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Abstract— The study presents the calculation and
optimization of the double-gap cavity designs for a klystron-
type multipath frequency multiplier. This construction
allows to achieve a multiplied (equal to two) ratio of the
frequency of the highest (3π) mode to the frequency of
the main (2π) mode lying in the Ka-range. The design was
optimized using a nondimensional quality parameter that
combines the main electronic and electrodynamic charac-
teristics of resonators. The features of the electron flow
bunching when passing through a double-gap cavity in the
two-frequency mode are studied using the 3-D numerical
modeling methods. Analysis of the results showed that
depending on the ratio of the voltages effective amplitudes
generated by electric fields of the main and highest modes,
two modulation modes are possible. They are nonsinusoidal
modulation, which allows increasing the efficiency at the
input signal frequency, and frequency multiplicationregime,
in which the frequency of the electron flow bunches at the
output of the resonator doubles.

Index Terms— Double-gapcavity, klystron frequency mul-
tiplier, millimeter (mm) wavelength range, PIC modeling.

I. INTRODUCTION

THE millimeter (mm) and submillimeter (sub-mm) wave-
length ranges occupy the spectral region between the

microwave and infrared ranges and remain the least developed
at the moment. For methods of classical vacuum electronics,
these ranges are too short wave, and for methods of quantum
electronics, they are too low frequency, resulting in a so-called
“terahertz dip” [1], [2].

Significant interest in mm and sub-mm radiation arises from
a number of specific features that make it very attractive for
a wide range of fundamental and applied research in physics,
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chemistry, biology, and medicine [3]. Electromagnetic waves
of the mm and sub-mm ranges are promising for diagnostics
and spectroscopy of various media [4], for creating dense
plasma and controlling its parameters [5], in security systems
for detecting and identifying objects, in high-resolution med-
ical imaging [6], for creating information transmission systems
with ultrahigh bandwidth (up to 10 Gbit/s or more) [7], [8].

Most of these applications require the use of powerful
(from several dozens to several thousand watts or more),
compact, inexpensive, user-friendly sources [9], which makes
researchers look for ways to promote classical vacuum
microwave devices (klystrons, TWT, and BWT) in the mm
and sub-mm ranges.

Classical methods for increasing the frequency of these
devices by reducing the characteristic linear dimensions in
the vast majority of cases are difficult to implement due to
physical and technological limitations.

Another method is to develop frequency multipliers
based on klystron-type devices [10]–[13], TWT [14], and
gyrotrons [15]–[17].

This study presents the research results for improving the
efficiency of klystron multipliers (KMs). Typically, a KM
resonant system consists of input and intermediate single-gap
resonators, whose natural frequency is equal to the frequency
of the input signal fin, and an output resonator tuned to a
multiplied frequency n fin and excited by electron bunches.
In turn, their repetition frequency is fin. In such devices,
the efficiency may reach up to several percents [13].

Recently, there have been attempts to increase the efficiency
of KM by using odd-shaped resonators [11] and working
on highest modes [10]. However, the basic concept remains
unchanged: the input part of the resonant system has a
frequency fin and the output part of the resonant system has
a frequency n fin.

This article considers the possibility of increasing the effi-
ciency of KM by using multiband resonators where the fre-
quencies of the two modes have a multiple ratio. The selection
of the resonator size can be adjusted so that the frequency of
one mode f0 (from this point on it will be called the main
operating mode) is equal to the input frequency fin. At the
same time, the frequency of the second mode (indicated as
the highest operating mode) is capable of relatively effective
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Fig. 1. Schematic of the considered resonator: (a) Longitudinal section
of the double-gap cavity. (b) Cross section. (c) Vacuum part of the
double-gap cavity.

interaction with an electron flow equals to fn = n f0, where
n is the order of multiplicity [18]. If the electron flow excites
high operating mode while passing the resonator, the mutual
action of the basic and highest operating modes may lead
to the emergence of electron bunches with a repetition rate
of n fin [19].

II. DESIGN OF THE STUDIED RESONATOR

The design of the double-gap cavity is shown in Fig. 1. It is
formed by resonant chambers 1 and 2 with the shape of a block
and are separated by an H-shaped wall (see Fig. 1). Thus,
the connection between the neighboring resonant chambers
was carried out using two T-shaped communication slits 3.
Ten cylindrical channels 4 of radius ra were placed in the
center of the cavity for the passage of a multipath electron
flow. Additional elements 5 were provided for fine frequency
tuning and control. They are cylindrical rods with a radius
of 0.4 mm. The modulating signal was fed through slit 6 in
the sidewall of the cavity.

The following was selected as the initial values.
1) The height H and width W of each prismatic chamber

were equal to λ0/2, where λ0 = c/ f0 is the wavelength
of the main operating mode with a frequency of f0 and
c is the speed of light in vacuum.

2) All gaps had the same width d = d1 = d2.
3) The resonator is formed by resonant chambers of the

same height h = h1 = h2.
The resonator dimensions were found based on the fre-

quency adjustment of the main mode f0 ≈ 30 GHz, and
hence, λ0 ≈ 10 mm. The accelerating voltage U0 was chosen
to be 6 kV.

The in-phase mode (2π) was chosen as the main oper-
ating mode since it has a number of advantages over the

antiphase (π) mode; it has a larger interaction impedance and
allows operating at a lower accelerating voltage.

Higher order modes (mπ , where m > 2), as a rule, are
not used as operating since they interact less efficiently with
the electron beams. As a result, the main electrodynamic
characteristics (characteristic impedance ρ, coupling factor M ,
and relative electronic conductivity ge) of these modes have
low values and it is extremely problematic to obtain acceptable
values of efficiency and output power. Therefore, these modes
are usually considered parasitic.

When calculating the distance between the centers of the
gaps L, the study took into account its relation to the acceler-
ating voltage, the resonant frequency, the phase shift of the
field, and the electron transit angle ϕ0 = ω0 L/υ0, where
ω0 = 2π f0, v0 = (2eU0/me)

1/2 is the electron velocity at
the input of the resonator, and e and me are the charge and
mass of the electron, respectively. It is known that in buncher
resonator with the operating in-phase mode, the transit angle
is 2π . Considering the selected values f0 and U0, the distance
L was 1.71 mm.

The remaining dimensions of the resonators were found
by calculating the distribution of the electromagnetic field in
the resonator using the finite-difference time-domain (FDTD)
method with a rectangular spatiotemporal partition grid in case
of three dimensions [20]–[22]. The field in the resonator was
excited by a sinusoidal soft source with a Gaussian envelope.
The walls of the resonator were taken as the perfect conductor.
Since this method works in the time domain, it is best suited
to the task of the study since it allows to immediately get a
result for a wide range of frequencies in a single calculation.

The adequacy of the software implementation of the FDTD
method is verified by solving test tasks with a known solu-
tion and comparing the calculation results with experimental
data [23].

The analysis of the Fourier spectrum and distributions of the
electromagnetic field indicates that in a double-gap cavity,
the frequency value of the fifth highest mode (3π) is close
to 2 f0, and the distribution of the longitudinal component
of its electric field in the interaction area is fairly uniform.
The frequencies of 2π and 3π modes were adjusted by
introducing elements 5 into the resonant area, change in the
height H, and the parameters of the coupling slits x1, y1, and y2

(see Fig. 1). At the same time, the introduction of adjustment
elements 5 and changes in height H had a greater effect on the
frequency 2π mode, and the frequency adjustment 3π mode
was performed by changing the dimensions x1, y1, and y2.

III. DESIGN OPTIMIZATION

To optimize the resonator design, the study used a
dimensionless quality parameter introduced in [24]

T = ρ̄M̄2 S

η0λ2
. (1)

where η0 = 120π 	 is the characteristic resistance of free
space, λ = c/ f is the natural wavelength of the operating
mode, S = πr2

b is the interaction area, rb is the radius of one
electron beam, rb/ra = 0.6, ρ̄ is the characteristic impedance
of the resonator averaged over the interaction area S, and
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M̄ is the coupling factor of the resonator averaged over
the interaction area S. This parameter allows comparing the
efficiency of the interaction of the electromagnetic field of
the resonator with the electron beam and the maximum beam
current at a given current density for resonators designed for
different natural frequencies and accelerating voltages.

The average values of the characteristic impedance ρ̄ and
the coupling factor M̄ and the Q-factor were calculated by
numerical integration using the formulas [25]–[27]

ρ̄ = 1

S

∫
S
ρ(x, y)ds

= 1

2ω0W S

∫
S

(∫ z2

z1

|Ez(x, y, z)|dz

)2

ds (2)

M̄ = 1

S

∫
S

M(x, y)ds

= 1

S

∫
S

(∫ z2

z1
Ez(x, y, z) exp(− jβez)dz∫ z2

z1
|Ez(x, y, z)|dz

)
ds. (3)

Q = 2π f0Wr

Pv + PS
(4)

where Ez(x, y, z) is the distribution function of the lon-
gitudinal component of the electric field strength, Wr =
0.5

∫
v ε0 E2dv is the electromagnetic energy, v is the volume of

the studied resonator, βe = ω0/v0 is the the propagation con-
stant, Pv = π f0ε0εr tan(δ)

∫
v |E |2dv is the dielectric loss, ε0 =

8.85 × 10−12 F/m, εr is the relative permittivity, tan(δ) is the
dielectric loss tangent, PS = (1/2)((πμ f0/σ))1/2

∫
S |Htan|2 ds

is the surface losses, μ is the magnetic permeability of wall
metal, σ is the specific conductivity, and Htan is the tangential
component of magnetic field strength.

The calculated dependences of the quality parameter T on
the normalized gap width d/ra for the in-phase mode and the
fifth highest mode at different values of the radius of the transit
channel ra are shown in Fig. 2. The type of these dependences
is determined by the change in the characteristic impedance
ρ̄ and the coupling factor M̄ : the growth of the ρ̄ and the
decrease of the M̄ with increasing d/ra .

The in-phase mode frequency was adjusted by inserting
tuning rods 5 (see Fig. 1) into the resonant region, and
the highest mode frequency was adjusted by changing the
parameters y1 and y2 (curves 1–3 in Fig. 2). As follows from
the obtained results, the best design is one with a radius of
transit channels ra = 0.25 mm, which is considered in the
future.

In case of the maximum value of T at d/ra = 1.2,
the characteristic impedance in the central transit channels in
the in-phase mode ρ01 was 86.3 	, and in the highest mode—
ρh1 = 8.6 	. In the off-center transit channels in the in-phase
mode, the characteristic impedance was ρ03 = 57.3 	, at the
highest—ρh3 = 6.9 	.

The results of calculations show that it is possible to reduce
the unevenness of the longitudinal distribution of the electric
field in the interaction area by reducing the width of the gaps
while reducing the size H (see Fig. 1). Fig. 3(a) shows the
dependences of the ratios k0 = ρ01/ρ03 (curve 1) and kh =
ρh1/ρh3 (curve 2) on d/ra , which decreases linearly as the

Fig. 2. Dependences of the quality parameter T on the normalized width
of gaps d/ra for (a) 2π and (b) 3π modes at different values of the radius
of the transit channels in a double-gap cavity: curves 1 are calculated
at ra = 0.2 mm, curves 2 and 4 are calculated at ra = 0.25 mm, and
curves 3 are calculated at ra = 0.3 mm. When calculating curves 1–3,
the frequency adjustment of the 2π mode was carried out by introducing
tuning elements 5 into the resonant region (see Fig. 1), when calculating
curves 4—by changing the height H (see Fig. 1).

Fig. 3. (a) Calculation results for a double-gap cavity with a transit
channel radius ra = 0.25 mm. (b) Dependences of characteristic
impedance in-phase ρ0 and the fifth highest ρh modes calculated in the
central transit channel.

gap width decreases. Curve 3 shows the relative change in
the resonator parameter H due to which the frequency of the
in-phase mode was adjusted.

The dependences of the quality parameter T in this case
are reflected in curves 4 in Fig. 2(a) and (b). As can be seen
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Fig. 4. Dependences of the modulus of the interaction coeffi-
cient M (curves 1 and 3) and the relative electronic conductivity ge
(curves 2 and 4) for the double-gap cavity. Curves 1 and 2 are obtained
for the 2π mode, and curves 3 and 4 are obtained for the 3π mode.

from the obtained data, when the H/W ratio decreases, the
T value increases for both modes. Here, the qualitative form of
the dependence of T on d/ra for the 3π mode changes; with
a decrease in the gap width, the value of the quality parameter
increases. This is explained by the fact that, in this case, with
a decrease in the d/ra ratio, the resonator frequency was tuned
by decreasing the parameter H . The consequence of this is a
decrease in the resonator volume, which leads to a decrease
in the electromagnetic field energy Wr . Since the relationship
between the characteristic impedance and the energy of the
electromagnetic field is inversely proportional (2), this partly
compensates for the decrease in ρ with a decrease in the d/ra.
As a result, the dependence of the quality parameter T in
this case differs from the case when the height H is constant
[curves 1–3 in Fig. 2(b)].

Considering that with a decrease in the gap width, the char-
acteristic impedance [curves 1 and 2 in Fig. 3(b)] and the
Q-factor [curves 3 and 4 in Fig. 3(b)] of the resonator
decreases, the design of a double-gap cavity with the following
dimensions was chosen as a compromise option for further
research: the radius of the transit channels ra = 0.25 mm,
the relative width of the gaps d/ra = 0.96, and the ratio
of the sides of the resonator H/W = 0.75. In this case,
ρ01 = 75.1 	, ρ03 = 54.2 	, ρh1 = 7.3 	, ρh3 = 6.5 	,
Q0 = 1395, and Qh = 2135.

Fig. 4 shows the calculated dependences of the coupling
factor M (curves 1 and 2) and the relative electronic conduc-
tivity ge (curves 3 and 4) on the accelerating voltage U0. The
ge value was calculated by numerical differentiation using the
formula given in the paper [28]

ge = −βe

4

∂|M|2
∂βe

. (5)

The obtained results (curves 2 and 4 in Fig. 4) show that
in case of the selected value of the accelerating voltage U0 =
6 kV and the transit angle between the gaps equal to 2π ,
the value of the relative electronic conductivity is positive for
2π and negative for 3π .

IV. BUNCHING OF THE ELECTRON FLOW WHEN

PASSING THROUGH THE DOUBLE-FREQUENCY

DOUBLE-GAP RESONATOR

Let us consider the conditions for the excitation of the
highest operating mode with a frequency of 2 f0 in the studied
double-gap cavity and the effect of this mode field on the
bunching of the electron flow.

To solve this problem, a mathematical model based on
solving a self-consistent system of Maxwell–Vlasov equations
in the 2-D case has been developed. In this case, the electro-
magnetic fields are calculated directly by solving Maxwell’s
equations using the finite-difference method with boundary
conditions corresponding to ideally conducting walls of the
interaction space. The Maxwell equations are solved in a
rectangular coordinate system on spatiotemporal grids with
constant time steps. The electron flow moving in the transit
channels is represented by a flow of “macroparticles” with the
same specific charge equal to the electron charge [29], [30].
Integral characteristics (charge density, current density, and
so on) are found by weighing particles on a spatiotemporal grid
and then used to find electromagnetic fields in the calculated
area.

In the simulation, the magnetic field had only a longitudinal
component Bz = 0.25 T. The signal at frequency f0 was fed
into the first resonant chamber through a rectangular slit 6 (see
Fig. 1) in the sidewall of the resonator with height H. The
location and dimensions of the slit were selected to minimally
load the highest mode with a multiplied frequency and at the
same time to provide an optimal load on the in-phase mode.
The input power varied from 1.5 to 4 W.

The calculated electrodynamic and electronic parameters
(characteristic impedance, coupling factor, relative electronic
conductivity, and Q-factor) of the resonator for the considered
modes allowed to estimate the minimum current at which the
highest mode can be excited with a frequency of 2 f0 from
the amplitude condition of self-excitation [31]. In case of a
double-gap cavity, the expression for calculating the value of
the minimum starting current on the mth mode can be written
as follows:

Is = 2U0

ρm Qm g2em
. (6)

where ρm , Qm , and g2em are the characteristic impedance,
unloaded Q-factor, and relative electronic conductivity of
the second resonator gap on the mth mode, respectively.

Since the characteristic impedance averaged over the
gaps at 3π mode was about 7 	, the unloaded Q-factor
Qh = 2135, and the relative electronic conductivity of
the second gap g2eh = 0.105, the minimum starting current
was 7.6 A at the selected accelerating voltage of 6 kV.

The density of commonly used thermocathodes does not
exceed 20 A/cm2, so the maximum current of the electron
flow I0 will be 0.141 A. Thus, at this current value, 3π ,
mode should not be excited. This follows from the analysis
of the Fourier spectrum of the electromagnetic field oscilla-
tions inside the resonator when the frequency of the highest
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Fig. 5. Fourier spectra of electromagnetic field oscillations inside a
double-gap cavity in steady-state regime when an input signal is applied
with a frequency fin = 29.92 GHz. (a) Detuning δf = |2fin−fh| > 500 MHz.
(b) δf ≈ 200–300 MHz. (c) δf ≈ 0.

operating mode fh is not equal to twofold frequency of the
input signal fin [see Fig. 5(a)]. In this case, there are basically
two components in the spectrum. The main component has the
frequency fin and the harmonic component with the frequency
2 fin, the amplitude of which depends on a number of factors:
the power of the input signal Pin, the difference between fin

and f0, and so on.
When the value of the fh/ fin ratio approaches 2, in addition

to the frequencies of the input signal and the second-harmonic
component [number 1 in Fig. 5(b)], another component with
the frequency fh [number 2 in Fig. 5(b)] emerges in the
spectrum of the electromagnetic field oscillations inside the
resonator. The detuning δ f = |2 fin − fh |, where fh can be
observed, is determined mainly by the power of the input
signal and the value of the loaded Q-factor at the highest mode.
δ f was usually 200–300 MHz.

With the onset of resonance (i.e., when δ f ≈ 0), the ampli-
tude of the highest mode begins to increase and, in the
steady state, may exceed the amplitude of the main mode [see
Fig. 5(c)]. In this case, the oscillation frequency is 2 fin, that
is, the frequency of the highest mode fh is captured.

Fig. 6. Change in time of the electron flow current passing through
the plane located at a distance from the center of the second gap of
the double-gap cavity, corresponding to the transit angle 4π. Input signal
frequency fin = 29.92 GHz, power Pin = 3.6 W, and electron flow current
I0 = 0.14 A. Number 1 indicates electron bunches following the frequency
fin, and number 2 indicates electron bunches formed under the action of
the field 3π mode.

In this regime, as the amplitude of the electromagnetic field
oscillations increases at the frequency 2 fin, the appearance
of the electron flow bunches that passed through the resonator
significantly changes. At the beginning of the transition period,
when the amplitude of the highest mode is still small, the type
of electron current bunches does not differ from the case of
fh/ fin �= 2 [see Fig. 6(a)].

As the amplitude of the highest mode increases, the ampli-
tude of the current bunches also increases [see Fig. 6(b)], and
the bunches become more dense. The increase in the quality of
modulation is explained by the fact that the total effect of the
fields of the main and highest modes approaches the sawtooth
waveform, which is known to be the most optimal [32]. This
regime (let us call it regime A) can be used to achieve the
maximum efficiency values in klystron-type amplifiers. It is
possible to limit the further growth of the 3π mode amplitude
at the value that provides this regime by selecting the necessary
value of the loaded Q-factor.

It is worth noting that the designs of resonators with a
multiple frequency ratio of the two fundamental modes, which
were supposed to be used to improve the bunching of the elec-
tron flow, were proposed earlier [33]. However, to implement
a double-frequency modulation mode in the resonator pro-
posed in [33], the input signal should also be two-frequency:
with the main fin and a multiple 2 fin spectral components.
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Here, the input signal has only one spectral component with
the frequency fin.

Further growth of the field amplitude of the highest mode
leads to a decrease of the amplitude of the bunches of current
electron flow at a frequency of main signal [designated 1
in Fig. 6(b)], and the appearance of bunches formed field of
highest mode [designated 2 Fig. 6(c)]. The amplitude of the
latter, as the energy of the 3π type increases, increases too and,
in the steady-state mode, can be compared with the amplitude
of the bunch formed by the signal of the main frequency fin

[designated 2 at Fig. 6(d)]. This regime (let us call it regime B)
should be used in klystron-type frequency multipliers.

The output time tA to regime A decreases with increasing
input signal power: tA = 420 ns at Pin = 1.6 W and
tA = 200 ns at Pin = 3.6 W.

The transition time tAB between regimes A and B has
an inverse relationship: with increasing input signal power it
increases: tAB = 180 ns for Pin = 1.6 W and tAB = 260 ns
for Pin = 3.6 W.

V. CONCLUSION

The analysis of the results shows that in the double-gap
cavity in case of a multiple frequency ratio of the highest (3π)
and main (2π) modes equal to 2, the highest mode can be
excited even if the electron flow current is lower than the
minimum current required for self-excitation. The excitation
of the highest mode occurs due to the pumping of energy
from the electron flow, which oscillates with the frequency of
the input signal fin to the electromagnetic field of the highest
mode.

As the amplitude of the highest mode increases, its influence
on the modulation of the electron flow increases, and the total
HF voltage at the resonator gaps approaches the sawtooth
waveform. This leads to improved modulation of the electronic
flow at the frequency of the input signal fin (regime A).

A further increase in the amplitude of the field of the highest
mode leads to a doubling of the frequency of electron bunches
at the output of the resonator (regime B).
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