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Abstract—We consider the task of oscillatory pattern recognition on the fragments of electroencephalogram
records obtained during motion and their mental representation for the development of a neurointerface soft-
ware. Using a multiscale analysis, the number of channels is estimated that will provide reliable separation of
motions of various types from background activity.
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Achievements in the creation of brain–computer
interfaces (BCIs or neurointerfaces) [1–5] led to the
formation of a new field of interdisciplinary research
where a number of original R&D projects have been
proposed in recent years. BCIs provide recognition of
the characteristic features of detected signals—e.g.,
records of the electrical activity of the brain in the
form of electroencephalograms (EEGs)—and the sub-
sequent formation of commands controlling hard-
ware. These interfaces allow various actions in the
environment to be accomplished based on mental
intentions without using muscles [6–10], which is
especially important for people with serious motor
disabilities. Existing BCIs already allow paralyzed
people to drive cursor movements on a display screen,
synthesize voice communications, control motions,
etc.

A key role in the creation of BCIs belongs to the
software intended to detect and recognize signal pat-
terns corresponding to various mental intentions.
These programs must rapidly reveal characteristic
signs of patterns from short signal fragments with
allowance for their variability, which is a complicated
task that requires using special methods [10—15]. In
particular, it is possible to apply, e.g., approaches
based on wavelet analysis [16, 17] or f luctuation anal-
ysis [18, 19]. These tools are capable of solving the
tasks of recognizing motions, but existing methods
[17] do not ensure sufficiently high response speed.
From the standpoint of high-speed data processing, it
is expedient to select fast algorithms based on a dis-
crete wavelet transform with the corresponding basis
set functions.

The present work was devoted to assessing the pos-
sibilities and restrictions of this approach to solving
the tasks of recognizing the types of motions in spe-
cially untrained persons.

The experiments were performed in a group of nine
healthy volunteers. EEG signals were recorded using
an Encephalan electroencephalograph in a standard
10–20 setting with additional intermediate recording
electrodes, which allowed the number of signal chan-
nels to be increased to 32 (a 10–10 scheme). The pat-
tern recognition was based on preliminarily recorded
EEG signals used for the comparison of possibilities
and restrictions of wavelet analysis with different basis
sets. Experiments involved the recording of back-
ground brain activity (10 min) and 3-s EEG fragments
accompanying accomplished motions (raising
right/left arm or right/left leg). In addition, volunteers
were asked to mentally reproduce (visualize) these
motions and the corresponding EEG signals (reflect-
ing visualized motor functions) were recorded. Each
type of real and mentally reproduced motion was
recorded no less than 40 times so as to ensure sufficient
statistics, and the motions were alternated in random
order so as to reduce the influence of adaptation on
repeated actions.

The experimental data (EEG records) were pro-
cessed using the method of multiscale wavelet analy-
sis [20], according to which a recorded signal is
expanded using a set of mirror filters, including the
low-frequency ϕj, k(t) and high-frequency ψj, k(t) fil-
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Fig. 1. Dependence of σ value on the choice of EEG
recording channel (denoted according to the international
10–10 scheme). The order of electrode arrangement cor-
responded to the shift from the occipital to frontal region.
Numbers indicate the results of calculations for (1) back-
ground activity, (2) real motions, and (3) imaginary
motions.
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Fig. 2. Histograms of the numbers of channels used for
reliably (p < 0.01) distinguishing the given type of motion
(a) from the background activity and (b) from other types
of motion. Data refer to real motions of the leg (RL) and
arm (RA) and to imaginary motions of the leg (IL) and
arm (IA). Calculations were performed separately for the
motions of the right and left leg/arm. With allowance for
the similarity of results, only averaged data are presented as
mean values and standard errors.
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ters formed by dilations and translations, respectively,
of scaling function ϕ(t) and wavelet ψ(t) defined as

(1)
The basis set functions were selected from the

Daubechies wavelet family [20]. The signal expansion
on a given resolution level m was performed according
to a fast (pyramidal) scheme as

(2)

A quantitative criterion characterizing the variabil-
ity of coefficients dj, k was the signal dispersion defined
as

(3)

where number M of expansion coefficients varies
depending on scale j. As was noted in [21], the diag-
nostics of dynamical regimes in solving many applied
problems can be provided by selecting a proper j value
(e.g., 4 or 5). Taking into account those investigations
and the results of our preliminary analysis of EEG sig-
nals, below we present the results of EEG signal pro-
cessing for the measure of σ = σ(5).

At the first stage, we solved a relatively simple task
of distinguishing real and imaginary motions from the
background activity. For this purpose, one type of
motion (left hand raise) was selected and the results of
σ calculations were compared for various arrange-
ments of electrodes. As can be seen from Fig. 1, the
choice of electrodes significantly affects the result. For
example, in the occipital region (electrodes O1 and
O2), the dispersion of wavelet coefficients for real (and
even more so for imaginary) motions significantly
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exceeds σ value corresponding to the background
activity, while electrodes situated in the frontal region
(Fp1 and Fp2) display the opposite effect. It should be
also noted that the choice of electrodes ensuring most
pronounced differences between observed EEG pat-
terns depends on a particular volunteer.

The quality of pattern recognition can also be
improved by selecting an appropriate wavelet basis set.
In the present work, we have compared various basis
set functions by estimating the difference between
EEG patterns in terms of Student’s criterion. In most
experiments, the best results were obtained for a D8

wavelet, which was selected for more detailed compar-
ison of various experimental patterns.

At the next stage, we have analyzed the possibility
of separating the types of motions and first compared
EEG fragments corresponding to the motions of arms
9
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and legs. According to the data presented in Fig. 2a,
these motions are recognized at comparable accuracy:
reliable differences are observed in 21–22 channels
out of 32 (total number). The imaginary motions are
also quite reliably distinguished, although in a some-
what smaller number of channels: 16–17 out of 32. A
more complicated task proved to be related to distin-
guishing between the type of motion: left versus right
arm or leg. As can be seen from Fig. 2b, this difference
is reliably detected only in 6–7 channels out of 32 for
the real motions and in 1–2 channels out of 32 for the
imaginary motions. At the same time, it should be
noted that the number of correct channels for some
volunteers was much greater than that for the other
(probably, a key factor in this case can be an experi-
ence in the mental representation of motions). In par-
ticular, volunteers who repeatedly participated in such
investigations showed increased number of channels
with correct recognition of mental intentions.

Therefore, the apparatus of multiscale analysis can
be employed for BCI development, but certain pre-
liminary selection of channels and training of volun-
teers are required with allowance for individual fea-
tures of participants.
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