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Abstract—We study the performance of a reservoir computing-based network in dynamics forecast of a
FitzHugh–Nagumo model driven by white noise versus reservoir size. We show that the accuracy of signal
prediction of a model neuron strongly depends on the number of neurons in the reservoir. The most accurate
prediction of both the dynamics itself and the simulation of the coherence resonance phenomenon is
achieved when using 500 neurons.
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INTRODUCTION
Nowadays, recurrent neural networks have become

a widely used tool for predicting various temporal
dependencies [1]. They are used to predict the spatio-
temporal dynamics of complex nonlinear systems,
such as the propagation of pulses in optical fiber [2],
the systems of Lorenz and Kuramoto–Sivashinsky
differential equations [3], as well as the logistic map
and the Hénon map [4]. The chaotic nature of such
systems makes them very difficult to predict.

The nonlinear dynamics of the electrical activity of
biological neurons are particularly important for pre-
diction. Artificial neural networks have already been
successfully used to classify brain neuron activity data
[5]. Further development of prediction methods based
on neural activity data can be facilitated by studying
the possibility of using neural networks to model the
dynamics of mathematical models of neurons. Such
models include the Hodgkin–Huxley, FitzHugh–
Nagumo, and Hindmarsh–Rose systems [6–8]. In
such systems in the excitable state, under external
noise driving, the effect of coherence resonance can
occur, characterized by the presence of a certain noise
amplitude at which the coherence of the induced
oscillations reaches a maximum [9–11].

To model the behavior of the FitzHugh–Nagumo
stochastic neuron, including the phenomenon of
coherence resonance, we used a reservoir computing -
based recurrent network, which previously demon-
strated a high ability to reproduce the dynamics of the
original system at different noise levels, having trained

on only one of them [12]. Reservoir computing has
also been used to predict the dynamics of coupled net-
works of oscillators [13].

In this paper we investigate the effect of the number
of reservoir neurons on the ability of a recurrent net-
work to predict the dynamics of a FitzHugh–Nagumo
neuron excited by external white noise, and to model
the phenomenon of coherence resonance.

FITZHUGH–NAGUMO MODEL
The FitzHugh–Nagumo model is used as a model

neuron for training and testing the reservoir comput-
ing-based network. It is described by the following sys-
tem of differential equations:

(1)

where x denotes the fast variable of the system, which
is interpreted as the membrane potential, y is the slow
recovery variable, I = 0.3 is the value of the external
injected current, a = 0.7 and b = 0.8 are the system
parameters. The parameter τ = 12.5 separates the time
scales of the fast and slow variables, ξ(t) is a white
noise with zero mean and unit variance, and the value
D regulates its amplitude. For these parameter values,
the FitzHugh–Nagumo system is in the subthreshold
steady state, in which the effect of noise ξ(t) is capable
of inducing spikes in the system.

The Euler method with an integration step dt = 0.1
was used to integrate the system.

( )+ −= − − + = + ξ
τ

� �

3
, ,

3
x a byxx x y I y D t
471



472 KULAGIN et al.

Fig. 1. Schematic representation of the reservoir computing network during the process of training (a) and testing (prediction) (b).
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NEURAL NETWORK MODEL
The used neural network model consists of three

layers: input neurons layer, recurrent neurons hidden
layer (reservoir), and output neurons layer (Fig. 1).

The input neuron layer receives a vector i(t) as an
input, which includes the values of the variables x(t)
and y(t), as well as the scaled noise value Dξ(t). Each

of the input signals is connected to  reservoir neu-

rons, where  is the total number of recurrent neu-
rons. The connection strengths between the input sig-
nals and the reservoir neurons are determined by the
input weights matrix , whose values are randomly
taken from the uniform interval [–1, 1].

The recurrent connections between the neurons of
the reservoir are defined by the matrix , whose ini-
tial values are distributed uniformly in the interval

[0, 1]. The density of the matrix  is , where d is

a tunable hyperparameter.  is then rescaled accord-
ing to the following equation:

(2)

where  is the rescaled hidden layer weights matrix,
 is the initial value of the spectral radius , ρ is a

hyperparameter that sets the new value of the spectral
radius of this matrix. The internal state of the hidden
layer h at time t is defined as follows:

(3)

The output neurons layer takes a vector of the aug-
mented reservoir state  as an input, which is
obtained from h(t) by squaring half of the values with
even indices, and linearly transforms it into the vector
of predicted values  according to the equation:

(4)

where  is the output weights matrix, the values of
which are determined as a result of training using Tik-
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honov regularization. In this case, the vector 
includes only the values of the variables  and

, and no prediction of the scaled values of
white noise Dξ(t) occurs.

The scheme of the reservoir computing network
used for training is shown in Fig. 1a. The data of the
discretized FitzHugh–Nagumo signal for training the
neural network is divided into two parts: the transient
period (t = 0–1000 s), the values of which are used
only to update the state of the reservoir, and the train-
ing period (t = 1000–3000 s). During the network
training process, at each time step, a vector of input
signals i(t) is fed to the input layer, after which a vector
of predicted values of the next time step  is
obtained as the output. The data obtained are used to
select the output weights by minimizing the following
function using the Tikhonov regularization method:

(5)

 denotes the vector of target values, α is a regu-
larization parameter with a set value of 10–4, which
serves to prevent overfitting.

The process of testing the trained reservoir com-
puting network is shown in Fig. 2b. Initially, similar to
the training process, the signal in the range t = 0–
1000 s is continuously fed as the input data, while the
output data is discarded, which is necessary to update
the state of the reservoir. After that, the prediction
process occurs, in which the network begins to use its
own predictions  as input signals to predict subse-
quent values of . White noise data Dξ(t) con-
tinues to be fed into the system from the outside.

To optimize the reservoir computing network, a
grid search was used, during which the ranges

 and  were explored with step
sizes of 1 and 0.1, respectively. For each set of hyper-
parameters, the network was trained and the testing
signal in the range t = 3000–5000 s was predicted. The
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Fig. 2. Dependence of RMSE on the number of reservoir neurons  during training of the reservoir computing network on

the signal with noise levels  and  while predicting signals with similar noise level (a) and temporal dynamics of
the FitzHugh–Nagumo stochastic neuron target signal with noise level  and predictions of the network with reservoir size

 equal to 100, 500 and 1000 (b).
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root mean square error (RMSE) was used to evaluate
the quality of the prediction:

(6)

where  is the target value of the variable x, n is the
total number of predicted points.

RESULTS
To study the effect of the hidden layer size of the

reservoir computing network the range of  from
100 to 1000 neurons with a step size of 100 was studied.
Two options were explored: training the network on
the signal of a stochastic neuron with noise amplitudes

 and . The RMSE values when the
optimized networks predict signals with  in the
range of t = 3000–53000 s are shown in Fig. 2a. The
accuracy at the minimum reservoir size considered

 turns out to be relatively low for both
trained networks, but the prediction quality increases
drastically with an increase in  and reaches a max-
imum at 500. A further increase in  leads to a grad-
ual deterioration in the accuracy of reproducing the
dynamics. It is also noticeable that the network trained
on a signal with  in all cases reproduces the
temporal dynamics with a similar noise level better
than the network trained on a signal with .

Figure 2b shows the time series of the dynamics of
the original FitzHugh–Nagumo neuron and the pre-
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dictions of the reservoir computing network with
 and  equal to 100, 500, and 1000, respec-

tively. As one can see, even with , the net-
work is able to model the general dynamics of the sto-
chastic neuron, but there is a noticeable difference in
the generation time of some spikes from the original
system.

After that, each of the three trained networks, the
results of which were shown in Fig. 2b, was used to
predict the FitzHugh–Nagumo time series with a
range of D from 0.05 to 1 with a step size of 0.05 over
the range t = 3000–53000 s. The coefficient of varia-
tion R is used to evaluate the fit of the statistical char-
acteristics of the predicted signals to the original
model:

(7)

where σ is the standard deviation of the interspike
intervals of the signal, μ is the interspike intervals
mean value.

The results of stochastic neuron modeling under
different noise exposure are shown in Fig. 3a. The net-
work with  showed the most similar
dynamics of the dependence of R on D compared to
the original model and also demonstrated the best
results in predicting a single signal with . The
network with  also showed similar dynam-
ics, but at a high noise level it deviates significantly
from the target curve. At  the network is
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Fig. 3. Dependence of the coefficients of variation of the FitzHugh–Nagumo stochastic neuron  and predicted signals of the
reservoir computing network R on the amplitude of the applied white noise D (a) and dependence of the prediction performance
Δ on the number of reservoir neurons  (b).
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unable to correctly reproduce the dependence of the
stochastic neuron on the noise amplitude; the coeffi-
cient of variation close to the original system was
achieved only at .

Next, to evaluate the dependence of the overall
modeling ability of the network on the reservoir size

, signal prediction data of the FitzHugh–Nagumo
neuron were obtained for the entire range of  from
100 to 1000. To compare the dependence of R on D of
the trained network and the stochastic neuron, the
value Δ is used to characterize the integral difference
between the predicted dependence curve and the tar-
get curve:

(8)

The values of the Δ metric for the reservoir com-
puting networks with each of the considered  val-
ues are presented in Fig. 3b. Consistent with previous
results, the network with  demonstrated the
highest predictive ability, and the network with

 showed the lowest. Like Fig. 2a, a drastic
improvement in modeling quality occurs when 
increases from 100 to 500, after which the prediction
error starts to increase gradually.

CONCLUSIONS
In this study, a reservoir computing network was

successfully trained to reproduce the dynamics of an
excitable FitzHugh–Nagumo model with varying
white noise amplitude by training it on a single, aver-
age, noise level. An increase in the modeling quality of
the FitzHugh–Nagumo neuron signal was observed
when the reservoir size was increased up to an average
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value, after which a gradual deterioration of the pre-
diction was observed when further recurrent neurons
were added to the hidden layer.

At the minimum reservoir size, a sufficiently cor-
rect prediction of the stochastic neuron signal was
achieved at only one noise amplitude, in other cases, a
significant deviation from the statistical data of the
original model is observed. At medium and large hid-
den layer sizes, high modeling quality was observed
over the entire range of white noise intensity, but at the
highest noise level, the medium-sized network
showed the best results.

These results indicate the existence of an optimal
hidden layer size for the reservoir computing network
in predicting the stochastic signal, deviations from
which cause the quality of the original system model-
ing to deteriorate.
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