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Abstract—In this paper, we aim to provide a brief review
of the research of epileptic extreme events. The main topics of
interest include extreme value theory approaches used to describe
mechanisms in the epileptic brain and to detect/predict seizures
as well as possible applications of the results obtained in medical
diagnostics. The main purpose of the review is to draw attention
to this relevant area of research.

Index Terms—extreme value theory, heavy-tailed distribution,
epilepsy, electroencephalogram

I. INTRODUCTION

Extreme events are rare abnormal deviations in system
behavior from a typical state [1], [2]. Existing results support
the fundamental nature of this phenomenon and the presence
of extreme events in wide variety of dynamical systems.
Extreme behavior was throughly studied in model systems
such as coupled oscillators and complex networks [1], [3],
[4]. Various scenarios for the occurrence of extreme events
have been shown in physical experiments with fluids [5] and
nanophotonic and optical systems [6]–[8]. In everyday life
extreme events are associated with sudden changes in climate
[9], [10], rogue waves in the ocean [11], financial crises [12],
traffic jams [13], etc. Such events are potentially harmful,
thus they are studied in depth. Research of extreme behavior
can provide insight into the hidden mechanisms that drive the
system to this unwanted state, which can help with detection
and prediction of these events [14], [15]. Extreme events are
often associated with critical behaviours that are accompanied
by different types of intermittency [16]–[19], which is also
one of the signs of extreme behaviours.

The great diversity of manifestations of extreme events
allows us to expect the presence of extreme dynamics in living
systems. Indeed, power distributions in biomedical data are
often “skewed” and demonstrate “heavy” tails. According to
the fundamentals of extreme value theory [20], [21], such
behavior marks the presence of extreme dynamics in the
system. Extreme fluctuations of health parameters can be
linked to some unusual processes, that affects the normal
dynamics of the system and possibly lead to acute crisis. Thus,
research on extreme events is especially relevant in medicine,
where detection and prediction of such events can benefit
medical diagnostics and treatment as well as provide insight
into mechanisms of the disorder.

Epilepsy is one the brightest examples of extreme dy-
namics in living systems, and it can benefit greatly from

implementation of extreme value theory. On the one hand,
the rapid development of epileptic seizures, involving the
sudden synchronization of billions of neurons, exhibits dy-
namics similar to extreme. Their dynamics also have some
properties of on-off intermittency [22], [23]. This is in line
with fundamental principles of extreme event generation in
a “small-world” network [24]. Thus, it can be possible to
describe the mechanisms governing the generation of epileptic
seizures by considering neuron-based mathematical models.

On the other hand, epilepsy is a dangerous neurological
disorder in need of treatment [25]. Seizures are commonly
controlled with drugs [26], surgery [27] of neurostimulation
[28], however, regardless of the treatment the diagnostics is
crucial. In this context, extreme value theory can compliment
both traditional methods of spectral analysis and advanced
approaches of machine learning in developing fields of early
diagnostics and seizure prediction [29], [30].

In this paper, we aim to provide a brief review of this
area of research. The main topics of interest include extreme
value theory approaches used to describe mechanisms in the
epileptic brain and to detect/predict seizures as well as possible
applications of the results obtained in medical diagnostics. The
main purpose of the review is to draw attention to this relevant
area of research.

II. EPILEPTIC SEIZURES AS EXTREME EVENTS IN EEG

The concept of epileptic seizures as extreme events has
been known for some time [31]. While these extreme events
were understudied and underrepresented for some time, they
have recently received considerable attention [32]. There were
several important papers in this area of research.

Pisarchik et al. [33] studied electroencephalogram (EEG)
of mice after induced ischemic stroke, that demonstrated so-
called post-stroke seizures [35]. The authors used continuous
wavelet transform (CWT) with Morlet mother wavelet [36]
to investigate the time-frequency structure of EEG signals
associated with normal activity and extreme events. As the
main CWT-based feature, they considered the wavelet energy
W in the frequency range f ∈ [1, 30] Hz and normalized it
to the maximum energy in this range. To analyze extreme
dynamics, the authors implemented extreme value theory
(EVT). They constructed PDFs of W and tried to fit them
with certain theoretical distributions. The PDF of normal, non-
seizure activity was perfectly fitted by the Weibull distribution,
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Fig. 1. Distributions of wavelet energy. (A) PDF for the frequency band
∼ 20 Hz for post-stroke mice. Blue dots correspond to the empirical PDF
F (W ). Yellow curve is the Weibull distribution that fits the non-extreme part
of F (W ), and red line is the GPD fitting the extreme part. The threshold
Wδ between them is indicated by an arrow. (B) PDF for the frequency
band ∼ 7 Hz for WAG/Rij rats. Colored circles correspond to experimental
PDFs obtained from the data of five WAG/Rij rats. Curves are Weibulls with
different parameters well-fitted to normal activity (yellow) and heavy tail (dark
blue); (C) PDFs for the frequency band ∼ 7 Hz for WAG/Rij rats. PDFs are
histograms and fitted Weibull distributions are curves for different segments
of the EEG close to seizure onset: far from the onset, before the onset, during
the seizure. Based on materials from Pisarchik et al. [33], Frolov et al. [34].

while the PDF for seizures was modeled by the generalized
Pareto distribution (GPD) [37]. This result is illustrated in Fig.
1 A. The authors concluded, that this marked the presence of
“heavy” tail of extreme values in distribution according to the
Pickands–Balkema–de Haan theorem [21]. However, this was
true only for a narrow frequency band of f ∈ [22, 24] Hz
related to epileptic seizures in EEG. Thus, extreme events
showed a sharp, sudden increase in the wavelet energy in
epileptic frequency range, while the energy in other ranges
remained unchanged. Based on this findings, the authors de-
veloped a novel approach to detecting and quantifying extreme
events in EEG. They introduced extreme event measure (EEM)
designed to assess heaviness of PDF tail by contrasting it to
Weibull distribution. Using this technique, the authors showed
the difference between healthy and stroke mice, suggesting
that the proposed method can be used to epileptic seizure
detection. Fig. 2 A demonstrates the comparison of EEM
between healthy and stroke mice with maximum difference
in mentioned frequency band of f ∈ [22, 24].

Frolov et al. [34] continued the research by studying EEG of
WAG/Rij rats with genetic predisposition to absence epilepsy
[39]. Like Pisarchik et al. [33], the authors used CWT to
describe time-frequency features of the EEG and calculated
the normalized wavelet energy Wn. The following analysis
was also similar: PDFs were constructed for both normal and
epileptic EEG and fitted by Weibull distributions with different
parameters. Fig. 1 B illustrates such a fit — one can see that
Weibull drastically changes form between normal and epileptic

A

B C

Fig. 2. Localization of epileptic extreme dynamics in frequency domain.
(A) Box-and-whisker plot of EEM versus frequency for 6 healthy mice
(colored in red) and 6 post-stroke mice (colored in blue). The grey rectangle
indicates the frequency band with the most extreme brain behavior. (B)
Semi-log dependence of Pearson’s chi-squared statistic χ2 on oscillation
frequency. Here χ2 quantifies the difference between normal and epileptic
PDFs. Red dots indicate the components with maximum χ2 values and thus
the most pronounced extreme behavior. (C) Wavelet energy corresponding to
the epileptic seizure and the baseline. Data are presented as group means ±
standard error. Based on materials from Pisarchik et al. [33], Frolov et al.
[34], Karpov et al. [38].

data. Once again, the analysis revealed “heavy” tail related to
the presence of extreme events in EEG, and the effect was
found in frequency range of epileptic seizure of WAG/Rij rats
(f ∈ [6, 9] Hz) as well as its harmonic (f ∈ [12, 18] Hz). For
details see Fig. 2 B. This results support the claim by Pisarchik
et al. [33] that epileptic seizures are extreme events in certain
frequency range of EEG.

The authors also addressed the predictability of epileptic
seizures. They considered time intervals between seizures
(return times) and fitted their PDF by a power-law distribution
with power −3/2. This is in good agreement with previously
reported intermittent behavior in the epileptic brain [23],
[40] and suggests the presence of long-range correlations in
epileptic EEG. To prove this hypothesis, the authors imple-
mented detrended fluctuation analysis (DFA) [41] to study the
wavelet energy at different frequencies. They demonstrated
DFA exponent > 0.9 for 7 Hz and 14 Hz oscillations, which
suggests a highly structural and self-organized behavior, that
possibly can be predicted. To test this suggestion, the authors
considered several time intervals in the transition from normal
to epileptic EEG. PDF of wavelet energy in 7 Hz range
gradually changes it shape as it approaches the onset of the
seizure. PDFs at different intervals were fitted by Weibulls
with different parameters, and the authors concluded, that
changes in these parameters can be used to predict epileptic
seizures 1–7 s before the onset. Examples of such PDFs and
fitted Weibulls are shown in Fig. 1 C.
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Karpov et al. [38] tested plausibility of previous findings
on human data. The authors analyzed EEG data collected
during long-term monitoring of patients with focal epilepsy.
CWT-based analysis included calculation of wavelet energy
in two frequency ranges: 1–5 Hz and 5–10 Hz. The au-
thors showed, that the lower frequency range corresponds to
epileptic extreme events in human EEG. For reference, see
the wavelet spectra of normal and epileptic EEG in Fig. 2
C. The authors used wavelet energy averaged over 1–5 Hz
range to construct PDFs in baseline and seizure. Like Frolov
et al. [34], they fitted PDFs with Weibulls, whose parameters
significantly differed between baseline and seizure. However,
only the Weibull for seizures was “heavy”-tailed, showing
signs of extreme behavior.

Additionally, the authors speculated about possible mecha-
nisms of seizure emergence. Based on the findings by Frolov et
al. [34], they suggested a scenario in which epileptic extreme
events occur due to instability and are preceded by noise
amplification. To test this hypothesis, the authors estimated
noise intensity and signal variance in several time windows
and showed that both these characteristics gradually increased
as seizure onset approached.

In their follow-up paper [42] Karpov et al. explored appli-
cations of EVT in seizure detection. They averaged wavelet
energy over characteristic to epileptic seizure ranges in spatial,
time and frequency domains, and PDF for such an averaged
energy demonstrated a “heavy” tail. The authors speculated
that epileptic extreme events are outliers in EEG, thus special
outlier detection techniques can be used to detect seizures as
well. The authors proposed a one-class support vector machine
(SVM) with averaged wavelet energy values as features. They
tested it on clinic EEG data and achieved up to 77% in
recall and 13% in precision. Given the decent recall and
low precision, the authors suggested to use this approach
as a Clinical Decision Support System (CDSS), which flags
possible seizures and leaves the final decision to a human.
They also supposed, that the presence of extreme dynamics in
data is crucial for good performance of such outlier detection
methods. Later, Karpov et al. experimented with various ma-
chine learning algorithms and features to improve the quality
of seizure detection [43], [44].

Interestingly, research by Luca et al. [45] is in line with the
previously mentioned studies, despite the fact that the authors
analyzed motor activity in children with epilepsy instead of
EEG. They introduced a novelty detection approach based
on Weibull and Gumbel models and SVM classifier. They
used it to detect seizures in acceleration data collected by 3D
acceleration sensors and achieved ∼ 80% in sensitivity and
∼ 89% in precision. This approach shares certain similarities
with the one proposed in Refs. [42], [46]. The results are cu-
rious, since hypermotor activity during seizures is commonly
considered to be disruptive, whereas in [45] it served as marker
of epileptic extreme events and was used for seizure detection.
This raises an interesting topic — in biomedical data analysis,
extreme events are often considered in the context of outliers,
that are inconsistent with other measurements. It is commonly

assumed, that outliers occur due to artifacts, external noise
or measurement errors, and therefore lack any meaningful
information. However, the findings by Luca et al. suggest, that
such “parasitic” outliers can be linked to “inherent” extreme
events, that reflect features of the data. These two types of
dynamics can mix together, and their combined analysis can
be a promising approach.

III. CONCLUSION

In this paper, we provided a brief review of the research of
epileptic extreme events. The reviewed papers demonstrate that
EVT can be used not only in purely applied areas of diagnos-
tics and seizure detection/prediction, but also to gain insight
into fundamental mechanisms in epileptic brain. Furthermore,
these studies show that EVT can be successfully combined
with other approaches such as traditional spectral analysis and
advanced machine learning. We believe that future research on
epilepsy could benefit from adopting this approach.
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