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Abstract Time series is a data structure prevalent in
a wide range of fields such as healthcare, finance and
meteorology. It goeswithout saying that analyzing time
series data holds the key to gaining insight into our
day-to-day observations. Among the vast spectrum of
time series analysis, time series classification offers the
unique opportunity to classify the sequences into their
respective categories for the sake of automated detec-
tion. To this end, two types of mainstream approaches,
recurrent neural networks and distance-basedmethods,
have been commonly employed to address this spe-
cific problem. Despite their enormous success, meth-
ods like Long Short-Term Memory networks typically
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require high computational resources. It is largely as a
consequence of the nature of backpropagation, driving
the search for some backpropagation-free alternatives.
Reservoir computing is an instance of recurrent neural
networks that is known for its efficiency in process-
ing time series sequences. Therefore, in this article,
we will develop two reservoir computing based meth-
ods that can effectively deal with regular and irregu-
lar time series with minimal computational cost, both
while achieving a desirable level of classification accu-
racy.
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1 Introduction

Time series refers to a sequence of data points col-
lected in a chronological order over a period of time,
with each point typically being recorded at a specific
timestamp. A time series has two main components,
timestamp and observation. Timestamp presents the
time at which a specific record is taken while an obser-
vation displays a value associated with each timestamp
that informs the relative importance to the other time
points. Additionally, time series data may come with
someother patterns thatmake the analysis of time series
more challenging. For instance, samples from the same
dataset may have different lengths (variable length)
and/or adjacent time points may have different time
intervals (heterogeneous interval). Time series analy-
sis involves studying and interpreting patterns such as
trends and dependency within the sample over time
and has been widely applied to real-world phenomena
[1–3]. Among them, time series classification (TSC)
focuses on the task of categorizing and labeling sequen-
tial data into their distinct classes or categories and
plays an indispensable role in medicine, telecommu-
nications and finance, etc. The efficacy of TSC algo-
rithms relies on their capability of balancing short- and
long-termmemory as well as capturing the time depen-
dency, whilst distinguishing desired patterns from the
noisy ones.

Over the past few decades, an astronomical amount
of algorithms have been developed to address this
particular field. Thus far, Long Short-Term Memory
(LSTM) networks can be seen as a milestone break-
through, offering a robust solution to the challenges
posed by modelling complex long-term dependencies
in sequential data [4–7]. LSTM networks are a type of
recurrent neural networks (RNN) that take advantage
ofmemory cells and gates as ameans to control the flow
of information through the network. The design of the
network was largely motivated to mitigate the bottle-
neck of vanishing gradient. However, the training of the
network is enabled by the state-of-the-art backpropag-
tion through time (BPTT) techniques. While BPTT is a
powerful and effective method, it can be computation-
ally expensive, not least for large and deep neural net-
works. Apart from backpropagation-facilitated neural
networks, distance-based methods have also demon-
strated enormous success on a wide range of TSC
tasks [8–10] and among them, 1-Nearest Neighbour
Dynamic TimeWarping (1NN-DTW) has been proven

difficult to beat as compared to other similar methods
[11]. Nevertheless, 1NN-DTW requires the computa-
tion of the pairwise distance between samples which
can still substantially increase the computation over-
head especially when the sample size is large. As a
result, the quest for some more efficient methods has
never ceased in an attempt to strike the right balance
between accuracy and energy consumption.

Complex dynamical systems have demonstrated
colossal potential in learning and computation in a
wide spectrum of frameworks such as gene regula-
tory networks, cellular networks and artificial neural
networks [12–16]. Among them, reservoir computing
(RC) stands at the forefront of cutting-edge research
in the field of machine learning and artificial intel-
ligence, providing a promising approach to the chal-
lenges of processing complex temporal data [17–19].
It maps input signals to a non-linear high-dimensional
dynamical system where neurons are recurrently con-
nected, generating a comprehensive representation of
the input features. The training is only applied to the
output layer which makes it a hyper-efficient alterna-
tive to the mainstream deep neural networks including
LSTMnetworks.Additionally, RCcan also be regarded
as amini-brain. It is therefore, amore biologically plau-
sible model and may pave the way for better under-
standing the information processing in the brain [20–
22]. Echo state networks (ESNs) are an instance of RC
where sigmoid functions have been employed as the
activation functions in the reservoir. They have drawn
growing attention over the past few decades by virtue
of their ease of implementation and their computational
efficiency [23–25]. Nevertheless, most of these meth-
ods are focused on sequential predictions and the clas-
sification methods are still underdeveloped, partially
down to the non-existence of BPTT training. Namely,
the loss at the terminal prediction may not be able to
flowback and adapt theweights in the previous layer(s).
In order to get around this obstacle, some solutions have
been proposed over the past decade: [26] employed
the idea of time warping invariance presented in [27]
and modified the structure to accommodate TSC; [28]
mapped the input signals into different state clouds in
the reservoir layer and the parameters were optimized
with the adaptive differential evolution; [29] substan-
tially enhanced the classification accuracy by lever-
aging discriminative feature aggregation and outlier-
robust weights algorithms to adjust the weights in the
input and the output layer, respectively. Nevertheless,
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despite their tremendous effort, they generally demand
the extension to the classic RC structure and additional
training algorithms for the input and the output layer.
Furthermore, these methods were only tested on regu-
lar time series and to the best of our knowledge, most of
them are not inherently compatible with the irregular
time series data. Hence, in this work, we will propose
two newmethods for ESNs that can efficiently perform
TSC tasks for regular and irregular data, respectively,
whilst maintaining a desirable classification accuracy.
More importantly, our methods only rely on the fun-
damental structure of RC, which resembles the way
that the brain receives and processes the information.
Unfortunately, there does not exist a precise definition
for regular and irregular data. Loosely speaking, in this
work, we refer to the sequences from the same dataset
as regular if they have the same and a sizable length,
and the intervals between the adjacent timestamps are
even.

The article will be organized as follows: Sect. 2 will
introduce two new methodologies that we proposed in
the context of ESNs. Section2.1 provides an overview
of the ESNs, Sect. 2.2 presents a novel method that can
address awide range of datasetswith regular time series
whereas Sect. 2.3 presents an alternative to address the
irregular ones. Section3 reports the performance of our
new methods and Sect. 4 includes the conclusion and
discussion.

2 Methods

2.1 Echo state networks

Echo state networks (ESNs) are an instance of reser-
voir computing and the diagram is shown in Fig. 1. An
ESN generally consists of three layers, from the left to
right are: an input layer, a reservoir layer and an output
layer. The weights in the input and the reservoir layer
are randomly created and fixed throughout the training
process and only the weights in the output layer are
trainable. Here the weights in the input layer refer to
the weights of the connections from the input to the
reservoir layer.

First the input layer transforms the sequential data
from the input layer into the reservoir layer using
a randomly created input matrix. At the heart of an
ESN is this fixed, large-scale recurrent reservoir of
sparsely connected neurons. A distinct feature of ESNs

is their echoic or fading memory property, mathemati-
cally known as the echo state property (ESP) [30,31]. It
states that an ESN has the ESP if it can forget the initial
values at a rate independent of the input, given any input
sequence from a compact set. This characteristic allows
ESNs to efficiently capture and retain relevant informa-
tion from input sequences, making them particularly
adept at handling time series data. In a standard setting,
there are typically a lot more neurons in the reservoir
layer than in the input layer in order for the reservoir to
encode the input information into a high-dimensional
dynamical system using sigmoid functions. The distri-
bution used to generate the random connections will be
introduced in due course. Then the temporal represen-
tation of the input signals within the reservoir layer can
therefore be used to train the output weights given the
teacher signals using a standard statistical model.

After introducing the basic notions of the ESNs,
we will next define the general framework of an ESN
using mathematical equations. Throughout the article,
we will adopt the convention for notations as below to
enable the clarity and consistency for illustration: bold
capital letters are used to denote matrices, bold lower
case letters are used to denote vectors, and plain letters
are used to denote scalars. Suppose a given longitudi-
nal input signal has k features and T timestamps, the
number of neurons inside the reservoir layer is M and
the number of neurons in the output layer is C . Then
the sequential data at timestamp t can be denoted by
ut ∈ Rk , the internal state in the reservoir layer by
xt ∈ RM and the output by yt ∈ RC . Here ut is sim-
ply the vector of the input values and xt is the vector
of values of all neurons within the reservoir layer. The
internal state is updated by

xt+1 = (1 − a)xt + atanh(Winut+1 + Wresxt
+Wbackyt ) (1)

whereWin is the input weight matrix,Wres is a square
matrix that represents the connections of the reservoir
layer, Wback is the connections that project the output
back to the reservoir and a ∈ [0, 1] is the leakage rate.
However, as for the TSC tasks, the output is expected
to be the predicted probabilities for distinct classes and
normally only occurs at the terminal point. Thus, it may
not be informative of and compatible with the temporal
dynamics in the reservoir layer. As a consequence, the
feedback loop will be removed in our new paradigm
and the equation will be reduced to

xt+1 = (1 − a)xt + atanh(Winut+1 + Wresxt ) (2)
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Fig. 1 Diagram for an echo
state network (ESN). From
left to right are the input
layer, reservoir layer and the
output layer. The data flow
is depicted by the blue
arrow

Apart from the size of the reservoir layer M , another
pivotal factor is the leakage rate a and it determines
to what extent the internal state xt is susceptible to the
current input ut and their neighbouring neurons. It has
conventionally been chosen to be slightly less than 1.
Moreover, theweightmatrix in the reservoir layerWres

is scaled by the spectral radius in order to balance the
validity of the ESP and the performance according to
[32,33]. Lastly, the resulting output response at time t
can be described by

yt = f (Wout [xt ;ut ]) (3)

where Wout denotes the weight matrix in the output
layer and f is an arbitrary activation function.Wout is
the only trainable part in ESNs and is normally trained
by a linear classifier with input being the internal state
xt (sometimes together with ut ) and output being the
target of interest at timestamp t . Here we need to point
out that in our newmethods, the output layer will not be
processed and trained as it stands which will be further
clarified in due course.

2.2 Method 1: Differential echo state networks

In this section, wewill present our first method for TSC
tasks, Differential Echo State Networks (Diff-ESNs)
and show that it can perform efficiently on a variety of
datasets with regular time series.

The ESNs are based on the fact that the current inter-
nal state xt is dependent on the last one xt−1 together
with the current input ut . Let us assume that a dataset
contains N time series samples and the observation

of sample i at timestamp j can be represented by
ui, j = [u1i, j , u2i, j , . . . , uki, j ]T , where i = 1, . . . , N
and j = 1, . . . , ni . Here ni denotes the length of the
sequence of sample i and k is the number of features
in the dataset. Note that in our setting the first sub-
script denotes the sample index, the second subscript
denotes the timestamp, and the superscript denotes the
feature index. The outcome of patient i is denoted by
yi ∈ {1, 2, . . . ,C} where C is the total number of
classes in this specific dataset.

One of the main obstacles that impedes the develop-
ment of TSC techniques using ESNs is the invariable
nature of the connections in most part of the ESN. In
sequential prediction tasks, the output can be immedi-
ately linked to the input at each time step since the out-
put is typically the prediction for the next observation
ui, j+1 given ui, j . In TSC tasks however, the class of a
sample can only be inferred after the time series reaches
the terminal stage. Since the weights in the input and
the reservoir layer are not adaptable in ESNs and as a
result, the class information at the terminal point cannot
effectively alter the dynamics in the reservoir layer on
the basis of previous timestamps, an alternative route
needs to be taken for the purpose of facilitating TSC
while retaining the hyper-efficiency of ESNs. In this
section,wewill introduce a novel framework that lever-
ages a bio-inspired neural coding method along with a
hallmark of the dynamics in the reservoir layer to con-
duct TSC tasks.

The neural coding refers to the intricate way that the
nervous system represents and processes information,
specifically in the context of neurons and their activ-
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ity patterns. There are several theories around neural
coding mechanisms [34–36] and in spite of their con-
troversy over validity, it seems plausible to boil the
principles down to Three S’s: Spikes, Sparsity, Static
suppression, and a brief description is given as follows.

1. Spikes: It is widely believed that the cross-talk
between biological neurons is enabled by spikes
(action potentials or firings). Therefore, the input
and output signals of a neuron may be reckoned
to be a sequence of binary outcomes such as
0, 0, 1, 0, 0, 0, 0, 0, 1, 0.

2. Sparsity: Biological neurons spend most of the time
in a silent state in order to minimize unnecessary
energetic costs, which makes 0 far more likely to
occur than 1.

3. Static suppression: It is also known as event-driven
processing in plainer language. It has been demon-
strated that the neuronal systems in the sensory
periphery have the tendency to stimulate neuronal
responseswhen subject to drastic spatial or temporal
change in external stimuli [37,38].

Since ESNs are artificial neural networks that employ
the sigmoid activation functions to process informa-
tion, itmay not be appropriate to convert the continuous
observations into spikes. However, we may still take
advantage of principle 2 and 3 to make our newmethod
more biologically plausible and heuristic. Instead of
using the original input sequence ui,1,ui,2, . . . ,ui,ni
for each sample i , here the sequence will be trans-
formed into their adjacent pairwise differences such
that the new observation for sample i at timestamp j
can be denoted by

ûi, j = ui, j+1 − ui, j , j = 1, 2, . . . , ni − 1. (4)

Also for the sake of conciseness, from now on, we will
drop the hat on these new observations ûi, j and the
notations will stay the same in the context of ESNs.
Now the information that the neurons in the reservoir
layer have to learn has been transformed from the raw
observations to the sharpness of change in magnitude
of the adjacent observations. Besides, after the trans-
form, the observations at many timestamps will lie in
the vicinity of 0 which corresponds to the second prin-
cipal listed above. In addition to its biological plausibil-
ity, abrupt changes in time series are reckoned to entail
critical information of the fate of the sample and lie at
the heart of time series analysis. As a result, using the
differential values as in Eq.4 may be more informative

than using the original sequence [39–41]. An exam-
ple is given in Fig. 2. Here we display the sequence of
a sample from the UCR ECG200 dataset before and
after the aforementioned transform. As can be seen,
the observations at most timestamps have been trans-
formed in the proximity to 0 such that only the abrupt
change is kept significant.

Now that we have properly defined the time series
representation as the input to the ESN, we can now
start formulating the model. After feeding the input
sequenceui,1,ui,2, . . . ,ui,ni−1 for participant i into the
ESN, the stimuli will update the internal state of the
reservoir layer by

xi, j+1 = (1 − a)xi, j + atanh(Winui, j+1

+Wresxi, j ) (5)

Note that the internal state should be reset to zero
xi,0 = 0 after feeding each sample so as to remove
the unwelcomed dependency between samples. Then
we collect all internal states for each sample i ,
xi,1, xi,2, . . . , xi,ni−1 and next we need to seek a hall-
mark of the internal state that can be used as the fea-
tures for the classifier. Here we use the variance of the
sequence as the hallmark of the sample and the variance
vector of sample i can be denoted by var(i) ∈ RM .
Below is a brief reasoning on the choice of this partic-
ular hallmark. From the angle of biological plausibil-
ity, there is compelling evidence that revealed variance
as a signature of neural computations during decision
making and that variance modulation may be present
in neurons [42–44]. From the practical perspective,
sequences from different classes may have distinct
change levels at specific timestamps and the local level
of variations can be captured by the variance to a certain
extent. Thanks to the aforementioned coding method
using the differential operator, the local variations can
be more precisely reflected and fed into the reservoir
layer. Consequently, the reservoir layer generates rich
and more complex dynamics capable of better retain-
ing short-term memory. As such, the similar level of
variation at distinct timestamps can be in a way, dis-
tinguished by separate neurons in the reservoir layer.
Finally, the variances of all samples in the training set
will be stacked to form the input features to the classi-
fier:
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Fig. 2 The sequence of a
sample from the UCR
ECG200 dataset. The upper
panel exhibits the original
sequence and the bottom
exhibits the new sequence
after being transformed by
the differential operator.
The x-axis indicates the
timestamps and the y-axis
indicates the magnitude of
the observation at each
timestamp

Xtrain =

⎡
⎢⎢⎢⎢⎢⎢⎣

var(1)T
...

var(i)T
...

var(Ntrain)
T

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

var1(1) . . . varM (1)
...

. . .
...

var1(i) . . . varM (i)
...

. . .
...

var1(Ntrain) . . . varM (Ntrain)

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

Here Xtrain can be regarded as the design matrix in
the regression model. var(i) is a column vector and

the superscript T denotes the transpose of the vector.
Similarly, the corresponding classes will be stored in a
vector ytrain :

ytrain = [y1, . . . , yi , . . . , yNtrain ]T (7)

Thenwefit ytrain toXtrain using the linear support vec-
tor machine (SVM) to train the classifier [45] as it is
effective in high dimensional space, not least when the
number of samples is not sufficient enough as compared
to other statistical machine learning methods such as
logistic regression. Lastly, the feature matrix and the
classes of the test set can be defined in a similar way
and we denote them byXtest and ytest . In order to eval-
uate the performance of themodel, we apply the trained
classifier to Xtest , ŷtest = CL(Xtest ) so that the out-
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comes of distinct samples can be predicted and com-
pared with the ground truth outcomes. Here ŷtest is the
predicted class assignment andCL is the classifier. The
performance of the method will be shown in Sect. 3.1.

2.3 Method 2: Interpolation echo state networks

As will be shown in Sect. 3.1, the Diff-ESNs have the
potential to perform well when the time series data are
regular. However, some datasets are more complicated
than that due to the intrinsic difficulties in the data col-
lection process. In some extreme cases, different sam-
ples (sequences) can have different numbers of obser-
vations with irregular time intervals whilst each sample
may only have a handful of timestamps (< 6).

In this work, we use ovarian cancer screening to
encapsulate the context of this particular data type and
highlight the importance of tackling it. Ovarian cancer
is a hereditary and lethal disease that disproportion-
ately hits women aged above 50 and causes more than
150,000 overall deaths in the UK between 2017 and
2019. It accounts for more mortalities than any other
cancer arising from the female reproductive system. It
is reported that the chance of a woman getting ovarian
cancer is 1.3% and dying from it is 0.9% during her lif-
time. Whereas the 5-year survival rate is only around
40% due to late diagnosis, of which the majority of
cases are diagnosed at stage III and IV, up to 90% of
patients at stage I can be cured with conventional ther-
apies, indicating the importance of early detection and
intervention [46]. In order to address this long-standing
health concern for ovarian cancer, various programs
have been deployed worldwide which aim to discover
early signs of cancer before the symptom appears when
the medical intervention is more likely to be effective
[47,48]. Thus far, one of themost popular tests for ovar-
ian cancer is the screening for tumour biomarkers. The
participants have their samples taken several times in a
time span of years so that their risks arewell tracked and
monitored. Some of them, unfortunately, will be diag-
nosed with cancer in the process of screening and will
be transferred to medical treatment. As one can well
imagine, the engagement of the participants is a highly
spontaneous and independent behaviour which essen-
tiallymakes the time series data exceptionally irregular.
Furthermore, it is often too late for the treatment to kick

in when the cancer is confirmed and as a result, early
detection and prevention is also part and parcel to the
wider population as well as to the optimization of the
public health resources. Consequently, we will develop
another method that can appropriately handle this type
of datasets in the context of ESNs.

Unlike the Diff-ESNs, here the idea is to enhance
the continuity of the time series such that more obser-
vations can be generated and the timestamps become
more informative in the backdrop of the problem. For
instance, if the biomarkers of a participant are regis-
tered at the age of 54.3, 54.9, 55.2 and 56.1, it might
be of interest to construct a more continuous trajectory
with observations being recorded by month given that
month is a meaningful unit in clinical study. Later, we
will also show that it can enable flexible early forecast-
ing, which is strongly preferable in cancer.

As a first step, linear interpolation is applied to the
sequence of participant i , ui,1,ui,2, . . . ,ui,ni to fit the
data into a continuous curve. Then the new sequence
is acquired by sampling the interpolated curve on a
monthly basis since the first record of screening and
again for consistency, we will adopt the same notation
to denote the new sequence for each i . An example is
given in Fig. 3. The curve exhibits the alteration in the
expression of the biomarkerCA125 froma specific par-
ticipant. The blue dots signify the original data points
and the crosses signify the new data points sampled by
month after interpolation. A natural alternative fitting
method would be the cubic spline. In our current study,
the time series consists of only a handful of timestamps
(fewer than 6), as compared to the whole timeline of
concern. Therefore, it may not be plausible to assume
the existence of nonlinear trajectory, given the exist-
ing data. One may consider fitting the data with cubic
spline when the timestamps in the data are more ample
and the nonlinear pattern is more effective.

Similar to the procedure in Sect. 2.2, we first collect
all internal states for each sample i , xi,1, xi,2, . . . , xi,ni .
In order to prepare the internal states as the input for
a linear classifier, one needs to find a way to appro-
priately summarize the past history, not solely the last
timestamp for each participant. To this end, we first
stack all internal states in the training set according to
the time series for individual participants into a matrix
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Fig. 3 The linear interpolation of the biomarker CA125 of a
specific participant. The x-axis stands for the month index since
the start of the screening and the y-axis stands for the expression
of the biomarker CA125. The blue dots are the original data
points upon standardization and the crosses are the new data
points sampled by month after interpolation

Xtrain :

Xtrain =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11,1 . . . xM1,1
...

. . .
...

x11,n1 . . . xM1,n1
...

. . .
...

...
. . .

...

x1i,1 . . . xMi,1
...

. . .
...

x1i,ni . . . xMi,ni
...

. . .
...

...
. . .

...

x1Ntrain ,1
. . . xMNtrain ,1

...
. . .

...

x1Ntrain ,nNtrain
. . . xMNtrain ,nNtrain

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

And the corresponding outcomes will be stored in a
vector ytrain :

ytrain = [y1, . . . , y1, . . . . . . , yi , . . . ,
yi , . . . . . . , yNtrain , . . . , yNtrain ]T (9)

In a nutshell, provided that participant i has ni times-
tamps, then there will be ni entries in ytrain and ni rows
inXtrain . Note that here we use all timestamps to form
the matrix and assume that the outcomes at all times-
tamps of a participant are the same.We suppose that the
early observations will also provide useful information
for the terminal outcome. It also aligns with our objec-
tive to enable early forecast which will be discussed in
due course. However, we may not want to use all of
them as training samples for two reasons:

1. The time span of a screening program is typically
several years and after interpolating and sampling
by month, most participants have dozens of times-
tamps. This may result in a substantial increase of
the sample size and increase the training overheads.

2. The internal state at timestamp j for participant i ,
xi, j may already contain a certain piece of the past
information of the internal state, not least those near
the current timestamp j by virtue of the recurrent
structure. Including all timestampsmay increase the
learning variance and fail to generalize the patterns
in the datasets.

Hence, we introduce an additional parameter τ , where
τ = 1, 2, . . . , nmin , to enable the option for users to
sample the internal state xi, j with skips. Here nmin =
min{ni }i=1,2,...,N is the minimum length of time series
among all participants. Since the marker expressions
at the last timestamp may be of the utmost clinical rel-
evance, we will always retain the internal state at the
last timestamp for each participant in Xtrain and select
rows in Xtrain backwards with the skip τ such that the
block for participant i will become

Xi =

⎡
⎢⎢⎢⎣

...
. . .

...

x1i,ni−2τ . . . xMi,ni−2τ
x1i,ni−τ . . . xMi,ni−τ

x1i,ni . . . xMi,ni

⎤
⎥⎥⎥⎦ (10)

The resulting design matrix therefore becomes

Xtrain =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1
...

Xi
...

XNtrain

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)
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And the corresponding subset of ytrain will be taken
to form the new outcome vector and again we keep
the notation unchanged, ytrain . As such, enough sam-
ples can be ensured to train the classifier while taking
into account the temporal dynamics and we name the
approach skip sampling. By training the internal states
that incorporate diverse lengths of history (not just the
last one) of a particular participant, it also potentially
enables a better generalization when seeing the lon-
gitudinal features from other participants. Then we fit
ytrain to Xtrain using the linear SVM to train the clas-
sifier and generate the predicted outcomes for the test
set ŷtest = CL(Xtest ). Note that as opposed to the
one shown in Sect. 2.2, here the predicted outcomes
ŷtest are given in probability and the reason will be dis-
cussed at greater length later. As a result, the SVMwith
the probability output is implemented as a replacement
[49]. Besides, at the moment, each participant still has
multiple predicted outcomes and they are disparate for
the same participant:

ŷtest = [ŷ11 , . . . , ŷn11 , . . . . . . , ŷ1i , . . . , ŷ
ni
i ,

. . . . . . , ŷ1Ntest
, . . . , ŷ

nNtest
Ntest

]T (12)

One may need a single predicted outcome for each par-
ticipant in order to be compared with the ground truth
label. Herewe select the prediction at the last time point
to be the representative of the specific participant. In
this way, we put more emphasis on the last time point
as it not only contains arguably the most relevant infor-
mation (the last screening), but also the history before
that.

Early forecasting is instrumental to successful can-
cer treatment as it is often too late for the treatment
to take effect when the cancer is confirmed. There-
fore, lastly, we will demonstrate that the skip sam-
pling approach can also enable flexible forecasting. The
training process will remain the same and Xtrain will
be employed as the input to the classifier. Suppose that
we want to make the forecast γ months before the last
record. Instead of gathering all available observations,
only the observations up to the timestamp ni − γ will
be used as the input to the classifier in the test stage:

Xtest =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11,1 . . . xM1,1
...

. . .
...

x11,n1−γ . . . xM1,n1−γ

...
. . .

...
...

. . .
...

x1i,1 . . . xMi,1
...

. . .
...

x1i,ni−γ . . . xMi,ni−γ

...
. . .

...
...

. . .
...

x1Ntest ,1
. . . xMNtest ,1

...
. . .

...

x1Ntest ,nNtest−γ
. . . xMNtest ,nNtest−γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

The remaining procedures stay the same and one can
implement the skip sampling if needed.

3 Performance

3.1 Performance of the differential echo state
networks

The performance of the method can be assessed by
computing the error rate in the test set of each dataset.
Namely,

ER =
∑Ntest

i=1 I (yi �= ŷi )

Ntest
(14)

Here Ntest is the number of samples in the test set, I
is an indicator function, yi is the ground truth class of
sample i and ŷi is the class category predicted by using
the aforementioned trained classifier.

The UCR repository [50] is widely used as the
benchmark datasets for assessing the performance of
TSC algorithms. The repository contains a wide spec-
trum of datasets that are closely related to our daily life,
including sensor, image and motion, etc. Additionally,
the datasets also differ in size, length and number of
classes, positioning it an ideal testbed for any newly
proposed TSC methods. Each of these UCR datasets
comprises a training set and a test set and the idea is to
train any new model on the training set and report the
error rate of the test set. In each dataset of this reposi-
tory, all samples (sequences) have the same length and
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the lengths are all no less than 30 but can go up to
several thousands for some datasets. Furthermore, all
samples are recorded at the same timestamps in each
dataset. In order to demonstrate the extensive applica-
tion of our method, as a first step, the error rates of
33 datasets have been calculated and compared with
the gold standard 1NN-DTW method. The parameters
used for this study are M = 50 and a = 0.9. The con-
nections in the input and the reservoir layer are fixed
random matrices following the standard normal distri-
bution. We will show that employing a small reservoir
layer (M = 50 and hence with superb efficiency) and
a commonly used leakage rate a can lead to adequate
classification accuracy. The robustness of the method
will be evaluated later.

Table 1 displays the error rates generated by theDiff-
ESN method, with a reference to the publicly available
results using the 1NN-DTW and the LSTM-FCN from
[51]. The columns from the left to the right are the
name of the dataset, number of classes, training size,
test size, the error rate of using the 1NN-DTW, the
Diff-ESN and the LSTM-FCN. The error rates in the
Diff-ESN column will be highlighted in bold colour if
they outperform the 1NN-DTW method. The compar-
sion with the LSTM-FCN will be discussed in Sect. 4.
Some dataset names are abbreviated to fit the window
for better visualization. As can be seen, the Diff-ESN
achieves comparable results on all these 33 datasets
relative to the 1NN-DTW. Among them, the Diff-ESN
outperforms the 1NN-DTW on 23 datasets and 19 of
themare below0.25. Furthermore, all these tasks can be
completed on a personal computer with minimal costs
(< 5 minutes for the most training expensive dataset
without even exploiting the parallel processing).

Since the connections in the input and the reservoir
layer are randomly created, it is also imperative to val-
idate the robustness of our new method. To this end,
we select four datasets and have a closer look at the
variation in performance subject to different connec-
tions. Figure4 lays out the error rates of the dataset
ECG200, Plane, ProxPhalOutAgeGrp and Shapelet-
Sim produced by 50 different connections. As illus-
trated, the performance is barely susceptible to the
change in connections. Take the dataset ECG200 for
example, as a matter of fact, the reported result in Table
1 (0.24) is located in the upper side of the violin plot in
the sense that the majority of the connections will give
rise to a lower error rate than 0.24.

Lastly, we will also have a look into the impact of
the noise level on the test data on the classification
accuracy. To this end,we select the dataset ECG200 and
introduce two different levels of noise to the test set.
In practice, we sample a noise value from the Gaussian
distribution ε ∼ N (0, σ 2) at each timestamp and add to
the observation value. Here σ is the standard deviation
of the Gaussian distribution. In the current study, σ is
chosen as the scale (multiplicative) of the maximum of
the absolute value of the training set. Figure5 lays out
the error rates when the scale equals 0.02 and 0.05. As
reflected, the robustness is largely preserved when the
scale equals 0.02, but the error rates have substantially
hiked when the scale increases to 0.05.

3.2 Performance of the interpolation echo state
networks

The error rate (or accuracy in reverse) is an intuitive
measure of correctness of statistical models. The UCR
benchmark datasets have been extensively studied by
the wider community and the training and the test sets
have been carefully pre-split for a more perspective
comparison. Therefore, in Sect. 3.1, we compute the
error rate of the test set and compare it with the pub-
licly available results. However, in many other cases,
it is more advantageous to generate the receiver oper-
ating characteristic curve (ROC curve) and calculate
the area under the curve (ROC AUC in short form) in
order to evaluate the discrimination power of themodel.
It comes with a few reasons. Firstly, as opposed to the
error rate, the ROC curve examines all possible classifi-
cationwhich accurately reflects themodel’s response to
the alteration of the threshold value. Secondly, the ROC
curve is less susceptible to the imbalanced datasets. It
is often the case that the clinical data are imbalanced
since negative outcomes are way more likely to occur
than positive outcomes. Subsequently, the error rate
may still be low even if the model under-performs on
the minority class and this can be substantially allevi-
ated by the ROC curve.

In this study, the dataset that we used to assess the
performance of our model is the BD dataset [52–54].
The BD dataset contains 222 patients on screening
for ovarian cancer after removing those with only one
timestamp. The biomarkers of interest are CA125, Gly-
codelin, HE4, MSLN25, MMP745 and CYFRA55, the
expressions of which have been standardized before
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Fig. 4 The robustness check for the Diff-ESN using the dataset
ECG200, Plane, ProxPhalOutAgeGrp and ShapeletSim. Each
violin plot contains 50 error rates generated by different random
connections in the input and the reservoir layer. The vertical axis

denotes the error rate. The means (95% confidence intervals)
of their respective error rates are 0.217 (0.210−0.223), 0.027
(0.014−0.041), 0.145 (0.143−0.146) and 0.020 (0.016−0.025)
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Table 1 Error rates of UCR datasets using the Differential ESN.

Dataset #class #train #test 1NN-DTW Diff-ESN LSTM-FCN

BeetleFly 2 20 20 0.300 0.250 0

BirdChicken 2 20 20 0.250 0.100 0.05

CinCECGTorso 4 40 1380 0.349 0.336 0.155

Coffee 2 28 28 0 0.070 0

DistPhalanxTW 6 400 139 0.290 0.324 0.185

Earthquakes 2 322 139 0.258 0.252 0.177

ECG200 2 100 100 0.230 0.240 0.08

ECG5000 5 500 4500 0.250 0.081 0.055

ECGFiveDays 2 23 861 0.232 0.245 0.011

ElectricDevices 7 8926 7711 0.399 0.404 0.037

FordA 2 3601 1302 0.438 0.120 0.072

FordB 2 3636 810 0.406 0.328 0.083

Ham 2 109 105 0.533 0.377 0.209

Herring 2 64 64 0.469 0.406 0.250

ItalyPowerDemand 2 67 1029 0.050 0.076 0.038

MidPhalOutCorr 2 600 291 0.352 0.354 0.160

MidPhalanxTW 6 399 154 0.416 0.442 0.383

OSULeaf 6 200 242 0.409 0.380 0.004

Plane 7 105 105 / 0.029 0

ProxPhalOutAgeGrp 3 400 205 0.195 0.141 0.117

ProxPhalOutCorr 2 600 291 0.216 0.258 0.065

ProxPhalanxTW 6 400 205 0.263 0.195 0.167

RefrigeDevices 3 375 375 0.536 0.528 0.421

ShapeletSim 2 20 180 0.350 0.039 0.011

SmallKitchenAppl 3 375 375 0.357 0.307 0.184

SonyAIBORobotSurf1 2 20 601 0.275 0.170 0.018

SonyAIBORobotSurf2 2 27 953 0.169 0.127 0.022

StarLightCurves 3 1000 8236 0.093 0.089 0.024

ToeSegmentation1 2 40 228 0.228 0.180 0.013

Trace 4 100 100 0 0.020 0

TwoLeadECG 2 23 1139 0.096 0.001 0.001

Wafer 2 1000 6164 0.02 0.015 0.001

Worms 5 181 77 0.536 0.442 0.298

The columns from the left to the right are the name of the dataset, number of classes, training size, test size, the error rate of using
1NN-DTW, Diff-ESN and LSTM-FCN. The error rates in the Diff-ESN column will be highlighted in bold colour if they outperform the
1NN-DTWmethod. The LSTM-FCN column is included to evaluate the distance of our proposed to the state-of-the-art neural networks
powered by backpropagtion. Some dataset names are abbreviated to fit the window. The unavailable results will be denoted by /

fitting any machine learning models. Among them,
CA125 is a protein that has been regarded as the pri-
mary marker for ovarian cancer and the elevated levels
of CA125 can be associated with certain conditions
[55,56]. The recorded times of these marker expres-

sions are also included in the dataset which enables the
interpolation of the time series.

With a view to evaluating the performance of our
method, the BD dataset is split 50-50 randomly in that
half of the dataset is used for training and the other half
for testing. Considering that the BD dataset is a new
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Fig. 5 The performance of the Diff-ESN when subject to differ-
ent noise levels on the test set. Each violin plot contains 50 error
rates generated by different random connections in the input and

the reservoir layer. The vertical axis denotes the error rate. The
means (95% confidence intervals) of their respective error rates
are 0.232 (0.226−0.239) and 0.334 (0.327−0.341)

and relatively small dataset, the robustness of themodel
in regard to the dataset needs to be checked carefully.
With this goal in mind, 50 different splits of the dataset
will be studied so as to gain a more comprehensive
view of the model. Additionally, multiple values of the
number of the neurons in the reservoir layer, M , will
also be explored since changing the value of M will not
only examine this important parameter, but also alter
the connections in the input and the reservoir layer so
that more random connections can be inspected at the
same time.

Figure6 displays the ROC AUC scores using the
skip sampling method with τ = 4. Here τ is a param-
eter of the user’s choice but we recommend using
τ = 3, 4, 5, 6. On the one hand, from the biologi-
cal viewpoint, many cancer types double in size every

few months on average (e.g., about every 6 months
for breast cancer and 4-5 months for lung cancer); on
the other hand, one may not want to sample too many
points as it will increase the training cost. The recurrent
structure in the reservoir layer also allows the ensem-
ble to retain the past information in the current state
to some extent. Figure6a displays the case where only
CA125 is used as the input and b where all 6 markers
are included. Each figure contains 4 violin plots and
each violin plot exhibits 50AUCscores that correspond
to 50 different splits of the training and the test set. In
order to better evaluate the discrimination power of our
time series based method, a comparison has also been
made with the scores using only the last time point. In
the latter case, only the last recorded marker expres-
sions are selected for each participant and the logistic
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(a) CA125 (b) 6 markers

Fig. 6 ROC AUCs of the skip sampling method. (a) shows the
ROC AUC scores using only the marker CA125 and (b) shows
the scores using the marker CA125, Glycodelin, HE4, MSLN25,
MMP745 and CYFRA55. Each violin plot contains 50 AUC
scores obtained from 50 different splits of the dataset. Each
figure contains four violin plots. The first row shows the ref-
erence scores using the logistic regression model only on the last

timestamp. Row 2-4 show the scores with different M respec-
tively. The x-axis denotes the ROCAUC score. The means (95%
confidence interval) of (a) from the top to bottom are 0.925
(0.917−0.933), 0.930 (0.922−0.937), 0.925 (0.917−0.933) and
0.929 (0.920−0.937). The means (95% confidence interval)
of (b) from the top to bottom are 0.906 (0.899−0.912),0.902
(0.893−0.911), 0.926 (0.919−0.933) and 0.905 (0.896−0.914)

regression model is fitted to the training set and the
outcomes (in probability) of the participants are pre-
dicted in the test set accordingly. The first row of each
figure shows the AUC scores obtained by using the
aforementioned logistic regression model as a baseline
result. Row 2-4 show the AUC scores obtained by the
skip sampling method with M = 40, 50, 60, respec-
tively. As can be seen, most splits give rise to a consis-
tently high ROCAUC score (> 0.9), irrespective of the
markers involved. In the case where only CA125 has
been used, M = 40 and M = 60 yield a slightly better
overall performance than the baseline while M = 50
also reaches a comparable level (and arguably better in
some aspects). In the case of the 6 markers, M = 40,
M = 50 andM = 60 all give rise to a comparable over-
all performance and among them, the improvement of
M = 50 on the baseline result is highly significant.

Finally, the performance of the 6-month forecast is
presented in Fig. 7 using the skip sampling approach.
This time, only the participantswith at least three times-
tamps will be included to ensure the existence of the
6-month window. As shown, most splits give rise to
a reasonably high ROC AUC score (> 0.75) and the
majority of them lie above 0.8, which demonstrates a
robust forecasting power of our method.

The reason thatwewant to assess the performance of
different parameters (M) is that, as compared to using
the cross validation and selecting the optimal parameter
from the training set, it allows for a better inspection of
the robustness subject to different parameters, which is
reckoned crucially important for any new methodolo-
gies.

4 Conclusion and discussion

In this work, we established two ESN methodologies,
Diff-ESN and Interp-ESN, that can effectively address
regular and irregular TSC tasks, respectively. The Diff-
ESNwas tested on the standard benchmark datasets and
the Interp-ESNwas tested on a recent cancer screening
dataset. Both of them exhibit desirable accuracy aswell
as tremendous efficiency.

We demonstrated that the Diff-ESN method has
attained comparable performance with the classic
1NN-DTW method and resulted in notable improve-
ment on error rate on several datasets, as shown in
Table 1. It is also worth reiterating again that our meth-
ods took the inspiration from the means that the brain
receives and processes information and leveraged the
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(a) CA125 (b) 6 markers

Fig. 7 ROC AUCs of the 6-month forecast using the skip sam-
pling method. (a) shows the ROC AUC scores using only the
markerCA125 and (b) shows the scores using themarkerCA125,
Glycodelin, HE4, MSLN25, MMP745 and CYFRA55. Each
violin plot contains 50 AUC scores obtained from 50 differ-
ent splits of the dataset. Each figure contains three violin plots

and they show the scores with different M respectively. The x-
axis denotes the ROC AUC score. The means (95% confidence
interval) of (a) from the top to bottom are 0.837 (0.824−0.851),
0.870 (0.859−0.881) and 0.873 (0.862−0.885). Themeans (95%
confidence interval) of (b) from the top to bottom are 0.772
(0.757−0.787), 0.847 (0.835−0.858) and 0.804 (0.791−0.818)

simplest possible structure in RC, which differs from
many other aforementioned ESN-based TSC methods.
The Interp-ESN method has been designed to tackle
the famously hard irregular time series such as cancer
screening data where forecasting on a regular basis is
desired.All cases thatweconsidered as inFig. 6 achieve
at least no worse overall performance than the baseline
using the logistic regression on the last recorded time
point. Some parameters have given rise to a signifi-
cant increase in performance in terms of the aspects
such as mean, median, confidence interval and inter-
quartile. Most importantly, the method entails a flexi-
ble forecasting option that empowers the prediction of
the outcome at any month in advance and attains high
ROC AUC scores with a 6-month forecast. To the best
of our knowledge, the existing ESN-based methods do
not emphasize handling irregularity or forecasting.

With the contribution being said, our model comes
with several limitations and some further considera-
tions can be given in the future. In particular, one may
realize that we actually proposed two separate meth-
ods based on the ESNs to tackle regular and irregu-
lar data individually. First of all, the Diff-ESN may
not be an appropriate approach for the irregular time
series such as the cancer screening data. It is because

that the interpolated sequence only yields a predicted
coarse trajectory and the differential operator will only
compute inaccurate difference between two adjacent
timestamps. Therefore, the hallmark of the trajectory
that we chose, variance, may not be as predictive as
when applied to the aforementioned regular data. One
may also note that each time series sequence in can-
cer screening data only contains a handful of obser-
vations and the dynamics are relatively simple. As a
result, the variation in the trajectory may not be as
informative as the values themselves at somekey times-
tamps when it comes to terminal prediction. The same
problem may also arise when the variation in obser-
vation value is not the main source of differentiation
among different class groups. Secondly, even though
the Interp-ESN, not least the skip sampling approach,
may be deemed as a more generic method, it comes
with inevitable inconvenience when being applied to
the regular time series data such as those listed in Table
1. The most prominent one is the pre-specified sam-
pling step and its trade-off with the computational effi-
ciency. Even a sizable step size can still incur a rel-
ative high computational cost when the time series
sequence is exceptionally long and there is no guar-
antee that the selected sampling step is informative in
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any possible way. In addition, to begin with, the inter-
polation has already increased the intrinsic noise in the
trajectory (since most observations in the trajectory are
unknown). Hence, the method may not remain robust
if the original data are noisy. Lastly, there still exists a
significant gap between the performance of our method
reported in Table 1 and the state-of-the-art LSTM neu-
ral networks shown in [51] for most of the datasets. The
last column of Table 1 outlines the error rates obtained
using the LSTM-FCN [57]. Yet, the deep neural net-
works require the training of an astronomical amount
of parameters through back-propagation whereas our
method is free of back-propagation and the training
can be completed with a negligible energy cost. For
a standard ESN, the computational complexity for a
time series sequence is O(T (Mk + M2). For a sim-
ple LSTM layer (only with the input, forget and output
gates), the computational complexity for a time series
sequence is O(2T M + 6T (Mk + M2)), with the for-
ward and the backward pass combined. Here T is the
length of the sequence, M is the number of neurons in
the reservoir layer (or hidden units) and k is the dimen-
sion of the input. As one can easily tell, the computa-
tion cost can enormously increase when T is large for
an LSTM layer. Moreover, as in [57], in order to attain
the reported level of accuracy, one normally needs a
deep network and sometimes it comes in conjunction
with additional architectures such as convolutional net-
works as outlined in the paper. This will increase the
computational complexity by an order of 10 or even
more.

The future directionmay lie in amore sensible trade-
off between the classification accuracy and the energy
consumption. One might consider introducing a light
training algorithm for the weights in the reservoir layer
as well as the output layer at each time step. This is also
in compliance with the observation in Figs. 4, 6 and 7
that some random connections lead to better perfor-
mance than others. However, it is not very clear how to
fix the computational complexity and whether the con-
vergence will be guaranteed or not. Another direction
is to learn the success of LSTM networks and atten-
tion transformers when it comes to capturing long-term
dependency. This could result in the consideration of
designing multiple reservoir blocks with various time
scales.
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