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ABSTRACT

This paper considers the possibility of classification of electroencephalogram (EEG) and electromyogram (EMG)
signals corresponding to different phases of sleep and wakefulness of mice by the means of artificial neural
networks. A feed-forward artificial neural network based on multilayer perceptron was created and trained on
the data of one of the rodents. The trained network was used to read and classify the EEG and EMG data
corresponding to different phases of sleep and wakefulness of the same mouse and other mouse. The results
show a good recognition quality of all phases for the rodent on which the training was conducted (80–99%) and
acceptable recognition quality for the data collected from the same mouse after a stroke.
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1. INTRODUCTION

Sleep is a neurological dynamic behavior with physical tranquility, reduced interaction with environment and
inherence of physical activity in almost all muscles. It is a special condition of the brain associated with processes
of recovery of body and mind,1,2 thus it’s quality is significantly important for all biological functions of organism.
Yet the actual general function of sleep is not yet fully understood.

Sleep in mammals is actually organized by cycles consisting of two different states: rapid eye movement or
fast sleep (REM) and non-rapid eye movement, or deep sleep (NREM), which are so different that scientists
describe them as different behavioral states. These stages have different biological manifestations which may
have neurological as well as physical nature and correspond to specific types of brain activity, studying which is
important for diagnosis of various hidden physical and psychological pathological conditions.3 In this case EEG
proved itself as an effective method of study these types of activity.4,5 We consider the sleep brain activity of the
mice, since rodents are widely used as laboratory animals,6–11 for which the technology of invasive installation
of metal EEG electrodes is widely used.

This paper contains the research of the classification problem of different EEG- and EMG-patterns corre-
sponding to different phases of sleep and wakefulness by the means of artificial neural network.12

2. METHODS

EEG and EMG signals were obtained during a series of experiments with rodents equipped with metal screw
electrodes that were implanted epidurally (see Figure 1). These EEG and EMG signals were continuously
recorded at a frequency of 250 Hz for several days. Activity of mice at this time was divided as different states of
sleep: wakefullness (WAKE), paradoxical sleep (REM) and deep sleep (NREM). Recorded files were respectively
marked.
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Figure 1. Electrode arrangement for experiments

To detect different stages of sleep in rodents we used feed-forward artificial neural network (which shows good
results in human EEG studies13,14) with 15 neurons on hidden layer and 3 neurons on output layer, one for each
stage: wakefullness, REM and NREM sleep. The schematic architecture of designed neural network presented
on Figure 2.

Training was conducted on EEG and EMG data recorded within two days of one of the mice. Training
dataset contains EEG and EMG data and time marks corresponding to different states of sleep: WAKE, REM,
NREM. Each training sample was presented in frequency domain15,16 by means of digital preprocessing using
discrete Fourier transform (1) and filtered with low-pass filter (20 Hz).

Xk =

N−1∑
n=0

xne
− 2πi

N kn , k = 0, ..., N − 1, (1)

where N is a number of signal values measured over a period and number of decomposition components; Xk is
the measured signal values at discrete time points; kn is the complex amplitudes of sinusoidal signals composing
the original signal.

Figure 2. Artificial neural network architecture used in computer experiment
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3. RESULTS

To build training dataset for neural network we collected every 1000 points on the entire data segment and then
selected one data section where there were more phase transitions — about 50,000 points long. One trainig
sample contained 250 points, each one was processed by a Discrete Fourier Transform. The first 20 Hz of the
Discrete Fourier Transform spectrum of EEG and EMG were combined in one vector and used in calculations.

Figure 3. Example of recognized EEG and EMG signals

Examples of different sleep phases recognizing by trained neural network are shown in Figure 3. The average
states classification reached sufficient quality: ∼ 80% between REM and wakefullness, >99% between REM and
NREM and >99$ between NREM and wakefullness.

Figure 4. The dependence of the recognition quality on the number of data points for the DFT

Since the EEG data related to the different stages of sleep are widely used in diagnosis of various kinds of
illness, we conducted the computational experiment in order to investigate the potential of artificial neuronal
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networks in classification of the EEG data recorded from the mouse one day after a heart attack. Artificial
neuronal network was trained on the data of healthy mouse, and then was made an attempt to predict the states
of sleep on the data collected from the same mouse after the infarction. Results are as follows: between REM and
NREM: ∼60%, between NREM and wakefullness: ∼30%, between NREM and wakefullness: ∼90%. To improve
the recognition quality, as a sample of data for the Discrete Fourier Transform, 1000 and 2500 points of EEG
and EMG data were used. The results of the neural network recognition quality of the data thus transformed
are shown in 4.

It is seen that an increase of the number of points used for the Discrete Fourier Transform improves the
recognition quality.

4. CONCLUSION

Summing up the above, we investigated the potential of multilayer perceptron for recognition EEG and EMG
signals corresponding to the sleep and wakefulness phases of laboratory mice. We designed the optimal neural
network’s structure with 20 inputs, 15 neurons in the hidden layer and 3 neurons at the output, that is capable
to obtain the most good quality of classification. Before training the network data for recognition were pre-
processed with effective mathematical methods of signal transform. It was shown that this ANN provides high
recognition quality of phases wakeful, fast and slow sleep in the training and testing of EEG and EMG data
obtained from the same mouse.

In addition, it is established that ANN, trained on the EEG and EMG data of healthy mouse show the ability
to recognize the sleep phases of the same mouse after a serious illness — infarction. The quality of recognition
is noticeably worse, but it is shown that in order to improve the quality of recognition under such conditions, it
is reasonable to use an enlarged data sample — not 250 points, as in the initial case, but 1000 or 2500 points,
which allows to increase the quality of recognition from 30–90% to 60–94%. Obtained results allow to judge
about the prospects of using ANN for recognition and classification of to EEG and EMG signals corresponding
to wakefulness and sleep states of rodents.
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