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ABSTRACT

This paper is devoted to the analysis of topological changes in complex networks that are reflected in the
macroscopic characteristics. We consider a model of the complex network with the adaptive links, in which the
synchronous dynamics leads to the appearance of clusters of strongly coupled elements and show that structural
changes significantly affect the macroscopic dynamics. As the result, we demonstrate a high possibility of cluster
formation in the network that can be analyzed via the consideration of macroscopic characteristics. We also
discuss a prospective application for the detection of structural features of neural networks.
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1. INTRODUCTION

A study of synchronous modes and pattern formation in complex networks is one of the most important challenges
for the global scientific community. Various structures of networks arise at all levels of organization of biological,
technological®® and social systems* starting from neural networks”™® to networks of cities and populations.’
In complex networks, interactions between elements lead to inhomogeneous distribution of the ingoing and
the outgoing links that causes a number of different phenomena in collective dynamics including formation of
structural patterns'® and the emergence of the synchronous modes.'' 13

Synchronization is a phenomenon of the adjustment of dynamical states of interacting elements for some time
period. In natural systems, such as social structures or biological systems, synchronization between networking
elements is a determinant factor for the evolution of links between them. Synchronization between nodes leads
to the strengthening of their interaction (that represents itself the homophily mechanism), although every node
can have only a limited number of strong links (known in sociology as a Dunbar’s number'4).

Analysis of natural networks is a complicated task which is often associated with the lack of information
about the evolution of dynamical states of individual elements. Generally, these microscopic parameters are
experimentally unavailable, and the macroscopic characteristics become the only source of our knowledge about
the evolution of network dynamics and structure. Such situation is widely observed, e.g., at the analysis of
cognitive processes, where the experimental EEG' or MEG!S signals reflect the cooperative dynamics of large
neuron ensembles in the brain.!™® In such cases, the study of structural changes in the network topology and
the analysis of cluster formation are of a high importance.

In this paper, based on the continuous wavelet transform'? 2% we show how the time-dependent macroscopic

characteristics are connected with the network dynamics, topology evolution and pattern formation. In Sec. 2
we briefly describe a model of adaptive network and discuss the relevance of this model and its association
with natural objects. In Sec. 3, a simple case is analyzed, namely, a small network of randomly coupled phase
oscillators. We show how the microscopic dynamics of the nodes correlates with the evolution of macroscopic
parameters. In Sec. 4, we consider large networks demonstrating complex dynamical regimes. In Conclusion we
discuss the obtained results and promising applications for the analysis of natural systems.
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2. THE MODEL

When studying the evolution of network structure, the so-known adaptive networks are widely considered. In
the adaptive network, dynamics of networking elements is the determinant factor for evolution of links between
them. Such feedback between structure and dynamics leading to time evolution of the topology that makes such
model very useful.

In our study we considered an adaptive model recently proposed by S. Assenza et al.?' This model reflects
two main features of natural networks, namely, the scale-free distribution of link weights and the formation
of mesoscale structures. Such phenomena are caused by the above mentioned mechanisms: the homophily
associated with the strengthening of links between synchronized nodes, and the homeostasis, implemented by

holding the condition
N
Z Wij; = 1 (1)
it

at all time moments, i.e. a sum of weights of the incoming links for each node should be constant.

The considered model represents a network, where each node has its own frequency w; and phase ¢; evolving

in time according to the Kuramoto equations??
N
do; .
dtt =w; + A Z wyj sin(¢p; — ¢;). (2)

j=1

Here, X is the coupling strength, and w;;(t) are non-negative quantities characterizing the weight of the link from
the node j to the node i at time moment ¢. The value of w;;(t) varies in time as:

N
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where s; = Z;‘Vﬂ wy; is the total incoming strength of the element ¢, pg; (t) is the degree of local synchronization
between elements ¢ and j, averaged over time in the interval [t — T, ¢], which is defined through the equation

t
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Here, i = v/—1, and T is the control parameter, which is chosen as T" = 100 for all estimations according to the
recent work.?!

3. MICROSCOPIC AND MACROSCOPIC NETWORK DYNAMICS

Traditionally, the key quantity used for understanding the system dynamics is the order parameter, which
characterizes the extent of synchronization of N oscillators??

1
- ig; (t)
’I“(t) - N Z e’ ’ (5)
Jj=1
with 7(t) = 1 corresponding to the perfectly synchronized state.?® This parameter accounts for the phases

of all elements of the network, therefore, it can be used only in the case when the evolution of microscopic
characteristics (¢;(t)) is determined.

When studying such systems as, e.g., neuron ensembles or groups of networking microwave generators, re-
searcher deal only with summary signals that are integrated over all elements. In our case the corresponding
macroscopic signal is given by the expression

N
X(t) =Y ailt) ©)
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Figure 1. The order parameter 7(t) (a), effective frequencies of nodes f;(t) (b) and the spatial distribution of the wavelet
energy |W(f,t)| of the macroscopic network characteristics (c¢), obtained for the network of twenty Kuramoto phase
oscillators for different time moments

with z;(t) being a time-dependent signal produced by each node

2i(t) = A; cos(6(1)), (7)

where A; is the amplitude and ¢;(t) is the phase of oscillations generated by the corresponding node i. For
simplicity, we consider here A; = 1.

In this work we propose to use the continuous wavelet transform to study the dynamics of individual elements
and to consider the macroscopic dynamics of groups of nodes (6). The use of wavelets is caused by their efficiency
at the analysis of non-stationary signals. Thus, this mathematical tool is well suited for the analysis of networks,
where effective frequencies of coupled oscillators evolve in time.

The continuous wavelet transform of a time-dependent function F'(¢) is written as

t+4/f
Wit =Vi [ Feee-on. (8)
t—4/f
where f is the frequency, ®(n) is the mother wavelet function, and “#” denotes the complex conjugation. Here
we use the Morlet wavelet . ,
D) = VAo 2 9)

with the central frequency wy = 2.

Within the performed study we considered N = 20 Kuramoto phase oscillators (2) which are involved into the
global synchronous mode. The frequencies w; were uniformly distributed over the range [0.5,2.5], and the phases
¢; were selected randomly in the range [—27 : 27]. The coupling matrix was assembled randomly accounting
interconnections between all nodes and the satisfying of the condition (1).

The model (2) was integrated during the time interval t=100 without evolution of link weights (w;;(t) =
const). After this period, the adaptation mechanism was activated by considering the corresponding evolution,
i.e., by integrating Eqs. (2) — (3).

In Figure 1, a time-dependent behavior of the network is illustrated. Considering the order parameter
(Fig. 1,a) one can see that the system twice reaches the state of full synchronization before the adaptation
is ON, however this state is unsteady. After accounting the adaptation, a transient process occurs caused by
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Figure 2. (a) Time dependence of the macroscopic characteristic (6) of the network of N = 300 Kuramoto oscillators,
(b) the order parameter (5) estimated for this network, (c¢) the wavelet energy surface, obtained for the macroscopic
characteristic (6) using the transform (8), (d, f, h, j) the visualizations of the network structure at the time moments:
t1 = 100, t2 = 200, t3 = 220, t4 = 400, (e, g, i, k) the instantaneous distributions of the wavelet energy of the macroscopic
parameters, obtained for all elements (solid curve) and for each cluster W,, (curves 1, 2, 3, respectively)

redistribution of link weights, and then the order parameter r(t) increases the system reaches the steady state
of full synchronization.

To describe the dynamics of individual elements, the evolution of their frequencies is shown in Figure 1,b.
The values f; being the frequencies associated with the “ridges” of the wavelet-transform (8) are estimated after
searching for local maxima of |W(f,t)| at each time moment, where F(t) = x;(t) (7).

One can see that the evolution of the obtained values, f;, strongly correlates with the order parameter
(Fig. 1,a). When order parameter takes large values (e.g., for ¢ = 30 and ¢ = 70), all frequencies become close,
reflecting the phase-locking of all systems. When adaptation is ON, a redistribution of weights causes a decreasing
of the order parameter. Effective frequencies of individual units are quite different until ¢ ~ 140, although small
clusters of about 3-5 nodes occur. The latter represent groups of strongly coupled nodes (structural clusters)
formed by the adaptation process. For t > 140, these clusters adjust their frequencies resulting in the growth
of the order parameter and in the transition to the state of full synchronization characterized by single effective
frequency in Figure 1,b (¢ > 280).

In order to study macroscopic characteristics (6), we performed the wavelet transform (8) with F'(t) = X(¢).
The obtained result is shown in Figure 1,c¢, where the module of the wavelet transform is shown. It is clearly seen
that areas of global synchronous mode can easily be detected in the wavelet energy as a high-amplitude isolated
pattern in the corresponded frequency area. Areas of partial phase-locking regimes are also well distinguished.

Thus, we observed strong correlation between time-dependent microscopic and macroscopic characteristics of
complex adaptive network. Such correlation persists for different dynamical regimes including an asynchronous
behavior, a partial phase-locking and the perfectly synchronized state.

4. ANALYSIS OF THE COMPLEX NETWORK STRUCTURE

Aiming to consider the case of a more complicated dynamics, the number of oscillators was increased up to
N = 100 with the frequencies uniformly distributed over the range [0.5,10]. The phases ¢; and the coupling
matrix was assembled as in the previous case.
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In Figure 2,a, the macroscopic signal (6) obtained from all nodes is shown. Some transient process leading to
the stationary regime can be observed, however, the signal is too complicated and does not contain information
about network structure. The order parameter (Fig. 2,b) has a pronounced frequency after the transient process
(t > 350), that reflects the presence of large mesoscale structures.?!

To analyze the evolution of network structure, we performed the wavelet transform of the network macroscopic
characteristic (6). The result is presented in Figure 2,¢. It is clearly seen that frequencies are distributed rather
uniformly before the adaptive mechanism starts to operate, however, some synchronous modes are observable.
The network structure for this case is schematically illustrated in Figure 2,d. Here, the links between nodes
are distributed homogeneously and any structural patterns are absent. At ¢; = 100, the network topology
starts to evolve. One can see from the presented wavelet energy surface that the isolated pattern immediately
appears in the area of low frequencies. The distribution of the instantaneous wavelet energy for the moment
t; = 100 is shown in Figure 2,e by a solid curve. There is a peak at f = 2.5 related to a cluster formation.
Further consideration of the network dynamics using the wavelet energy (Fig. 2,d) shows that the occurred
high-frequency cluster of a large ensemble of nodes is splitted into two smaller clusters. In Figure 2,f and Figure
2,g, visualization of the network structure and the instantaneous wavelet energy are shown for the time moment
to = 200. One can see that the network begin splitting into three clusters, connected with each other (Fig. 2,d).
Further, the adaptive mechanisms lead to the isolation of clusters. At t3 = 220, the network structure (Fig. 2,h)
and the distribution of the instantaneous wavelet energy (Fig. 2,i) evidence that the strength of links between
the clusters decreases and in the stationary regime t4 = 400 the network structure is represented by three isolated
clusters of strongly coupled elements (Fig. 2,5,k).

To provide the correspondence between the isolated high-amplitude patterns in the wavelet energy surface
and the occurred structural patterns, let us consider the macroscopic signals

Xn(t) = Z xj(t)a (10)

JER

where n = {1,2,3} is the number of cluster and R,, is the set of integer numbers corresponding to elements
related to this cluster. In Figure 2,e,g,i,k, the distribution of the instantaneous wavelet energy W; (dash-dotted
line), W (dotted line), W3 (dashed line) are shown for the considered time moments ¢1, t2, ¢35, t4 with the wavelet
energy, corresponding to the macroscopic signal 6 (solid line). One can see correlation between peaks on the
wavelet surface obtained from entire macroscopic signal and its components from separate structural clusters,
that verifies our assumption about strong correlation between time-dependent macroscopic signal and structure
features of the system under study.

5. CONCLUSION

In this paper we have shown the correspondence between the dynamics of elements of a complex network and
the macroscopic network characteristics represented by the summary signal of all elements. Using the continuous
wavelet transform we considered how the frequencies of interacting oscillators evolve in time under the influence
of adaptive mechanism and compared this microscopic dynamics with the evolution of the macroscopic signal.
As a result, a possibility of detection of structural changes in the network topology via the macroscopic analysis
was provided. The proposed approach was successfully applied for the analysis of large network of the interacting
Kuramoto phase oscillators with adaptive links pocesing a time-dependent structure. The performed wavelet
analysis of the macroscopic network characteristics allowed not only detection of the structural clusters, but also
identification of their frequencies and following their time evolution. This macroscopic analysis was compared
with the visualization of the network structure, performed in accordance with the strength of links between the
nodes, and significant correspondence between the observed patterns in wavelet energy surface and the structural
clusters was obtained.

Practical importance of the presented results is associated with the analysis of real objects consisting from
a large number of networking elements, where the experimental data is generally limited by the macroscopic
characteristics. Examples include a study of neural network by means of electroencephalography, analysis of
large ensembles of microwave generators used in the processes of data encryption and consideration of many
other real networks described by mathematical models where the elements are identified by their frequencies.
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