dorsal CPG, or the model can exclusively consist of fin segments. Typically, 
models exclusively focused on fin segments are used to simulate the CPGs of boxfish, and less commonly, the CPGs of turtles.

For instance, in the article [43], the CPG chain consisted of three non-linear oscillators: two for the pectoral fins and one for the 
tail of the boxfish (Fig. 10A). The dynamics of the 𝑖-th oscillator were described by a system similar to equation (5).

In [194], the authors proposed the use of a nonlinear phase generator, which was initially introduced in [84] and [43], and 
linearized it using the first-order Taylor expansion to control the movement of each fin in the boxfish robot.

Yao et al. (2013) employed the same type of oscillator to construct the CPG chain for the turtle [203]. Each of the turtle’s four 
flippers was assigned one oscillator.

In the paper by Seo et al. (2010), the authors also suggested implementing a CPG to govern a turtle robot [163]. The robot was 
maneuvered through the roll and pitch movements of its four flippers (Fig. 10B). The Hopf oscillator model was also utilized here. 
However, unlike the case described in Section 3.2, the oscillators do not form a chain to create the CPG. Instead, they function as 
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a set of motor units: each flipper was associated with a single Hopf oscillator. The roll variable was denoted by 𝑥, and the pitch 
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variable was denoted by 𝑦. Since the turtle robot considered had 4 fins with 2 degrees of freedom per fin, the resulting dynamics 
were described by a system of 8 equations. It is interesting to observe how the movements of the fins enter a phase-locking state 
during walk, bound, and pronk modes in the CPG with a two-way ring architecture.

In salamander models, limb segments are employed for quadrupedal locomotion. During swimming, the limb segments are 
inactive due to their lower intrinsic frequencies compared to the swimming mode frequency (as well as the body CPG oscillators) [47]. 
The CPG segments of the limbs complement the CPG of the body. The additional intersegmental connectivity is usually organized 
in a manner that, when activated, the limbs force the body CPG circuit to produce standing waves, thereby implementing a walking 
gait with diagonally in-phase movements. To achieve this, the output connections should be stronger to suppress the tendency of the 
body CPG to produce traveling waves. The structure of the body CPG is inspired by the lamprey [84]. Another notable example is 
the study conducted by Liu et al. (2020), in which the authors proposed a spinal locomotor network model for salamanders. This 
model consists of interneuron networks, a motoneuron pool, and stretch reflex circuitry [113]. The outputs of the extensor (or flexor) 
interneurons are connected to the agonist motoneurons through excitatory synapses and to the antagonist motoneurons via inhibitory 
synapses.

4. Open-loop and closed-loop CPG models

A CPG generates rhythmic output patterns that can drive swimming behavior even in the absence of constant sensory input. This 
is possible because the CPG possesses intrinsic properties that enable it to generate oscillations and activity patterns without relying 
on external input. However, to initiate the rhythmic pattern of neural activity that governs fish locomotion, an initial stimulus or 
input is required to activate the CPG. Once activated, the CPG generates a coordinated pattern of muscle contractions that elicit 
swimming behavior, enabling the fish to move forward or backward at a constant speed.

For more complex fish movements, such as turning, obstacle avoidance, or chasing prey, the rhythmic pattern generated by the 
CPG needs to be adjusted online through input commands. This input can originate from various sources, including sensory feedback 
from the environment or other neural circuits involved in motor coordination.

When modeling CPG-based control systems for biologically inspired robots, evolutionary principles of feedback are often em-
ployed. Reactions to external stimuli can be categorized into two contrasting types: (i) almost instantaneous reflex reactions and 
(ii) decisions developed within neural circuits of the brain that involve conscious thought. The first case corresponds to low-level 
reflexes, which are involuntary and produce almost instantaneous movements in response to a stimulus. In the second case, the re-
sponse is generated directly in the brain, with feedback signals and environmental information transmitted to an information fusion 
and control center.

Biomimetic robots have been developed that utilize the concept of the reflex arc and incorporate CPG models into low-level 
control systems [31,197,108]. Models of motor activity are also controlled by decision-making subsystems at higher levels. These 
subsystems incorporate information fusion mechanisms to process environmental information and other external signals [194,6,99]. 
Studies conducted on various robotic platforms to investigate adaptive movement in the environment using CPG and feedback (such 
as sensory receptors and sensory neurons) have led to defining the reflex as torque generation in the joint. In any case, the functioning 
of the control system emerges from an interaction between central commands and local reflexes [76], and field experiments have 
revealed that, for joints, reflexes take precedence over CPG outputs [97].

By activating these mechanisms, robotic fish can achieve swimming maneuverability and adaptability, allowing them to respond 
to changes in the external environment or proprioceptive information. In the fish brain, the mesencephalic locomotor region (MLR) 
governs the control of motor patterns (see Section 2.1 for details). Numerous studies have focused on understanding the mechanisms 
and circuits underlying the operation of the fish MLR, including its interaction with feedback loops.

The bioinspired model for integrating exteroceptive information and decision-making typically exhibits a complex structure. As 
a result, the control system can be hierarchical, involving multiple levels of sensory signal processing. For instance, in the case of 
robotic fish [99], data is acquired from at least three distance sensors and an inertial measurement unit (IMU) sensor. These sensory 
inputs are then filtered using the Environmental Data Processing Unit environmental data processing unit (EDPU). Subsequently, 
the decision mechanism-motion combination unit (DMCU) system generates an input that is fed to the CPG elements based on the 
current task. Feedback is sent to sensory neuron (SN), whose potentials are described by the equation (13) below. Finally, the result 
is transmitted to servos via motor neurons (MN).{

𝜏𝑟𝑒𝑠𝑥̇(𝑆𝑁)𝑖 = −𝑥(𝑆𝑁)𝑖 + 𝑝𝜆, 𝜆 ≥Λ
𝜏𝑟𝑒𝑐 𝑥̇(𝑆𝑁)𝑖 = −𝑥(𝑆𝑁)𝑖, 𝜆 < Λ

(13)

Here, 𝑥(𝑆𝑁)𝑖 represents the membrane potential of sensory neuron (SN), 𝜏𝑟𝑒𝑠 and 𝜏𝑟𝑒𝑐 denote the rise time constant and the fall 
time constant of the response generated in response to a stimulus, respectively. Moreover, 𝑝 is the correction coefficient, 𝜆 represents 
the stimulus amount, and Λ denotes the threshold value.

In many existing studies, attempts have been made to modify open-loop models to incorporate feedback.
For instance, in the oscillatory CPG comprising a pair of coupled nonlinear oscillators [84], the original equation 𝑥𝑖 = 𝑟𝑖(1 +cos(𝜃𝑖))

has been replaced, as proposed by Manfredi et al. (2013), with the following equation [116]:
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𝜑𝑖 = 𝑟𝑖𝑐𝑜𝑠(𝜃𝑖) + Δ𝑖, (14)
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Here, 𝜑𝑖 represents the angle of the 𝑖-th joint. The additional term Δ𝑖 allows the robot to modify its direction by introducing a 
deviation in the oscillation amplitude of its vertebrae. This deviation results in a curvature in the local region of the body, which 
propagates from the head to the tail. The modification of this control variable is determined by visual sensory inputs.

Another model presented in [207] is also based on Eq. (5) [84], mentioned in Section 3.2.3 above. However, the authors in-
corporated feedback obtained from liquid-level sensors into a single segment of the CPG. Consequently, the resulting model can be 
represented by the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜃̇𝑖 = 2𝜋𝜈𝑖 +
∑

𝑗 𝑟𝑗𝑤𝑖𝑗𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖 −𝜙𝑖𝑗 (𝑢)),
𝑟𝑖 = 𝑎𝑖(

𝑎𝑖

4 (𝑅𝑖 − 𝑟𝑖) − 𝑟̇𝑖),
𝑥𝑖 = 𝑒𝑖 + 𝑟𝑖𝑐𝑜𝑠(𝜃𝑖)),
𝑒𝑖 = 𝑎𝑖(

𝑎𝑖

4 (𝐸𝑖 − 𝑒𝑖) − 𝑒̇𝑖),
𝜙𝑖𝑗 (𝑢) =

𝜋

4 (𝛽
𝑗

𝑖
− 𝛾

𝑗

𝑖
𝑠𝑔𝑛(𝑢)).

(15)

Here, 𝑥𝑖 represents the extracted output signal, which is adjusted by an oscillation offset 𝑒𝑖. The parameters 𝛽𝑗

𝑖
and 𝛾𝑗

𝑖
correspond 

to factors associated with phase bias and the included sensory signal, respectively. The feedback signal associated with the 𝑖-th 
oscillator is denoted as 𝑢, and the sign function, 𝑠𝑔𝑛(𝑢), takes a positive value of “1” when the robot is on land and a negative value 
of “-1” when it is in water.

A slightly different approach to specifying feedback was applied in [73] using the CPG-based lamprey swimming model as an 
example (Fig. 11A-B). The scheme is based on utilizing proprioceptive signals from mechanoreceptors (edge cells) that sense stretch 
along the body. These signals, when stretch increases, excite the ipsilateral side and inhibit the contralateral side of the body. This 
type of deformation is tracked as a characteristic of body curvature, denoted as 𝜅𝑖 (where 𝑖 is the segment number), and it appears 
in the main formula for the CPG phase generator (14) as a function 𝜂(𝜅𝑖).

In this model, two forms of feedback were considered. The first is directional feedback, where oscillators are excited on one side 
and inhibited on the opposite side (or vice versa). The second is magnitude feedback, which provides a symmetric excitatory or 
inhibitory effect on oscillators on both sides. Both types of feedback influence the duration and frequency of body muscle activation. 
Magnitude feedback increases the frequency and swimming velocity, as observed in fish, but it decreases the amplitude, leading to 
slight differences. Directional feedback increases the duration of muscle activity, altering the degree of mutual activation between 
muscles on opposite sides of the body. This has more complex effects on swimming, such as changing the effective stiffness of joints 
[131]. In terms of swimming performance, there exists an optimal passive stiffness that guarantees the maximum swimming velocity 
[182].

4.1. Environmental feedback

Widely acknowledged findings suggest that while sensory feedback is not essential for generating rhythmic activity in CPGs, it 
plays a crucial role in adapting locomotion parameters to the environment. Sensory feedback must be included to close the control 
loop, ensuring mutual entrainment between the CPGs and the mechanical body, thereby enhancing animat or robotic locomotion 
[82,92,181]. The presence or absence of water is explicitly incorporated into the CPGs to modulate the coupling phase biases of the 
oscillators, thereby generating reactive behaviors.

However, despite the well-established hypothesis regarding the role of feedback in the generation of locomotor swimming patterns 
in lower fish and vertebrates, certain phenomena remain unexplained. For instance, there is evidence of the highest robustness of 
rhythm generation even in cases of complete spinal cord transection and a fictive motor activity regime at a reduced frequency 
[54,173,160]. Experimental studies involving the stimulation of lamprey dorsal cells have shown the activation of corresponding 
ipsilateral motor neurons and the inhibition of contralateral ones, indicating the presence of an additional circuit for rhythmogenesis 
[20]. Model studies have shown that hydromechanical feedback amplification below a spinal lesion can effectively restore lamprey 
swimming behavior, either partially or fully [72]. Furthermore, through a comprehensive research incorporating modeling, robotic 
experiments, and in silico study, the hydrodynamics of fluid flows at different fish stiffnesses were examined. This investigation aided 
in establishing the significance of environmental feedback, facilitated by a flexible body, in shaping the neuromechanical swimming 
pattern. Additionally, the study explored how this feedback influenced the resonant frequency and energy costs associated with 
swimming [183].

Robotic modeling that incorporates external hydrodynamic impact on a robotic lamprey equipped with mechanoreceptors has 
demonstrated that feedback can entrain CPG activity and contribute to rhythm coordination, ultimately increasing the frequency of 
swimming movements. This type of feedback can coordinate uncoupled neural oscillators to generate forward movement, enable the 
generation of rhythmic activity without the need for rhythmogenic neural oscillators, and provide redundancy, making exteroceptive 
and proprioceptive control circuits more robust against neural disruptions compared to either one alone [175] (Fig. 11C-D).

4.2. Command management

Studies involving robots that aim to mimic the behavior of fish and other underwater species often begin with preparatory 
stages of experimentation. During these stages, basic control schemes are employed for preliminary testing of swimming vehicles. 
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One such control method involves using a joystick (manipulator), which allows for precise control of the robot’s movements in the 



Physics of Life Reviews 47 (2023) 211–244S.Y. Gordleeva, I.A. Kastalskiy, Y.A. Tsybina et al.

Fig. 11. (A) Schematic of feedback loop during locomotion. (B) The schematic depicts the body structure of a computational lamprey. The body consists of three 
filaments, with spring connections between discrete nodes within the filaments, generating passive elastic forces. Muscle segments connecting the nodes along the 
lateral sides contribute to force generation using a Hill-type model. Below the spring-mass damper system, there is an oscillator representing the skin of the lamprey. 
(C) The model consists of rigid body segments that are connected by actuated joints. Each segment has its own circuit, which includes oscillators and couplings. 
Additionally, each segment is equipped with left and right antagonistic muscles and a pair of lateral force sensors. (D) Examples of swimming with lateral forces on 
the left (red arrows) and on the right (blue arrows) during position control experiments. The top image shows modeling with a linearly increasing amplitude gradient 
from head to tail. The bottom image shows modeling with a constant amplitude along the body. Sources: adapted from [73] (panels A and B) and [175] (panels C 
and D).

underwater environment by a human operator when necessary [203]. For instance, this method may be used in conditions with low 
water transparency, presence of numerous dangerous obstacles (such as ice, algae, or man-made debris), or the need to comply with 
environmental standards and other safety precautions.

To develop swimming scenarios, real-time open-loop control schemes are implemented. An effective approach involves defining 
high-level macro-commands [201]. This method proves useful when specific targets need to be achieved, such as controlling the 
flapping frequency, cruising speed, or executing specific maneuver patterns.

4.3. Adaptive management

Despite the complexity involved in implementing an autonomous CPG-based control system with sensory feedback, a considerable 
number of researchers have successfully applied adaptive mechanisms to automatically adjust the swimming pattern. Adaptive 
control enables robots to navigate around static and moving obstacles [32,99,216], follow designated directions, and counteract 
hydrodynamic conditions in the underwater environment [32,185,202], as well as ensure smooth transitions between swimming 
gaits by adjusting the flapping frequency and amplitude [194,209].

When it comes to adaptive frequency tuning, the simplest versions of phase oscillators are often the most flexible. However, 
adaptive oscillators are also widely applicable in the design of CPG models. These range from Hopf and adaptive Rayleigh oscillators, 
to FitzHugh-Nagumo and adaptive Van der Pol oscillators. They are capable of synchronizing even with pseudo-periodic external 
stimuli, without compromising the generality of their dynamic learning approach [147].

5. CPG implementation in robotics

The development of fish robots is a complex process that involves various factors. Important aspects include electronics and 
software for autonomous operation, considering hydrodynamics to optimize body shape and fins for efficient movement, utilizing 
lightweight and durable materials, equipping sensors for control and environmental interaction, and employing special power sources 
for underwater operation. All these elements impact the swimming characteristics and efficiency of fish robots.

In this review, our exclusive focus is on advancements in developing locomotion CPGs and their applications in robotics. 
Summarizing the previous sections, CPG models offer distinct advantages as an alternative to methods like finite-state machines, 
sine-generators, heuristic control laws, and prerecorded reference trajectories [186,140]. Notably, CPG models demonstrate limit 
cycle behavior, generating stable rhythmic patterns that enable quick recovery from disturbances. They are particularly suited for 
modular robots [39,90,91,118], featuring multiple control parameters that facilitate locomotion modulation and the issuance of 
control signals by higher-level controllers and learning algorithms, replacing multidimensional motor commands. Moreover, CPG 
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models ensure smooth trajectory generation, even in the face of sharp changes in control parameters, thus averting potential motor 
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damage due to sudden command changes [84,82]. By integrating sensory feedback signals, CPG models establish mutual interaction 
between the central pattern generator and the mechanical body [71,171,172,184].

Next, we will present the main achievements of recent years related to the use of locomotion CPGs in real robots and virtual 
animates. Sections 5.1 and 5.2 show the main goals and results of the research, and Tables 1 and 2 briefly describe the main 
characteristics of animates and robots implemented in the analyzed works, respectively. For convenience, in this section we have 
sorted the works by animals’ type.

5.1. Animates (virtual robots) - biomechanical simulation

5.1.1. Lampreys

The studies focus on understanding how CPGs control locomotion in lampreys. They explore CPGs’ neural dynamics, sensory 
feedback, and interactions within the brain-spinal cord system. These investigations aim to uncover the principles of neural locomo-
tion control. Researchers intend to create computational CPG models and other neural networks for controlling movement, testing 
them with robotics. Their goal is to enhance robotic systems for navigation in complex environments. Objectives include developing 
CPG models for rhythmic and non-rhythmic motions, examining visual and curvature-based feedback, and designing energy-efficient 
spiking CPGs for neuromimetic hardware.

The following research explores bionic neural networks and CPGs for controlling fish-like robots and understanding visual behav-
iors in lampreys. Zhang et al. (2006) propose a bionic neural network with CPGs that effectively controls fish-robot motions [215]. 
Kamali-Sarvestani et al. (2013) investigate lamprey visual behaviors using a CPG-based neural network model, capable of executing 
appropriate reactions to different visual stimuli [89]. Kozlov et al. (2014) describe how the phasic modulation of reticulospinal 
activity in CPGs ensures reliable steering commands and validate their findings with a mechanical model of lamprey swimming 
[102]. Liu et al. (2018) propose a new locomotion control network capable of generating rhythmic and non-rhythmic movements, 
exhibiting simple mathematical structure and strong biological properties [111]. Overall, these studies highlight the effectiveness 
and adaptability of CPG-based control systems for underwater robots, showcasing their potential for real-world applications.

The next studies explore different aspects of CPG-based control systems, focusing on sensory feedback effects and the development 
of a new Spiking CPG model.

Hamlet et al. (2018) investigate the impact of body curvature-based sensory feedback on lamprey swimming performance [73]. 
Their simulations reveal that directional feedback modifies muscle activity duration while magnitude feedback increases beat fre-
quency and reduces energetic cost. Such feedback with different forms creates distinct swimming performance outcomes. Angelidis 
et al. (2021) introduce a novel Spiking CPG based on high-level abstract coupled Hopf-like oscillators [2]. This flexible CPG model 
can be implemented on both software and neuromimetic hardware, allowing for a wide range of synchronized gaits and parameter-
izations. Their lamprey robot experiments validate the effectiveness of the CPG in regulating locomotion across various simulation 
scenarios. Furthermore, the researchers demonstrate the real-time operation of the controller, highlighting its potential advantages 
in terms of energy efficiency and computational speed. In summary, these studies deepen our understanding of sensory feedback 
effects on swimming performance and present a new Spiking CPG model with potential applications in robot locomotion control, 
showing promise for real-time operation and energy efficiency when implemented on neuromimetic hardware.

5.1.2. Salamanders

The studies [83,75] focus on understanding salamander locomotion, particularly the role of sensory feedback in gait generation 
and transition. They aim to identify neurons in spinal circuits that control different gaits, develop improved spinal locomotion models, 
and understand how limbs and body coordinate during locomotion. Researchers aim to uncover locomotion control principles, po-
tentially benefiting the design of walking robots. For example, one study used simulations and found that specific CPG configurations 
were likely responsible for stable swimming and walking gaits resembling salamander locomotion [83]. Another study explored the 
importance of sensory feedback in gait generation, highlighting that proprioceptive inputs are crucial for walking coordination while 
trotting is influenced more by CPGs [75]. Gait transition from walking to trotting involves increased activity in the mesencephalic 
locomotor region and sensory inputs at the hip and scapula regions during the late stance phase.

The research articles [112,113,169] explore different aspects of salamander locomotion. One study introduces a novel neural 
network model to represent the spinal locomotor network, which can generate various gaits such as forward and backward walking, 
swimming, and turning, with smooth transitions controlled by external inputs from the brainstem [112]. Another study proposes 
an improved biomechanical model with modified forelimb structure and a new spinal locomotion network model. This enhanced 
model allows for generating different walking turning gaits, precise control of forelimb swing order, and rapid transient response 
speed [113]. Lastly, researchers develop a mathematical model based on CPG for understanding limb-body coordination during 
salamander locomotion. By incorporating limb-to-limb, limb-to-body, body-to-limb, and body-to-body feedback rules, the model 
replicates spontaneous gait changes and speed-dependent gait transitions observed in salamanders, highlighting the importance of 
sensory feedback in enabling flexible coordination [169].

5.2. Hardware implementation (electronic circuits, robots)

5.2.1. Anguilliform locomotion type (lampreys, eels)
Anguilliform locomotion involves undulating the entire body in a wave-like motion, used by aquatic animals like lampreys and 
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eels for swimming. It is an efficient method for long-distance swimming, although not as fast as other forms of movement. Many 
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Table 1

Comparison of virtual animats by type and number of CPG segments, features of the sensory system and skills.

Animal CPG Segment Number of 
Segments

Feedback (Sensors) Skills Source

Lamprey Nonlinear (Zhang) 
oscillator

18 One high level 
controller

Startup, stop, forward swimming, backward swimming 
and turn

[215]

Lamprey Symmetric neural 
networks located on the 
left and right sides (100 
IF neurons)

16 Tectum, MLR, RS 
neurons (retina)

The ability to distinguish objects of different colors: 
predators, obstacles and prey, respectively, and change 
behavior according to this information

[89]

Lamprey Compartment models of 
1960 neurons and 
64680 synapses

10 Tectum, MLR, RS 
neurons

Forward swimming [102]

Lamprey 2 inherent bursting 
neurons with mutual 
inhibition

40 - Forward swimming, turn, non-rhythmic locomotion [111]

Lamprey Pair of sinusoidally 
coupled phase 
oscillators

320 Stretch 
mechanoreceptors 
(edge cells)

Forward swimming [73]

Lamprey Spiking network 
(280-2000 LIF neurons)

8 - Forward swimming [2]

Salamander Nonlinear oscillator 16 Sensory stretch 
feedback only in the 
body segments

Swimming and walking [83]

Salamander 25E and 15I 
compartment neurons 
[101]

40 MLR, stretch 
receptors

Swimming and walking [75]

Salamander [111] neurons 31 (24) - Forward and backward walking gait, swimming gait and 
turn

[112,113]

Salamander Phase oscillator 15 Diagonality and 
waveform indices

Swimming and walking, gait transition from lateral 
sequence walking with standing body waves, to walking 
trot with traveling body waves

[169]

investigators and engineers are developing robots that mimic the movements of sea lampreys [196,116,222,205,175,33]. These 
robots use shape memory alloy actuators and an electronic nervous system (ENS) to control the undulating body. The ENS incor-
porates networks of map-based neurons and synapses, receiving input from exteroceptive sensors like compasses, accelerometers, 
inclinometers, and sonar arrays [196]. The CPGs in the ENS, based on physiological studies, coordinate the flexion waves for forward 
and backward swimming. The command network regulates reflexes, homing, orientation, and obstacle avoidance. Another article 
presents a biomimetic system inspired by the lamprey, featuring sensory receptors, muscle-like actuation, distributed control, and a 
vision system. The system showcases optimized swimming, goal-directed locomotion, high energy efficiency, and adaptive behavior 
[116] (Fig. 12A).

Researchers propose experiment-based approaches to improve biomimetic undulatory locomotion. One approach involves gener-
ating coordinated swimming gaits using artificial CPGs and optimizing the CPG model’s parameters using a genetic algorithm (GA) to 
achieve optimal swimming speed and energy efficiency [222]. Additionally, a robotic lamprey design incorporating computer vision 
capabilities employs both frame-based and event-based cameras to stimulate the neural network, resulting in goal-oriented swim-
ming. Event-based cameras enhance swimming trajectory accuracy and significantly improve visual input processing speed [205]. 
Another study investigates how hydrodynamic pressure forces can induce body movements in a robot mimicking neuromechanical 
systems. Self-organized swimming coordination is achieved through local feedback loops, providing resilience against neural dis-
ruptions and explaining post-spinal cord damage swimming abilities [175]. Moreover, a soft robotic eel with bidirectional bending 
segments controlled by a CPG exhibits flexible linear and turning motions, making it suitable for underwater exploration with limited 
space [33].

In summary, robots are designed for replication the undulating swimming motion of lampreys. On-line optimization and genetic 
algorithms enhance biomimetic locomotion. Computer vision capabilities and event-based cameras improve accuracy and speed in 
goal-oriented swimming. Hydrodynamic pressure forces and local feedback loops contribute to self-organized swimming coordination 
and resilience against neural disruptions. Meanwhile, soft robotic eels achieve versatile motions for underwater exploration. These 
advancements showcase the potential applications of biomimetic robotics in swimming and exploration tasks.

5.2.2. Ostraciiform locomotion type (boxfish)

Ostraciiform locomotion, observed in boxfish and trunkfish, involves using rapid oscillations of the tail fin for propulsion, creating 
vortices that aid in lift and reduce drag. Researchers have created fish robots, such as BoxyBot, that mimic this locomotion style, 
enabling swimming, crawling, and various movements using a CPG-based control system triggered by light, water, and touch sensors 
[105,43]. These robots exhibit agile behavior and generate stable rhythmic patterns despite changes in control parameters. Another 
study focuses on a robotic boxfish with a locomotion controller consisting of two layers – oscillators and a transition layer – to achieve 
flexible switching of swimming patterns and precise attitude control using sensory feedback from an IMU [193,194]. In addition, 
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a bio-inspired robotic fish autonomously identifies and optimizes its swimming gait using a CPG, on-board sensor processing, and 
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Fig. 12. Examples of implemented biomimetic robots. (A) Lamprey: anguilliform locomotion type [116]. (B) Boxfish: ostraciiform locomotion type [192]. (C) Tuna: 
thunniform locomotion type [51]. (D) Manta-Ray: rajiform locomotion type [214].

particle swarm optimization. The robotic fish achieves a maximum swimming speed of 1.011 BL/s (40.42 cm/s) through autonomous 
gait optimization [192] (Fig. 12B). The incorporation of CPG-based control, sensory feedback, and autonomous optimization algo-
rithms contributes to the agility, precise control, and adaptive locomotion capabilities of these robotic fish. These studies pave the 
way for bio-inspired ostraciiform swimming robots with enhanced maneuverability and autonomy.

5.2.3. Subcarangiform locomotion type (pike)

The subcarangiform fish locomotion type involves strong body wave amplitudes, mostly in the rear half, leading to stiff hulls for 
speed but reduced maneuverability. In the work [219] authors designed a CPG model with nonlinear oscillators for a subcarangiform 
robotic fish, enabling coordinated swimming patterns and smooth gait shifts, while another study [109] presents a mathematically 
stable CPG model for microcontrollers, allowing online adjustments of physical outputs. Swimming patterns reproduced by a CPG 
model with connected neural oscillators can be diverse, that have been proven both theoretically and experimentally [211,191]. 
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In [199], a flexible subcarangiform robotic fish uses CPG-based control for precise forward and backward maneuvers, with turning 
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variations. A self-propelled robotic fish with multiple control surfaces and vision system is explored in [210], achieving agility and 
speed through CPG control and visual feedback.

Many researchers focus on improving actuation, design, and control models. For instance, Wu et al. find small phase lags boost 
swimming [198], Yu et al. optimize control for faster swimming [213], Yang et al. ensure fault tolerance [202], Wang et al. opti-
mize speed and efficiency [190], Xie et al. study body patterns’ effects on cruising [200]. Overall, they refine fish-like locomotion, 
optimizing speed, efficiency, and control for practical use.

5.2.4. Carangiform locomotion type (shark, carp)

Carangiform locomotion is characterized by fast, stiff movements concentrated in the rear. The engineering studies focusing on 
controlling this type of robotic fish include designing: a neural-based control method for a modular fish steering [79]; a linear CPG 
control architecture, reducing computational cost and using only two control parameters for locomotion [188]; a centralized system 
to coordinate multiple fish using fuzzy reinforcement learning (RL) [209]; a CPG control system and sensor feedback, improving 
swimming ability of the robotic shark [206]; an autonomous carp-like fish prototype with biomimetic control [5]. Abovementioned 
works advance robotic fish control, achieving different swimming patterns, coordination, and biomimetic design.

Several studies contribute to the field of biomimetic robotics by advancing the control mechanisms and capabilities of robotic fish, 
including autonomous swimming, obstacle avoidance [32], rigorous control with efficient maneuvering [201], precise path-following 
[217], especially applying novel artificial intelligence (AI) techniques [6,99].

5.2.5. Thunniform locomotion type (tuna)

The thunniform type of fish, such as tunas and certain sharks, are fast and efficient swimmers with a distinctive body shape 
emphasizing tail and peduncle movement for increased speed and prey capture. Numerous studies in the field of biomimetic robotic 
fish draw inspiration from the thunniform group, translating their impressive swimming capabilities into innovative designs, for 
examples see [78,216,51]. In the first work Hu et al. replicate thunniform kinematics, achieving a maximum speed of 2.0 m/s in 
their biomimetic robotic fish using a four-bar propulsive mechanism and a CPG controller [78]. The second research by Zhang et al. 
combines insect wings and fish fins in their design, resulting in enhanced agility and stability [216]. Their robotic fish showcases 
versatile maneuvering and obstacle avoidance abilities enabled by a CPG model. Lastly, Du et al. focus on fast swimming and 
effective maneuvering, creating CasiTuna (Fig. 12C), a robotic fish with a unique two-motor-actuated propulsive mechanism [51]. 
The integration of CPG-based control, unique propulsion mechanisms, and stabilizing features contributes to achieving faster speeds, 
versatile maneuverability, and promising potential for exploration and survey missions in aquatic environments.

5.2.6. Rajiform locomotion type (ray, dactylopteridae)

Rajiform locomotion, observed in rays, involves wing-like pectoral fin flapping that enables agile maneuvering. Researchers have 
developed biomimetic robotic manta rays for marine applications: RoMan-II, utilizing a CPG model with nonlinear oscillators for fin 
manipulation, allowing swimming and turning control [221]; Robo-ray, mimicking a cownose ray’s motion using oscillating pectoral 
and tail fins [27]; a bionic robot with manta ray-like pectoral fins, using phase oscillators and closed-loop control for rhythmic 
motion and continuous mobility [74]. Experimental study verified that the robotic vehicle inspired by manta rays, combining gliding 
and flapping propulsion using flexible pectoral fins and a buoyancy adjustment system, can exhibit maneuverable flapping and 
efficient gliding, showing potential for marine applications [214] (Fig. 12D). Cao et al. optimize control parameters of a manta ray 
robot, achieving improved similarity to real manta ray motion through a similarity evaluation rule and enhanced CPG-based motion 
control signals [28]. Furthermore, Zhang et al. introduce a biomimetic underwater vehicle based on dactylopteridae movement, 
demonstrating stability and maneuverability with symmetrical fins and a double-joint fishtail [218]. Control methods involve CPGs 
and fuzzy adaptive proportional-integral-derivative (PID) controller. Coordinated control with CPG and fuzzy algorithms ensures 
realistic motion, high mobility, and stability in complex underwater environments. Engineering studies advance biomimetic robotic 
manta rays and dactylopteridae-inspired vehicles, showcasing control strategies, motion replication, stability, and maneuverability 
in marine environments.

5.2.7. Dorsoventral locomotion type (dolphin)

Dolphins are adept swimmers, utilizing their tail flukes, dorsal fin, pectoral fins, and body movements for propulsion and maneu-
verability. A new dolphin robot, discussed in [212], mimics dolphin swimming motions using a CPG network. The robot achieves 
smooth trajectory tracking and tests confirm the effectiveness of its design and control methods. Another instance – a robotic dol-
phin inspired by killer whales, outlined in [110], is designed for water quality monitoring. It employs powerful posterior body and 
fluke for speed, separate pectoral fins and yawing dorsal fin for maneuvering, and various sensors for autonomous monitoring. Con-
trolled by a CPG-based controller, the robotic dolphin demonstrates forward swimming, turning, diving, and surfacing capabilities, 
with successful experimental and field testing. Dolphin-inspired vehicles, leveraging CPG-based control, allow for smooth and stable 
trajectory tracking and demonstrate potential for applications in areas such as water quality monitoring.

5.2.8. Turtle

Sea turtles have adapted limbs for swimming, with flattened paddles for propulsion and steering. They retract their limbs into 
their shells to increase hydrodynamics. Streamlined bodies and hydrodynamic shells minimize resistance. Buoyancy is regulated by 
233

controlling lung air and body angle. Sea turtles’ limb adaptations, hydrodynamic design, and buoyancy control serve as inspiration 
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for the development of underwater vehicles employing CPG-based control, allowing for efficient swimming, maneuvering, and real-
time data transmission. For instance, Seo et al. discuss a control method based on turtles’ flapping fins. CPG control system generates 
synchronized oscillation patterns for position-served flapping fin actuators. Stability analyses and experiments validate the proposed 
framework [163]. Yao et al. present a turtle-like underwater vehicle controlled by CPG-based architecture [203]. Four oscillation 
flippers enable swimming and attitude control through adjusting angles, flapping frequency, and amplitude. The vehicle’s utility and 
stability are demonstrated through experiments, with real-time transfer of underwater video information.

5.2.9. Amphibious

There are various amphibious animals that live both in water and on land. Depending on their preferences and habitat, amphib-
ians exhibit different forms and types of locomotion. Researchers and engineers develop amphibious robotic systems inspired by 
natural creatures, showcasing innovative locomotion strategies, versatility in water and on land, improved efficiency in swimming 
modes, and novel leg designs for adaptive locomotion. Crespi et al. develop amphibious snake-like robots (AmphiBot I and II) [40,41]
inspired by elongate vertebrates. Controlled by a CPG, the robots showcase swimming and snake-like ground movement, optimizing 
parameters for efficient locomotion. The AmphiRobot [49,48] imitates underwater locomotion, utilizing a wheel-propeller fin mech-
anism for versatile movement in water and on land. It performs various modes, including swimming, turning, and pitching. Yu et al. 
improve a previous model, enabling fish-like lateral swimming and dolphin-like dorsoventral swimming, with the latter achieving 
a 10.3% increase in speed compared to carangiform swimming [207]. Zhong et al. introduce Amphibex-II [220], an amphibious 
hexapod robot, with variable stiffness legs combining the advantages of walking legs and swimming flippers. The legs’ stiffness can 
be adjusted manually, and a CPG neural network enables smooth gait transitions. Field experiments demonstrate the advantages of 
the leg design and control system.

5.2.10. Salamander

The CPG modeling of salamanders is largely based on the anatomy of elongated lampreys, a primitive eel-like fish. Notably, 
segments corresponding to the limbs of salamanders (limb CPG) exist alongside the spinal cord-based segments (body CPG). Simula-
tion tasks primarily utilize oscillatory models with a low degree of biological plausibility, such as abstract oscillators [98,204,168]
and bursting neurons [112,113]. To capture more detailed dynamics, researchers have explored the use of more complex IF neu-
rons [75,98]. Electrophysiological investigations have revealed the role of glutamatergic synapses in generating rhythmic bursts and 
inhibitory glycinergic neurons in coordinating alternating activity between the lateral sides of the salamander [158]. This has moti-
vated the utilization of spiking neurons, a simplified version of the multicompartment Hodgkin-Huxley model employed by Wallen 
et al. [187].

The synaptic couplings within the network topology also play a crucial role in salamander CPG systems. Salamanders exhibit two 
frequency-dependent modes: lamprey-like swimming with undulatory waves at high oscillatory rates and trot gait, where the limbs 
walk in anti-phase with standing waves at low oscillatory rates. Thus, the internal and inter-segmental connectivity of body CPG 
and limb CPG neural circuits are essential for reproducing these movements. Significant contributions have been made by scientific 
groups such as Ijspeert et al. [84,75,98,12] and Liu et al. [111–113], who explored various topologies to embody these ideas.

6. Discussion & future perspectives

We have conducted a comprehensive review of modern studies dedicated to underwater swimmers, covering aspects ranging from 
basic features of animal physiology to the organization of movement and motor control. Additionally, we explored the design and 
development of mathematical models for CPGs, as well as simulations of virtual swimming robots and the design of real hardware. 
Based on our analysis of the current state-of-the-art in this field, we can outline the following key points for discussion: (i) What 
mechanisms of underwater movement control have not been adequately studied and need to be addressed in future fundamental 
studies? (ii) What aspects should be further refined and elaborated upon in mathematical models for the motor control of swimmers? 
(iii) What advancements in design and technologies are necessary to achieve true biomimetic swimming, considering factors such as 
kinematics, control, and energy efficiency?

By addressing these questions, we aim to advance the understanding and development of underwater swimmers, ultimately 
striving for more realistic and biomimetic swimming capabilities.

(i) It is evident that our understanding of the motor control mechanisms underlying swimming at the cellular and molecular 
levels is still far from complete. There is much to explore regarding the principles of signaling and plasticity, as well as the cross-talk 
between central and peripheral neuronal circuits. While the organization and signaling of CPG networks have been well-elaborated 
upon, various aspects of motor control still remain unclear [68]. As mentioned in the introduction, CPGs play a crucial role in the 
organization of movement for aquatic creatures. Consequently, the modeling of CPGs has stimulated technological developments in 
the design of fish robots capable of different types of locomotion [43,221,116,78,110,200]. One area that requires further investi-
gation in motor control is the interplay between the central and peripheral nervous systems, including the integration of sensory 
information and the generation of corresponding motor commands. Another aspect is the “fine tuning” of non-principal fins, for 
example, which are controlled by a number of motor neurons but are not critical for locomotion. This brings us to the challenge of 
simultaneously adjusting a large number of parameters, whether independent or interconnected, to generate an “optimal” pattern of 
muscle contraction for a specific motor command. One possible approach to tackling this task is to consider an artificial intelligence 
(AI) perspective by designing specific artificial neural networks. In this case, training datasets that establish the correspondence 
234

between motor patterns and resulting movement modes need to be curated and designed. For example, in the past decade, numerous 
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Table 2

Comparison of robots by type and number of CPG segments, features of the sensory system, performance indicators and skills.

Animal 
(swimming type)

CPG Segment Number of 
Segments

Sensors Performance indicators Skills Source

Lamprey 
(anguilliform)

discrete time 
map (DTM) 
[154,165,153]

10 digital signal 
processor (DSP) chip 
(sonar DSP, compass 
and accelerometer)

Forward and backward 
swimming, speed 
control and turning, 
homing on a sonar 
beacon, climb and dive, 
distinguish collisions 
from impediment

[196]

Lamprey 
(anguilliform)

Nonlinear 
oscillator [84]

7 Extra- and 
proprioceptive 
sensory receptor 
(stretch sensors) and 
a stereo vision 
system (two 2D 
complementary 
metal oxide 
semiconductor 
(CMOS) cameras)

Max speed: U = 0.25 
BL/s (BL/s − body 
length per second); run 
time = 5 h

Goal-directed 
locomotion 
(Visuo-coordination) at 
different speeds

[116]

Lamprey 
(anguilliform)

Hopf oscillator 4, 6, 8 Strain gauge-based 
force sensors

Max speed: U = 0.65 
BL/s; energy-efficiency 
index: I𝐸 = 0.23 BL/J

Swimming forward at 
different speeds

[222]

Lamprey 
(anguilliform)

Symmetric 
neural networks 
located on the 
left and right 
sides (100 IF 
neurons) [89]

16 Frame-Based Object 
Detection: pair of 
XIMEA MU 9 PCMH 
RGB cameras; 
Event-Based Object 
Detection: pair of 
iniVation mini-eDVS 
cameras

Gaze misalignment 
scores for the two types 
of camera: 1) 
frame-based cameras: 
𝑀𝑔𝑎𝑧𝑒 = 3.34◦ s; 2) 
event-based cameras: 
𝑀𝑔𝑎𝑧𝑒 = 0.57◦ s

Approach behavior 
(attacking prey) and 
escape behavior (fleeing 
predators)

[205]

Lamprey 
(anguilliform)

Matsuoka 
oscillator [123]

10 Head unit for 
computations, 
exteroceptive force 
sensors

Max speed: U = 0.4 
m/s; run time = 0.5 h

Resilient to both 
communication failures 
between segments and 
to sensor failures

[175]

Eel 
(anguilliform)

Phase oscillator 3 - Max speed: U = 0.2 
m/s; max turning 
velocity: 35.52◦ s−1

Linear and turning 
motions

[33]

Boxfish 
(ostraciiform)

Nonlinear 
oscillator [84]

3 2 light, 1 touch, and 
1 water sensors, 1 
two-axis 
accelerometer

Max speed: U = 0.37 
m/s

Swimming forward and 
backward, turning, 
rolling, moving up or 
down, and crawling

[43,105]

Boxfish 
(ostraciiform)

Linearized [84]
oscillator 
through the 
first-order Taylor 
expansion

3 Inertial 
Measurement Unit 
(triaxial 
accelerometer, a 
triaxial gyroscope 
and a triaxial 
electronic compass) 
and camera

Max speed: 1.05 BL/s; 
run time = 1.5 h

Swimming forwards / 
backwards, turning left 
/ right, swimming 
upwards / downwards 
and rolling clock wise / 
counter clock wise

[193,194]

Boxfish 
(ostraciiform)

Linearized [84]
oscillator

3 Camera, IMU, 
pressure sensor array 
and infrared sensor

Max speed: 1.011 BL/s 
(40.42 cm/s); run time 
= 5 h

Swimming forwards / 
backwards, turning, and 
pitching

[192]

Subcarangiform Nonlinear 
oscillator

6 (4 body and 2 
pectoral fins)

Pressure sensor, 
camera

Max speed: 1 BL/s (65 
cm/s); max angular 
velocity: 1.5 rad/s

Forward swimming and 
turning maneuver

[219]

Subcarangiform Linear oscillator 
[188]

3 - Forward / backward 
swimming and turning 
in sinusoidal oscillation; 
turning swimming in 
sawtooth oscillation

[109]

Subcarangiform Nonlinear 
oscillator [84]

6 (4 body and 2 
pectoral fins)

3 infrared sensors; 1 
pressure sensor

Max speed: ≈38 cm/s Forward / backward 
swimming, turning, 
pitching and combined 
maneuvers

[211,191]

Subcarangiform Modified Hopf 
oscillator

4 Gyroscope, pressure 
sensor

Max speed: 57 cm/s 
(forward swimming), 25 
cm/s (backward 
swimming)

Forward / backward 
swimming and 
maneuvering

[199]

(continued on next page)
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Table 2 (continued)

Animal 
(swimming type)

CPG Segment Number of 
Segments

Sensors Performance indicators Skills Source

Subcarangiform Nonlinear 
oscillator [212]

7 (4 body, 1 
pelvic and 2 
pectoral fins)

CMOS camera Max speed: 1.36 m/s; 
max angular speed: 1.78 
rad/s

Forward / backward 
swimming, turning, 
sideward swimming 
(pelvic fin), 
diving/surfacing

[210]

Northern pike 
(subcarangiform)

Hopf oscillator 8 (4 body and 4 
pectoral fins – 2 
for each)

Gyroscope, depth 
sensor

Max speed: 0.48 m/s Forward / backward 
swimming, turning, 
diving, surfacing, and 
three pectoral motions 
(pitching, heaving, and 
heaving-pitching)

[198]

Subcarangiform Hopf oscillator 4 - Max speed: 1.15 BL/s Forward / backward 
swimming

[213]

Northern pike 
(subcarangiform)

Pair of Hopf 
oscillator [198]

4 Feedforward 
compensator, 
feedforward-
feedback 
controller

Forward / backward 
swimming

[202]

Pike 
(subcarangiform)

Hopf oscillator 6 (4 body and 2 
pectoral fins)

Depth sensor and 
gyroscope

Max speed: 0.5648 m/s Forward / backward 
swimming, turning and 
pitching

[190]

Subcarangiform Hopf oscillator 
[190]

1 IMU Max speed: 0.84 BL/s Cruising, turning and 
ascending / descending

[200]

Carangiform Matsuoka 
oscillator [123]

4 (2 tail and 2 
pectoral fins)

Dual axis 
accelerometer

Max speed: 32 cm/s 
(forward swimming), 16 
cm/s (backward 
swimming)

Forward / backward 
swimming, sharp 
turning, turning in 
advancing, submerging 
and ascending

[79]

Carangiform Linear oscillator 3 - Max speed: 38.2 cm/s Forward swimming and 
turning

[188]

Carangiform Linear oscillator 3 Vision-based multi 
object tracking 
subsystem

Max speed: 38.2 cm/s 2vs2 water polo game [209]

Shark 
(carangiform)

Modified Hopf 
oscillator [199]

2 Infrared sensor, 
pressure sensor, light 
sensor, gyroscope

Max speed: 50 cm/s; run 
time = 1 h

Forward / backward 
swimming, turning, 
down and up, obstacle 
avoidance

[206]

Carp 
(carangiform)

Neural oscillator: 
two symmetric 
parts contains 
CIN, LIN, EIN 
and MN

2 10-DoF IMU, 3 
infrared distance 
sensors

Max speed: 0.8516 BL/s; 
run time = 0.5 h; (Max 
speed: 1.36 BL/s; 
turning rate: 0.89 rad/s)

Forward, turning, 
up-down and 
autonomous swimming 
motions

[5] ([6,99])

Carp 
(carangiform)

[84] oscillator 1 IMU Max speed: 1.37 BL/s; 
largest turning rate: 
457◦/s

Cruising, turning, 
stopping and transition 
among them

[201]

Black carp 
(carangiform)

[84] oscillator 1 IMU, 3 infrared 
sensors, pressure 
sensor

Angular error of 
direction tracking: less 
than 2◦; run time = 2 h

Moving obstacle 
avoidance, direction 
tracking

[32]

Koi Carp 
(carangiform)

Linear oscillator 
[188]

3 Overhead camera Max error: 0.212 m Learning ability to move 
along the desired curve

[217]

Tuna 
(thunniform)

Hopf oscillator 2 Depth sensor, 
voltage sensor, 
current sensor and 
attitude heading 
reference system 
(AHRS)

Max speed: 2 m/s (1.69 
BL/s); max turning rate: 
58◦/s; run time = 3 h

Forward swimming and 
turning

[78]

Two-tailed fish 
(thunniform)

Linear oscillator 6 (2 caudal fins 
and 4 pectoral 
fins – 2 for each)

Infrared sensors Max speed: 1.21 BL/s Avoid obstacles and 
realize autonomous 
swimming

[216]

Tuna 
(thunniform)

Hopf 
oscillator-based

2 - Max speed: 0.8 m/s 
(1.52 BL/s); max 
turning rate: 80◦/s

Straight swimming and 
maneuverability: 
yawing, pitching and 
turning

[51]

Manta ray 
(rajiform)

Hopf oscillator 6 (3 for each 2 
pectoral fins)

Water pressure 
sensor

Max speed: 0.4 m/s (0.8 
BL/s); run time = 6 h

Swimming by flapping 
fins and turning

[221]
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Table 2 (continued)

Animal 
(swimming type)

CPG Segment Number of 
Segments

Sensors Performance indicators Skills Source

Cownose ray 
(rajiform)

Phase oscillator 8 (3 for each 2 
pectoral fins, 2 
tail)

Gyroscope and depth 
gauge

Max speed: ≈0.66 BL/s 
(≈0.38 m/s); depth 
error: less ±100 mm; 
course error: less ±3◦; 
run time = 2 h

Forward swimming, 
turning, sinking and 
rising

[27]

Cownose ray 
(rajiform)

Modified [84]
oscillator

8 (3 for each 2 
pectoral fins, 2 
tail)

Pressure sensor, epth 
sensor

Max yaw angle rate: 
62◦/s

Forward swimming and 
turning

[74]

Manta ray 
(rajiform)

Modified [84]
oscillator

7 (3 for each 2 
pectoral fins, 1 
tail)

Attitude sensor Similarity value of the 
overall motion pose 
(with real fish): 88.53%

Forward swimming and 
turning

[28]

Manta ray 
(rajiform)

Modified [84]
oscillator

4 (2 for each 2 
pectoral fins)

Distance sensor, 
attitude sensor, 
ranging sensor

Max load: 20 kg Swimming and gliding, 
adapts to harsh 
underwater 
environment

[214]

Dactylop-teridae 
(rajiform)

Hopf oscillator 
[213]

8 (3 for each 2 
pectoral fins, 2 
tail)

Pressure sensor, 
AHRS, water quality 
sensor

Max speed: 0.86 BL/s; 
min turning radius: 0; 
run time = 3 h

Forward swimming, 
diving/floating motion, 
turning maneuver, fixed 
depth hovering, and 
directional cruise

[218]

Dolphin 
(dorsoventral)

Hopf oscillator 5 (Moving Slider, 
Turning Unit, 2 
Multijoint Tail, 
Fluke)

Pressure Sensor, 
infrared detector

Max speed: ≈1.1 BL/s; 
min turning radius: ≈0.4 
BL; run time = ≈2 h

Forward / backward 
swimming, turning 
underwater, pitching, 
and heaving

[212]

Dolphin 
(dorsoventral)

Hopf oscillator 
[213]

5 (2 flippers, 
dorsal fin, waist 
and caudal 
joints)

Inertial navigation 
system, global 
positioning system 
(GPS), depth sensor, 
infrared sensors

Max speed: 0.42 m/s; 
run time ≈3 h

Forward Swimming, 
turning, diving and 
ascending, water quality 
monitoring

[110]

Turtle Hopf oscillator 4 (1 for each 
limb)

Direct sensory 
feedback from servos 
to CPG

Pronk, walk, and bound 
gaits

[163]

Turtle [84] oscillator 4 (1 for each 
limb)

GPS, gyroscope, 
accelerometer, depth 
transducer and 
magnetometer

Forward / backward 
swimming, Yaw, 
ascending, submerging, 
rotation

[203]

Snake 
(anguilliform)

Nonlinear 
oscillator

8 - Max speed: 0.035 m/s Swimming and crawling [40]

Snake 
(anguilliform)

Nonlinear [84]
oscillator

8 - Max speed: 0.4 m/s −
crawling; 0.23 m/s −
swimming

Swimming and crawling [41]

Amphibious 
(carangiform)

Nonlinear [84]
oscillator

10 (2 for pectoral 
fins, 6 for body, 
2 for caudal fins)

3 infrared sensors, 1 
pressure sensor, 2 
liquid-level sensors

Max speed: 0.38 m/s; 
run time ≈1 h

Forward / backward 
locomotion in water and 
on land, turning and 
pitching

[49,48]

Amphibious 
(carangiform and 
dorsoventral)

Nonlinear [84]
oscillator

12 (2 for each 2 
pectoral fins, 6 
for body, 2 for 
caudal fins)

infrared sensors, 
pressure sensor, 
liquid-level sensors

Max speed: 1.16 m/s; 
run time ≈2 h

Forward / backward 
locomotion in water and 
on land, turning and 
pitching, dolphin-like 
dorsoventral and 
fish-like lateral 
swimming

[207]

Hexapod 
amphibious

Hopf oscillator 6 (1 for each 6 
legs)

- Max speed: 0.36 m/s −
on land; 0.18 m/s −
underwater

Swimming and walking [220]

Salamander Nonlinear 
oscillator

20 (1 for each 4 
legs, 16 for body)

- Swimming and walking [84,42]

works have been published on the application of reinforcement learning (RL) approaches for controlling bioinspired robots. This 
method, when implemented on artificial neural networks, is well-known for surpassing the performance of most AI-based learning 
algorithms and achieving human-comparable levels [127]. RL’s major advantage lies in its broad applicability, even when the system 
equations are unknown, nonlinear, non-differentiable, or only partial states are observable. However, it is important to note that 
recent studies have highlighted the less reliable outcomes of RL-based training, which necessitates extensive time, training data, and 
insight into relevant hyperparameters [152]. Nevertheless, successful methodologies have been developed to build control systems 
based on CPGs for various robot types. The evolution of these models can be traced through works exploring the dynamics of bipedal 
robots incorporating CPG with recurrent neural networks [129], quadripedal robots utilizing phase oscillator-based CPG [189], and 
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soft snake robot governed by Matsuoka oscillatory CPG network [114], which exhibit movement patterns highly correlated with 
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those of lampreys. The field of swimming robotic fish also features robotic solutions. Recent references, such as [209,217,177], dis-
cuss the use of oscillatory CPGs for fish-like robots, and a noteworthy review by Tong et al. (2023) [176] provides valuable insights. 
Importantly, the training results of the employed neural networks align with the parameters in the models.

(ii) In the realm of mathematical modeling, in addition to the aforementioned AI networks for fine-tuning, there is still a lack 
of detailed biophysical models for control circuits that can be both biologically accurate and mathematically robust. Such models 
are needed to accurately simulate neuronal circuits and imitate pattern generation in CPGs [64]. On the other hand, simplified 
CPG networks composed of nonlinear oscillators exhibit auto-oscillations and multistability. However, due to their limited number 
of control parameters, it is challenging to integrate them with highly diverse and multi-parameter sensory networks and the “fine-
tuning” system.

(iii) In general, there is now a fundamental understanding of locomotion control in CPG, and well-developed mathematically 
elaborated oscillatory models for CPGs. These advancements provide a solid foundation for designing a new generation of underwater 
fish robots capable of closely imitating basic types of aquatic movement [190,205,99,32,51,218]. From a technical standpoint, 
these robots operate with low-dimensional control systems that are well-integrated with state-of-the-art actuators, primarily servo-
motors. However, due to their size and relatively high energy consumption, it is challenging to incorporate a large number of such 
actuators into the robot’s frame. This presents a technological limit in biomimetic design, in addition to the theoretical “fine-tuning” 
issue mentioned earlier. A potential technological breakthrough in this field that could enable true biomimetic robots lies in the 
development of artificial muscles based on new smart materials.
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