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In this paper we study the structural properties of a functional network of the human brain during the
evaluation of mental tasks using the concept of betweenness centrality. We carry out the experiments involving
the alternating trials of mental task evaluation with simultaneous registration of electroencephalographic (EEG)
data. Using the wavelet phase coherence we reconstruct the functional multiplex network of the brain considering
the different typical frequency bands of EEG activity as interconnected layers. We reveal that transition from a
resting state to evaluation of a cognitive task leads to the strong outflow of shortest paths from low frequencies
and strengthening of high-frequency connectivity in the brain. At the same time, we observe that mental activity
shapes the shortest paths in a more uniform distribution across the brain, which implies the emergence of a more
distributed functional network. Our results are in good agreement with recent studies of cognitive activity and
can be implied in the design of brain-computer interfaces for the estimation of cognitive load or attention.
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I. INTRODUCTION

The processes underlying cognitive functions are of a great
interest in modern neuroscience [1,2]. The close attention
of researchers to this topic is caused not only by the urge
to reveal the fundamental aspects of brain behavior. Recent
studies show the strong possibility of early diagnosis of men-
tal disorders [3] and mild cognitive impairments [4,5] using
analysis of electrical brain activity during the evaluation of
various mental tasks. At the same time, efficient classification
and scoring of mental activity can be used in a variety of brain-
computer interface (BCI) applications with neurofeedback
[6], which present themselves as a promising technology for
research in many related fields of cognitive science [7].

The considerable progress in the investigation of cognitive
activity has been made using electroencephalographic (EEG)
frequency analysis. In particular, the importance of alpha (8–
12 Hz) and theta (4–8 Hz) bands has been shown in several
studies [8,9].

In Ref. [10] the strong increase of spectral power in the
gamma (40–80 Hz) band is shown during the performance of
eight types of mental tasks with the task-related differences.
Brouwer et al. develop an algorithm for estimation of cogni-
tive load using the event-related potentials and spectral power
of EEG signals [11].

However, the recent focus of studies has drifted to the
complex network approach of the analysis of mental activity
and cognitive performance [12,13]. All types of the highest
nervous activity are accompanied by strong interaction be-
tween various regions of the brain [14]. The measurement of
this interaction allows us to access the functional network of
the brain corresponding to the specific state or activity, which,
in turn, can be utilized to reveal the principles underlying
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this activity [15]. Using modern techniques for brain activity
recording, one can represent functional brain structure as a
graph, where separate nodes are brain areas, whose temporal
dynamics is described by a signal from a particular sensor, and
edges indicate the presence of a functional relation between
brain areas (nodes). Recent research shows that cognitive load
expresses itself as specific connectivity patterns, distinct in
various frequency scales of brain electrical activity [16–18].

In this paper we study the structural properties of a func-
tional network of the human brain during the evaluation of
mental tasks using the concepts of multiplexing and between-
ness centrality [19]. First, in term of multiplexing concept,
we decompose functional brain structure into multiple layers,
where each layer reflects brain behavior in a particular fre-
quency band. Second, our choice of betweenness centrality
as a network characteristic is motivated by two main rea-
sons. On the one hand, we want to quantify the interplay
between functional network layers corresponding to different
frequency bands, and the contribution of each one of them into
the specific brain activity. On the other hand, we are eager to
understand which parts of each layer are involved in the inter-
layer cooperation. For this reason we are measuring the be-
tweenness centrality as the quantity which can estimate the
importance of the node as a pacemaker in both intra- and inter-
layer connections. For example, the eigenvector centrality will
allow us only to score the importance of layers in a multiplex
network [20], while the intralayer ranking will be implied by
the layer with the highest algebraic connectivity [21].

We carry out a number of experiments, in which partic-
ipants were solving training tests on visual perception with
parallel registration of surface EEG recordings. It should be
noted that each recording contained the active (task eval-
uation) and passive (rest) trials. Using the wavelet phase
coherence [22,23] we estimate the functional connectivity
matrices for each trial in six typical EEG frequency bands:
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FIG. 1. (a) The depiction of an example of the Schulte table. (b) Principal design of the experiment on Schulte table evaluation. (c)–(f) The
procedure of the reconstruction of the functional multiplex network (see text for details).

delta (δ = 0.5–4 Hz), theta (θ = 4–8 Hz), alpha (α =
8–12 Hz), beta-1 (β1 = 12–25 Hz), beta-2 (β2 = 25–40 Hz),
and gamma (γ = 40–80 Hz), which present themselves as
a classical segmentation of EEG spectra [24]. As soon as
we wanted to catch the structural properties of the whole
functional network, we arranged the obtained structures in the
multiplex network [25], where each node is connected to itself
in each other layer (EEG frequency bands); i.e., each node
is characterizing the dynamics of a specific brain region in
the specific frequency band. Next, we measure betweenness
centrality of each node to reveal the influence of cognitive
load on the distribution of shortest paths inside and among
the layers of a functional multiplex network of the brain.

We reveal that transition from resting state to evaluation of
a cognitive task leads to the strong outflow of shortest paths
from low frequencies and strengthening of high-frequency
connectivity in the brain. At the same time, we observe the re-
distribution of betweenness centrality in each particular layer
or frequency range. More specifically, the mental activity
shapes the shortest paths in a more uniform distribution across
the brain, which implies the emergence of a distributed func-
tional network binding the areas of the brain with dynamical
interactions. Our results are in a good agreement with recent
studies of mental activity [26–28] and can be used both in
fundamental studies and in practical implications involving
the design of BCIs for measuring and controlling attention
and/or cognitive load [29].

II. METHODS

A. Experimental design

The experiments were carried out during the first half of
the day at a specially equipped laboratory where the volunteer

was sitting comfortably and effects of external stimuli, e.g.,
external noise and bright light, were minimized. The S = 8
subjects performed a series of attentional tests using the
Schulte table. The Schulte table represents a square matrix
with five columns and five rows, in which numbers from 1 to
25 are placed in random order [see Fig. 1(a)]. The volunteer is
asked to search for numbers in ascending order (from 25 to 1)
and point to them in the table using a pen. The experiment
for each subject [see Fig. 1(b)] contained M = 5 active stages
(Schulte table evaluation), which were alternating with the
passive stages (rest).

During all experiments, the multichannel EEG data have
been acquired using the BE Plus LTM amplifier (EB Neuro
S.P.A., Florence, Italy). Data were recorded at an 8 kHz sam-
pling rate using the standard bipolar method of registration
with two reference and N = 19 electrodes [see Fig. 1(d)].
The adhesive Ag/AgCl electrodes based in special prewired
head caps were used to obtain the EEG signals. Two reference
electrodes, A1 and A2, were located on mastoids, while the
ground electrode N was located above the forehead. The
EEG signals were filtered by a bandpass filter with cutoff
points at 1 Hz (HP) and 300 Hz (LP) and a 50-Hz Notch
filter. To accurately split the recording into the active (Shulte
table evaluation) and passive (rest) phases we used the video
recording during all stages of the experiment.

Subjects participated in the experiment on a voluntary and
gratuitous basis. All participants signed an informed medical
consent to participate in the experimental work and received
all necessary explanations about the process, including their
agreement for further publication of the results. Acquired
experimental data were processed with respect for the con-
fidentiality and anonymity of research respondents. The ex-
perimental studies were performed in accordance with the
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Declaration of Helsinki and approved by the local research
Ethics Committee of the Yuri Gagarin State Technical Uni-
versity of Saratov.

B. Reconstruction of multiscale connectivity

We use the wavelet bicoherence to estimate the strength
of interaction between the brain regions. The wavelet bi-
coherence has proved itself to be very powerful instrument
to quantify the interactions on various scales of biological
systems [22,30,31], including brain activity [32,33]. Below a
detailed description of the calculation of wavelet bicoherence
for the pairs of EEG signals is presented.

We calculate the complex-valued wavelet coefficients
Wi (f, t0) for each EEG channel xi (t ) as

Wi (f, t0) =
√

f

∫ t0+4/f

t0−4/f

xi (t )ψ∗(f, t − t0)dt, (1)

where i = 1, . . . , N is the number of the considered EEG
channel, N = 19 is the total number of EEG channels, t0
specifies the wavelet location on the time axis and the asterisk
denotes the complex conjugation, and ψ (f, t ) is the mother
wavelet function. We use the Morlet wavelet, which is often
utilized for processing of biological signals [22],

ψ (f, t − t0) =
√

f π−1/4eiω0f (t−t0 )e−f 2(t−t0 )2/2, (2)

where ω0 is the wavelet scaling parameter and i is an imag-
inary unit. Previously we found that parameter ω0 = 2π in
the continuous wavelet transform provides an optimal time-
frequency resolution of EEG signal [34,35].

To measure the degree of coherence between two
EEG signals xi (t ) and xj (t ), we use the corresponding
complex-valued wavelet coefficients Wi (f, t ) = ai + ibi and
Wj (f, t ) = aj + ibj .

Wavelet bicoherence, σij (f, t ), is estimated based on the
mutual wavelet spectrum Wi,j (f, t ) of the signals xi (t ) and
xj (t ). Similarly to Ref. [36] the coefficients Re[σij (f, t )]
and Im[σij (f, t )] represented as real and imaginary parts of
mutual wavelet spectrum can be calculated via Eqs. (3) and
(4), respectively:

Re[σij (f, t )] = ai (f, t )aj (f, t ) + bi (f, t )bj (f, t )√
a2

i (f, t ) + b2
i (f, t )

√
a2

j (f, t ) + b2
j (f, t )

(3)
and

Im[σij (f, t )] = bi (f, t )aj (f, t ) − ai (f, t )bj (f, t )√
a2

i (f, t ) + b2
i (f, t )

√
a2

j (f, t ) + b2
j (f, t )

.

(4)

Next, we evaluate the degree of coherence between the
different EEG signals, recorded during each EEG trial of
rest or evaluation of cognitive task for each subject p.
The values were averaged over time intervals involved in
each trial of the experiment. As a result, time-averaged
coefficients Re[σij (f )]

Tmp,m,p
and Im[σij (f )]

Tmp,m,p
were

obtained as

Re[σij (f )]Tmp,m,p = 1

MS

S∑
p=1

M∑
m=1

1

Tmp

∫
Tmp

Re[σij (f, t )]dt

(5)

and

Im[σij (f )]Tmp,m,p = 1

MS

S∑
p=1

M∑
m=1

1

Tmp

∫
Tmp

Im[σij (f, t )]dt,

(6)

where M = 5 is the number of stages of cognitive task
evaluation or rest, S is the number of subjects, and Tmp is
the duration of the mth stage of task evaluation by the pth
subject determined by recorded video analysis or the duration
of the rest interval which was fixed at Tmp = 10 s. Based
on coefficients (5) and (6), the degree of coherence, σ (f ),
between the EEG signals was estimated as the amplitude of
the mutual wavelet spectrum:

σij (f ) =
√

{Re[σij (f )]Tmp,m,p}2 + {Im[σij (f )]Tmp,m,p}2.

(7)

The σij (f ) function takes values from 0 to 1, containing
the information about the degree of phase coherence of the
two signals xi (t ) and xj (t ) for the particular frequency. There
σij (f ) = 0 implies that there is no phase coherence at the cur-
rent frequency, for σij (f ) > 0 partial coherence takes place
and σij (f ) = 1 indicates complete coherence.

Obtained values (7) were then averaged over EEG fre-
quency bands. As the result, coefficients σij (s) defined the
coherence between EEG signals in six typical EEG frequency
bands (�f = δ, θ, α, β1, β2, γ ):

σij (�f ) = 1

�f

∫
�f

σ (f ) df. (8)

C. Network analysis

Using the wavelet bicoherence between the pairs of
channels i, j = 1, . . . , N we reconstruct the σij (�f ) cou-
pling matrices in six considered frequency bands (�f =
δ, θ, α, β1, β2, γ ) [see Fig. 1(e)] for each p = 1, . . . , S sub-
ject’s stage of the experiment for the task evaluation stages
(ESs) and for the stages of rest (RSs). It should be noted that
by definition of the wavelet coherence measure σ the signals
are self-correlated, so the elements of the main diagonal
σii (�f ) = 1.

Due to the aspects of the betweenness calculation in the
weighted networks [19], more specifically, while the weight
is considered as a distance, we should make the inverse
transformation of each adjacency matrix:

wij (�f ) = 1 − σij (�f ), (9)

and thus we have the inverse values within the range of [0,1].
To reveal the features of interaction between different

timescales of neuronal activity during cognitive load we ar-
range the connectivity structures wij (�f ) obtained for each
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Frequency band, �f , in the multiplex network [Fig. 1(f)]:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

wij (δ) E E E E E

E wij (θ ) E E E E

E E wij (α) E E E

E E E wij (β1) E E

E E E E wij (β2) E

E E E E E wij (γ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where E is an identity matrix. It should be noted that in
this process each node (corresponding to the specified EEG
channel) becomes connected to itself in all other layers (EEG
frequency bands). The magnitude of the interlayer links is not
chosen randomly: while the value of wij (�f ) is always less
than 1, although it can be very close to it, the shortest paths
between the nodes located in the same layer will preferably
go through that layer.

Since we have obtained the final network structure, we are
able to calculate the betweenness centrality for the each node,
gi , corresponding to the ith EEG channel:

gi =
∑

i �=j �=k

�i
jk

�jk

, (11)

where �i
jk is the number of shortest paths between node j

and k which pass through node i, and �jk is the total number
of shortest paths between j and k. We use the algorithm for
weighted networks proposed in Ref. [19] and calculate the
values for the each node of the multiplex network (10). After
that we normalize the betweenness centrality of each node on
the total value in the multiplex network:

g′
i = gi∑6N

i=1 gi

. (12)

III. RESULTS

To get insight into the interplay between the timescales of
neuronal dynamics we will first investigate the integral value
of the betweenness of each layer during the resting state and
mental tasks. For this purpose we summarize the values of
betweenness in each layer and represent the final quantity as
a percentage of the total in the multiplex network:

G(δ) =
N∑

i=1

gi, G(θ ) =
2N∑

i=1+N

gi,

G(α) =
3N∑

i=1+2N

gi, G(β1) =
4N∑

i=1+3N

gi, (13)

G(β2) =
5N∑

i=1+4N

gi, G(γ ) =
6N∑

i=1+5N

gi ;

i.e., we calculate the relative number of shortest paths going
through each layer.

The corresponding values for task and rest stages each
gathered from 40 sample multiplex networks are shown in
Fig. 2. One can easily see that the resting state is characterized

by the dominance of lower frequencies. The median value of
delta range betweenness centrality takes more than 30%, theta
range and alpha range take around 20%, and none of the high-
frequency bands demonstrate a median value more than 10%.
We should note the high variance of betweenness in the resting
state, which is conditioned by very individual differences
between the subject’s neuronal activity during passive wake-
fulness [37]. However, during the evaluation cognitive task
the distribution of betweenness in frequency ranges drastically
changes. The first thing which arrests our attention is the
strong narrowing of the boxes. This fact demonstrates that
person’s concentration on the strictly formalized task such as
Schulte table solving leads to emergence of similar functional
connectivity patterns considering both different trials and
subjects. Here we can see the very different distribution of
betweenness among frequency ranges in comparison to the
resting state: median values for each timescale lie in range
10%–20%, and the delta and gamma bands demonstrate very
similar values. The delta frequency range has dropped its
betweenness greatly together with the theta range, while the
alpha band shows a small decrease of betweenness. At the
same time, the sufficient amount of shortest paths is now
going through the high frequencies. We can track a strong
increase of betweenness for all three ranges, beta-1, beta-2,
and gamma, but the gamma band seems the most dominant
among them.

To gain a deeper insight into the connectivity features
during the transition from resting state to cognitive load
we investigate the betweenness values for each node in the
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FIG. 2. The relative value of betweenness centrality, which share
each frequency band in a multiplex network for passive (purple) and
active (orange) phase of the experiment are shown via box plots.
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FIG. 3. The relative value of betweenness centrality for each
channel in the (a) delta, (b) theta, (c) alpha, (d) beta-1, (e) beta-2, and
(f) gamma range for the passive (purple) and active (orange) phase
of the experiment are shown via box plots.

network. Figure 3 shows separate plots for the each frequency
band, displaying each channel’s betweenness centrality. Here
we can observe that the in resting state the majority of
shortest paths are concentrated across the parietal and frontal

lobes (P4, P3, C4, C3, F4, F3). An interesting fact is that
the channels Pz (except the high frequencies), Cz, and Fz
(i.e., channels across longitudinal fissure) do not exhibit high
values of betweenness here, while they are located right inside
this region. This behavior manifests itself across all frequency
bands i.e., layers of the network. The latter is also caused by a
dominance of the specific layer in the network (in our case the
delta range), which redistributes the shortest paths according
to its structure [38]. Some differences between layers still can
be observed as some redistribution of paths in the parietal and
frontal lobes.

The crucial differences between the frequency bands reveal
themselves, and then we proceed to the analysis of the active
stage of experiment, i.e., the evaluation of the cognitive task.
We can see the emergence of an almost uniform distribution
of betweenness in the delta and theta ranges, caused by a
decrease of values corresponding to P4, P3, C4, C3, F4,
and F3 together with visible increase of betweenness of the
temporal (T3, T4, T5, T6), occipital (O1, O2), and frontal
(F5, F6) lobes, which is presented in all frequency ranges.
In the alpha and beta-1 ranges the betweenness of channels
P4, P3, C4, C3, F4, and F3 does not demonstrate pronounced
changes, while in high-frequency beta-2 and gamma ranges it
has grown significantly. In fact, we can observe the gradual
transition from a sharp decrease of betweenness across the
parietal and frontal lobes (P4, P3, C4, C3, F4, F3) in the delta
range to a pronounced increase of this value in the gamma
range. Notably, it is also results in a homogeneous distribution
of betweenness centrality over EEG channels of betweenness
in low frequencies, i.e., delta and theta ranges.

We can track the mentioned changes in detail by plotting
the change in betweenness centrality spatially across the
brain (see Fig. 4). For this reason we calculate the following
quantity for each node in the multiplex network:

εi = gES
i − gRS

i , (14)

i.e., the average difference in the amount of shortest paths go-
ing through the specific node in the task evaluation (gES

i ) and
rest (gRS

i ) stages of experiment. It should be noted that nodes
belonging to different layers exhibit the various amplitude of
changes. For example, the εi for the delta range demonstrates
the larger magnitude due to its strong connectivity in the
resting state. The box plot, which allows us to evaluate this
disparity, is shown in Fig. 4(a).

In the delta range [Fig. 4(b)] we can observe an almost
equal decrease of betweenness in both hemispheres together
with its increase across the longitudinal fissure. The latter
effect is also pronounced in the theta and alpha ranges and
could be a marker of the strengthening of interhemispherical
interaction during the cognitive load in low frequencies. At
the same time, changes in the theta, alpha, and beta-1 ranges
do not demonstrate hemispherical symmetry [Figs. 4(c)–4(e)];
here we can observe much more sufficient decrease in the
left hemisphere, which drifts from the frontal (F3) to parietal
(P3) lobe during the transition from the theta to beta-1 range.
This process is accompanied by the increase of between-
ness in the frontal cortex in high frequencies. However, the
number of shortest paths in the prefrontal cortex, associated
with decision-making patterns, grows in all frequency ranges.
Since the solving of the Schulte table is strongly connected
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with visual perception, we can observe the strong increase
of connectivity in the visual cortex during the evaluation
of this task. In the gamma range the betweenness centrality
grows in all areas of the neural network except the Pz chan-
nel [Fig. 4(g)]. In fact, we can easily track the competitive
interplay between the structural properties of low- and high-
frequency functional networks.

We also check if this behavior is related to the processes
of the cognitive load, and not linked to motor activity and
visual coordination, which are involved during the evaluation
of the Schulte table. For this reason we have carried out a
series of experiments in which participants were asked to
point randomly on an empty whiteboard every 5 s (5 s passive

0
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30

40

50
motor task
cognitive load

FIG. 5. The relative value of betweenness centrality, which share
each frequency band in a multiplex network during the motor task
(blue), and the evaluation of the Schulte table (orange) are shown via
box plots.

stage, 5 s active stage, eight participants). Due to the short
duration of the active phases, their number was increased
to 10 for each participant. The corresponding comparison of
betweenness centrality distribution over frequency bands for
motor action and evaluation of the Shulte table is shown in
Fig. 5. One can see that in the case of motor tasks the structural
features of the multiplex network are much more similar to the
passive phase (see Fig. 2 for comparison) and characterized by
the dominance of low frequencies. This observation bolsters
our conclusion that cognitive load is linked to the increase of
functional connectivity in the high-frequencies range of brain
activity.

IV. DISCUSSION AND CONCLUSIONS

Summing up our study, we have analyzed the evolution
of connectivity patterns, namely, the distribution of shortest
paths, in the brain functional network during the transition
from resting state to cognitive task evaluation. We can observe
the gradual transition from a sharp decrease of betweenness
across the parietal and frontal lobes (P4, P3, C4, C3, F4, F3)
in the delta range to a pronounced increase of these values
in the gamma range. Such dynamics is accompanied by an
increase of betweenness in the brain areas associated with
visual information processing and decision making.

What can it tell us about the processes of brain activity dur-
ing cognitive load? Certainly, we can observe the emergence
of strong interaction in high frequencies such as the beta-2 and
gamma range, the effect well correlated with present research
on attentional and cognitive processes in the brain [10]. At
the same time, we can see that such activity strongly affects
the overall connectivity of the neural network and shapes the
shortest paths in a more uniform distribution, caused by the
increase of connectivity in the temporal (T3, T4, T5, T6),
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FIG. 6. The spatial distributions of betweenness centrality in the
delta and gamma range in transition from a resting state to task
evaluation. Here FPN = frontoparietal network, OC = occipital
cortex, PFC = prefrontal cortex.

occipital (O1, O2), frontal (F5, F6), and prefrontal (Fp1, Fp2)
lobes. To get a clear representation of this process, we have
depicted the spatial maps of betweenness centrality in the
delta and gamma ranges in Fig. 6. This behavior reveals that
mental activity, such as evaluation of cognitive tasks, involves
the emergence of a distributed functional network binding the
areas of the brain with dynamical interactions. Such an effect
is very consistent with Refs. [39,40], where authors show a
correlation between efficiency of the resting state functional
network and the person’s IQ.

Our results are in good correspondence with the recent
research on cognitive load: the emergence of gamma band
oscillations across the brain during working memory load
is also shown in Ref. [26] by analysis of intracranial EEG
recordings. Similar to Ref. [27] where the authors use the
features of functional network of mental task classification,
we observe strong hemispherical asymmetry of alpha range
connectivity involving the strengthening of the right hemi-

sphere. The increase of beta range connectivity in the pre-
frontal and frontal lobe during perception and recognition is
also shown in Ref. [28], whose authors examine functional
networks built on the basis of wavelet bicoherence.

The strong involvement of the fronto-parietal network in
cognitive task solving and working memory is known from
recent fMRI studies. Lee and authors [41] compare the fMRI
signals of adolescents during the evaluation of Raven Pro-
gressive Matrixes of various complexity. They have found
that tasks with high complexity specifically increased regional
activity in the bilateral fronto-parietal network, including the
lateral prefrontal, anterior cingulate, and posterior parietal
cortices. Harding and authors [42] have found that both cog-
nitive control and working memory tasks activate the fronto-
parietal network but in different connectivity configurations.
In our study we have shown that activation of this area is
directly connected with the high-frequency neural interaction
in the gamma band (see Fig. 6 once again). The cognitive
task evaluation is accompanied by strong information trans-
fer through the gamma range all over the brain, in which
the fronto-parietal network plays the role of a pacemaking
hub [43].

Despite particular features of the network evolution, we
can observe the strong interplay between the connectivity
of high and low frequencies. This effect is most vividly
pronounced if we consider the distributions for the delta and
gamma ranges [see Figs. 4(b) and 4(g)]: during the transition
from resting state to evaluation of cognitive task they demon-
strate almost opposite changes. Such behavior once again
supports the hypothesis of a competitive interaction between
frequency scales of a neural network [44,45].
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