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Abstract—We analyzed fMRI data from healthy control sub-
jects (94 subjects) and patients with major depressive episode
(70 patients). The preprocessed activity signals extracted with
statistical parametric mapping from fMRI were divided into
parcellations according to the anatomical labeling atlas. Our find-
ings indicate that patients with major depressive disorder exhibit
network organization that is both less locally specialized and less
globally integrated. Specifically, our research reveals differences
in network segregation rather than integration in patients. The
discrepancies between our results and previous studies may be
attributed to differences in methodology, depression diversity,
sample sizes, and co-occurring factors such as stress and anxiety.

Index Terms—fMRI; functional analysis; brain networks; con-
nectivity; optimal community analysis; major depressive disor-
der;

I. INTRODUCTION

Integrating the concepts of brain functional networks and
complex network theory offers a potent tool for studying brain
processes in both healthy individuals and those with various
pathologies [1]–[3]. Brain functional connectivity networks
refer to statistical associations between neural activities in dis-
tinct and distant brain regions [4], [5]. The inherent properties
of brain functional networks can pose challenges in applying
and analyzing them using traditional statistical [6], [7] and
machine learning methods [7], [8].

This work was supported by Russian Science Foundation (Grant No. 23-
71-30010).

The field of psychiatry faces a significant challenge in
producing nomothetic networks that represent standard cog-
nitive structures within the medical discipline. Our research
contributes to this cross-disciplinary effort by providing results
that can be integrated into larger-scale nomothetic networks
[9]–[11].

II. SUBJECTS AND EXPERIMENTAL SETUP

We recruited a total of 164 participants for the study,
divided into two groups: 94 healthy individuals without known
psychiatric conditions (the Healthy Controls, HC group) and
70 patients diagnosed with major depressive disorder (the
MDD group). Each participant underwent thorough evalua-
tions led by experienced psychiatrists, which included the
administration of the Mini International Neuropsychiatric In-
terview [12] and the Montgomery–Åsberg Depression Rating
Scale (MADRS) [13], [14]. Exclusion criteria for both groups
comprised a history of comorbidities, autoimmune diseases,
neurological disorders, prior head trauma, or the presence of
metal implants incompatible with MRI procedure.

The MR scanning process was carried out on a 3T MRI sys-
tem the GE Discovery 750w model with the same parameters
as in the Refs. [9], [15].

The data were preprocessed using the SPM12 statistical
software package [16]. The preprocessing procedure involved
three main steps: motion correction, co-registration of struc-
tural data, and normalization to the Montreal Neurological
Institute (MNI) standard space. To calculate the connectivity
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between diverse brain regions, we computed and detrended the
average time series for each node included in the Automated
Anatomical Labeling (AAL3) atlas [17].

III. METHODS AND RESULTS

To assess the connectivity between the regions of interest,
we calculated the average BOLD time series xi(t) (across
voxels in each parcellation i) and the corresponding metrics
for all pairs of average activities of each region. The analysis
of the relationship between the sequence was based on the
established Pearsons correlation.

To analyze the topology and larger-scale features of the
functional network, we calculated the network measure of
optimal community structure [18]. T-test between the groups
(HC>MDD) on the communities structure revealed defference
close to the significant: T2,165 = 1.9097, p = 0.0579. The
distributions of communities across nodes are presented in the
Fig. 1 and Fig. 2.

We did not use any initial community affiliation vector and
used the Louvain community detection algorithm with the
resolution parameter was set to 0.05, objective function type
or custom objective matrix was set to symmetric treatment of
negative weights [19]. For the network calculations we used
the Brain Connectivity Toolbox [20].

To assess the similarity between the considered subnetwork
and the large-scale brain network, we calculated the ratio of
shared nodes between them to the total number of nodes in
the large-scale network. This yielded the percentage of sim-
ilarity between the two networks. The composition of nodes
(brain regions) included in the large-scale brain networks was
determined based on a literature review [21]–[23]. Difference
in the correspondence of community nodes belonging to the
large scale networks are following:

• Default Mode Network MDD>HC 20%;
• Central Executive Network HC>MDD 20%;
• Dorsal Attention Network — no difference;
• Salience Network HC>MDD 66%.

Analysis of the optimal community networks revealed
that Healthy Controls (HC) tended to have greater Cen-
tral Executive Network (CEN) and Salience Network
(SN) overlap, while Major Depressive Disorder (MDD)
demonstrated more overlap with the Default Mode Net-
work (DMN).

IV. CONCLUSIONS

Our analysis revealed that Major Depressive Disorder
(MDD) patients exhibited reduced correspondence to the
salience and executive networks, suggesting a less specialized
local network organization and impaired global integration.
Conversely, we did not find significant differences between the
global efficiency of MDD patients and healthy controls. We in-
terpret this to indicate that the divergence lies in network seg-
regation rather than integration. Possible explanations for these
distinctive findings may include differences in methodological
approaches, MDD variability, sample sizes, and comorbidities,
such as stress and anxiety. Conversely, we observed significant

overlap with Default Mode Network (DMN) nodes in the
consensus networks specific to MDD patients. The DMN is
often implicated in self-referential thoughts and rumination,
which are common in depressive states.
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Fig. 1. The optimal community structure for the network nodes of the HC group. Each color represents different community.

Fig. 2. The optimal community structure for the network nodes of the MDD group. Each color represents different community.
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