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Abstract Understanding and reconstructing brain dynamics from partial or noisy neuroimaging data
remains a critical challenge in computational neuroscience. This study presents a novel framework combin-
ing neural mass modeling and reservoir computing (RC) to recover missing blood-oxygen-level-dependent
(BOLD) signals while preserving functional connectivity patterns. We first simulate whole-brain dynamics
using a Wilson–Cowan neural mass model with biologically realistic structural connectivity, optimizing
parameters to match empirical functional connectivity matrices. Next, we employ RC to reconstruct indi-
vidual BOLD signals using only the remaining signals as inputs. Our results demonstrate that RC achieves
high-fidelity signal recovery, particularly for strongly interconnected regions. Crucially, the functional con-
nectivity matrices derived from reconstructed signals show near-perfect agreement with the original sim-
ulated matrices, despite minor amplitude discrepancies. This work establishes RC as an effective tool for
neuroimaging data reconstruction, with direct applications in both research and clinical settings where
data loss or artifacts may compromise analyses.

1 Introduction

Currently, a rapidly developing area of scientific research is the recovery of hidden data in experimentally studied
systems, which can manifest itself in such aspects as the recovering hidden features of the system to build an
adequate model [1], data supplementation based on the restored features of the system [2, 3], recovering signals
lost during the experiment [4, 5], recovering data that cannot be measured directly [6, 7].

One of the key areas in which the described problem is quite acute is neuroscience, where some of the experi-
mentally recorded signals of brain activity may be missing for some reason. One of these signals is blood-oxygen-
level-dependent (BOLD) one measured by functional magnetic resonance imaging (fMRI). The BOLD signal arises
from neurovascular coupling, where localized neural activity triggers hemodynamic changes [8]. Multivariate BOLD
signals and the derived brain functional networks serve as a robust methodological framework for the diagnosis
of various neurological and psychiatric disorders [9–11]. These include, but are not limited to, major depressive
disorder [12], Alzheimer’s disease [13], mild cognitive impairment [14], and chronic disorders of consciousness [15].
Recent advances in computational neuroscience have further enhanced diagnostic accuracy through the integration
of machine learning and deep learning techniques [16, 17].

To elucidate the underlying neural mechanisms, researchers frequently employ numerical simulations of whole-
brain dynamics based on neuroimaging data [18, 19]. Such computational approaches provide valuable insights
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into the spatiotemporal organization of brain activity, facilitating a deeper understanding of both normal and
pathological brain function. The whole-brain modeling is a field of neuroscience which develops and studies com-
putational models of whole-brain neural activity. This activity depends on three major ingredients: anatomical
connectivity, local neural dynamics and external input. One of the important directions in whole-brain modeling
is the study of the brain resting state in which the external input is absent, and the brain is considered as an
autonomous dynamical system. The central approach of the modern whole-brain modeling is to consider the brain
as a dynamical network of interacting nodes. Each node represents certain brain region defined by neuroimaging-
based brain parcellations, while connectivity between the nodes is derived from neuroimaging-based anatomical
connectivity measurements. Thus, to obtain the model of the whole brain, it remains to define the local dynamics
of the nodes and set parameters, such as the connections strength, excitability, and noise level. However, the local
dynamics and the parameters can vary quite widely, which raises the question of their proper choice.

As for the local dynamics of the brain regions, it is typically described by the so-called neural mass models. These
are low-dimensional dynamical systems describing the activity of neural populations in terms of averaged variables
such as mean membrane potential or mean firing rate. There are many different neural mass models popular and
useful in various contexts, such as Wilson–Cowan model [20], Jansen–Rit model [21], and Wong–Wang–Deco model
[22]. Recently, the so-called next-generation neural mass models rapidly gain popularity [23–26]. Next-generation
models were proved useful in a number of contexts including the modeling of β and γ oscillations [27], working
memory [28], and whole-brain simulations [29]. Within this approach, individual brain regions or even the brain
as a whole can be considered as a system of interacting populations.

As for the choice of parameters for the whole-brain model, the most reasonable approach is to fit the model so
that it best reproduces some experimentally observed functional properties of the brain. In the studies devoted to
the resting-state modeling, the common objective of the parameters tuning is the similarity between the simulated
and empirical functional connectivity matrices [22, 30–32].

One of the most powerful paradigms for modeling and prediction of complex dynamical systems is the Reservoir
computing (RC), leveraging the inherent computational capabilities of recurrent neural networks (RNNs) with
fixed, randomly initialized weights [33, 34]. Unlike traditional RNNs that require costly training of recurrent
connections, RC only trains a linear readout layer, making it highly efficient for time-series prediction and system
identification [35]. This approach has found success in diverse applications, including chaotic system forecasting
[36], macroscopic signals prediction [37] and recovering the macroscopic model and experimental signals [5]. RC’s
ability to approximate nonlinear dynamical systems with minimal training data makes it particularly appealing
for modeling large-scale brain activity, where mechanistic simulations are often computationally prohibitive.

In this paper, we address the challenge of reconstructing missing BOLD signals by combining biologically
plausible neural mass modeling with data-driven reservoir computing. We numerically simulate the dynamics
of BOLD signals using neural mass models and the brain connectomes of the healthy subjects. The quality
of simulation is estimated by comparing the functional connectivity matrices. We investigate the capability of
recovering one of the signals using reservoir computing and applying all other signals as the input ones. We show
that the functional connectivity matrices constructed from the recovered signals are perfectly coincide with the
modeled ones.

2 Methods

2.1 Neural mass model

In our study, we used the whole-brain model as a network of Nn = 70 nodes, each representing one brain region
according to Desikan–Killiany brain parcellation scheme [38]. Each node was modeled by a Wilson–Cowan model
[20]:

τE
dEi(t)

dt
= −Ei(t) + S

⎛
⎝η + cEEEi(t) − cEIIi(t) +

∑
j �=i

CijEj(t − τij)

⎞
⎠ + σξi(t), (1a)

τI
dIi(t)

dt
= −Ii(t) + S(cIEEi(t) − cIIIi(t)) + σχi(t), (1b)

where i, j = 1, . . . , Nn are the brain region indices, Ei and Ii are mean firing rates of excitatory and inhibitory
populations from the i -th region, τE and τI are the membrane time constants of the excitatory and inhibitory
populations, η is the bias current to the excitatory populations, CEE , CEI , CIE and CII characterize the coupling
between local excitatory and inhibitory populations, cij define the coupling between the i -th and the j -th regions,
τij are the coupling delays between the i -th and the j -th regions, σ is the noise strength, ξi(t) and χi(t) are the
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independent standard white noise signals with zero mean and unit variance, and S(·) is the sigmoid-like activation
function

S(x) = (1 + exp(−λβ))
[
(1 + exp(λ(β − x)))−1 − (1 + exp(λβ))−1

]
(2)

with λ = 20 and β = 0.3.
The connectivity of the network was derived from the public dataset [31] which provides structural connectivity

matrices of 200 health subjects. In particular, the coupling weights Cij were calculated as

Cij = G
SCij

Nn〈SC〉 , (3)

where G is the global coupling coefficient, SC is the structural connectivity matrix from the dataset, and 〈SC〉 is
the mean of its off-diagonal elements. Similarly, the delays τij were calculated as

τij = D
PLij

〈PL〉 , (4)

where D is the coupling delay coefficient, PL is the path length matrix from the dataset, and 〈PL〉 is the mean of
its off-diagonal elements.

The whole-brain model was simulated for 300 s using the Euler integration scheme with the time step δt=1 ms.
Then the first 50 s were dropped, and the remaining 250 s were used for the parameters tuning. For this sake, the
simulated activity of the regions was projected to the BOLD signals using the Balloon–Windkessel model [39]:

dsi

dt
= Ei − κsi − γ(fi − 1), (5)

dfi

dt
= si, (6)

τ
dvi

dt
= fi − v

1/α
i , (7)

τ
dqi

dt
=

fi

(
1 − (1 − ρ)1/fi

)
ρ

− v
1/α
i qi

vi
, (8)

where si is the vasodilatory signal in the i -th region, fi is the blood inflow, vi is the blood volume, qi is the
deoxyhemoglobin content, κ = 0.65 s−1 is the signal decay rate, γ = 0.41 s−1 is the rate of flow-dependent
elimination, τ = 0.98 s is the hemodynamic transit time, α = 0.32 is the Grubb’s exponent, and ρ = 0.34 is the
resting oxygen extraction fraction. The BOLD signal from the i -th region is calculated as

yi = k1(1 − qi) + k2(1 − qi/vi) + k3(1 − vi), (9)

where k1 = 7ρ, k2 = 2, k3 = 2ρ − 0.2.
The simulated BOLD signals of the regions were used to construct the simulated functional connectivity matrix

SFC , which was compared with the empirical functional connectivity matrix EFC in order to tune the model
parameters. The set of tunable parameters was θ = (D, G, η, σ, cEE , cEI , cIE , cII , τE , τI) ∈ R10. We used
genetic algorithms to optimize the model parameters varying them in the ranges indicated in Table 1. As the
objective function to minimize, we used various types of distance measures between the simulated and empirical
connectivity matrices:

1. Correlation distance defined as dC = 1−c, where c is the Pearson correlation coefficient between the vectorized
upper triangles of SFC and EFC .

2. Euclidean distance dE between the vectorized upper triangles of SFC and EFC .
3. Geodesic distance defined as dG =

∣∣log
(
SFC−1/2EFC SFC−1/2

)∣∣
F
, where log denotes the matrix logarithm,

A−1/2 is the inverse square root of matrix A, and ||F is the Frobenius norm [40].

During the optimization procedure, we ran tens of thousands of simulations for each of the patients which allowed
to analyze the statistics of the three distance measures which is illustrated in Fig. 1. We found that the two
measures are strongly correlated for all the patients: the Pearson correlation coefficient and the geodesic distance
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Fig. 1 The correlations between the three different measures of the similarity between the SFC and EFC matrices

Table 1 The parameters
for optimization in a model Parameter Meaning Minimal value Maximal value

G Global coupling coefficient 0.1 0.5

D Global delay coefficient 0 10

η Bias current 0.0 0.2

σ Noise strength 0.0 0.1

CEE Local excitatory-to-excitatory coupling 0.5 2

CEI Local excitatory-to-inhibitory coupling 0.5 2

CIE Local inhibitory-to-excitatory coupling 0 1

CII Local inhibitory-to-inhibitory coupling 0 1

τE Excitatory membrane time 10 30

τI Inhibitory membrane time 10 30

(Fig. 1a). At the same time, the Euclidean distance turned to be weakly correlated with the former two measures
(Fig. 1b, c). These observations lead to the following solution: we used the geodesic distance as the function for
optimization which also guaranteed high values of the Pearson correlation.

2.2 Reservoir computing

To recover the BOLD signals obtained from the network of the neural mass models, use a subclass of the recurrent
neural network–reservoir computing. Figure 2 illustrates a schematic representation of the dynamics of the whole-
brain model and the process of reconstruction the BOLD signals using reservoir computing. It consists of three
layers: input, hidden (reservoir) and output.

The input layer consists of Nn − 1 input signals Bi at i -th time moment. They are applied to the hidden layer
via the input-to-hidden coupling matrix WIH of size (Nn − 1) × N , where N in the size of the reservoir. WIH

matrix is generated randomly and characterized by the hyperparameter δIH defining the density of the connections
from the input neurons to the hidden ones. The strength of the existing couplings are equal to 1, so WIH consists
of only {1} and {0} values.

The hidden neurons are described by the following equation:

hi = (1 − l)hi−1 + l tanh(WIHBi + WHHhi−1), (10)

where l is the hyperparameter describing the leaking rate, WHH is the hidden-to-hidden sparse matrix with size
N × N generated randomly with hyperparameters R and δHH which are the spectral radius and the density of the
connections respectively.

The output layer consists of one linear neuron needed to generate the recovering signals and described as

oi = WHOhi, (11)
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Fig. 2 A schematic representation of the dynamics of the whole-brain model and the process of reconstruction the BOLD
signals using reservoir computing

where WHO is the hidden-to-output matrix defines in the training process by minimizing the L2-error between
the target X and predicted o signals:

Ttrain∑
i=1

||oi − yi||2+b||WHO||2, (12)

where y is the target signal, Ttrain is the duration of the training process, b = 10−3 is the regularization parameter.
After the training process is complete, we test the RC described by Eqs. (10,11), where the WIH and WHH

matrices are the same as in the training mode, and the matrix WHO of the output layer is determined in the
training phase by minimizing the L2-error (12). Then, we calculate r2-score between the predicted and the target
signals to estimate the quality of prediction:

r2 = 1 −
∑Ttest

i=1 (yi − oi)2∑Ttest
i=1 (yi − ȳ)2

, (13)

where ȳ = 1
Ttest

∑Ttest
i=1 yi is the mean value of y , and Ttest is the duration of the testing process.

We optimize the hyperparameters R,δIH, δHH, and l by employing an optimization algorithm over the intervals
[0.1, 1], [0.05, 0.5], [0.05, 0.5], and [0.1, 1.0], respectively. For each channel restoration, the optimization was con-
ducted independently over 500 iterations, with each iteration corresponding to a distinct parameter combination;
the configuration yielding the highest r2 was selected.

3 Results

First, we fit the parameters of neural mass model for each of five subject in order to achieve good coincidence
between the connectivity matrices obtained by calculating Pearson correlation coefficient C for real and simulated
BOLD signals. Figure 3a, b illustrates an example of the real and simulated connectivity matrices. As one can see,
in real data there are the areas which are not correlated to any other, and the ones which are in a good correlation
with the others. The simulated signals show the same pattern: one can see that the same brain areas show no
correlation with others, while other signals do.

Then, for each subject we solve the task of recovering each simulated signal using all others. For that, we train
the RC to recover each signal by applying all other signals as the input ones. As a result, we obtain 350 recovered
signals: 70 per each subject. Figure 4a illustrates an example of the recovered signal compared to the original one.
As one can see, the RC perfectly predicts all the time moments of the oscillations. The only small error occurs
with the amplitude of the oscillations: RC makes it smoother.

We investigate whether there is a dependence between the original connectivity strength of the signal and
the recovering accuracy. Figure 4b illustrates the dependence of r2-score between the predicted and the target
signals on the maximal connectivity strength c between the predicting and other model signals. Each cross here
corresponds to each predicting signal of one of five subjects. As one can see on the right histogram, most part of
the signals characterized by high accuracy (r2 > 0.5) while the maximal connectivity strength of the most par of
the signals is low (c < 0.5 on the top histogram). All signals with maximal connectivity strength more than 0.5
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Fig. 3 The connectivity matrices between the brain regions obtained using a real BOLD signals, b simulated signals, and
c recovered simulated signals

Fig. 4 a Example of RC’s
prediction and b the
dependence of r2-score
between the predicted and
the target signals on the
maximal connectivity
strength between the
predicting and other model
signals. Each cross
corresponds to each
predicting signal of one of
five subjects

are recovered with high accuracy. Small part of the signals with c < 0.15 cannot be recovered with good accuracy
(r2 < 0). The rest part of the signals with 0.15 < c < 0.5 can be recovered with any accuracy − 0.8 > r2 ≤ 1.0.
We can suppose that the accuracy for that group depends not only on the maximal connectivity strength but also
from the mean one: the more signals are correlated to the recovered one, the higher the mean connectivity strength
and the accuracy.

As a final step, we compare the connectivity matrices obtained by simulated and recovered signals. To obtain
the second one, we use only the RC’s signals, without using any of the original ones. As one can see on Fig. 3c,
the recovered matrix perfectly replicates the simulated one. The regions which are not connected to any other in
the simulated network are similarly have no functional connectivity in the recovered data. The others have the
connections with almost the same strength c as in the simulated network.

Therefore, we can conclude that despite the incapability of RC to correctly recover the signals which are weakly
connected to the other ones, their macro-characteristic as the functional connectivity strength is reproduces with
very high accuracy. The signals with strong connectivity can by recovered with high accuracy of both r2 and c.

4 Conclusions

In this study, we investigated the recovery of missing BOLD signals in whole-brain modeling using a combination of
neural mass models and reservoir computing (RC). Our approach demonstrated that RC can effectively reconstruct
BOLD signals from a subset of available data while preserving key functional connectivity patterns.
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By tuning the parameters of the Wilson–Cowan neural mass model, we achieved a strong correspondence between
simulated and empirical functional connectivity matrices. This confirms the model’s ability to replicate realistic
brain dynamics under resting-state conditions.

RC successfully recovered missing BOLD signals with high accuracy, particularly for signals exhibiting strong
functional connectivity with other regions. The prediction quality, measured by the r2-score, was highest for signals
with maximal connectivity strength, while weakly connected signals proved more challenging to reconstruct.

Despite minor discrepancies in signal amplitude, the functional connectivity matrices derived from recovered
signals closely matched those obtained from the original simulated data. This indicates that RC can reliably
capture macroscopic network properties even when individual signal reconstruction is imperfect.

Our results highlight the potential of reservoir computing as a powerful tool for recovering missing or corrupted
neuroimaging data, with applications in both computational neuroscience and clinical settings. Future research
could explore the integration of more advanced neural mass models, the impact of noise on reconstruction accuracy,
and the extension of this framework to task-based fMRI data
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