
893

ISSN 1063-7850, Technical Physics Letters, 2017, Vol. 43, No. 10, pp. 893–895. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © A.A. Koronovskii, M.K. Kurovskaya, O.I. Moskalenko, A.E. Hramov, 2017, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 43, No. 19,
pp. 51–56.

Self-Similarity of the Desynchronization Process 
in a Network of Generalized Kuramoto Oscillators

A. A. Koronovskiia, M. K. Kurovskayaa*, O. I. Moskalenkoa, and A. E. Hramova, b

a Saratov National Research State University, Saratov, 410012 Russia
b Saratov State Technical University, Saratov, 410054 Russia

*e-mail: mariakurovskaya@gmail.com
Received June 5, 2017

Abstract—The phenomenon of explosive synchronization in a network of generalized Kuramoto oscillators is
considered. It has been shown that this process results from self-similarity observed after the loss of stability
by synchronous clusters of different dimensions. The appearance of self-similarity can be revealed when
studying the processes of destruction in the synchronous state of a network. It has been demonstrated that a
system passes through a sequence of self-similar configurations of interacting oscillators after the abrupt
destruction of a synchronous regime.
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The study of the dynamics of complex networks of
phase oscillators provides the possibility to describe
the behavior of a great number of real systems, such as
neurons in the brain, myocardial cells, and electrical-
power networks [1, 2]. The phenomenon of synchro-
nization plays a key part in the collective dynamics of
network unit elements, and the transitions between
asynchronous and synchronous regimes are of great
importance for the understanding of basic mecha-
nisms in the behavior of interacting oscillators [3, 4]
and complex networks [5–7].

From the thermodynamic viewpoint, a transition
from asynchronous dynamics to a synchronous regime
can be interpreted as a phase transition. There are two
types of phase transitions: an abrupt transition to a
synchronous state (the so-called “first-order transi-
tion”) and a continuous phase transition (“second-
order phase transition”) [8]. Complex networks usu-
ally exhibit a smooth transition from asynchronous
dynamics to synchronization with increasing parame-
ter of coupling between network units [6, 9]. At the
same time, a transition of another kind (first-order
transition) called “explosive synchronization,” when a
network does not gradually pass through intermediate
partially synchronized states, but abruptly transits
from an asynchronous state into a completely syn-
chronized regime by jump, is also observed in the
dynamics of complex networks [10, 11]. It is known
that explosive synchronization can appear in networks
with different coupling topologies. A first-order tran-
sition to synchronous dynamics can occur in networks
with a regular coupling topology, where each struc-
tural element of a network is coupled with all the other

units [12], in networks with a random coupling topol-
ogy [13], and in scale-free networks [14, 15], including
scale-free networks characterized by time-delayed
interelement couplings [16]. Explosive synchroniza-
tion is also observed in networks of oscillators with
adaptive couplings [17]. For a first-order transition
(explosive synchronization) to appear, it is necessary
to meet a number of conditions distinct for networks
with different coupling topologies, and both the estab-
lishment and destruction of a synchronous regime in
these cases are characterized by an abrupt qualitative
change in the dynamics of network elements, and hys-
teresis may be observed in some cases [8, 14].

It is important to remark that, despite the fact that
networks of Kuramoto oscillators [18, 19] are the most
popular model for the study of explosive synchroniza-
tion, a spontaneous instantaneously arising change in
the dynamics of a network of oscillators with the
resulting abrupt destruction/establishment of a syn-
chronous regime may also be observed for other types
of oscillators, when they are structural elements of
complex networks, e.g., for piecewise-linear Rössler
systems [10] or generalized Kuramoto oscillators [20].
In other words, the abrupt transition from a synchro-
nous state of oscillators of a network with a complex
topology of interelement couplings to asynchronous
dynamics (and vice versa) represents a universal phe-
nomenon appearing under certain conditions in com-
plex networks with different unit elements and cou-
pling topologies.

In this study, a network of generalized Kuramoto
oscillators [20] is used as an example to demonstrate
that an abrupt change in the state of a network with
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a complex coupling topology results from the phe-
nomenon of self-similarity, when the destruction of a
synchronous regime occurs in a sequential order
through self-similar configurations of interacting
oscillators, which lose stability at the same control
parameter characterizing the intensity of interelement
couplings.

The results presented in this work were obtained for
a network of generalized Kuramoto oscillators [20]
with N = 5 × 103 elements, the dynamics of which is
described as

(1)

where θi and ωi are the instantaneous phase and eigen-
frequency of the ith oscillator, the point means the
time derivative, and λ is the coupling parameter. In the
considered model, all the network oscillators are cou-
pled with each other, the eigenfrequencies of oscilla-
tors ωi were equidistantly specified in the interval
[‒0.5, 0.5], and the initial phases of oscillators were
selected equal to zero without loss of generality.
Since all the eigenfrequencies of modified Kura-
moto oscillators are different, synchronous dynam-
ics appears in the network only at a coupling param-
eter exceeding its boundary value λc, but all the net-
work oscillators are in synchronism in this case, and
the network itself as a whole may be considered as
an integrated synchronous cluster with dimension N.
The destruction of a synchronous cluster begins at
critical coupling parameter λc (for the considered net-
work, λc = 2.0) [20].

When a synchronous cluster with dimension N
loses stability with an increase in the coupling param-
eter λ and λ*, some oscillators come out of synchro-
nism, while the oscillators remaining in a synchronous
state compose a cluster with dimension K < N. In the
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case in which a new cluster proves to be stable at the
same coupling parameter λ*, the network gradually
passes into a new stable state, whose destruction
requires to decrease the intensity of couplings again,
corresponding to a second-order phase transition [8].
Correspondingly, to observe a first-order phase transi-
tion, during which the synchronous state of the entire
network is abruptly destructed with the transition to a
non-synchronous dynamics of oscillators without
large clusters, all the synchronous structures of differ-
ent dimensions K such that K < N must become unsta-
ble at the same coupling intensity λc. In other words,
when the process of destruction in the synchronous
state of a network is started at λ = λc, some oscillators
begin to evolve in an asynchronous fashion and, as a
consequence, the primary coherent structure with
dimension N is replaced by a coherent structure (com-
posed of K(t) synchronous oscillators, K(0) = N) with
a smaller dimension, which in turn is also unstable and
replaced by a coherent structure K(τ) < K(t), t < τ, etc.
Since the synchronous clusters of all the dimensions
K ≤ N lose stability at the same coupling intensity, they
must have self-similarity properties. Hence, a coher-
ent cluster of synchronous oscillators sequentially
passes through self-similar configurations with a
decreasing dimension K(t) when an “explosive” tran-
sition from synchronization to asynchronous dynam-
ics takes place, and all these configurations become
unstable at the same coupling parameter λ = λc.

The self-similar mechanism implemented during a
first-order phase transition in a network of generalized
Kuramoto oscillators can be revealed via the temporal
analysis of the destruction process in a synchronous
cluster at a coupling parameter, which is slightly lower
than its critical value. The dependences of phases θi on
frequencies ωi for the elements of studied network (1)
at different time moments t1 < t2 < t3 < t4 and λ = 1.99
are shown in Fig. 1. The horizontal regions correspond
to the oscillators composing a synchronous cluster at
each of the considered time moments, and the points in
the inclined regions correspond to the oscillators that
have come out of synchronism. As can be seen, the
dimension of a synchronous cluster decreases with time
and, correspondingly, the number of asynchronous
oscillators grows, but the remaining synchronous oscil-
lators form structures that are self-similar to each other.

Hence, a network of generalized Kuramoto oscilla-
tors passes through a sequence of self-similar configu-
rations of interacting oscillators, which cause the
abrupt destruction of a synchronous regime, during a
first-order phase transition. It is important to note that
destruction begins after a certain threshold and is not
chaotic, but occurs through a sequence of decreasing
ordered structures.
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Fig. 1. Phases of generalized Kuramoto network oscilla-
tors (1) vs. their frequencies at λ = 1.99 < λc and different
time moments (1) t1 = 201, (2) t2 = 318, (3) t3 = 447, and
(4) t4 = 492. Horizontal regions (solid line) correspond to
the oscillators making up a synchronous cluster at a given
time moment, and the fine lines correspond to the ele-
ments exhibiting an asynchronous dynamics.
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