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Abstract—Methods of noisy image filtration using wavelet transforms with real and complex basis sets have
been compared. It is shown that the use of a complex wavelet transform provides more effective filtration and
admits automatic optimization of the filter parameters. Optimized choice of the threshold level during filtra-
tion based on a complex wavelet transform significantly decreases the error of image reconstruction as com-
pared to that achieved with a standard method of discrete wavelet transform employing basis sets of the
Daubechies wavelet family.
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An important area in the development of commu-
nication systems is related to optimization of the pro-
cess of digital filtration of noisy data transmitted via
communication channels. In recent years, a signifi-
cant progress has been achieved in upgrading the
method of noisy signal filtration employing wavelet
transforms [1–5]. The new approaches offer signifi-
cant advantages compared to filtration based on the
Fourier transform–in particular, by making possible
effective elimination of local noises that cannot be
effectively filtered by methods based on the Fourier
transform employing the basis set of infinitely oscillat-
ing functions. A discrete wavelet transform (DWT)
widely used in the framework of multiscale analysis
[6–10] allows the signal to be separated into compo-
nents corresponding to various scales. Then it is possi-
ble to perform correction of the expansion coefficients
corresponding to small scales that are most subject to
the influence of noise, after which the signal or image
can be reconstructed by means of the inverse wavelet
transform.

It should be noted that, since a simple variant (fre-
quently used in practice) involving setting some coef-
ficients to zero is not always effective, approaches
based on variants with “soft” introduction of a thresh-
old function during filtration have been proposed [3,
4]. According to this, the threshold function has no
discontinuities and the values of all coefficients are
corrected. In addition, various modifications of the
method of expansion in wavelet functions can be used,
in particular, the method of dual-tree complex wavelet
transform (DTCWT) [11–15], which represents an

extension of the classical DWT employing real basis
set functions such as Daubechies wavelets [7].

Despite the extensive development of the methods
of filtration employing wavelet transforms, their prac-
tical implementation still involves many open ques-
tions. For this reason, it is still topical to perform com-
parative analysis of various methods for selecting an
approach capable of minimizing distortions intro-
duced during reconstruction of a processed signal or
image from its wavelet coefficients. The present work
compares the results of wavelet filtration of noisy
images with the aid of real and complex basis sets and
gives recommendations on the choice of parameters of
the wavelet filter.

In the framework of the standard DWT method,
the analyzed signal f(t) is expanded using the approxi-
mating and correcting functions called, respectively,
scaling functions φ(t) and wavelets ψ(t):

 (1)

Here, expansion coefficients dj, k bear information on
the structure of the signal, representing amplitude
components on various scales at different moments of
the time [6]. In the course of filtration, small wavelet
coefficients, which are most subject to the influence of
noise, have to be corrected. This is achieved predomi-
nantly by means of so-called “soft” setting of the
threshold function in the following form [3]:
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which eliminates the appearance of irregularities
during reconstruction of the signal from wavelet coef-
ficients. Despite the simplicity of the realization of
wavelet filters based on a DWT (1), this approach has
some disadvantages that influence the quality of filtra-
tion [11]—in particular, the oscillating character of
coefficients dj, k in the vicinity of singularities and the
lack of invariance with respect to a shift of the wavelet
function. These drawbacks can be eliminated by using
a method of filtration based on complex wavelets [12,

13], according to which real basis set functions φ(t)
and ψ(t) are supplemented with imaginary parts con-
structed using the Hilbert transform. The passage to
complex wavelets ψc(t) = ψr(t) + jφi(t) implies the need
for subsequently forming two orthonormalized basis
sets of functions ψr(t) and ψi(t), which are treated in
the framework of one-dimensional wavelet transform.
The corresponding computational algorithm reduces
to two pyramidal expansions of the one-dimensional
signal. The approximately analytic complex scaling
functions and wavelets are constructed using special
methods such as described, e.g., in [11].

Solving the problem of a two-dimensional (2D)
complex wavelet transform is more complicated in
comparison to the one-dimensional case. If hx + jhx
are conjugate filters for the first dimension (x) and
hy + jhy are those for the second dimension (y), the fil-
ters for 2D complex wavelet transform can be written
in the following form:

 (3)

In this case, the task reduces to calculating four
“trees” representing expansions of the image con-
structed using filter sets (hx, hy), (gx, gy), (hx, gy), and
(gx, hy) [11]. In what follows, we use the filters pro-
posed in [12, 16].

In the present work, we have carried out the follow-
ing investigation. The test image was a black-and-
white photograph of the main building of Saratov
State University (Fig. 1), which was rendered noisy by
adding a random process with normal distribution at
variable intensity. At every fixed noise level, the noisy
image was wavelet-filtered using two approaches:
(i) DWT with a real basis set (Daubechies wavelets)
and (ii) DTCWT with a complex basis set [12, 16]. The
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Fig. 1. Example of analyzed image (photograph of the main building of Saratov State University).

Fig. 2. Plots of mean-square error E of wavelet filtration vs.
threshold level C for (dashed curve) DWT and (solid
curve) complex wavelet transform. The variance of the
normally distributed noise process added to the processed
image was 0.1. DWT results were obtained with a D8

Daubechies wavelet set, which ensured minimum filtra-
tion error as compared to other basis sets of this family.
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wavelet coefficients were corrected using a “soft” vari-
ant of setting of the threshold function according to
Eq. (2). Figure 2 shows typical plots of mean-square
error E of filtration versus threshold level C. As can be
seen from this figure, at optimum setting of the thresh-
old (in this case, C ≈ 0.07), the complex wavelet trans-
form provides a minimum error of the wavelet filtra-
tion. Analogous results were obtained for various
intensities of a noise admixture to the test image.
Thus, the use of a complex wavelet transform reduces
the error of image filtration as compared to that of a
DWT and allows smaller C to be used that leads to
lower distortions of the informative wavelet coeffi-
cients.

It should be noted that the optimum threshold C is
not constant and depends on the signal to noise ratio
(SNR): the higher the noise level, the greater number
of wavelet coefficients is affected by noise and, hence,
the threshold level must increase in order to provide
correction of the wavelet coefficients in a broader
range of scales. This circumstance leads to difficulties
in automation of the wavelet filtration process. A key
factor in this respect is estimation of the level of noise
present in the image and optimum choice of threshold
level C. If wavelet filtration is carried out for improving
the quality of receiving video signal transmitted via a
communication channel, the simplest variant of opti-
mum adjustment of the wavelet filter parameters con-
sists in preliminary transmission of a test (a priori
known) image. In this case, one can readily estimate
the level of noise in the communication channel and
set the optimum threshold level C that will minimize
the filtration error for the given noise level. The latter
is determined by solving the problem of minimum in
the dependence of the mean-square error on the
threshold level, which can be performed automati-
cally. This variant of adjusting wavelet filters verified
in the framework of this investigation and proved to be
effective for all (about ten) test images and various
intensities of added noise. All tests led to unambiguous
conclusion that image filtration based on complex
wavelet transform is more effective and admits auto-
matic adjustment of optimum parameters of the wave-
let filter. After this adjustment, a decrease in the error
of filtration in comparison to that based on the stan-
dard DWT was no less than 5% (and in some cases
exceeded 10%).
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