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ABSTRACT

Based on the results of the EEG experiment in the process of human motor execution, we performed in this
paper a source-level analysis of brain activity during the motor initiation phase for two age groups: young and
elderly adults. In the theta frequency band, we discovered stronger activation of the contralateral area of the
primary motor cortex (Postcentral L and Precentral L zones) for elderly subjects compared to young ones in
the right (dominant) hand movements. We discuss the correlation of the obtained source-level results with the
known age-related slowing down in the motor initiation before the dominant hand movements. The obtained
results are essential for explaining age-related changes in behavioral characteristics, such as reaction time, the
accuracy of motor performance, etc.
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1. INTRODUCTION

The processes occurring in the human brain during motor activity are quite well studied.1,2 In particular, the
standard scenario of brain rhythms dynamics during involuntary movement (on command) is well known: during
the first 0.5 s after the command, sensorimotor integration occurs accompanied by the growth of theta-rhythm
power over an extensive brain network with maxima in the parietal areas. Then there is the motor activity,
which is initiated by desynchronizing the mu-rhythm in the motor cortex. A much less studied urgent problem
is the study of age-related changes in the characteristics of this scenario during the performance of motor tasks.
The interest in this problem is due, firstly, to the fact that such studies will make it possible to advance the
understanding of age-related changes in the brain and, probably, reveal markers of age-related neurodegenerative
processes. Such investigations were initiated in work,3 which has demonstrated at the sensor level that the age-
related slowing down in the motor initiation before the dominant hand movement is accompanied by the increased
theta activation within the sensorimotor area and reconfiguration of the theta-band functional connectivity in
the elderly adults. The properties of the time-frequency and space-time structure of the signals of brain activity
neurovisualization are usually analyzed using artificial intelligence methods and statistical analysis.4–11 However,
analysis at the sensor level does not allow one to answer which brain areas are activated when performing a motor
task and what age-related differences are observed here.

In this work, we continue this research and conduct source-level analysis. We study the differences in the
activation of brain areas between age groups (young vs. elderly) when performing a simple motor activity in the
form of clenching the hand into a fist.
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Figure 1. Results of the EEG data source-level analysis. Source plots in slice mode (A) and orthogonal cut view (B)
show a positive cluster, reflecting the significant change of the source power (SP) between EA and YA groups on the
time interval t = [0.2, 0.8] s, for theta-band (f : 4 − 8Hz); pcorr = 0.03 via t-test, corrected for multiple comparisons via
the cluster-based test with the Monte-Carlo randomization technique. Legends contain p-values, CTF coordinates of the
voxel with maximal t-value, and names of anatomical zones in the cluster according to Automated Anatomical Labeling
(AAL). (C) Normalized source power (group mean ±95% CI) in the revealed cluster for EA and YA groups.

2. METHODS

Two groups of healthy volunteers, including 10 elderly adult subjects (EA group; age: 65 ± 5.7 (MEAN±SD);
range: 55-72; 4 males, 6 females) and 10 young adult subjects (YA group; age: 26± 5.1; range: 19-33; 7 males, 3
females), participated in this study. All subjects were right-handed and had no history of brain tumors, trauma or
stroke-related medical conditions. All volunteers were asked to adhere to a healthy lifestyle within 48 hours before
the experiment: ensure at least 8 hours of sleep, eliminate alcohol consumption, eliminate or limit consumption
of caffeine-containing foods, and avoid excessive physical exertion. The volunteers were familiarized with the
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experimental procedure in advance and were aware of the possible inconveniences associated with participating
in the experiment. Also, they had the opportunity to ask questions of interest and get satisfactory answers to
them. Each volunteer completed and signed an informed consent form for participation in the experiment. All
experimental works were carried out in accordance with the requirements of the Declaration of Helsinki and
approved by the Ethics Commission of Innopolis University.

All participants were instructed to sit on the chair with their hands lying comfortably on the table desk in
front of them, palms up. First, we recorded resting state (5 minutes). Further experiment included sequential
repetitions of the fine motor task (squeezing one of the hands into a fist after the audio signal and holding it
until the second signal) using right (dominant) hand (30 repetitions). Thus, we conducted an experimental study
with the Age (EA and YA groups) as between-subject factor. The time interval between the signals during the
task and the pause between the repetitions were chosen randomly in the range 4–5 s and 6–8 s, respectively.

We acquired EEG signals using the monopolar registration method (a 10-10 system) with 31 sensors and two
reference electrodes on the earlobes and a ground electrode just above the forehead. We used the cup adhesive
Ag/AgCl electrodes placed on the “Tien–20” paste (Weaver and Company, USA). Immediately before the ex-
periments started, we performed all necessary procedures to increase skin conductivity and reduce its resistance
using the abrasive “NuPrep” gel (Weaver and Company, USA). We controlled the variation of impedance within
a range of 2–5 kOhm during the experiment. The electroencephalograph “Encephalan-EEG-19/26” (Medicom
MTD company, Russian Federation) with multiple EEG performed amplification and analog-to-digital conversion
of the recorded signals.12–15

EEG signals were recorded with a sampling rate of 250Hz and filtered using bandpass (1-70Hz) and notch
(49.5-50.5Hz) filters. The bandpass filter limits the considered frequency range on the EEG signals and removes
low-frequency and high-frequency activities not associated with the EEG. The notch filter removes 50Hz inter-
ference from the power grid. Eyes blinking and heartbeat artifacts removal was performed by the Independent
Component Analysis (ICA). Data was then inspected visually and corrected for remaining artifacts.

We applied standardized low-resolution brain electromagnetic tomography (sLORETA) to solve the inverse
problem and localize the sources of neuronal activity according to EEG data at each of the predetermined
points (voxels) in the brain volume.16–18 Solving such inverse problems is typical in many areas of physics.19–24

LORETA is low-resolution brain electromagnetic tomography. This method solves the inverse problem: con-
verting EEG measurements into information about the distribution of neural sources power into a brain volume.
The “Colin27” brain MRI averaged template25 was used to develop a three-layer (brain, skull, and scalp) head
model based on a boundary element method (BEM).26 The sources space inside the brain consisted of 11,865
voxels. The location of the EEG electrodes corresponded to the template head shape.

We analyzed the source characteristics in the predefined time-frequency domain of interest, selected on the
basis of the results of the previous analysis.3 To do this, we reassigned the EEG signals to the total average,
subtracted the mean, and filtered with a fourth-order Butterworth [fL, fH ] Hz band-pass filter, where fL and
fH define the frequency domain of interest. Then, we performed time-lock averaging across the time interval of
interest (TOI) and computed the covariance matrix. The inverse solution yielded estimates of the source power
in each voxel, averaged over the selected TOI window. Finally, we normalized the obtained estimates of the
power P of each source to the power of EEG resting state EEG as (P − Prest)/Prest. We used the automated
anatomical labeling (AAL) brain atlas27 to map the location of sources to the anatomical brain regions.

We performed a cluster-corrected statistical between-subject permutation test on the frequency-averaged and
TOI-averaged source power distributions to determine significant differences between two groups (EA vs YA).28

The threshold for paired comparisons with t-test was p = 0.025. The p-threshold for the cluster was 0.05. The
number of permutations was 2000. Finally, we calculated for each subject the average power of the source activity
in the region of the identified cluster for each group. All operations were performed in Matlab using Fieldtrip
toolbox.29

3. RESULTS

Fig. 1 demonstrates obtained source plots with a positive cluster, reflecting the significant change of the source
power between EA and YA groups for theta-band (f : 4− 8Hz) on the time interval t = [0.2, 0.8] s. This interval
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corresponds to the period of command processing and sensorimotor integration. The revealed positive cluster
indicates that theta-power in EA is higher than in YA in the Postcentral L and Precentral L zones, which are
part of the contralateral (relative to the involved hand) premotor and primary motor cortex (see also Fig. 1C).
Thus, theta-band synchronization in this area is higher in EA than YA. This indicates an increased involvement
of resources in the process of sensorimotor integration in the elderly adults compared to the young ones.
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Figure 2. Results of the EEG data source-level analysis. Source plots in slice mode (A) and orthogonal cut view (B)
show a positive cluster, reflecting the significant change of the source power (SP) between EA and YA groups on the
time interval t = [0.8, 1.2] s, for alpha-band (f : 8− 14Hz); pcorr = 0.04 via t-test, corrected for multiple comparisons via
the cluster-based test with the Monte-Carlo randomization technique. Legends contain p-values, CTF coordinates of the
voxel with maximal t-value, and names of anatomical zones in the cluster according to Automated Anatomical Labeling
(AAL).

Fig. 2 shows source plots with a positive cluster, reflecting the significant change of the source power between
EA and YA groups for alpha-band (f : 8− 14Hz) on the time interval t = [0.8, 1.2] s. This interval corresponds
to the period of the motion execution. The revealed positive cluster indicates that alpha-power in EA is higher
than in YA in the Precentral L zone, corresponding to the contralateral primary motor cortex. Thus, alpha-band
desynchronization in this area is higher in YA than YA. Since the depth of the alpha rhythm desynchronization
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is a marker of motor activity, we can conclude that motor activity is more pronounced in the motor cortex in
YA compared to EA.

The obtained results support and detail the conclusions made in the work.3 In particular, an area of the brain
(Postcentral L, Precentral L) with increased theta-activation in the elderly in the movement preparation phase
was identified. The degraded plasticity in EA requires higher cortical activation for motor planning. YA subjects
optimize their cognitive resources for the well-trained motor task accomplishment. The latter was represented
as a lower theta-band activation. Therefore, less effective use of cognitive resources slowed the motor planning
phase in EA compared to the YA control group during the dominant hand task.

4. CONCLUSION

In the theta frequency band, we discovered stronger activation of the contralateral area of the primary motor
cortex (Postcentral L and Precentral L zones) for elderly subjects compared to young ones in the right (dominant)
hand movements. Moreover, EA demonstrate stronger activation of the contralateral area of the primary motor
cortex in the alpha frequency band. Such results confirm the earlier findings at the sensor-level and should be
explained by the different strategies of the motor task initiation between age groups.
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