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Abstract—In this work we develop a new nonlinear net-based
SIR epidemic problem modeling the spreading of coronavirus
under the effect of a border crossing limits by the government
measures to stop coronavirus spreading. We show that the
emergence and disappearance of subsequent waves of infection
on the degree of relationship with a hub is non-linear, and with a
large degree of relationships, the number of waves can decrease.

Index Terms—COVID-19; forecasting; nonlinear SIR model;
border closing

I. INTRODUCTION

The SARS-COV-2 coronavirus pandemic is currently in-

creasing the interest of researchers to SIR models [1] and many

works for different regions of the world [2]–[6] demonstrate

their satisfactory performance, although there are other points

of view [7]. Nevertheless, the question of the influence of quar-

antine on the flow of infection is still require further research

[8]–[10]. There are many examples of network approach

application to analysis of social, ecological and biological

systems [8], [11]–[15]. Given the success demonstrated by

the examples of using a network approach to model social

systems, we decided to upgrade existing models in this way.

II. MODEL

For k interacting elements, in general, the system of differ-

ential equations will look like this:

Ṡi = −β
∑
j

pjSi + δRi − dHiSi + μi (i, j = 1..k);

İi = β
∑
j

pjSi + dHiSi − (γ + ε)Ii;

Ṙi = γIi − δRi;

Ḣi = αIi − bHi;

(1)
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Here, Si(t) denotes the number of susceptible individuals of

the i-th region, I(t) — infected, R(t) — recovered, H(t) non-

human carriers (viruses). The coefficient α denotes the number

of carriers (viruses) emitted by an infected individual, β is the

probability of infection in the case of contact of a susceptible

subject with an infected subject, γ is the probability of

recovery (usually, it is interpreted as the rate of recovery,

since the average duration of the subject is in the state of

infection is 1/γ ), δ is the probability of losing immunity

and the appearance of the possibility of re-infection, ε is the

probability of death, μi — the immigration of the population

for the i-th region, pj is the interaction coefficient between the

j-th and i-th districts given from the communication matrix

(P), Relative degree of openness of the borders, which is

relevant for modeling quarantine events [16], b denotes the

coefficient of natural loss of carriers, d is the degree of

contagiousness of the carrier (virulence). It should be noted

that in the case of p = 0 (complete closure of boundaries), the

system is degenerated in case of infecting one subject in the

absence of the remaining infection [17]. To check the effect

of the presence of the central district (Hub), as well as the

observed difference between the second and third areas, the

communication matrix was as follows:

P =

⎡⎣1 p p
p 0.5 0.05
p 0.05 0.1

⎤⎦ (2)

III. RESULTS

The second and third districts are located in the outskirts

and have weak interaction between themselves. The first area

is considered as a hub, and the its level of exposure to other

districts can vary. Typical curves for a small bond (p = 0.1)

are shown in Fig. 1. The numerical simulation showed that

despite the fact that the probability of internal infection in

the third area is five times lower than in the second, the

final number of infected differs by about twice. The graphs

of the total infected over time for the degree of opening

978-1-6654-4283-1/21/$31.00 ©2021 IEEE

95

20
21

 5
th

 S
ci

en
tif

ic
 S

ch
oo

l D
yn

am
ic

s o
f C

om
pl

ex
 N

et
w

or
ks

 a
nd

 th
ei

r A
pp

lic
at

io
ns

 (D
C

N
A

) |
 9

78
-1

-6
65

4-
42

83
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

D
C

N
A

53
42

7.
20

21
.9

58
68

90



Fig. 1. The time series of infected (a), susceptible (b) and recovered (c), as
well as the phase portrait for three districts (d), obtained for the values of the
system parameters with the communication matrix 2: n = 50000, β = 1.9,
γ = 1.5, δ = 0.05, b = 0.01, d = 10−7, p = 0.1.

Fig. 2. The dependence of the maximum number of infected in the second
and subsequent waves in areas (red – 1, green – 2, blue – 3) on the degree
of openness of the boundaries between the hub and other districts (p).

of the borders for the districts are similar to the dynamics

with the case of symmetric links, despite the difference in

the probability of infection inside the areas and are primarily

determined by the degree of relationship with a hub, which

can be seen for the first wave, but the flow and final values of

infected dependent from the internal probabilities of infection

with small communication values a hub. The final amount of

infected in the area increases with a degree of connection with

a hub. However, this dependence is close to a logarithmic form,

and the maximum value (peak of the wave) number of infectios

demonstrates almost linear growth for the communication

values with a hub of more than 0.5. Despite the difference in

the likelihood of infection within the districts, infection curves

are primarily determined by the degree of relationship with a

hub, which can be seen for the first wave, but the flow and

final values of infected depend on the internal probabilities of

infection with small connections with a hub. The occurrence

and disappearance of subsequent waves of infection on the

degree of relationship with a hub is non-linear, and with a

large extent relationship the number of waves even decreases,

and their amplitude is committed to a constant value as shown

in Fig. 2.

IV. CONCLUSION

Thus we developed a new nonlinear net-based SIR epidemic

problem modeling the spreading of coronavirus under the

effect of a border crossing limits by the government measures

to stop coronavirus spreading. We show that the emergence

and disappearance of subsequent waves of infection on the

degree of relationship with a hub is non-linear, and with a large

degree of relationships, the number of waves can decrease.
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