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Abstract—Neuroscience explores the anatomy, function and
development of the central and peripheral nervous system.
Neuroscientists lately study functional brain networks to
understand mental disorders like depression. Analysis of these
networks can aid in diagnosing depression. Q-analysis, a higher-
order interaction approach, may be more effective in identifying
brain regions relevant to depression, compared to the standard
paired approach. This study examined functional brain
networks, by using higher-order interaction approach with Q-
analysis method, in depressed patients and healthy subjects
using fMRI data. Results indicated fewer and weaker higher-
order interactions in depressed patients compared to controls.
Modularity and clustering were also reduce in depression. These
findings highlight the importance of studying higher-order
interactions in functional brain networks for diagnosing and
understanding depression.
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In recent years, neuroscience has been actively exploring
the functional networks of the brain [1]. One of the approaches
in this study is to analyze the properties of these networks,
including higher-order interactions between different brain
regions. Depression, as a common mental disorder,
significantly affects the quality of life of patients and their
ability to function in society. Diagnosis of depression plays an
important role in determining the presence of the disorder, its

INTRODUCTION

severity and the choice of the most effective treatment method.

Analysis of the functional networks of the brain can be of
significant help in the diagnosis of depression. The studies
available in this field indicate the presence of changes in the
structure and functional activity in various areas of the brain
in patients suffering from this mental disorder [2-7]. Analysis
of the functional networks of the brain provides an opportunity
to identify the above changes and determine which areas of
the brain are associated with the development of depression.

II. METHODS

A. Q-analysis

It is important to emphasize that when analyzing the
functional networks of the brain at the level of paired
interactions between individual areas, an incomplete
understanding of the interaction between different areas may
arise. Therefore, the use of higher-order interaction analysis
methods is more effective. One of these approaches is Q-
analysis, which allows one to identify strongly related groups
of brain regions that play a significant role in the context of
depression [8]. The Q-analysis method is widely used to study
functional networks and identify the modular structure [9,10].
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B. Basic definitions

Before continuing, it is necessary to define the basic
concepts used in this paper.

An incidence matrix is a matrix in which each column
corresponds to a clique (i.e., a complete subgraph) in a graph,
and each row corresponds to a node in the graph. The values
in each cell are set according to the rule: if the current node is
associated with a click, then the current cell is assigned the
value "1", otherwise "0". Thanks to this view, you can see
which nodes belong to each click.

Before start calculating the matrix of common faces, first
we should calculate the multiplication of the transposed
incidence matrix by the original incidence matrix. After that,
we should create a single matrix, the size of which will be
equal to the size of the matrix obtained as a result of
calculations at the last step. Next, the unit matrix should be
subtracted from the resulting matrix, and the result will be a
matrix of common faces. Mathematically, it will look like this:

Sfim = (Inm"* * Inm) — Lag.clq (1)
In this formula Sfm is the common face matrix, InmT is the

transposed incidence matrix, Inm is the initial incidence

matrix, and Leg.lq is the unit matrix the size of cliques count.

The matrix of common faces contains the following values:
-1, 0, 1, n. The value "-1" in the matrix indicates that the
corresponding cliques do not have common connections, the
value "0" means that the cliques have a common connection
through the node, and the value "1" indicates that the cliques
are connected through a common edge. In turn, the value "n"
means that the corresponding cliques are connected through a
face of dimension n.

A simplicial complex is a connected structure and,
therefore, there are "indirect" connections between all pairs of
simplices included in it. These connections or g-connections,
which are also called g-chains, exist in different dimensions,
called g-levels. It is very important not to confuse g-
connectivity and g-nearness, since a pair of simplices can be
g-connected, but not g-nearness, although g-nearness implies
g-connectivity. Q-connections are formally identified using
the Q-analysis of the complex [8]. We used the following
formulas to calculate three structure vectors to characterize the
considered network.

First structure vector:

Q: {Q{), Q], ceey quax—], Qmax}, (2)

where Qq— the number of q-connected components in each g-
level.



Second structure vector:

Ns= {I’ZO, ni, ..., Agmax-1, nqmax}, (3)
where nq is the number of simplices at g-level and above.
Third structure vector:
QQEI_Qq+nq (€]

In this study, higher-order interactions in functional brain
networks reconstructed based on functional magnetic
resonance imaging (fMRI) data were studied in patients
suffering from depression, as well as in healthy subject.

C. Data preparation

For calculations, data from 169 observed patients were
used, 72 of whom were diagnosed with depressive disorder.
Subjects having a previous history of comorbid psychiatric
conditions, autoimmune diseases, neurological diseases,
history of head trauma, or any metal implants in-compatible
with the MRI were excluded. The normalized functional MRI
volumes extracted were parcellated into 166 regions
according to the automated anatomical labeling atlas AAL3.
Connectivity matrix calculation from the averaged activity
time-series was performed with the help of Pearson
correlation coefficient estimation in Matlab (“corrcoef”
function). Thus, we obtained for each subject a 166x166
symmetric connectivity matrix. Each cell of the connectivity
matrix represents the strength of the connection (or edge)
between two parcels [3]. To identify the statistical significance
of the data, a random permutation of the data was performed
100 times, after which the consensus-networks were built.
Consensus-network is formed according to the following
principle: if 95% of the subjects from the group have a
connection, then we leave it, otherwise — no.

D. Calculations

In this paper, we are interested in the structure of the
whole complex, not individual components, so we will talk
about the global structure and describe it by calculating
number of components at each g-level. We represent this
information in the form of the structure vectors.

III. RESULTS

As a result of the calculations described above and visual
analysis of the graphs, it was noticed that the data are clearly
separable and the established error of 5% is acceptable. Next,
cliques and structural vectors for the consensus-networks
were calculated, and entropy and topology were calculated
using common methods.

As a result of visual analysis of first structure vector
(Fig. 1), it was noticed that the number of g-connected
components in healthy subjects was higher than in patients’
group. However, at =13, the number of q-connected
components was higher in patients’ group.

According to the results of calculations, it was found that
patients with depression have fewer higher-order interactions
between regions of the brain, and these connections are
weaker compared to the control group (Fig.1). These
conclusions are confimerd by previous studies that indicate
impaired connections in functional networks in patients with
depressions [5,6,11,12].
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Fig. 1. First structure vector. Red — patient subjects, green — healthy
subjects. Horizontally — the number of g-level, vertically — number of g-
connected components.
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Fig. 2. Second structure vector. Red — patient subjects, green — healthy
subjects. Horizontally — the number of g-level, vertically — number of
simplices.

It was found that higher-order interactions between brain
regions in healthy subjects have a higher number of simplices
at g-levels from 0 to 7 than in patients with depressive disorder,
as can be seen from the Fig. 2. In patients with depression,
modularity is less pronounced. It is worth noting that healthy
subjects have a confidence interval in more than half of the
initial orders, unlike patients with depressive disorder, in
whom the confidence interval is extremely small. The
statement raises interesting observations, but it does not
provide enough information to make definitive conclusions. It
could indicate a potential avenue for further research and
investigation into the differences between healthy subjects
and patients with depressive disorder, with a focus on the
parameters being measured and their significance.

IV. CONCLUSION

The present study highlights the need for in-depth study of
higher-order interactions in the functional networks of the
brain, especially when considering pathological conditions,
including depression.

The results obtained indicate disturbances in interregional
interactions in patients suffering from depression. Future
research can complement current work by including other
pathological conditions and applying other methods of
analysis, such as machine learning, in order to increase the
accuracy of the developed classifiers for the diagnosis of
pathological conditions. There are also great prospects for
applying this approach based on the evaluation of high-order
interaction metrics in functional brain networks to the



diagnosis of other neural diseases, including Alzheimer's
disease [13,14] and autism [15].
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