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ABSTRACT

In this paper we study the conditions of chimera states excitation in ensemble of non-locally coupled Kuramoto-
Sakaguchi (KS) oscillators. In the framework of current research we analyze the dynamics of the homogeneous
network containing identical oscillators. We show the chimera state formation process is sensitive to the pa-
rameters of coupling kernel and to the KS network initial state. To perform the analysis we have used the
Ott-Antonsen (OA) ansatz to consider the behavior of infinitely large KS network.
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1. INTRODUCTION

In present, the study on dynamical systems collective behavior focused a great extent to the analysis of chimera
states.1–5 This phenomena arises in ensembles of identical oscillator models that are abundant in physics and
biology. Mentioned chimera states, characterized by simultaneous existence of spatial regions of coherent and
incoherent subgroups in a network, have been first discovered in 2002 by Kuramoto and Battogtokh.1 They have
found chimera states in a network of non-locally coupled nonlinear media described by the complex Ginzburg-
Landau system6 and then demonstrated in a network of Kuaramoto-Sakaguchi phase model.7 However, in
recent studies, it has been shown that such a chimera-like states can emerge in networks of oscillators with
global coupling,8 nearest neighbor local coupling9 too. Recent studies further confirm that chimera states are
not limited to phase oscillators only, it can emerge in limit cycle and chaotic systems,10 neural systems,11,12

time-discrete map,13 and Boolean networks.14 As a result, amplitude-mediated chimera has been proven3 to be
a reality which encourages experimental verification and in fact, it has now been experimentally evidenced in
chemical,15 electronic,16 electrochemical17 and opto-electronic18 systems.

However, studies of chimera states were confined so far to the domain of single-layer network. Among many
other effects associated with the emergence of chimera states, important and less studied topics are the stability
of chimera states,19 how different isolated networks individually be in any of the states, chimera, coherent and
even incoherent, may be affected when they interact with each other,20 how intra-coupling parameters influence
the process of spatial coherent patterns formation? Its consideration along with a theoretical investigation
demands due attention for prospective practical use.21 In this paper we address this issue of chimera states in
a framework of dependence of chimera state formation under the variation of different controlling parameters,
namely parameters of coupling between the nonlinear elements of the network. We also study how different types
of initial conditions effect on the chimera-like pattern formation. The main interest of this work is devoted to
the methods of controlling the processes of chimera state formation and related phenomena.
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2. MODEL

We carry out an analytical study of the non-local network of phase oscillators to show the conditions of chimera
patterns formation. So, in the framework of the provided analysis the processes do not depend on the number of
oscillators in the KS network. We restrict our analysis to the network of non-locally coupled oscillators with rect-
angular coupling kernel. We have applied the Ott-Antonsen (OA) approach22 to reduce infinite-dimensional net-
work of Kuaramoto-Sakaguchi phase model to the systems of two-dimensional differential equations. Although,
OA anzatz is generally used in the case of coupled non-identical oscillators with different natural frequencies,
this method is also effectively applied to the analysis of homogenous networks.23–26
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Figure 1. Plots of the coupling kernel form G (∆x) defined by equation (5) – (a) and by equation (6) – (b).

In our theoretical work we have used KS equations in the following form:

dφi
dt

= ωi −
λ

2R+ 1

i+R∑
k=i−R

sin(φi − φk + α), (1)

where φi, ωi – phase and eigenfrequency of KS oscillator, R, λ – coupling radius and coupling strength, α is a
controlling parameter. In this work we have fixed α = 1.45 and λ = 0.085.

In the framework of this approach we describe the dynamics of the network in terms of probability density
function (PDF) f (x, φ, t). As the number of oscillators is constant in time we can write the continuity equation
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for PDF,
∂f

∂t
+
∂ (fv)

∂φ
= 0, (2)

where v is,

v =
dφ

dt
= ω − 1

2ı
{reıφ − r̄e−ıφ}, (3)

the overbar indicates complex conjugate and r is the order parameter written in the following form,

r =eıα
λ

2R

∫ 1

0

G (x− y)

∫ 2π

0

f (y, φ, t) e−ıφdφdy, (4)

where G(x− y) is the rectangular coupling kernel as used in,

G (x− y) = H
(
cos ((x− y) 2π)− cos

(
R1,22π

))
. (5)

The form of this coupling kernel is plotted in Fig. 1(a). The coupling kernel G (x− y) written in this form
perfectly fits the way of intra-layer non-local coupling in our numerical simulation. H (x) in (5) is the Heaviside
step function. In our analytical treatment we replace this kernel with differentiable function:

G (x− y) =
1

1 + e−β(cos((x−y)2π)−cos(R2π))
. (6)

The form of this kernel depends on the value of parameter β (Fig. 1)(b). In the limit of β → ∞ function (6)
tends to (5). In this work we have fixed parameter β = 100.

We are looking for the solution f (x, φ, t) in the form of Fourier series taking into account the OA ansatz
fn (x, φ, t) = a (x, φ, t)

n
:

f (x, φ, t) =

=
1

2π

(
1 +

∞∑
n=1

an (x, φ, t) eınφ + c.c.

)
(7)

Substituting (3)-(7) to (2) we obtain the final equation,

∂a

∂t
+ ıωa+

1

2
[r̄a2 − r] = 0 (8)

where the order parameter with respect to OA ansatz becomes

r (x, t) =
λ

2R

∫ 1

0

G (x− y) a (y, φ, t) dy. (9)

To determine the phase distribution we substitute OA ansatz a = |a|e−jψ to (7):

f (x, φ, t) =

=
1

2π

1− {|a|}2

(1− |a|)2 + 2|a| (1− cos[φ− ψ])
. (10)

Here |a| is a maximum value of the phase distribution and ψ is a phase value corresponding to the distribution
maximum.
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Figure 2. Distributions of order parameter r (x) and phase ψ (x). Here, plots (a), (b) present the initial state of the KS
network and plots (c), (d) correspond to the network state after transient process starting from (a) and (b) respectively.
Coherent subpopulation is highlighted with blue.

3. RESULTS

Let us discuss the results of the theoretical treatment of KS oscillators network with non-local coupling. In Fig. 2
the distributions of order parameter r (x) and phase ψ (x) are presented. Here, left column corresponds to initial
distribution and right column corresponds to final state of the system after transient process.

Initial conditions in Fig. 2(a) are chosen in the following form:

ψ(x) =

{
π (4x− 1) , x ∈

[
0, 12

]
,

π (3− 4x) , x ∈
(
1
2 , 1
]
.

(11)

And in Fig. 2(b):

ψ(x) =

{
π (1− 4x) , x ∈

[
0, 12

]
,

π (4x− 3) , x ∈
(
1
2 , 1
]
.

(12)

Initial distribution of order parameter r (x) has the same form for both cases:

r(x) =

{
1− x

2
, x ∈

[
0, 12

]
,

2x− 1, x ∈
(
1
2 , 1
]
.

(13)

One can observe, the emergence of chimera state in both cases and the location of coherent subpopulation of
the network corresponds to the minimum of ψ (x) distribution.

Also, we have analyzed the case of randomly distributed initial phase ψ (x). The results are shown in Fig. 3.
It is easy to see, that the chimera state is suppressed when the initial phase ψ(x) is distributed in the wide range,
namely from −π to π (Fig. 3(a),(b)). When the range of initial ψ values becomes more narrow from −0.5π to
0.5π (Fig. 3(c),(d)) one can observe the excitation of dislocated chimera state with respect to one plotted in
Fig. 2(b). Starting from [−0.3π, 0.3π] distribution we obtain the typical chimera state with the coherent pattern
in the middle of x-space (Fig. 3(e),(f)). Notable, that even in the case of small range of randomly distributed
phase ψ(x) the KS network evolves to the stable chimera state (Fig. 3(g),(h)).
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Figure 3. The initial (a),(c),(e),(g) and final (b),(d),(f,(h) distributions of KS network in the case of randomly distributed
phase ψ (x). Here, in (a),(b) – ψ is randomly distributed in [−π, π]; in (c),(d) – ψ is randomly distributed in [−0.5π, 0.5π];
in (e),(f) – ψ is randomly distributed in [−0.3π, 0.3π]; in (g),(h) – ψ is randomly distributed in [−0.01π, 0.01π]. Coherent
subpopulation is highlighted with blue.

Finally, we have observe the KS network behavior under the variation of coupling radius R. We can vary
coupling radius R from 0 to 0.5, where 0 corresponds to the absence of coupling (empty coupling area) and
0.5 corresponds to global coupling (all-to-all coupling). At the small values of coupling radius R one can see
the suppression of chimera state that corresponds to totally incoherent behavior (Fig. 4(a)). The increase of R
gives birth to the chimera state regime, that is characterised by two narrow coherent areas (Fig. 4(b)). Further
increase of R transforms this chimera state behavior to the typical one with the only coherent subpopulation
(Fig. 4(c)). At the values close to 0.5 we obtain the regime of almost coherent behavior in the whole KS network
(Fig. 4(d)).

4. CONCLUSIONS

We have explored chimera states formation conditions in a framework KS network analysis by means of Ott-
Antonsen approach. We have shown that the chimera state formation process is sensitive to the parameters of
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Figure 4. The final distributions of KS network under the variation of coupling radius R. (a) – R = 0.05,(b) – R = 0.2,
(c) – R = 0.35, (d) – R = 0.48. Coherent subpopulations are highlighted with blue.

coupling kernel and to the KS network initial state. In fact, we have detected the following regularities: the width
of coherent subpopulation in the regime of chimera state formation depends on the peak value of initial phase
distribution in case of linear phase distribution and also depends on the width of the phase distribution in case
of randomly distributed initial phase. The important point is the dependence of chimera state formation regime
on the radius of coupling area – the more is the value of coupling radius, the wider is the coherent subpopulation.
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