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ABSTRACT

Machine learning is a promising approach for electroencephalographic (EEG) trials classi�cation. Its e�ciency is largely determined by the
feature extraction and selection techniques reducing the dimensionality of input data. Dimensionality reduction is usually implemented via
the mathematical approaches (e.g., principal component analysis, linear discriminant analysis, etc.) regardless of the origin of analyzed data.
We hypothesize that since EEG features are determined by certain neurophysiological processes, they should have distinctive characteristics
in spatiotemporal domain. If so, it is possible to specify the set of EEG principal features based on the prior knowledge about underlying
neurophysiological processes. To test this hypothesis, we consider the classi�cation of EEG trials related to the perception of ambiguous visual
stimuli. We observe that EEG features, underlying the di�erent ambiguous stimuli interpretations, are de�ned by the network properties of
neuronal activity. Having analyzed functional neural interactions, we specify the brain area in which neural network architecture exhibits
di�erences for di�erent classes of EEG trials. We optimize the feedforward multilayer perceptron and develop a strategy for the training set
selection tomaximize the classi�cation accuracy, being 85%when all channels are used. The revealed localization of the percept-related features
allows about 95% accuracy, when the number of channels is reduced up to 90%. Obtained results can be used for classi�cation of EEG trials
associated with more complex cognitive tasks. Taking into account that cognitive activity is subserved by a distributed functional cortical
network, its topological properties have to be considered when selecting optimal features for EEG trial classi�cation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5113844

The optimization problem is very important for brain-computer
interfaces (BCIs) based on the electroencephalographic (EEG)
trial classi�cation with the help of machine learning methods.
The accuracy of machine learning approaches to EEG trial clas-
si�cation depends on the proper selection of the principal EEG
features. At �rst glance, this selection can be performed by deter-
mining a featured brain area and frequency band, based on the
event-related potential (ERP) or time-frequency EEG analysis.
However, even for motor activity, for which the spatial and

frequency domains are relatively well de�ned, the restricting anal-
ysis to a few prede�ned trials sometimes leads to worsening of
the classi�cation accuracy. For the more complex brain activ-
ity, e.g., perceptual decision-making, EEG features selection is a
more sophisticated problem because this activity is performed
by functional neural interactions within a distributed cortical
network. However, this issue can be addressed by analyzing the
properties of functional interactions between EEG channels.With
this goal in mind, we classify EEG trials associated with di�erent
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interpretations of ambiguous visual stimuli. Analysis of spa-
tiotemporal and time-frequency features does not reveal di�er-
ences between the classes of trials. At the same time, functional
connectivity analysis shows that di�erences are hidden in the neu-
ral interactions within the occipital and parietal cortices. The
revealed localization of the percept-related features allows about
95% accuracy when the number of EEG channels is reduced up to
90%.

I. INTRODUCTION

Machine learning approaches are widely applied for analy-
sis and prediction of nonlinear systems dynamics.1,2 In particu-
lar, a reservoir-computing-based method is used for data-driven
model-free estimation of the Lyapunov exponents,3 and for attractor
reconstruction4 of chaotic processes, echo state networks (ESNs) are
applied for the detection of generalized synchronization.5 In this con-
text, an exciting challenge of machine learning is its ability to extract
particular features from a single trial, thus providing the possibility
to detect and classify di�erent patterns in electroencephalographic
(EEG) data in real time. A variety of di�erent machine learning
based methods have been developed for the analysis of neurophys-
iological signals. Among them, one can highlight the support-vector
machine (SVM) often used for EEG data processing in order to
extract movement-related features.6 In particular, arti�cial neural
networks (ANNs) based on nonlinearmodels of neural units inspired
by biological interconnected neurons are widely used in computa-
tional biology for classi�cation of EEG trials.7 Multilayer percep-
tron (MLP) detects the nonlinear process of decision-making in the
human brain.8 Speci�cally, a type of ANN, the convolutional neu-
ral networks (CNNs) are known to be a powerful tool for pattern
recognition in di�erent data, including EEG recordings.9

Along with the promising possibility of machine learning
approaches to classify di�erent EEG trials, recent studies provide
insight into spatial characteristics of EEG patterns associated with
real and imagery movements,10 visual perception,11 and the develop-
ment of brain-computer interfaces (BCIs).12–14 In the BCI research,
the tasks of multichannel EEG classi�cation with the help of machine
learning often face the optimization problem.15 All possible features
of a multichannel EEG result in an extremely large phase-space
dimension that has to be processed by the classi�er. This is a critical
issue for BCI, where calculations should be performed in real time by
portable computers, where the calculation performance is of extreme
importance.

In neuroscience, the optimization problem can be solved
by using several techniques. Common methods of dimensional
reduction include principal component analysis (PCA) and lin-
ear discriminant analysis (LDA), where the original features are
mathematically projected onto a lower-dimensional phase space.
In particular, Alpert et al.16 used PCA to reduce the phase-space
dimension, while classifying percept-related EEG trials. Recently,
a similar approach was also applied for classi�cation of data sets
from a postural control protocol17 and sleep-related neurophysi-
ological data.18 Furthermore, LDA was used for classi�cation of
motor-related EEGs19 and EEG features associated with pathologi-
cal activity, such as dementia and Alzheimer disease.20 There are also

optimization approaches based on genetic algorithms (GAs) allowing
a feature set, which yields a high classi�cation precision. Thesemeth-
ods have been recently used for classi�cation of biological signals,
such as electrocardiogram (ECG),21 EEG related to di�erent types of
imaginarymovements,22 and pathological activity including epileptic
seizures.23

The approaches described above do not take into account the
origin of the analyzed data. On the contrary, we hypothesize that
since EEG features are determined by certain neurophysiological
processes, they should have distinctive characteristics either in time-
frequency or spatiotemporal domains. If so, it is possible to specify
the set of principal spatiotemporal and time-frequency EEG features
based on the prior knowledge about underlying neurophysiological
processes. With this in mind, in the recent work,10 we used MLP for
classi�cation ofmotor-related EEG trials and related the choice of the
MLP input featureswith the spatiotemporal and time-frequency EEG
structure. Namely, EEG analysis revealed spectral and spatial prop-
erties associated with the pronounced di�erences in di�erent classes
of EEG trials. Using these particular properties allowed to reduce
the number of input signals from 31 to 8 and to achieve to 90 ± 5%
classi�cation accuracy.

While the correlation between MLP classi�cation performance
and spatiotemporal and time-frequency EEG properties has been
reported for the motor-related EEG, this issue remains unresolved
for cognitive tasks. One can expect that motor activity in the brain
is subserved by a generation of well-de�ned rhythms of neural activ-
ity in the well-established areas (e.g., mu-rhythm in the motor cortex
and theta-rhythm in the frontal cortex). For cognitive activity, the
spatial features cannot be easily speci�ed since it is implemented via
the activation of spatially distributed cortical networks.24At the same
time, we suppose that in the case of cognitive activity, EEG feature
selection can be based on the topological properties of the cortical
network.

In order to test this hypothesis, in the present work, we ana-
lyze the brain activity associated with the processing the ambiguous
stimuli (Necker cubes). According to Kornmeier et al.,25 the Necker
cube interpretation can be considered as a cognitive decision pro-
cess. Recently, we have shown that multilayer perceptron (MLP) is
able to classify EEG trials, associated with di�erent Necker cube
interpretations.11 In that work, we used EEG sensors covering the
whole head surface; therefore, it was unknownwhether the stimulus-
related features of neuronal activity were distributed over large corti-
cal areas or they belonged to a particular area. Unlike motor-related
activity,10,26 analysis of the spatiotemporal and time-frequency EEG
features did not reveal di�erences in the classi�ed classes of EEG
trials.11

According to this, the main purpose of this current work is to
relate the optimal EEG features forMLP inputwith the network prop-
erties of neuronal activity underlying ambiguous stimuli processing.
With this in mind, we demonstrate that the EEG features, underly-
ing the di�erent ambiguous stimuli interpretations, are de�ned by the
network properties of neuronal activity. Having analyzed functional
neural interactions, we specify the brain area in which functional
network architecture exhibits di�erences for di�erent classes of EEG
trials. Using the EEG signal from this particular brain area allows
reducing the number of EEG channels from 19 to 2 and achieves 95%
classi�cation accuracy.
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II. MATERIALS AND METHODS

A. Subjects

Twenty-�ve subjects participated in the experiments (17 males
and 8 females, of the mean age of 24 years with a standard deviation
of 5 years. All subjects were students and sta� members of the Yury
Gagarin State Technical University of Saratov, without any previous
training in the task. All subjects had normal or corrected-to-normal
vision, with no neurological diseases, free from psychoactive med-
ications at the time of the experiment. The subjects were unpaid
volunteers. All participants have provided an informed written con-
sent before their participation in the experiment. The experimental
study was carried out according to ethical standards27 and approved
by the Ethics Committee of the Innopolis University.

B. Bistable visual stimuli and experimental setup

Subjects were facing a display screen on which ambiguous
images were displayed as visual stimuli [Fig. 1(a)], speci�cally, the
Necker cube.28,29 Necker cube images are presented in Fig. 1(b). One
can see that depending on the intensity of inner ribs, Necker cube can
be treated as oriented in two di�erent ways—left- or right-oriented.
The contrast of the three inner lines centered in the left middle cor-
ner is used as the control parameter g ∈ [0, 1]. The values g = 1 and
g = 0 correspond, respectively, to 0 (black) and 255 (white) pixels’
luminance of these three ribs. On the other hand, the contrast of
the three inner ribs centered in the right middle corner was de�ned
as (1 − g). Finally, the normalized contrast of the six outer ribs was
constant and equal to 1. During our experiment,M = 7 cube images
with di�erent wireframe contrasts, i.e., di�erent values of the con-
trol parameter: g = 0.15 (practically fully left-oriented cubes), 0.3,
0.4, 0.5, 0.6, 0.7, and 0.85 (practically fully right-oriented cubes) were
repeatedly presented to subjects in a random sequence, as shown in
Figs. 1(b) and 1(c). All subjects were previously informed about two
possible orientations of the Necker cube and able to see them.

Similarly to Ref. 11, stimuli were demonstrated on 24 in.
(1920 × 1080 pixels) LCDmonitor with a refresh rate of 60Hz. Each
Necker cube imagewith black and gray ribs was displayed in themid-
dle of a computer screen on a white background. The subjects were
sat at a 70–80 cm distance from the monitor with an approximately
0.25-rad visual angle.

C. Experimental protocol

In order to avoid possible adaptation and personal habituation
in solving the task, every subject took part in only one experimen-
tal session. To exclude the in�uence of the real or imaginary motor
reaction after the image presentation and to automatize the exper-
imental procedure, we propose the following experimental design.
Before the experiment, every subject was instructed how they should
indicate his/her decision about cube orientation. Therewere two pos-
sible ways to do this. In the �rst series of the experiments, they must
press either the left or the right key on the control panel according to
their �rst visual impression, whereas in the second series, they must
answer one of the two following questions randomly appearing on
the screen:

FIG. 1. (a) Experimental setup. (b) Necker cubes with different degrees of
ambiguity g: g = 0.15 corresponds to left-oriented cube, g = 0.85 to right-ori-
ented cube, and g ∼ 0.5 to symmetrical cube. (c) Experimental session: the
arrows show starting points of each presentation; time intervals τ1, τ2, . . . , τN
(τ = 0.8–1.3 s, N = 400) correspond to the duration of each image presenta-
tion; time intervals γ1, γ2, . . . , γN (γ = 2.0–3.0 s, N = 350) indicate epochs for
presentation of abstract pictures (APs). The red brackets below the time axis indi-
cate T = 1 s periods of time during which the EEG data were taken for the ANN
analysis.

(1) Do you interpret this cube as left-oriented? (If YES, then press
the right key, otherwise press the left key).

(2) Do you interpret the cube as right-oriented? (If YES, then press
the right key, otherwise press the left key).
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The right key was associated with a positive answer, while the
left key with a negative answer. Thus, the subject did not know in
advance which key (left or right) he/she will press until the question
(1) or (2) appears on the screen. This factmade his/her reaction inde-
pendent of the imaginary movement associated with the preparation
to press either left or right key during perception.

According to works,30–32 in order to �x the �rst impression
and avoid switches between two possible percepts, the image exhi-
bition was limited to τ = 1.0–1.4 s. In addition, to divert attention
and make the perception of the next Necker cube image indepen-
dent of the previous one, abstract pictures were exhibited for about
η = 2.0–4.0 s between subsequent demonstrations of di�erent
Necker cube images. The duration of stimuli presentations τi and the
intervals between stimuli ηi were randomly chosen from the de�ned
above time intervals.

In order to diminish the e�ect of a persistent visual perception
between subsequent presentations of ambiguous images,33,34 Necker
cubes with di�erent parameter values g were presented in a ran-
dom sequence, and the values of ηi were chosen to be su�ciently
large.

After the abstract picture presentation, the questions (1) or (2)
appeared on the screen, and the subject pressed the corresponding
button on the keypad to indicate his/her �rst visual impression on the
Necker cube orientation. After the click was done, the next Necker
cube image with randomly selected parameter g was shown.

The schematic illustration of the experimental protocol is pre-
sented in Fig. 1(c). The following protocol was used in each of the
runs:

1. 300-s background EEG activity (BCG) recording when the sub-
ject was in a relaxed state [Fig. 1(c)].

2. 40-min main part of the experiment, which includes demon-
strating M = 300 Necker cubes with di�erent values of the
control parameter g. This part consists of six steps.
1. The visual stimuli (the Necker cubes with a randomly cho-

sen contrast parameter g) were displayed on the screen
for a randomly chosen time interval τi between 1.0 s
and 1.4 s.

2. After observing the stimulus on the screen, the subject ana-
lyzed and memorized his/her �rst visual impression on the
cube’s orientation as left or right.

3. Then, abstract pictures (APs) were exhibited for a randomly
chosen time interval γi ∈ [2, 3] s to divert attention and
make the perception of the next image independent of the
previous one.

4. Next, the randomly selected question from two possible
variants: (1) Do you interpret this cube as left-oriented? and
(2) Do you interpret the cube as right-oriented? appeared on
the screen.

5. To answer this question, the subject pressed either left or
right button, depending on his/her impression on the cube’s
orientation.

6. Immediately after pressing the button, a next visual stimulus
(the Necker cube with randomly chosen contrast parameter
g) was displayed on the screen and the process was repeated
N = 400 times.

3. 300-s background EEG activity (BCG) recording.

Experimental protocol, including the time markers of the stim-
uli presentations, subject’s response and parameter g, were automat-
ically recorded for further analysis of EEG data.

D. EEG registration and preprocessing

Multichannel EEGwas recorded at a 250-Hz sampling rate from
P = 19 electrodes with two reference electrodes placed at standard
positions of the 10–20 international system.35

Similarly to Ref. 11, we used electroencephalograph “Encepha-
lan–EEGR–19/26” (Taganrog, Russian Federation) with multiple
EEG channels and two-button input device (keypad) and performed
all necessary procedures to increase the conductivity of the skin and
reduce its resistance.Machine learning algorithmswere implemented
with MATLAB.

Before loading data to ANN, large amplitude artifacts caused
by eye blinks and movements in the frontal cortex were removed
from EEG data with the help of the original software, using
EOG and Gram-Schmidt orthogonalization procedures (for details,
see Ref. 11).

Single 1-s trials corresponding to NT = 250 samples were
extracted from all EEG data sets of every subject. These single tri-
als were spn(t) (p = 1, . . . , P, n = 1, . . . ,NT) (P being the number of
EEG channels). Each trial started at the beginning of the presentation
of eachNecker cubewith the contrast parameter g, and ended 1 s after
the stimulus onset [see Fig. 1(c)]. All trials were sorted in two classes
(left- or right-oriented interpretation of bistable stimulus) in accor-
dance with the key (left or right click) choice on the keypad. Finally,

FIG. 2. Typical EEG trials after their preprocessing, corresponding to different
Necker cube interpretations, recorded during T = 1 s after image presentation.
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the trials extracted from each EEG electrode for each stimulus were
scaled to the [0, 1] interval.

Figure 2 demonstrates typical EEG trials registered from all 19
electrodes and preprocessed with the procedure described above.
Trials are shown for the cases of well-pronounced left- [g = 0.15,
Fig. 2(a)] and right-oriented [g = 0.85, Fig. 2(b)] cubes, and left-
[Fig. 2(c)] and right-oriented [Fig. 2(d)] interpretations of the sym-
metric cube with maximum ambiguity (g = 0.5).

Figure 2 demonstrates typical EEG trials of one of the subjects
recorded from all 19 electrodes after the preprocessing procedure.
These EEG traces of T = 1 s duration (250 samples) were registered
just after the Necker cube presentation. The sets of the EEG traces
corresponding to di�erent interpretations of the Necker cube are
shown for the cases of well-pronounced left- [g = 0.15, Fig. 2(a)] and
right-oriented [g = 0.85, Fig. 2(b)] cubes, and left- [Fig. 2(c)] and
right-oriented [Fig. 2(d)] interpretations of the symmetric cube with
maximum ambiguity (g = 0.5). The trials of 25 subjects were used
as initial databases to extract features from the time series using the
ANN time domain technique.

E. ANN architecture and classification algorithm

We use a deep learning method based on ANN for single-trial
EEG classi�cation, where the nth single-trial data are represented
by the spatiotemporal activity matrix Sn of size D × NT , containing
raw event-related signals sp(t) (p = 1, . . . ,D) recorded from D EEG
channels at all NT = 250 time points, immediately after the image
presentation. The value

Yn = f (Sn) =







1, left-oriented cube
interpretation,

0, right-oriented one
(1)

stands for the binary decision of the classi�cation algorithm for the
single-trial spatiotemporal EEG data matrix Sn corresponding to the
left-/right-oriented Necker cube interpretation by the subject.

There are many di�erent types of ANN, which are known to
be a promising tool for pattern recognition and classi�cation.7,9,36

Similarly to our recent work,11 in this study, we use a multilayer per-
ceptron (MLP) characterized by signals traveling from left to right
on a layer-by-layer basis (feedforward network).36 MLP is an uni-
versal and popular class of ANN, widely used for a broad range of
applications including classi�cation.37–42 In our case, the classi�ca-
tion problem is the recognition of two di�erent multistable brain
states corresponding to the perception of ambiguous Necker cubes
as left- or right-oriented. MLP is an universal and popular class
of ANN, widely used for a broad range of applications including
classi�cation.37–42 In our case, the classi�cation problem is the recog-
nition of two coexisting brain states corresponding to two di�erent
interpretations of the Necker cube orientation, either left or right.

Figure 3(a) shows the ANN architecture of MLP with two hid-
den layers. The �rst layer (“Input Layer—IL”) contains D inputs
equal to the number of EEG channels used for the analysis with the
maximum of D = P = 19 corresponding to a complete set of EEG
channels. The functional 1-s trial sp(t) (250-sample time series) was
sent to the corresponding pth input from pth EEG channel, di�er-
ent for left or right cube interpretation. The signals from each input
were enter to all nodes (arti�cial neurons) of the �rst hidden layer

FIG. 3. (a) Multilayer perceptron (MLP) architecture with two hidden layers: IL
(l = 0)—input layer, HL1, HL2—the first (l = 1) and second (l = 2) hidden layers,
and OL—output layer (l = 3) . The number of inputs is H0 = D, the numbers
of nodes within the hidden layers are H1 and H2, and s0 = 1 and u0 = 1 are
single constant inputs defined by the thresholds for neurons in the lth layer. (b)
ANN training and validation loss curves for classification of EEG trials with all
the channels (curves 1) and with only two O1 and O2 channels (curves 2). (c)
Classification accuracy obtained for all 25 subjects when using all D = P = 19
EEG channels. The right panel represents the data averaged over all subjects
under study.

(“Hidden Layer 1—HL1”) containingH1 neurons. The resulting out-
puts of the �rst hidden layers were then sent to the second hidden
layer (“Hidden Layer 2—HL2”) with the same type of computational
nodes. The number of nodes in the second hidden layer was equal to
H2. Finally, output layer (OL) includes one single neuron. Our task
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was to recognize only two brain states corresponding to either left or
right orientations. Therefore, it is convenient to consider a condition
that the signal value from the output arti�cial neuron should be 0 or
1 [see Eq. (1), respectively].

The ANN evolution can be described by the following mathe-
matical model:43

uli(t) = Fl





Hl−1
∑

p=0

wl
piu

l−1
p (t)



 , (2)

whereHl is the number of neurons in the lth layer (a layer with l = 0
is the input layer), uli(t) is the output signal of the ith neuron in the lth
layer (u0i (t) are signals from analyzed EEG channels), Wl = {wl

pi} is
the weight matrix of the lth layer in which dimension is (Hl−1 × Hl),
wl

pi (p = 0, . . . ,Hl−1, i = 1, . . . ,Hl) are the synaptic weights of input
signals for the ith neuron in the lth layer. Similarly to the MLP, used
in previous study,11 neurons in the hidden layers (l = 1, 2) have non-
linear function of logistic activation (“sigmoid”), while the output
neuron (l = 3) has linear activation function. We chose a “sigmoid”
according to Ref. 44 as a common choice in the case of input data that
takes real values and normalized in the range [0, 1], and output lies
also in the same range.

A class of recognized objects can be characterized by the mean
squared value ȳ of the signal coming from output neuron (i.e., y(ti)
= u31(ti)). For the left-oriented interpretation, ȳ ≥ 0.5, whereas the
right-oriented interpretation should give ȳ < 0.5. The binary deci-
sion of the classi�cation algorithm for an nth EEG trial is de�ned as

Yn = H(ȳ − 0.5), (3)

where H is the Heaviside step function.
The unknown matricesWl can be obtained during the learning

process by minimizing the classi�cation error criterion

µ =

√

√

√

√

1

K

K
∑

k=1

(

dk − yk
)2
, (4)

where K is the total number of objects in the training set, yk is
the mean squared value of the output signal for the kth object,
and dk is a desired output value of yk to teach MLP. In particular,
dk = 1 corresponds to the left-oriented cube and dk = 0 to the right-
oriented cube. The unknown ANN parameters are searched by using
the Levenberg-Marquardt algorithm (LMA).45 By di�erentiating the
error criterion in Eq. (4) with respect to the unknown parameters, the
LMAmethod gives better results in comparisonwith other optimiza-
tion methods, but requires more computational time to determine
the unknown parameters.

The method’s classi�cation performance is measured by the
percentage of correct classi�cation of single EEG trials interpreted
as left-/right cube orientations, called “recognition accuracy” ρ (in
percentages) of ambiguous images.

To estimate the ANN learning results, we repeated the training
procedure many times (1000 learning cycles in total). As a con-
sequence, we obtained 1000 ANNs with di�erent parameters and
di�erent values of classi�cation error µ, from which we chose the
ANN with smallest classi�cation error obtained with accuracy ρ as
the best ANN for classi�cation to be used for further analysis. The

ANN learning process was individually implemented for each subject
to obtain his/her optimal ANN architecture with highest classi�ca-
tion accuracy. It should be noted that the ANNswere trained for each
subjects separately, that is, we created a classi�er of EEG trials for each
subject. Earlier in Ref. 11, we demonstrated that there is the possi-
bility of ANN training on the data set of one subject for classifying
EEG trials of other subjects. However, in this case, the accuracy of the
classi�cation depends strongly on the subject’s data set to train. At
the same time, the classi�cation accuracy in the case of ANN trained
separately for each subject remains high for all the participants.

In order to �nd an optimal algorithm and the best con�guration
of theANNarchitecture for brain states classi�cation during ambigu-
ous images perception, we systematically analyze the in�uence of a
learning data set, the number Hl of arti�cial neurons in hidden lay-
ers, and a set of EEG channels to provide reasonable recognition
accuracy ρ.

F. Wavelet coherence based functional brain

connectivity

The interaction degree between cortical and thalamical EEG
channels in di�erent frequencies f was measured in T = 1 s time
intervals, related to the Necker cube interpretation after stimulus
presentation, using the wavelet coherence.46 This approach is widely
used for the analysis of links between neurophysiological signals.47–49

A continuous wavelet cross-spectrum is de�ned as

Kl,m(f ,1τ) =
∫

T

Wl(f , τ)W
∗
m(f , τ +1τ)dτ , (5)

whereWl andWm are the continuous wavelet spectra sl(t) and sm(t)
of EEG signals recorded from lth andmth EEGchannels, respectively,
given as

Wl,m(f , t) =
√

f

∫ +∞

−∞
sl,m(t)ψ

∗ (

(t′ − t)f
)

dt′, (6)

with mother Morlet wavelet50

ψ(θ) =
1
4
√
π
exp

(√
−12πθ

)

exp

(

−
θ 2

2

)

, (7)

where ∗ denotes complex conjugation and1τ is the delay time. The
wavelet cross-spectrumallows the estimation of a change in the signal
structure in time intervals separated by delay1τ .

Usually, the normalized wavelet cross-spectrum (wavelet coher-
ence) is considered as

γl,m(f ,1τ) =
Kl,m(f ,1τ)

√

〈El(f )〉〈Em(f )〉
, (8)

taking values in the interval [0, 1]. Here,

〈El,m(f )〉 =
1

T

∫

T

Wl,m dt (9)

are time averaged distributions of the wavelet energy over frequen-
cies. Obviously, the greater the interaction degree between signals
sl(t) and sm(t), the closer to 1 the wavelet coherence γl,m can be
interpreted as interaction strength.51
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III. RESULTS

A. Spatiotemporal analysis

For the learning process, we created a training data set con-
sisting of 70 single 1-s duration trials (250 samples) selected from
EEG recordings obtained from each subject using the following
strategies:

(i) We randomly selected 70 EEG trials corresponding to theNecker
cubes with di�erent contrast parameters g = 0.15, 0.3, 0.4, 0.5,
0.6, 0.7, 0.85.

(ii) We randomly selectedN = 10 EEG trials corresponding to every
value of the contrast parameter from g = 0.15, 0.3, 0.4, 0.5, 0.6,
0.7, 0.85.

(iii) We randomly selected 70 EEG trials corresponding to theNecker
cubes with high ambiguity g = 0.3, 0.4, 0.5, 0.6, 0.7 only, i.e.,
excluding cubes with low ambiguity g = 0.15, 0.85.

(iv) We randomly selected 70 EEG trials corresponding to theNecker
cubes with low ambiguity g = 0.15, 0.85 only, i.e., excluding
cubes with high ambiguity.

For the validation process, we created a validation data set consisting
of 70 single 1-s duration trials (250 samples) selected randomly from
remaining EEG recordings obtained from each subject. To check the
accuracy of classi�cation, we utilized the remaining EEG trace, which
we did not use for ANN training and validation, in particular, we
tested 160 trials related to demonstration of the cubes with di�erent
ambiguities.

In order to analyze our classi�cation algorithm, we �rst trained
the ANN using all registered channels D = P = H0 = 19 as input
signals. We chose the number of neurons in the �rst hidden layer
to be equal to the number of input channels, i.e., H1 = 19 and the
number of neurons in the second hidden layer to be equal toH2 = 5,
based on our previous analysis.8,11 The training data set was formed
for each individual using the �rst strategy (i) and included 70 EEG
trials corresponding to every value of the contrast parameter g. We
repeated the training procedure 1000 times and, as a consequence,
we obtained the optimal set of ANN parameters

0h = (W1
h,W

2
h,W

3
h) (10)

(h = 1, . . . , 25 being the subject number) for classi�cation of the
brain states of subject h. Figure 3(b) shows the ANN performance,
which is presented as the dependences of the training (black solid
curve 1) and validation (black dotted curve 1) classi�cation loss on
the number of learning epochs in the case of optimal ANN0h (10) for
subject 2. One can see that training errors decrease continuously with
epoch number but after about 90th epoch, validation error starts to
increase that corresponds to over�tting of classi�cator. Accordingly,
the optimized set of ANN parameters at 90th epoch was used for the
estimation of classi�cation accuracy of EEG trials. In this case, the
mean accuracy for all 25 subjects was 83.2 ± 10.8% (mean± S.D.) as
shown in Fig. 3(c).

The spatiotemporal analysis con�rmed our hypothesis that the
classi�cation accuracy can be increased by optimizing the number
of input channels according to a spatiotemporal structure of the
analyzed EEG data. Although signi�cant e�orts have been made
to disclose the underlying mechanisms for image recognition, the
decision-making process in the brain still remains unclear. At least,

it is known that perception of ambiguous images engages a dis-
tributed neuronal network in parietal, occipital, and frontal lobes.52,53

Therefore, in this work, we focus on the brain areas involved in the
recognition task of the Necker cube orientation interpretation by
observing the spatiotemporal distribution of the most discrimina-
tive activity. To study the classi�cation accuracy for di�erent EEG
channels combination, the training data set was formed for each
individual using the �rst strategy (i) and included 70 EEG trials cor-
responding to every value of the contrast parameter g. The validation
data set also included 70 trials chosen randomly from remaining
EEG trials. The number of neurons in the hidden layers was �xed to
H1 = 19 and H2 = 5 and the number of the input channels H0 = D
was varied.

The dependencies of the classi�cation accuracy ρ on the net-
work topography of the EEG channels used for ANN training are
shown in Fig. 4. One can see that ρ essentially depends on the
choice of the EEG channels selected for detection and classi�cation
of the brain states. As noted above, the average accuracy using all
EEG channels was equal to 83.2 ± 10.8% [see Figs. 3(b) and 4(a)].
The use of channels from the frontal cortex only (D = 7 channels
Fp1, Fp2, F3, F4, F7, F8, and Fz) led to a signi�cant decrease in
the recognition quality [Fig. 4(b)]. A similar situation was observed
when we used EEG channels (D = 5 channels T3, C3, Cz, T4, and
C4) from the somatosensory cortex [see Fig. 4(c)] and the combi-
nation of eight channels (D = 8 channels Fp1, Fp2, F7, F8, T3, T4,
T5, and T6) from frontal and somatosensory cortex [see Fig. 4(d)].
Obviously, the electrical activity recorded from these spatial areas
does not re�ect the core features of the spatiotemporal states of
the brain dynamics responsible for the interpretation of ambiguous
images.

A di�erent situation occurred when we included channels from
the occipital region [see Figs. 4(e)–4(h)]. The use of all occipital
EEG channels (D = 8 channels C3, P3, C4, P4, Cz, Pz, O1, and
O2) led to an increase in ρ above 80%, and for some subjects
even close to 98% [Fig. 4(e)]. Having compared the mean recog-
nition accuracy obtained for all 25 subjects, one can see that the
exclusion of the occipital channels Cz and Pz as well as O1 and
O2 led to a signi�cant increase in the averaged classi�cation accu-
racy to be 74.1 ± 9.7% [see, e.g., Fig. 4(f)]. Therefore, we suggest
that these pairs of EEG channels are crucial for the bistable image
interpretation.

To prove this hypothesis, we consider the ANN with only two
input signals, either from channels O1 andO2 [Fig. 4(g)] or channels
Cz and Pz [Fig. 4(h)]. Figure 3(b) shows the performance of the ANN
with only two input signals from channels O1 and O2 (red curves 2)
for subject 2. In this case, validation loss starts to grow after 180th
epoch that corresponds to over�tting. So, the optimized set of ANN
parameters at 180th epoch was used for the estimation of classi�ca-
tion accuracy of EEG trials with two O1 and O2 channels. The same
results of ANN performance veri�cation are observed for channels
Cz and Pz. Using only two occipital channels, the average accuracy
was close to 94.4 ± 10.4% for the pair of O1 andO2, and 95.9 ± 7.0%
for the pair of Cz and Pz, in recognizing di�erent brain states. For
some subjects, both pairs of channels gave a high level of recognition
accuracy (higher than 95%), while for other subjects, high accuracy
was achieved by using only one pair of EEG channels, either O1 and
O2 or Cz and Pz. It is worth mentioning that the channels Cz and Pz
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FIG. 4. Classification accuracy for different combinations of input EEG. For each
combination, the EEG electrode layout and the classification accuracy averaged
over 25 subjects are shown.

demonstrated more stable recognition for all subjects in the group
than any other channel pair due to the smaller deviation of the accu-
racy values. Since the pair Cz and Pz yielded the best recognition
results and because we used two channels only that reduced the data
processing time, hereinafter we will only consider this pair of EEG
channels.

B. Optimal ANN architecture

The choice of the optimal ANN structure is very important issue
for classi�cation task. Speci�cally, if the ANN contains a few number

FIG. 5. Classification accuracy for different features of artificial neural network
structure in the hidden layers HL1 and HL2. The accuracy ρ was averaged over
all 25 subjects. One can see that the averaged accuracy grows rapidly with an
increase in the number of neurons in the hidden layers up to H1 = H2 = 5. One
can note that for the chosen ANN parameters (H1 > 5 and H2 > 5), the aver-
aged accuracy ρ exceeded 90%. Obviously, a reasonable compromise between
computation simplicity and classification accuracy should be realized.

of neurons in the hidden layers, it cannot provide high classi�cation
accuracy. On the other hand, if ANN contains extremely large num-
ber of neurons, it takes a very long learning time. Therefore, we must
optimize theANNarchitecture, i.e., the number of neurons in hidden
layers, to get a reasonably accuracy in classi�cation of percept-related
EEG trials. In particular, we suggest that the ANN with H1 = 19
neurons is su�cient for the case of only two input EEG channels.

In order to check whether or not the proposed ANN topol-
ogy is optimal from the viewpoint of event classi�cation using only
the Cz and Pz channels, we found how recognition accuracy ρ
depended on the numbers H1 and H2 of neurons in the hidden
layers HL1 and HL2, respectively [Fig. 5(a)]. The accuracy ρ was
averaged over all 25 subjects. One can see that the averaged accu-
racy grows rapidly as the number of neurons in the hidden layers
are increased up to 5. Note that for the chosen parameters (H1 > 5

Chaos 29, 093110 (2019); doi: 10.1063/1.5113844 29, 093110-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Classification accuracy for dif-
ferent training set structures. The results
are shown for subjects (a) h = 3 and (b)
h = 23 and (c) averaged values over all
25 subjects.

and H2 > 5), the averaged accuracy ρ exceeded 90%. Obviously, a
reasonable compromise between the computation simplicity and the
classi�cation accuracy should be reached to obtain an optimal ANN
architecture. Further, we will use the network architecture with a
minimum number of arti�cial neurons H1 = H2 = 5 that provide
high recognition accuracy. Figure 5(b) illustrates the recognition
accuracy of the brain states, using individually trained ANN for each
person. We �nd that the accuracy varied from 82% to 99% with a
mean value of 95.7 ± 4.5% for pair (Cz, Pz) and 93.8 ± 4.2% for pair
(O1, 02).

C. Selection of images during training to improve

classification accuracy

In order to increase classi�cation accuracy, we applied three
strategies (ii)–(iv) described above in Sec. III A to check whether
or not the training method improved classi�cation performance. In
the strategy (ii), the classi�er was trained based on randomly chosen
N = 10 trials, the same for all seven presentations with di�erent con-
trast parameters regardless of the orientation interpretation (either
left- or right-oriented cube for every control parameter g). The strat-
egy (iii) of the training set formation is the selection of trials cor-
responding to the Necker cubes with high degree of ambiguity (i.e.,
excluding cubes with low ambiguity g = 0.15 and 0.85) regardless of
their interpretation. Finally, in the strategy (iv), we formed the train-
ing set for the classi�er using EEG trials corresponding to the Necker
cubes with small degree of ambiguity g = 0.15 and 0.85 (i.e., exclud-
ing cubes with high ambiguity). The ANN with H1 = H2 = 5 was
then trained with each constructed training set for every subject to
determine the recognition accuracy of brain states.

The obtained data for two sample subjects and averaged values
over all 25 subjects are shown in Fig. 6 for all considered strate-
gies for the preparation of the training set for both optimal pairs of
EEG channels (Cz, Pz and O1, O2). We found that including in the
training set the EEG trials corresponding to images with low degree
of ambiguity improves the brain state classi�cation performance by
approximately 2.8% (varying from 0% to 10.2% for di�erent sub-
jects) for (Cz, Pz) channels and 5.2% (varying from 0% to 14.8% for
di�erent subjects) for (O1, O2) channels (cp. cases A and C in Fig. 6).

One can see in Fig. 6 (case B) that the exclusion from the training
set the trials corresponding to the cubes with low ambiguity led to
a drastic decrease in the recognition accuracy by about 10%–15%
depending on the choice of EEG channel pairs.

Thus, our experiments showed that the optimal strategy was
the classi�er trained on the base of the training set composed by
EEG trials corresponding to low ambiguous images only (g = 0.15
and 0.85). Apparently, human perception of bistable images with low
ambiguity exhibited the most pronounced features related to left- or
right-oriented cubes recorded by EEG at the occipital lobe.

D. Brain connectivity depending on multistable visual

stimulus interpretation

According to neurophysiological brain activity during visual
perception, we studied EEG dynamics in �ve di�erent frequency
bands: (i) 1δ-range (low-frequency delta 1–4Hz range), (ii)
1θ -range (low-frequency theta 4–7Hz range), (iii)1α-range (alpha
7–15Hz range), (iv) 1β-range (high-frequency beta 15–30Hz
range), and (v) 1γ -range (high-frequency gamma 30–40Hz range).
The wavelet coherence in the ith frequency range 1i was calculated
as

γ
1i
lm =

1

f2 − f1

∫ f2

f1

γlm(f ,1τ) df , (11)

where f1 and f2 are lower and upper boundaries of the consid-
ered frequency range. We averaged the values of wavelet coherence
〈γ1i

L,ml〉 and 〈γ1i
R,ml〉 obtained for every pair of EEG channels (l,m)

(l,m = 1, . . . , P) in the ith frequency range over all Necker cube
interpretations as left- or right-oriented. Taking into account that
EEG channels from the occipital region yielded better recognition
results than signals from other regions, we restricted our considera-
tion to the examination of brain connectivity changes in the occipital
cortex only.

Figure 7 represents the mean values of the interaction strength
〈γ1i

L,ml〉 between all occipital EEG channels in the di�erent frequency

bands1i. We plot only links with strong strengths 〈γ1i
L,R〉 > 0.8. The

black/red lines between the channels correspond to the brain con-
nectivity in the case of the cube interpretations as left/right-oriented.
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FIG. 7. Schematic illustration of wavelet coherence 〈γ1i
L,ml〉 and 〈γ1i

R,ml〉, reflecting
the degree of interaction between different EEG channels from occipital lobe in all

considered frequency bands. The shown links have strengths 〈γ1i
L,R〉 > 0.8. The

black and red lines correspond to left- and right-oriented cube interpretations,
respectively.

One can distinguish the di�erence in the connectivity for di�erent
frequency bands. At the same time, there are well-prominent features
of occipital cortex connectivity during di�erent Necker cube inter-
pretations: (i) there are no interhemispheric connections, (ii) most
of the strong links are connected with Cz and Pz channels in the δ-,
θ-, α-, and γ -ranges, while the O1 and O2 channels in the δ-range,
and (iii) there is a clearly pronounced asymmetry in the connections
for left- and right-oriented cube interpretations.

It should be noted that we did not observe a formation of
strong connections in the β-range for both left- and right-oriented
cube interpretations. Therefore, we conclude that during ambigu-
ous image interpretation, the brain activity is characterized by a high
degree of interaction in all frequency bands (excluding the beta-
range) with central nodes in channels Cz and Pz. At the same time,
the connections signi�cantly di�er for di�erent Necker cube inter-
pretations. In particular, the left-oriented cube interpretation creates
connections mainly in the right hemisphere, where the channels
Cz and C4 exhibit a strong interaction in all signi�cant frequency
ranges, whereas the right-oriented cube perception induces a typical
connection between the channels Pz and P3 in the left hemisphere.

The connectivity analysis demonstrated the importance of the
channels Cz and Pz, which exhibited a high level of recognition
accuracy (more than 95%) of the brain states and more stable recog-
nition results for all the subjects in the analyzed group.

IV. DISCUSSION AND CONCLUSION

Perception and visual information processing are comprehen-
sive actions that involve neural networks in remote brain areas. For
instance, the classi�cation of visual stimuli, such as bistable objects,
results in complex changes in EEG spectral properties in di�erent
brain areas simultaneously. Previous studies of the perception of
ambiguous �gures using EEG trials, event-related potentials (ERPs)
and functional magnetic resonance imaging (fMRI) demonstrated
that ambiguous image perception activates and deactivated speci�c
brain areas.54,55

At �rst glance, one expects the perception of visual stimuli to
produce the most signi�cant neural activity in the occipital lobe,
where the primary visual cortex is located.56 In particular, accord-
ing to the ERP analysis, occipital neurons exhibit an increase in the
generation of β-waves and a decrease of α-waves.57 However, the
percept-related ERP changes are observed not only in the occipital
lobe, but also in the parietal and central lobes.58

In general, it was shown that visual perception, along with
neuronal activity in the visual cortex, includes poststimulus pro-
cesses incorporating a re-entrant bias from frontal and parietal areas
depending on a particular task.59,60 This makes it di�cult to reduce
the number of EEG channels used for the analysis of percept-related
EEG, based on the speci�cation of the most relevant brain areas.
The more di�cult problem is to classify EEG trials associated with
di�erent interpretations of an ambiguous visual object. Such a clas-
si�cation task, in turn, is very important for the development of
brain-computer interfaces (BCIs), where EEG patterns associated
with di�erent interpretations detected in real time can be translated
to the corresponding control commands. For the BCI building prob-
lem, the reduction of the number of EEG channels is very important,
since the setup process with a large number of electrodes is time-
consuming and inconvenient for humans. In addition, for real-time
application, BCIs with the lowest possible computational complexity
are required.

In the present work, we proposed an ANN-based classi�er of
single EEG traces related to di�erent interpretations of Necker cube
images, and optimized the classi�cation algorithm by reducing 90%
of the number of the analyzed EEG channels. Our �ndings show that
the highest accuracy (up to 95%) was reached using only two EEG
channels for particular sets of EEG channels, namely, for a pair of
occipital channels (O1 and O2), and a pair of channels in parietal
and central lobe (Cz and Pz).

The signi�cance of such channel combinations is explained by
the di�erences in the structure of brain neuronal network interac-
tions corresponding to di�erent interpretations of the bistableNecker
cube. We detected synchronization improvement and, as a conse-
quence, a strong interaction between EEG channels in the occipital
lobe after the Necker cube presentation and a further interpretation
of its orientation as left- or right-oriented. Then, we analyzed the
strength of interaction between all occipital EEGchannels for the typ-
ical frequency bands: delta, theta, alpha, beta, and gamma.We found
that the pair of channels Cz and Pz demonstrated the strongest con-
nections in the δ-, θ-, α-, and γ -ranges, and the pair of channels O1
and O2 in the δ-range.

The set and con�guration of connections were signi�cantly
di�erent in the case of left- and right-oriented Necker cube
interpretations. The left-oriented cube perception was characterized
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by connections with the channels Cz and C4 in the right hemisphere
in all frequency bands. The right-oriented cube interpretation led to
the formation of a connection between the pair of channels Pz and
P3 in the left hemisphere. In our opinion, the trained ANN employs
features of the EEG signals typical for di�erent cube interpretations
and well-pronounced for the most signi�cant pairs of channels (O1,
O2) and (Cz, Pz) from the viewpoint of brain connectivity during the
Necker cube visual perception.

Interestingly, such a complex cognitive activity can be detected
for each single trial based on the consideration of only two EEG
channels (which is less than 10% of the available EEG). Earlier stud-
ies already revealed the possibility to reduce a number of channels,
without a loss of classi�cation/detection task performance by tak-
ing a small set of EEG channels ranging from 10 to 30% of available
channels. In particular, Chai et al.61 showed that eight channels pro-
vided the accuracy rate between 76% and 85% in the classi�cation
of a mental task. Moreover, feature reduction approaches, such as a
power spectral density and Hilbert-Huang transform, allowed them
to reach the accuracy rate between 70% and 84% using two chan-
nels only. Next, for the classi�cation of motor-related EEG, Wang et
al.62 used four channels, which allowed them to get the average accu-
racy rate of up to 92.66%, whereas the use of eight channels provided
94.96% accuracy. They performed the channel reduction by a com-
mon spatial pattern method. Later, Piryatinska et al.63 demonstrated
87.41% and 87.2% accuracy in classi�cation of sleep stages basing on
four and �ve channels, respectively.

Impressively, the classi�cation accuracy for the selected chan-
nels can be higher than when using all channels (95% vs 85%). Such
an e�ect was previously observed in the classi�cation of EEG tri-
als associated with epileptic seizures64 and imaginary movements.65

This means that in some cases, the use of too many channels not
only overloads the computational cost, but also leads to worsening
classi�cation accuracy due to increasing data complexity.66

It is important to note that in our study the optimization was
based on the EEG properties revealed from the analysis of the
group of 25 participants. This makes our results general because
of low intersubject variability. In this respect, other optimization
approaches, such as wrapper or �ltering techniques, which searched
for the optimal EEG channel combination by analyzing the data of
each subject, and therefore the optimal channel combination varied
very much from subject to subject.

In conclusion, this paper is devoted to ML methods application
to detect and classify EEG patterns corresponding to visual percep-
tion. By optimizing the arti�cial neuronal network architecture for
obtained experimental multichannel EEG data, we have developed
the automatic system for the recognition of the EEG patterns associ-
ated with two possible decisions about the ambiguous Necker cube
orientation (either left- or right-oriented) and obtained about 95%
accuracy using only a pair of EEG channels at the occipital region
(locations O1, O2 or Cz, Pz of the typical “10—20” EEG registra-
tion scheme). These spatial features of the EEG data set have been
observed for all experiments with the di�erent subjects so that the
ANN, trained with only two channels in the brain occipital area,
was able to classify the corresponding brain states with very high
accuracy. We have described an optimal strategy to construct train-
ing EEG trial data sets for optimal ANN learning. It should be
emphasized that our results do not depend on motor activity (real or

imaginary), because to excludemotor activity e�ects, we have carried
out an additional experiment with key pressing.

The signi�cance of the our experimental and numerical results
is not limited to the brain processing of ambiguous �gures, such as
a considered here bistable perception cube, but can also be extended
to the recognition of brain states associated with di�erent decisions
while performing complex tasks. The conducted experiments and
developed arti�cial intelligence classi�cation method will be useful
for analyzing and recognizing di�erent brain states using neurophys-
iological multichannel signals and can stimulate future studies in the
�eld of experimental and computational neuroscience. In particular,
it allows the identi�cation of the most important brain areas for the
classi�cation of neuronal activity, as well as highlight the most sig-
ni�cant types of stimuli. We are sure that the developed optimization
approach of ML systems to quantitatively characterize brain activity
can be used in neurotechnology, e.g., for designing brain-computer
interfaces67,68 for rehabilitation69,70 and diagnostic and prognostic
purposes.71,72 The robustness of brain-computer interfaces (BCIs) is
de�ned by the neurointerface operator’s ability to generate the same
EEG responses to the same stimuli, i.e., BCI is a�ected by inter-
subject variability.73 In this respect, our results open the possibility
to develop a uni�ed ANN-based classi�er. This in turn provides
promising conditions for creating BCIs, suitable for multiple and
untrained users.74,75The obtained resultswill be useful for researchers
working in interdisciplinary areas at the cutting edge of engineering,
mathematics, nonlinear dynamics, neuroscience, and medicine.
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