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Abstract—In this paper, we consider applying computer vision
algorithms for the classification problem one faces in neuro-
science during EEG data analysis. Our approach is to apply a
combination of computer vision and neural network methods to
solve human brain activity classification problems during hand
movement. We pre-processed raw EEG signals and generated
2D EEG topograms. Later, we developed supervised and semi-
supervised neural networks to classify different motor cortex
activities.

Index Terms—EEG, Computer Vision, Neural Networks, CNN,
GAN

I. INTRODUCTION

Brain signals classification is one of the essential problems

in neuroscience [1]–[9]. The typical approach for analysis

and classification of human brain motor activity collected by

EEG are Linear Discriminant Analysis (LDA), Support Vector

Machine (SVM), and K-Nearest Neighbors (k-NN) classifier

[10]–[14]. Neural network-based classification is also widely

used. It includes Artificial Neural Networks (ANN), Con-

volutional Neural Networks (CNN), Deep Neural Networks

(DNN), and a lot more [15]–[17].

In this work, we work with data collected by EEG, using

wavelet analysis techniques to generate a dataset of topograms,

and implement neural network-based solutions for brain motor

activity classification problems.

II. DATA COLLECTION AND DATA STRUCTURE

Fifteen healthy volunteers (age: 20-45 years, males) partic-

ipated in the experiment. All of the participants were right-

handed, amateur practitioners of physical exercises, and non-

smokers. The subjects were conditionally healthy: no diag-

nosed diseases of the musculoskeletal or nervous system, no

prescribed medications. Prior to the experiment, the partici-

pants were asked to maintain a healthy lifestyle for a least

48 hours, including 8-hours night rest, prohibited alcohol

consumption, limited caffeine consumption, and moderate

physical activity.

Before the beginning of the experiment, the volunteers were

instructed about its goals and methods, along with possible

inconveniences. The experimental procedure was performed

following the Helsinki’s Declaration and approved by the local

Ethics Committee of the Innopolis University.

A. Task

The experiment was performed as follows. The subject was

sitting in a comfortable chair with hands placed on armrests.

Each experiment began and ended with a 3-min recording

of background brain activity, during which the subject was

instructed to relax and make no hand movements. During

the active phase of the experiment, the subject was asked to

perform movements with his left or right hand according to

the screen instructions. There were 40 total hand movement

trials (20 for each hand).

Each hand movement trial consisted of several phases

accompanied by specific commands on the monitor. The trial

started with the fixation of the subject’s attention: a bright

cross appeared on a black screen for 2 seconds and acted

as a signal for the subject to prepare for the trial. Attention

fixation was followed by a visual cue: the cross stayed on the

screen, and the left- or right-oriented arrow appeared on the

top of it for 1.5 seconds. During this phase, the subject was

informed that the left- or right-hand movement was required,

correspondingly. The next phase was motor execution: the

arrow disappeared from the screen, but the cross stayed for

5 seconds. During this time interval, the subject performed

the required hand movement. It consisted of bending and

unbending of fingers to the palm’s center. The trial ended with

rest: the cross disappeared, and the black screen was shown for

15 seconds. During this phase, the subject rested and waited

for the next command.

B. EEG data acquisition and preprocessing

EEG signals were recorded using the actiCHamp electroen-

cephalograph manufactured by Brain Products, Germany. EEG

signals were recorded with 32 channels in accordance with

the 10-10 scheme. The ground was located at the site of

the Fpz electrode, and the reference electrode was placed

behind the right ear. For EEG registration, active Ag/AgCl

electrodes ActiCAP were used, which were located on the

scalp surface in the sockets of a special EasyCAP cap. To
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improve signal quality and provide better conductivity, the

scalp was pretreated with NuPrep abrasive gel, and then the

electrodes were positioned using SuperVisc conductive gel.

During the experiment, the conductivity values were monitored

at each of the EEG electrodes. Typically, the values were 25

< kΩ which is sufficient for the correct operation of active

EEG electrodes. The raw EEG signals were sampled at 1000

Hz and filtered by a 50–Hz notch filter by an embedded

hardware-software data acquisition complex. Additionally, raw

EEG signals were filtered by the 5th-order Butterworth filter

with cut-off points at 1 Hz and 100 Hz. Eyes blinking and

heartbeat artifacts removal was performed by the Independent

Component Analysis (ICA). Data was then inspected manually

and corrected for remaining artifacts.

C. Data processing

After the experiment, we have raw EEG data for 15 human

subjects and 20 trials for each human subject.

The next step is to convert raw EEG data into 2D human

scalp topographies and to choose correct samples from data

trials. There is no formally verified correct way to do that. In

this work, we empirically discovered the next sample selection

strategy, which led to satisfying results:

• Chosen frequency is ”mu” (9-11 Hz). ”Mu” frequency

was chosen because of the nature of the experiment.

It is well known, that ”mu”/”alpha” frequencies are

responsible for motor activity.

• To avoid edge effects, we cut the following intervals out:

– 5.0-5.5 seconds,

– 8.5-10.0 seconds.

• Time frame 0.0-5.0 seconds was not used. This interval

corresponds to the recording of “baseline” activity.

• To extract the maximum amount of useful data we use

“slicing windows” as a strategy to export EEG topogra-

phies:

– 5.5-7.0 seconds,

– 6.0-7.5 seconds,

– 6.5-8.0 seconds,

– 7.0-8.5 seconds.

• To double the exported amount of data we use two

different baseline procedures:

– “absolute”,

– “relative”.

To generate EEG topographies Matlab’s package FieldTrip

Toolbox was used [18].

D. Finalized dataset

The final dataset consists of 939 images and two classes.

The resolution of images is 840 by 630 pixels. Dataset

structure is represented in Figs. 1 and 2. Approximately data

was split in 80/20 proportion. 80% of images are train set,

20% of images are test set. The current data split was chosen

according to Scaling Law [19] splits.

Fig. 1. Left hand-related EEG topography in Mu frequency band.

Fig. 2. Right hand-related EEG topography in Mu frequency band.

III. CONVOLUTIONAL NEURAL NETWORK (CNN)

Input shape for Convolutional Neural Network is 84 by 63

pixels. Reshaped images tended to better quality performance

than original images with the same network structure [20].

Other parameters of the network were configured empirically

during the development.

The current network uses a 5 by 5 kernel. The network

contains four convolutional layers with increasing density, four

pooling layers with dimensions 2 by 2, three fully connected

layers with decreasing density to the number of classes we

were looking for.

ReLU (Rectified Linear Unit) was chosen as an activation

function. ReLU was selected for the sake of reducing com-

putational expenses and compensating high dimensionality of

other parts of the designed network. To the last fully connected

layer Softmax activation function was used. ReLU activation

function is defined as the positive part of its argument. Here,

x is a input of neuron:

Relu(x) = max(0, x) (1)

SoftMax is commonly used as an activation function for

the last layer of Artificial Neural Networks (ANN). SoftMax

uses Luce’s choice axiom and normalizes the output of the

network to a probability distribution over predicted output

classes. Input of SoftMax is a vector x of K amount of real

numbers:

Softmax(xi) =
exp(xi)∑K
j exp(xj)

(2)
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A. Results

Convolutional Neural Network performance is satisfying

for our classification problem. Supervised learning on just

10 epochs reaches an accuracy of 93,75%. Algorithm perfor-

mance on a larger number of epochs is unpredictable but a

bigger size train dataset may lead to better performance.

Fig. 3. The CNN’s accuracy is satisfying. The network reaches accuracy over
90%even on small-scale data.

IV. SEMI-SUPERVISED ADVERSARIAL AUTOENCODER

(AAE)

The main idea of GAN-based methods is a competition

between two objects: a generator G and a discriminator D.

Generator is trying to create images that look like they belong

to the original dataset X . The work of the discriminator is

to distinguish between original data X and generated images

G(X). In the best-case scenario, the training stops when

the generator can outplay (“fool”) the discriminator. So, the

generalized training objective for GAN can be described as:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]−
−Ez∼pz(z)[logD(G(z))]

(3)

In the current architecture, we use two sub-networks made

up for autoencoders [21]. The training objective for the

discriminator sub-network is to maximize a pixel-wise error

between the reconstructed image from original dataset X and

generated image G(X):

LD = ‖X −D(X)‖1 − ‖G(X)−D(G(X))‖1 (4)

At the same time, the generator is trying to minimize the

same error and “fool” the discriminator. Training objective for

the generator may be represented as:

LG = ‖X −D(X)‖1 + ‖G(X)−D(G(X))‖1 (5)

We chose Lg (pixel-wise error) to achieve sharper results,

following insights from Isola [22]. For the sake of having a

more robust model, generator sub-network and discriminator

sub-network are created only from fully convolutional layers.

A. Results

The network was trained at 400 epochs. The training results

are satisfying for our goals. Still, the results of each training

are unstable. Training results are floating. The network success

rate floats from 60% to 68% during different training sessions.

The best-achieved result is 68%.

Fig. 4. The Confusion Matrix of Adversarial Autoencoder. 1 = class ”left
hand”, 0 = class ”right hand”.

Fig. 5. Original Image after the augmentation is on a left. Generated Image
is on a right. Step 0.

Fig. 6. Original Image after the augmentation is on a left. Generated Image
is on a right. Step 150.
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V. CONCLUSION

In the work, we explored opportunities and capabilities of

neural networks and computer vision-based techniques in the

analysis and classification of human brain motor cortex activity

using EEG neuroimaging. We have tested both supervised

and semi-supervised approaches. As a result, motor cortex

activity was successfully classified. However, the adversarial

autoencoder approach requires more time and effort to achieve

better results.
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