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Abstract—We are solving the task of recovering the hidden
signals in a model network. As a model we choose Kuramoto
phase oscillator with adaptation of couplings. We divide the
network for six parts and calculate macroscopic signals. We
propose that knowing only a part of macroscopic signals allows us
to recover the rest unknown ones. We show that using Reservoir
computing successfully solves the problem.
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I. INTRODUCTION

Currently, an actively developing area of scientific research
is the recovery of hidden data in experimentally investigated
systems, which can manifest itself in aspects such as recover-
ing hidden features of the system to build an adequate model
[1], recovering signals lost during the experiment [2], and
recovering data that cannot be measured directly [3], [4].

An example from the field of neuroscience is the problem of
whether EEG signals can be spatially and temporally extended
based on a small number of experimentally recorded signals.
In [5], a convolutional neural network model is proposed for
generating new signals of brain electrical activity in order
to increase the electrode spacing density. Comparing with
standard spline interpolation methods, the authors show that
the use of neural network allows to achieve better results.
In another work [2], a new model based on a generative-
adversarial network was developed to recover original EEG
signals from noisy data in the presence of recording artifacts.

Nowadays, machine learning and artificial intelligence
methods is now actively used for facing problems in complex
networks and neuroscience [6]–[11]. Neural networks based on
reservoir computing are a promising method for building such
models [12]–[14]. Such models have demonstrated significant
success in application to dynamical systems due to their
efficient handling of time series due to the recurrent structure
of communication within the hidden layer. A number of works
[15], [16] have demonstrated the ability of neural networks on
reservoir computing to recover the dynamics of the original
system and predict bifurcation transitions when the control
parameter changes, including in the presence of bistability
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in the system. Such networks are also actively used in the
field of biomedicine: for monitoring electrocardiogram data
and detecting abnormal states [17], for detecting microsleep
states using data of brain electrical activity [18], for diagnosing
neuromuscular diseases using electromyography data [19].

Here, we solve the task of recovering the hidden signals in a
model network of Kuramoto phase oscillators with adaptation
of couplings. We divide the network for six equal parts and
calculate macroscopic signals. We propose that knowing only
a part of macroscopic signals allows us to recover the rest
unknown ones. We show that using Reservoir computing
successfully solves the problem.

II. METHODS

A. Kuramoto phase oscillators network

We numerically simulate a network of N = 300 Kuramoto
phase oscillators, analyzed in detail in Refs. [20], [21]. Each
oscillator is described by the following equation:

φ̇i(t) = ωi +
∑
j 6=i

wij(t) sin(φj − φi), (1)

where i = 1, ..., N , {ωi} is a set of randomly assigned natural
frequencies distributed uniformly in [−π, π], wij is the weight
of the connection between elements i and j and it is allowed
to evolve in time according to the rule from [22]. For each
oscillator i and at each time t, the set of connection weights
{wij} satisfies the condition

N∑
j 6=i

wij = 1. (2)

The adaptive evolution of the weights wij is governed by

ẇij(t) = pij(t)−

∑
k 6=i

pik(t)

wij(t), (3)

where the time dependent quantity pij(t) is defined as

pij(t) =
1

Tm

∣∣∣∣∫ t

t−Tm

expi(φi(t
′)−φj(t

′)) dt′
∣∣∣∣ . (4)
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pij(t) denotes, at time t, the average phase correlation be-
tween oscillators i and j over a characteristic memory time
Tm = 100. The equations (2) and (3) describe homeostatic and
homophilic processes respectively. So, this model describes
the adaptive network of phase oscillators with the competition
between homophily and homeostasis.

We consider a macroscopic signal averaged over all N = 50
phase oscillators:

Xavr(t) =
1

N

N∑
i=1

sin[φi(t)]. (5)

To solve the differential equations, we use the Runge-Kutta
4th order method with time step ∆t = 0.1 s for T = 7000 s.

B. Reservoir computing

We use a RC construct known as an echo state network,
which uses a network of nodes as the internal reservoir [23],
[24]. The network has the input, hidden (reservoir) and output
layers. Every reservoir node has inputs drawn from other nodes
in the reservoir or the input to the RC, and every input has
an associated weight. Each reservoir node also has an output,
described by the following equation:

ht = tanh(Wh,iot + Wh,hht−1), (6)

where ht is the internal high-dimensional hidden state, that
enables the encoding of temporal dependencies on the past
state history; Wh,i is the input-to-hidden dh × do couplings
matrix, which values are uniformly sampled from [−σin, σin],
where σin is the hyperparameter; Wh,h is the reservoir
(hidden-to-hidden) dh×dh matrix which is set to a large low-
degree matrix (node degree D is the hyperparameter), scaled
appropriately to possess a spectral radius (absolute value of the
largest eigenvalue) R whose value is also the hyperparameter;
ot is dh dimensional vector of the inputs. The output layer is
described by

ôt = Wo,hh̃t. (7)

III. RESULTS

We simulate a network of N = 300 Kuramoto phase
oscillators and divide it into K = 6 groups and calculate
macroscopic signals as averaged over each group. Note, that
each macrosignal contains unique oscillators, so, each oscil-
lator is included only in one macroscopic signal, and there is
no oscillator which is not included in any group.

Then, we choose K − 1 signals as inputs for RC and
the rest one as a target signal. We train RC to restore the
hidden signal and then test it by calculating RMSE between
the target signal and the predicted one. Sorting through each
macroscopic signal as a target on we test the capability of
RC to restore any hidden signal. As a result we achieve mean
RMSE = 0.05.

It is obvious that internal connectivity is highly influence
on the recovering error: stronger connections between the
different oscillators inside the network results in more similar

and correlated macroscopic signals. The last one means more
easier task of recovering a hidden signal.

Another factor that influences on the quality of recovering is
intersecting of the groups of oscillators: more oscillators could
be includen in more then one group, stronger connectivity
between macroscopic signals.

Another one is the size of each group. We have found that
increasing the number of macrosignals by decreasing the size
of each group leads to decreasing the recovering accuracy
because of decreasing the connectivity between the groups.

IV. CONCLUSIONS

We were solving the task of recovering the hidden signals
in a model network. As a model we have chosen Kuramoto
phase oscillator with adaptation of couplings. We divided the
network for six parts and calculated macroscopic signals. We
proposed that knowing only a part of macroscopic signals al-
lows us to recover the rest unknown ones. We have shown that
using Reservoir computing successfully solves the problem.
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