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INTRODUCTION

technology that enables the exchange of information between
the brain and external devices by processing electrical signals
from the cerebral hemispheres. This technology can be applied
in the development of neurotrainers for individuals who have
had a stroke. In this work, we examined the classification
accuracy of motor imagery-based Brain-Computer Interfaces
with tactile feedback and assessed corticospinal excitability. The
study has shown that the EEG signal classification accuracy
results were compared between two BCI variants: one without
feedback and one with tactile feedback. The average results
across all participants showed no statistically significant
difference, with accuracy rates of 63.04% for BCI without
feedback and 65.58% for BCI with tactile feedback. We found
that when participants engaged in imagined movements, there
was a statistically significant increase in MEP amplitude
compared to a "rest" state, regardless of their prior training.
This suggests an increase in corticospinal excitability during
imagined movements.
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Stroke's aftermath frequently involves impaired motor
functions, resulting in challenges when executing routine limb
movements. These movement disturbances stem from
cerebral cortex damage and disruption of neural connections
within the central pyramidal pathways [1]. The journey to
restore motor skills post-stroke is a demanding and time-
intensive endeavor, demanding both medical intervention and
the patient's dedication. Nonetheless, the recovery of limb
control remains attainable. Standard stroke
neurorehabilitation typically involves therapeutic physical
exercises and kinesitherapy, capitalizing on sensory input
during motor tasks to rebuild connections between unaffected
brain regions [2]. Through limb exercises, synaptic
reorganization within the cortex takes place, reactivating
dormant neurons and expanding the cortical areas neighboring
inactive ones. Despite the effectiveness of these methods in
partially restoring movement, many stroke survivors continue
to grapple with limitations. Traditional rehabilitation
approaches often fall short of completely reinstating motor
control, compelling researchers to explore alternative
avenues. Motor-imagery-based brain-computer interfaces



(BCIs) have garnered attention recently [3,4,5]. These
interfaces allow for the incorporation of diverse feedback
mechanisms and can be coupled with upper and lower limb
exoskeletons. The extent of control that an individual can
exert over a BCI system directly influences the recovery
process [6,7]. The integration of transcranial magnetic
stimulation (TMS) into motor-imagery BCls holds promise in
establishing a unified and highly effective post-stroke
rehabilitation methodology.

II. METHODS

A. Participants

Seven healthy volunteers (3 females and 4 males) aged 18-
27 years (meantstandard deviation 22.742.7) took part in the
study. All participants had no prior experience with EEG and
were right-handed (meantstandard deviation 0.87+0.14
points on the Edinburgh Handedness Inventory)[8]. All
participants provided informed consent to participate in the
research. The research protocol was approved by the ethics
committee of the Lobachevsky State University of Nizhny
Novgorod, Institute of Biology and Biomedicine.

B. EEG Registration and Classification

EEG recordings were conducted using the NVX52
electroencephalograph (Medical Computer Systems LLC,
Russia) with 29 Cl/Ag electrodes (F1, Fz, F2, FC5, FC3, FCI,
FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, P3, P1, Pz, P2, P4) placed
according to the 10-10 system. Combined earlobe electrodes
were used as a reference, and the grounding electrode was
positioned on the forehead. The contact impedance for all
electrodes did not exceed 15 kQ. The EEG signal was
digitized at a sampling rate of 1000 Hz and filtered in the
frequency range of 1-30 Hz with a 50 Hz Notch filter.

Classification was performed using linear discriminant
analysis. EEQG classification and feedback presentation to the
participants were conducted in cycles of 700 ms. The EEG
signal acquired during the first 500 ms was used for
classification, and if necessary, feedback was provided to the
participants during the subsequent 200 ms.

The duration of command presentation at all stages of the
experiment was 5 seconds (7 cycles of classification and
feedback), with a 3-second gray background presented to the
participants for rest between them. Mental tasks included
imagined movements of the left and right hands and a "rest"
task in which participants were required to maintain a state of
wakeful rest. The "rest" command was represented by a
fixation cross in the center of the screen, while left and right
hand motor imagery tasks were indicated by arrows to the left
or right of the fixation cross, respectively. Each test session
consisted of 30 command presentations, with 10 for each
mental task. The sequence of command presentations was
randomized, and participants were allowed to rest between
tests as needed.

C. Experimental design

The experiment consisted of four sessions, each
conducted on a separate experimental day.

The first experimental session involved training the
subjects in the technique of imagination movements. Before
the training began, the subjects underwent a test for manual
asymmetry. The activation movement for all subjects

involved clenching the hand into a fist, with an emphasis on
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tactile sensations. The training consisted of three sequential
stages: real hand movements, quasi-movements (muscle
tension not visually observed), and imagination of
movements.

The subjects underwent a magnetic resonance imaging
(MRI) procedure. Digital MRI data were used to construct a
3D model of the subject's head using the navigation system
of the transcranial magnetic stimulator - Visor2 (TMS
Navigator Value, manufactured by Localite GmbH,
Germany) and Neurosoft software. The resulting model was
then used for navigational transcranial magnetic stimulation
(nTMS, "Neuro-MS/D" (Research), manufactured in
Ivanovo, Russia, by Neurosoft) to assess the excitability of
the brain cortex after working with imagined movements.

The second experimental session included three tests
without feedback presentation and the procedure for
assessing the excitability of the motor cortex of the brain after
working with imagined movements using nTMS. Using the
navigation program and single stimuli with an 8-shaped TMS
coil, the cortical motor representation of the short thumb
flexor muscle (Musculus flexor pollicis brevis) was
determined. Subsequently, the motor response threshold was
calculated as the stimulation power required for a pronounced
motor response in 50% of stimuli (five out of ten
stimulations). Further stimulation was conducted at 115 -
120%  above the motor response  threshold.
Electromyography (EMG) was recorded over the thumb
flexor muscle. The "Neuron-Spectrum-5" (LLC "Neurosoft,"
Russia) was used for EMG recording, and the "Neuron-
Spectrum.NET" software was used to measure the amplitude
of motor-evoked potentials (MEPs) from peak to peak.

After three test recordings of BCI working, a procedure
for measuring the excitability of the motor cortex in a resting
state (absence of ideomotor movements) followed. Three
recordings were conducted, each comprising 60 stimulations
of a functional area at the motor cortex over a duration of 2
minutes. Subjects were given rest time between recordings.
Subsequently, the excitability of the motor cortex during the
imagination of movements with the dominant hand (based on
the Edinburgh Handedness Inventory) was determined.
Again, three recordings of 60 stimulations each were
conducted. For further analysis, the average amplitude of
Motor-Evoked Potentials (MEPs) obtained during imagined
movements was normalized to the average MEP amplitude at
rest.

In the third and fourth experimental sessions, tactile
feedback was provided to the subjects during BCI tests. This
feedback was implemented using vibration motors (flat
Linear Resonance Actuators (LRAs), 3V, 10mm diameter,
operating at 500 Hz), which were placed on the forearms of
both the right and left hands and on the back of the neck.
These vibrations signaled the successful recognition of EEG
patterns during the imagination of movements with the right
hand, left hand, and the "rest" task, respectively. The
vibration motors were secured to the skin using tapes. To
confirm the correctly classified state, a vibration signal
lasting 200 ms was delivered in response to the presented
command.

The third session served as a control to assess the
influence of vibrotactile stimulation on the degree of
sensorimotor rhythm desynchronization and corticospinal
excitability. Subjects underwent a procedure similar to



working with BCI but were instructed to maintain a state of
calm wakefulness regardless of the given command. During
this session, the subjects received vibrotactile stimulation
identical to the 100% recognition level achieved by the
classifier. Subsequently, motor cortex excitability was
assessed using nTMS.

The fourth session consisted of three BCI tests with tactile
feedback and the assessment of motor cortex excitability after
working with BCI using nTMS.

III. RESULTS

We conducted a study to assess the classification accuracy
and corticospinal excitability during motor-imagery-based
BCI with tactile feedback. Classification accuracy was
measured during BCI tasks, while corticospinal excitability
was evaluated based on the amplitude of motor-evoked
potentials half an hour after subjects completed their work
with BCI. The contribution of vibrotactile stimulation to
changes in corticospinal excitability was assessed by
comparing it with control measurements during passive
vibrotactile stimulation in the absence of imagined
movements.

The results of EEG signal classification accuracy were
compared between two variants of BCI: without feedback and
with tactile feedback. The averaged results across all subjects
did not demonstrate a statistically significant difference and
were 63.04+0.92% (mean=standard error) for BCI without
feedback and 65.578+0.89% for BCI with tactile feedback.
Figure 1 shows the individual results of each subject. It's worth
noting that all subjects achieved classification accuracy above
chance level (33% for three commands).
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Fig. 1. EEG Classification Accuracy for Each Subject. The lower boundary of
the graph represents 33% - the probability of random classifier activation.
"FB" stands for tactile feedback. The vertical segments indicate the magnitude
of the mean error. Below the histogram, a table of results and subject codes is
provided.

Within the scope of this study, the goal was to
investigate changes in the excitability of the motor cortex in
subjects who performed ideomotor movements, depending on
their prior training: working within the brain-computer
interface loop without feedback, with vibrotactile feedback,
and after passive vibrotactile stimulation without imagined
movements. When subjects engaged in imagined movements,
a statistically significant increase in Motor-Evoked Potentials
amplitude was observed compared to the "rest" state after all
types of training: working within the BCI loop without
feedback, with vibrotactile feedback, and after passive
vibrotactile stimulation without imagined movements. This
indicates an increase in corticospinal excitability in subjects
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when they performed imagined movements, regardless of the
type of prior training. Figure 2 presents individual MEP
results for each subject. Four of the subjects showed
significantly higher MEP amplitudes after working within the
BCI loop with feedback compared to working with the BCI
without feedback. Additionally, in all subjects, MEP
amplitudes were higher after training with passive vibrotactile
stimulation than after working with the BCI without feedback.
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Fig. 2 Comparison of Based on the Type of Prior Training for Each Subject.
In the figure, rectangles represent the median (horizontal line) and the
interquartile range; vertical lines represent the maximum and minimum values
(excluding outliers); individual points represent outliers (values that fall
outside 1.5 times the interquartile range from the nearest quartile). ** - p <
0.01; *** - p<0.001.

IV. DISCUSSION

In this work, we examined the classification accuracy of
motor imagery-based Brain-Computer Interfaces (BCls) with
tactile feedback and assessed corticospinal excitability. We
measured classification accuracy during BCI tasks and
evaluated corticospinal excitability by looking at the
amplitude of motor-evoked potentials (MEPs) after
participants completed their BCI tasks. The EEG signal
classification accuracy results were compared between two
BCI variants: one without feedback and one with tactile
feedback. The average results across all participants showed
no statistically significant difference, with accuracy rates of
63.04% for BCI without feedback and 65.58% for BCI with
tactile feedback.



We found that when participants engaged in imagined
movements, there was a statistically significant increase in
MEP amplitude compared to a "rest" state, regardless of their
prior training. This suggests an increase in corticospinal
excitability during imagined movements. Notably, four
subjects exhibited significantly higher MEP amplitudes after
working with the BCI loop with feedback compared to BCI
without feedback. Additionally, in all subjects, MEP
amplitudes were higher after training with passive vibrotactile
stimulation than after working with BCI without feedback.

Overall, the study indicates that tactile feedback did not
significantly affect classification accuracy in motor imagery-
based BCIs, but there was a consistent increase in
corticospinal excitability during imagined movements,
regardless of feedback or prior training.
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