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Development of an Algorithm for Detecting Saccadic Eye Movements 
Based on Model Approximation
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Abstract—We present an algorithm for detecting saccadic (fast) eye movements from electrooculogram data
based on approximation using a parametric saccade model. The algorithm is based on a sliding window
approximation on two coordinates using a parametric saccade model.
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INTRODUCTION
The study of eye movements serves as a crucial tool

for investigating visual perception processes, analyzing
visual information, and diagnosing various neurologi-
cal disorders. This method offers unique opportunities
for assessing fatigue levels and the degree of individual
engagement in tasks related to visual perception. It
enables the evaluation of shifts in visual attention, the
identification of moments of reduced concentration,
and the assessment of cognitive load. The analysis of
oculomotor movements finds broad application in
areas such as vehicle operation, high-stress work envi-
ronments, and education, contributing to the develop-
ment of strategies aimed at enhancing efficiency and
productivity in these fields. This method is also widely
used in neuromarketing for accurately tracking con-
sumer gaze direction, which enhances content quality
and optimizes its placement. Eye movement analysis
plays a key role in understanding cognitive processes,
including visual analysis strategies for various stimuli
[1]. Precise identification of oculomotor signal com-
ponents helps detect various indicators of an individ-
ual’s psychophysiological state, such as fatigue [2].
Currently, numerous methods exist for recording ocu-
lomotor activity; however, the most widely used are
video-based analysis (eye tracking) and electroocu-
lography (EOG) [3]. Each method has distinct advan-
tages and limitations. For example, an eye tracker
enables highly accurate measurement of pupil position
and size, but in most cases, it requires head fixation,
which can cause discomfort and potentially affect
research outcomes. Notably, many wearable eye-
tracking systems are now available that do not require
head fixation and can be worn like regular glasses [3].

These eye trackers are highly applicable in practical
tasks due to their mobility and ease of use. However,
measurement accuracy heavily depends on their sta-
bility on the participant’s head, requiring recalibration
if displacement occurs. In contrast, EOG systems are
firmly attached to the participant’s skin, preventing
abrupt and unpredictable changes in recorded values.
However, these systems also have certain drawbacks,
such as noise and low-frequency drift caused by the
skin-galvanic response, as well as artifacts associated
with muscle movements [4]. However, these draw-
backs can be effectively mitigated through preprocess-
ing and filtering techniques. Additionally, recent stud-
ies [5] have demonstrated that time-series decomposi-
tion methods enable the extraction of eye movement
information from electroencephalograms (EEG),
thereby enhancing analytical capabilities when ana-
lyzing data from previously conducted neurophysio-
logical experiments.

Based on the above, there is a clear need to develop
precise and noise-resistant methods for detecting and
characterizing individual components of the oculo-
motor signal, such as saccades and fixations. These
components play a crucial role in attentional mecha-
nisms, as they are directly linked to shifts in visual
focus between objects. Identifying the onset and offset
of saccades, excluding post- and pre-saccadic oscilla-
tions, enables the precise determination of fixation
periods. This, in turn, facilitates a comprehensive
analysis of the relationships between attention, per-
ception, and behavioral responses. This study focuses
on developing an algorithm for detecting saccadic
(rapid) eye movements to characterize accurately sac-
cades and fixations.
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ALGORITHM
FOR SACCADE DETECTION

The developed algorithm is based on a sliding two-
coordinate window approximation of oculographic
data using a parametric saccade model proposed by
Dai et al. [6]. The selection of this model for saccade
detection is justified by its unique ability to represent
accurately saccadic waveforms with varying ampli-
tudes and durations. The model accounts for an essen-
tial physiological characteristic known as the “main
sequence” [7], which describes the relationship
between peak angular velocity and saccade amplitude.
The model also exhibits high accuracy in reproducing
large saccades, which are particularly challenging to
model due to peak velocity saturation as amplitude
increases. Study [6] emphasizes that conventional
methods, such as sigmoid or Gumbel functions, fail to
accurately approximate these characteristics, whereas
the proposed model achieves a high degree of preci-
sion. The fundamental equation describing the sac-
cadic eye movement model is

(1)

In the general case, the model includes three free
parameters: η, c, and τ, which define the key charac-
teristics of a saccade. The saccade shape is determined
by a piecewise function f(t), given in the equation

(2)

The parameters η, c, and τ presented in Eq. (1) do
not reflect the actual physiological characteristics of
saccades, such as amplitude, duration, and velocity.
Therefore, through analytical calculations, the
parameter η was derived from the amplitude a and
duration d. The resulting equation for calculating the
parameter η is

(3)

Since the model is based on an exponential func-
tion, where the derivative of the saccade velocity
asymptotically approaches zero, it is crucial to deter-
mine accurately the time boundaries for the onset and
offset of the saccade. In this study, a threshold of 1%
of the maximum saccade velocity was selected as the
boundary, which is defined by the parameter p in
Eq. (3). The selection of threshold is based on the fact
that most algorithms detect the onset and offset
boundaries of saccades at points where the derivative
exceeds 10% of the peak velocity [8]. This high thresh-
old is due to the presence of significant noise in the
electrooculogram signal. Therefore, a 1% threshold
for the model is sufficiently relevant for saccade
boundary detection tasks. The model parameter τ
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from Eq. (1) can be defined as the ratio of amplitude a
to the parameter η, as given in the following equation:

(4)

Based on the equations presented above, the fol-
lowing set of parameters for the saccade model was
obtained: a is the amplitude, d is duration, and c is a
free parameter. To fit the parameters of the saccade
model, the trust region reflective (TRF) method was
used, implemented in the curve_fit function from the
SciPy library. This approach ensures optimal approxi-
mation results with a minimal number of measure-
ments, which enhances the algorithm’s performance.
The initial data for approximation included a time
series of coordinates x and y (horizontal and vertical
EOG) within a 200-ms window, as well as timestamps
t calculated based on the sampling frequency. The data
were approximated using the TRF model and algo-
rithm, which allows for the incorporation of specified
boundary conditions for the parameters. Amplitude
and duration parameters can vary significantly from
person to person and depend on visual stimuli and
external conditions. However, in this study, we used
commonly accepted ranges derived from numerous
studies involving different participants and equip-
ment. The duration of saccades typically ranges from
10 to 200 ms [9]. The average duration of saccades in
adults usually falls between 30 and 50 ms for short sac-
cades (up to 10°) and can reach 100–150 ms for longer
saccades.

Thus, the minimum and maximum boundaries for
the duration parameter d were selected within the
range of values [10; 150]. The boundaries for the dura-
tion parameter d were then set to these values. For
determining the boundaries of the amplitude parame-
ter a, values from the literature were chosen. Saccade
amplitude is typically measured in degrees and ranges
from 1° to 50° [9]. The average amplitude of saccades
in adults is often around 15°–20°. Based on this, the
boundaries for the amplitude parameter a were
selected within the range [1; 50]. The dimensionless
parameter c was chosen over a broad range of values
[1; 1000] to allow for more precise fitting and
increased variability. Since the employed saccade
model does not describe movement along the two
axes, x and y, an additional transformation must be
introduced, as shown in the following equation, where
the parameter α defines the projection angle on the
axis and is set within the range [–π; π].

(5)

This transformation allows for the simultaneous
approximation of both vertical and horizontal elec-
trooculogram data using the employed saccade model.
The algorithm consists of two sequential stages (steps),
and the block diagram is presented in Fig. 1. In the

τ =
η

.a

( ) ( ) ( )
( ) ( ) ( )

= α
 = α

cos ,
sin .

sx t s t
sy t s t
: PHYSICS  Vol. 89  No. 3  2025



478 ANTIPOV, BADARIN

Fig. 1. Block diagram of the algorithm’s operation, where Error = 1 – R2; R2 is the coefficient of determination.
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first stage, the algorithm scans the entire time series of
oculographic data along the x and y axes using a sliding
window of 200 ms with a step size of 20 ms. The win-
dow size is determined by the maximum saccade dura-
tion of 150 ms and a margin for accurate approxima-
tion of the longest saccades (in this case, 50 ms),
BULLETIN OF THE RUSSIAN ACADE
which can vary depending on the task. For a more
accurate approximation, it is preferable to use a
smaller sliding window step. However, decreasing the
step size leads to slower algorithm performance, which
complicates the processing of lengthy experimental
data. Therefore, an optimal step size of 20 ms was
MY OF SCIENCES: PHYSICS  Vol. 89  No. 3  2025
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Fig. 2. Window-based approximation of the eye-tracker data for the horizontal electrooculogram: Windows 1–4 are approxima-
tion windows; error = 1 – R2; mx (model x) is the model data for the x-axis; fx is the approximating curve, weights are the weight
vector.
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empirically selected, balancing both acceptable accu-

racy and processing speed. At each iteration (in each

time window), the algorithm approximates a 200 ms

data set using the parametric saccade model. In the

case of successful approximation, the quality of the fit-

ted model to the data along the x and y axes is assessed.

This is done by calculating the error as 1 – R2, where

R2 is the coefficient of determination. If the error for at

least one axis does not exceed 50%, it indicates that

the model sufficiently describes the data, and the algo-

rithm can proceed to the next stage. In the next stage,

the velocity is calculated based on the obtained sac-

cade model, and a weight vector is formed. The weight

vector is initially initialized with zero values and has a

dimension equal to the length of the data set. The for-

mation of this weight vector occurs as follows: the

obtained velocity is normalized to its maximum value,

then the indices of points where the value exceeds 0.5

are saved. After this, each point at the corresponding

index in the weight vector is incremented by one. In

this way, a weight coefficient array is formed, which,

in the case of a subsequent occurrence of a saccade

within the approximation window, will guaranteed

increase the weight of the potential saccade, as shown

in Fig. 2.
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In the second stage, the algorithm processes the
previously obtained weight vector for final selection
and approximation of potential saccades. The approx-
imation window is set within the range of –100 to
100 ms relative to the center of the found potential sac-
cades in the weight vector. After successful approxi-

mation, and if the error (1 – R2) along one of the axes
is less than 20%, the final calculation of the precise
saccade characteristics is performed based on the
model parameters. If the error exceeds 20%, the sac-
cade is excluded from further consideration.

RESULTS AND DISCUSSION

The developed algorithm was tested on a simulated
oculographic signal. Considering that manual classifi-
cation of EOG data does not always give reliable
results due to the influence of various factors [10], the
algorithm was evaluated using a simulated signal with
the model proposed by Richard Schweitzer et al. [11],
incorporating different noise levels. The selection of
the model proposed by Schweitzer for simulating the
horizontal and vertical components of the EOG signal
is due to its ability to generate post-saccadic oscilla-
tions, making the data more relevant to real signals.
Additionally, the eye movement activity simulation
: PHYSICS  Vol. 89  No. 3  2025
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Fig. 3. (a) Dependence of the saccade duration on the RMS noise level. (b) Number of detected saccades vs. RMS noise level for
the algorithms ivt (velocity-threshold identification); idt (dispersion-threshold identification); cwt (сontinuous wavelet trans-
form–saccade detection); iwa (the proposed algorithm) “model” is the specified values for saccade duration (a) and number of
saccades (b) in the simulated electrooculogram signal.
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model used allows for the modeling of fixation drift
(tremor, micromovements of the eyes), further
bringing the simulated signal closer to actual oculo-
graphic data [12]. The noise applied was 1/f (pink)
RMS noise [13].

The developed algorithm demonstrated high effi-

ciency in determining the total number of saccades

(Fig. 3) compared to popular algorithms such as ivt,

velocity-threshold identification [14]; idt, disper-

sion-threshold identification [15]; and cwt, a method

using continuous wavelet transform for saccade

detection [8].

Figure 3b shows that the developed algorithm

detects a total number of saccades approximately

equal to 1000, which matches the value set in the signal

simulation parameters. The accuracy of determining

saccade duration is equally crucial. Figure 2a presents

a graph showing the relationship between saccade

duration and varying levels of RMS noise. For the

developed algorithm, an increase in noise level does

not significantly affect the accuracy of saccade dura-

tion determination (Fig. 2a). It can also be observed

that the other algorithms tested were less robust to

noise, with the accuracy of saccade duration determi-

nation decreasing as the noise level increased. This

indicates that the proposed algorithm is more noise-

resistant and holds promise for application in various

practical and research tasks.

CONCLUSIONS

Thus, we have developed and implemented an
algorithm for detecting saccadic eye movements based
BULLETIN OF THE RUSSIAN ACADE
on electrooculogram (EOG) data. The developed
algorithm accurately determines the boundaries of the
start and end of saccades without accounting for dis-
tortions associated with post- and pre-saccadic oscil-
lations. The algorithm demonstrated high robustness
to increased noise levels in the data. The developed
algorithm does not account for cases where more than
one saccade falls within each window sequentially.
This limitation arises because the model used in this
work only considers a single saccade at a time.
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