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Abstract Epilepsy is a neurological disorder distinguished by sudden and unexpected seizures. To diag-
nose epilepsy, clinicians register the signals of brain electric activity (electroencephalograms, EEG) and
extract segments with seizures. It enables characterizing their type and finding an onset zone, a brain area
where they originate. This procedure requires manual EEG deciphering, which is slow and necessitates
the assistance of machine learning (ML) algorithms. Traditionally, ML handles this issue in a supervised
fashion, i.e., after the training on the representative data, it constructs a boundary in the feature space
that separates classes. As the number of features grows, this boundary becomes complex and less gener-
alized. The feature space of brain data is high dimensional. The standard recording includes 30 signals
and 50 frequencies resulting in 1500 features. Using additional time-domain features may further enlarge
the feature space. Thus, selecting appropriate features is a big part of the successful classification. The
selection procedure relies on either a data-based mathematical approach (e.g., principal components, PCs)
or the expert domain knowledge of data (explainable features, EFs). Here, we demonstrate the benefits of
using EFs. For the EEG data of 30 epileptic patients, we trained a RandomForest algorithm using PCs and
EFs. The feature importance analysis revealed that explainable features outperform principal components.

1 Introduction

Epilepsy is a chronic neurological disorder manifesting
in a form of recurrent seizures accompanied by abnor-
mal brain activity [1]. According to global statistics,
epilepsy is one of the most common neurological dis-
eases [2]. Epileptic seizures vary from brief and nearly
undetectable episodes to long periods of vigorous shak-
ing [3, 4]. Seizures are often marked by involuntary
movement and corresponding state of incapacity, that
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lead to dangerous situations for both patient and sur-
rounding people. Additionally, patients with epilepsy
are more prone to cognitive and behavioral deficits [5].
Thus, epilepsy affects many aspects of patient’s life, and
antiepileptic treatment is crucial. Seizures are control-
lable with medications—up to 70% of patients could
become seizure-free with the appropriate use of anti-
seizure medicines [6, 7]. For those whose seizures do not
respond to medication, surgery or neurostimulation can
be used to certain degree [8, 9]. Not all cases of epilepsy
are lifelong, and many people improve to the point that
treatment is no longer needed [10]. However, to start
antiepileptic treatment a proper diagnosis is required,
the earlier the better, which leads to necessity of prac-
tical and accessible methods for epilepsy diagnostics.

Epilepsy diagnostics is commonly associated with
objective seizure identification and quantification [11].
Most treatment strategies start with analyzing brain
activity during seizures revealing their features. One
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of the most common approaches to obtain this infor-
mation is the electroencephalogram (EEG) study: the
patients are monitored for a period of time with occa-
sional functional trials to stimulate the arousal of
epileptiform activity [12]. While this method is fairly
reliable, there are certain issues. Firstly, proper epilepsy
diagnostics requires collecting data for a representa-
tive number of events which is only possible during
the prolonged continuous EEG monitoring. The stud-
ies show that it is common to require more than three
days of EEG recording to diagnose the nature of parox-
ysmal episodes [12]. This issue occurs partly due to
high variability of epileptic activity—exact underly-
ing cause for epilepsy is usually unknown and can
include brain injury, stroke, tumor, congenital disabili-
ties, etc. [13–15]. Secondly, EEG approach relies heav-
ily on data deciphering, which is commonly done man-
ually in clinical practice [16]. Visual analysis requires
much effort—an experienced specialist can spend hours
reviewing the data of a single patient. Additionally, the
human factor is involved, which can lead to increased
error rate under conditions of high workload and
fatigue. Misdiagnosis can have a heavy impact on the
patient’s physical and mental health and require its own
treatment and rehabilitation. Thus, an expert requires
assistance from automated systems for seizure detec-
tion [17]. While fully automated detection of epileptic
seizures seems very attractive, even the modern meth-
ods in this field still possess a high chance of misdi-
agnosis. The working solution here is partial automa-
tion, well-known as the Clinical Decision Support Sys-
tem (CDSS) [18]. In CDSS, the computer analyzes data
and provides recommendations, and the medical expert
makes the final decision.

An optimistic approach to automated epileptic
seizure detection is machine learning (ML) [19, 20]. In
case of ML, seizure detection comes in a form of clas-
sifier that commonly detects two classes in EEG data:
“seizures” and “non-seizures” [21, 22] A wide variety of
ML techniques have been applied to this task, includ-
ing support vector machine (SVM) [23–26], random for-
est [27–29], artificial neural network (ANN) [30, 31],
k-nearest neighbors (kNN) [32, 33], deep learning [34].

As we mentioned above, epileptic activity can be
highly variable which leads to under-representation and
non-robust EEG footprint of an epileptic pattern. This
issue leads to situation where direct application of ML
classifier to raw EEG dataset may not produce enough
sensible patterns. Thus, in most cases ML approach
requires use of informative input features, that are com-
monly derived from time and frequency domains of
EEG data [35]. Vast research on time-frequency struc-
ture of epileptic EEG [14, 15] reveals some major time-
domain features, for example, repeatability, regular-
ity (periodicity), synchronicity and amplitude variation
of EEG, that are considered to be able to differenti-
ate epileptic seizure from normal activity [36]. Various
transformation techniques including Fourier transfor-
mation (FT), discrete wavelet transformation (DWT),
continuous wavelet transformation (CWT) [37, 38] are

applied to EEG data to provide time-domain based fea-
tures—for example, line length, frequency and energy
[39, 40]. However, this approach often leads to great
increase in number of features, which, in its turn, neg-
atively affects computational costs, response time and
performance.

ML commonly addresses classification in supervised
fashion—an algorithm is trained on a set of previously
labeled data to estimate outputs for unlabeled data [41,
42]. In this form, machine learning is often used to diag-
nose neural activity in the brain [43, 44]. Review shows
that the majority of existing seizure detection meth-
ods rely on supervised ML algorithms [45]. While this
approach demonstrates generally higher performance,
it can suffer from the class imbalance and overfitting.

The class imbalance originates from the rare nature
of seizures and requires artificial balancing for “seizure”
and “non-seizure” examples in the training set. One
way to manage the imbalance is constructing feature
space resulting in the long distance between classes.
However, stretching this concept too far often leads to
overfitting. The overfitting implies that the algorithm
performs satisfactorily on the training data but fails to
properly classify test data. Addressing this issue relies
on constructing a feature subspace with the biomarkers
of seizures common for the most patients. These rea-
sonings lead us to the problem of the feature selection
and interpretability which often occurs in ML. It is cru-
cial to analyze obtained feature space to find the most
important features and perform feature reduction pro-
cedure. In this work, we aimed to propose ML-based
approach to epileptic EEG marking that uses specific
set of features and can possibly be applied in CDSS.

2 Methods

Figure 1 illustrates the whole pipeline of the research.
Each separate step is explained in detail further in the
paper.

2.1 Participants

In the study, we used anonymized long-term EEG and
video-monitoring data of 30 adult subjects (15 males
and 15 females, age 33.4 ± 9.4) with confirmed diagno-
sis “focal epilepsy”. The experimental dataset was pro-
vided by National Medical and Surgical Center named
after N. I. Pirogov of Russian Healthcare Ministry
(Moscow, Russia). All subjects were patients of the
Department of Neurology and Clinical Neurophysiol-
ogy in 2017–2019. Medical procedures were held in
the Center following the Helsinki Declaration and the
Center’s medical regulations, and were approved by
the local ethics committee. All patients provided writ-
ten informed consent before the treatment. The data
was collected during patients’ regular daily routine and
occasional standard physiological trials such as photic
stimulation and hyperventilation [46]. Length of the
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Fig. 1 Diagram with
pipeline of the study

monitoring varied from 8 to 57 h and depended on the
personal patient’s condition [12]. Each patient had from
one to five epileptic seizures during the time of the mon-
itoring. While all the patients were subjected to phys-
iological trials, none of the seizures was triggered by
this stimulation; i.e., all epileptic seizures were spon-
taneous. Recorded EEG and video-monitoring data
of the patients were retrospectively analyzed by the
experts from the Center, and all epileptic seizures were
marked.

2.2 Data acquisition and preprocessing

EEG signals were recorded with “Micromed”
encephalograph (Micromed S.p.A., Italy). Dataset
for each patient included 25 channels arranged in
accordance with the international “10–20” system.
Ground electrode was placed on the forehead and
reference electrodes were placed at the ears. Sampling
rate of EEG data was 128 Hz. The video monitoring
system was used to track patients’ states for easier
data marking.
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EEG signals are known to be highly susceptible to
the influence of various external and internal noises,
especially during prolonged recording [47]. In clini-
cal monitoring, external noises usually emerge through
poor contact of EEG electrodes, powergrid and cell-
phone interference, etc. Internal noises (physiological
artifacts) originate from physiological processes such as
heartbeat, blinking, or breathing [48]. To deal with low-
and high-frequency noises we applied band-pass filter
with cutoff frequencies of 1 Hz and 60 Hz. Addition-
ally, we used 50-Hz notch filter to diminish powergrid
interference. We considered the frequency band 2–30
Hz, which includes all commonly studied waveforms
(delta, theta, alpha, beta), and is often regarded as an
effective frequency range of EEG [16]. To remove some
undesired activity that can interfere in this frequency
range (e.g., blinking artifacts) we used standard pro-
cedure based on an independent component analysis
(ICA) [49].

Studies on epileptic EEG show that seizures manifest
as “outliers” in EEG data [26, 50, 51]. However, out-
liers in data can also be caused by some external inter-
ference such as mechanical impact on EEG electrodes,
which is quite common in prolonged EEG recordings
[52]. The existence of two types of outliers in data can
negatively affect training of ML classifier and its abil-
ity to distinct two classes. In our work we removed
outliers in normal but not in epileptic EEG activity.
Such preprocessing requires preliminary data labeling
and analysis, which contradicts the purpose of classifier.
So we removed outliers only for the training dataset,
but validation and testing were performed on unaltered
data.

To construct feature space from EEG data, we
performed time–frequency analysis of EEG signals
using CWT with Morlet mother wavelet function
[53, 54]. We considered wavelet power (WP) as it
is common CWT-based characteristic to describe the
time-frequency structure of the epileptic EEG [55,
56]:

Wn(f , t) = |wn(f , t)|, (1)

where n = 1, 2...N is the number of EEG channel (N =
25 for the used dataset), f and t are the frequency and
time point, wn(f , t) are the coefficients of CWT.

To reduce obtained feature space we considered two
additional steps. The first step included averaging WP
over the EEG channels. This approach is inspired by
the features of spatial distribution of EEG activity dur-
ing epileptic seizures. In generalized seizures, activity
arises suddenly all over the brain, and all EEG sig-
nals are highly correlated [57]. In focal seizures, activ-
ity is localized in a few EEG channels near the focus,
however, these channels stand out in terms of time-
frequency structure of EEG signal, so even after averag-
ing over the channels WPs for normal and pathological
activity differ significantly. While this approach elimi-
nates spatial distribution of EEG activity, it can help
to differentiate normal and epileptic activity without
knowledge on focus location. We calculated averaged

WP (AWP) by averaging WP values over N = 25 EEG
channels:

E(t) =
1
N

N∑

n=1

Wn(f , t) (2)

The second step included further decrease of the com-
plexity of the data via “downsampling” of AWP. We
divided each EEG recording into 60-second intervals
Tm, where m = 1, 2...M , M = L//60, L—the length
of EEG recording in seconds, “//” stands for integer
division. The choice of such interval length is justified
by the average duration of an epileptic seizure—from
30 to 120 s [58]. AWP values were calculated for each
time interval Tm and averaged over the whole length of
the interval to obtain “downsampled” AWP (DAWP):

em =
1

ΔT

∫

t∈Tm

E(t)dt, (3)

where ΔT is the length of each interval Tm (ΔT=60 s).

3 Machine learning

3.1 Feature engineering

The initial feature space consisted of DAWP spectra,
but we aimed to introduce several additional features.
Figure 2 illustrates typical DAWP spectra of a sin-
gle patient. The red curve corresponds to the epilep-
tic seizure, blue curves are the specra obtained in the
neighbouring time-points before and after the seizure.
Green curve reflects the spectrum averaged across the
whole recording of this patient. Extended research on
epileptic EEG reveals certain peculiarities of seizures in
comparison to normal EEG [4, 14, 15, 59, 60], so intro-
duction of new features that would capitalize on this
difference can help in seizure detection greatly.

It is well-known that epileptic seizures occur due to
abnormal excessive or synchronous neuronal activity
in the brain [61]. The statement of abnormality sug-
gests that EEG activity in seizure is generally differ-
ent. This means that basic properties of EEG spec-
trum—DAWP spectrum in our case—such as dominant
frequencies, peak energy, energy distribution across fre-
quencies should also differ between epileptic and normal
activity [4].

According to the explanatory Fig. 2, the DAWP spec-
trum has much higher power during seizure. Moreover,
it demonstrates large deviation of the power between
low and high frequencies. Therefore, we introduce two
features capturing these properties:

• Mean mean DAWP across 2–30 Hz range
• Variance variance of DAWP in spectrum
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Fig. 2 Typical DAWP
spectra of a single
explanatory patient. The
red curve corresponds to
the epileptic seizure, blue
curves are the spectra
obtained in the
neighbouring time-points
before and after the seizure.
Green curve reflects the
spectrum averaged across
the whole recording of this
patient

Additional features to assess normal and epileptic data
similarity can be introduced using cosine similarity.
This approach suggests considering DAWP spectrum
in each time interval Tm as a vector, and it is especially
popular in ML methods [62, 63]. We introduced fea-
ture SimToMean as cosine similarity between DAWP
spectrum at given time interval Tm and mean DAWP
spectrum for the patient (green curve in the Fig. 2).
We suppose that this feature in addition to Mean and
Variance can capitalize on the contrast between seizure
and normal EEG.

Epileptic seizures in addition to being abnormal and
excessive activity also occur spontaneously [64]. This
fact suggests that EEG activity during the seizure
differs greatly from the activity before and after the
seizure. To assess this difference we introduced another
cosine similarity-based feature—SimToNeigh. We cal-
culated SimToNeigh as mean cosine similarity between
DAWP spectrum at given time interval Tm and each
of DAWP spectra from neighboring intervals (Tm−3,
Tm−2, Tm−1, Tm+1, Tm+2, Tm+3) (these spectra are
marked in blue color in the Fig. 2).

Deep understanding of the spectrum structure can
also improve seizure detection. Our recent research
demonstrated that some parts of the spectrum are
more prone to reflect epileptic activity. In the paper
[50], we reported that the absence seizures in WAG/Rij
rats induced a drastic increase of WP in the frequency
range of 6–8 Hz, while there were no manifestations of
such behavior for other frequencies. In the follow-up
research [26, 51], we showed that epileptic seizures in
human patients demonstrate similar behavior in the fre-
quency range of 2–5 Hz and not in the rest of the spec-
trum (5–30 Hz). Figure 2 clearly illustrates this state-
ment. During the seizure, wavelet power (red curve)
reaches the highest values at the low frequency and
rapidly decreases within the 2–5 Hz frequency range.
For normal activity, the difference in wavelet power
between the 2–5 Hz and 5–30 Hz is much smaller (blue
curves). Thus, the pronounced difference between low-
and high-frequency EEG activity can be considered as a

marker of epileptic seizure. According to this conclusion
we introduced another feature—FreqDiff as difference
between DAWPs averaged over low (2–5 Hz) and high
(5–30 Hz) frequencies.

Thus, we derived five new features from the data:
Mean, Variance, SimToMean, SimToNeigh, FreqDiff .
We aimed to use them along with original DAWP spec-
tra to construct ML model. However, each DAWP spec-
trum contains many features—spectrum was calculated
in 2–30 Hz range with 0.1 Hz step.

Large number of features negatively affects time for
ML model training. Moreover, DAWP on neighboring
frequencies, such as 2.1 and 2.2 Hz, are highly corre-
lated, which leads to data redundancy. To lower the
dimensionality of feature set we used principal compo-
nent analysis (PCA) [65]. The analysis showed that first
two components (PCA0 and PCA1) contain 97.18% of
all information from the initial data. These principal
components, PCs are show in Fig. 3. Red dots corre-
spond to the epileptic seizures, blue dots—to the seg-
ments of normal activity. Although these PCs explain
97.18% of data, projecting the data onto the recon-
structed feature space barely allows separating seizures
and normal EEG.

Finally, correlation analysis showed high correlation
between Mean and PCA0, so we decided to remove
Mean from the feature set. In the end, for constructing
ML model we used six features: PCA0, PCA1, Vari-
ance, SimToMean, SimToNeigh, FreqDiff .

3.2 Algorithm

We used RandomForest, a popular supervised learning
algorithm, which builds a forest with an ensemble of
decision trees and averages their outputs [66]. We chose
RandomForest for the following advantages: (i) due to
binning the variables, RandomForest is not influenced
by outliers; (ii) it handles both linear and non-linear
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Table 1 Results for
RandomForest Classifier Patient TP TN FP FN Recall, % Precision, %

1 3 2388 129 0 100 2.27

2 1 447 32 0 100 3.03

3 2 4120 155 0 100 1.27

4 1 406 73 0 100 2.67

5 1 414 65 0 100 1.52

6 2 432 46 0 100 4.17

7 1 467 12 0 100 7.69

8 1 469 10 0 100 9.09

9 2 466 12 0 100 14.29

10 1 66 400 0 100 0.25

11 1 471 8 0 100 11.11

12 5 4409 635 0 100 0.78

13 0 440 39 1 0 0

14 1 1234 11 0 100 8.33

15 2 3746 158 3 40 1.25

16 1 407 32 0 100 3.03

17 1 422 57 0 100 1.72

18 1 465 10 4 20 9.09

19 1 472 7 0 100 12.5

20 1 420 59 0 100 1.67

21 0 449 30 1 0 0

22 0 450 27 3 0 0

23 2 1905 122 0 100 1.61

24 3 2191 43 0 100 6.52

25 1 434 45 0 100 2.17

26 4 453 23 0 100 14.82

27 0 465 14 1 0 0

28 1 468 11 0 100 8.33

29 0 457 22 1 0 0

30 4 392 9 0 100 30.77

Mean 78.67 5.33

SE 1.33 0.22

relationships; (iii) it balances the bias-variance trade-
off, hence preventing overfitting; (iv) it can automat-
ically balance data sets when one class is more infre-
quent than another; (v) it provides feature importance,
hence allowing the interpretation.

In usual tree construction (Classification and Regres-
sion Tree, CART) each node corresponds to a subset of
data. Initially the root node contains all data, and at
each node, the algorithm searches through all variables
to find best split into two children nodes. The algorithm
splits all the way down and then prunes the tree up to
get minimal test set error.

In RandomForest the root node contains a bootstrap
sample of data of same size as original data. A different
bootstrap sample for each tree is grown. If training set

consists of N samples and M is feature space dimen-
sion, then integer m is a fixed parameter (m � M , com-
monly m ≈ √

M). At each node, m of the variables are
selected at random. Only these variables are searched
through for the best split. The largest tree possible is
grown and is not pruned. The forest consists of K trees.
To classify a new object having coordinates x , x is put
down each of the K trees. Each tree gives a classifica-
tion for x . The forest chooses that classification having
the most out of K votes [67].

In our work we built a forest of 500 trees using the
“sklearn” library in python. To control overfitting, we
set restrictions on the growth of the tree. The mini-
mum number of samples required to be at a leaf node
was set to 3. Therefore, a split point at any depth was
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Fig. 3 The DAWP
projection on the two
principal components
(PCA0 and PCA1)
explaining 97.18% of data.
Red dots correspond to the
epileptic seizures, blue
dots—to the segments of
normal activity

considered if it leaves at least 3 training samples in
each of the left and right branches. Finally, the max
depth was equal to 5; therefore, only five splits were
available for each tree. Other parameters were set by
default.

In training ML model we used custom cross-
validation function. In our case this function is close
to “leave-one-out” cross-validation, but among the
patients. The model is trained on 29 patients out of
total 30 and tested on the one remained patient. This
approach imitates situation in medical practice when
we have ML algorithm trained on K patients and we
need to diagnose a new, (K + 1)-th, patient, after that
we can retrain the algorithm on (K + 1) patients and
prepare it for (K + 2)-th patient, etc.

In our work we considered “seizure” to be a “pos-
itive” class, so our two-class classifier has 4 possible
outcomes with corresponding meanings:

• True Positive (TP) correctly identified seizure;
• True Negative (TN) correctly identified normal activ-

ity;
• False Positive (FP) incorrectly identified epileptic

seizure, i.e. episode of normal activity identified as
seizure;

• False Negative (FN) missed epileptic seizure, i.e.
seizure identified as episode of normal activity.

In clinical practice it is commonly important to not
miss any seizures, since each episode of epileptic activ-
ity can be crucial for diagnostics. With this in mind, we
have chosen Recall (Eq. (4)) as a main metrics to eval-
uate the efficiency of the classifier, since Recall reflects
the percentage of detected seizures, and classifier with
higher Recall can be considered as more prominent for
clinical purpose. However, a possible application for
epileptic activity classifier includes preliminary EEG
marking and reducing working load on human expert.
This suggests that the classifier marks some segments of
EEG recording as epileptic activity, and these segments
are then examined by the expert. It is important that
classifier-marked segments would include as much true
seizures as possible, so Precision (Eq. (5)) is another
important metrics.

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)
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Table 2 Feature ranking

Feature %

Variance 31.68

SimToNeigh 26.93

FreqDiff 24.65

PCA0 7.97

PCA1 7.04

SimToMean 1.73

4 Results

We used the developed classifier based on Random-
Forest algorithm to classify all data in the used EEG
dataset. Results are presented in Table 1.

The classifier provides Recall = 78.67 ± 1.33 (mean
± standard error (SE)) and Precision = 5.33 ± 0.22.
These results are comparable to our previous work
[26]. In the paper [26] we proposed unsupervised clas-
sifier for epileptic activity, which was able to achieve
Recall = 76.97 ± 4.4 and Precision = 12.7 ± 1.47 on a
similar epileptic EEG dataset. From Table 1 one can
see, that Recall commonly has one of the two opposite
values: 100% (23 subjects) or 0% (5 subjects), which
was also the case in the previous work [26]. We theorize
that small number of seizures in data (usually only one)
can result in Recall = 100%/0%, if this only seizure
is detected/missed. However, there are some occasions
where multiple seizures were all detected (patients 24
and 30) or all missed (patient 22). The fact that we
obtained such similar results with drastically differ-
ent approaches—supervised RandomForest in this work
and unsupervised SVM in [26]—may suggest that there
are some peculiarities in the data itself, and the used
explainable features reflect them well.

These results bring up again the importance of data
analysis and feature selection. In our work we per-
formed analysis of feature significance and ranked the
features. Results are presented in Table 2.

From Table 2 one can see, that the three most sig-
nificant features—Variance, SimToNeigh and FreqD-
iff —together contribute 83.26 % to classification. At
the same time, features PCA0 and PCA1, that contain
97.18% of all information from the “raw” data, con-
tribute only ∼ 15 %. This is an important result: most
significant features are based on the knowledge of EEG
data and peculiarities of seizure activity, while the fea-
tures derived mathematically have low significance for
classification.

5 Conclusion

In this paper, we demonstrated the importance of using
explainable features for ML. For the EEG data of 30
patients, we trained a RandomForest classifier to dis-
tinguish between epileptic seizures and normal activity.

The RandomForest provides estimates for the feature
importance, hence enabling interpretation of the clas-
sification rule. We designed a set of features for the
classifier, some of which were derived from the raw
EEG data with a mathematical approach based on the
principal component analysis (PCA), while others were
based on the known peculiarities of epileptic activity. As
the result, the classifier demonstrated the recall of 77%
which is comparable with other models trained on these
data. Finally, the RandomForest algorithm assigned the
importance of 31, 26, and 24% to the interpretable
features, while the most informative principal compo-
nents had the importance of 8 and 7%, respectively.
We believe that this result emphasizes the importance
of using explainable ML features, and these features are
the first step to a fully explainable ML algorithm.
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Lüttjohann, V.V. Makarov, A.N. Pavlov, E. Sitnikova,
A.N. Pisarchik, J. Kurths, A.E. Hramov, Statistical
properties and predictability of extreme epileptic events.
Sci. Rep. 9(1), 1–8 (2019)

51. O.E. Karpov, V.V. Grubov, V.A. Maksimenko, N.
Utaschev, V.E. Semerikov, D.A. Andrikov, A.E.
Hramov, Noise amplification precedes extreme epileptic
events on human EEG. Phys. Rev. E 103(2), 022,310
(2021)

52. M. Krauledat, G. Dornhege, B. Blankertz, K.R. Müller
et al., Robustifying EEG data analysis by removing out-
liers. Chaos Complex. Lett. 2(3), 259–274 (2007)

53. A.E. Hramov, A.A. Koronovskii, V.A. Makarov, V.A.
Maximenko, A.N. Pavlov, E. Sitnikova, Wavelets in
Neuroscience (Springer, Berlin, 2021)

54. A. Aldroubi, M. Unser, Wavelets in Medicine and Biol-
ogy (Routledge, London, 2017)

55. E. Sitnikova, A.E. Hramov, A.A. Koronovsky, G. van
Luijtelaar, Sleep spindles and spike-wave discharges in
EEG: their generic features, similarities and distinctions
disclosed with fourier transform and continuous wavelet
analysis. J. Neurosci. Methods 180(2), 304–316 (2009)

56. A.N. Pavlov, A.E. Hramov, A.A. Koronovskii, E.Y. Sit-
nikova, V.A. Makarov, A.A. Ovchinnikov, Wavelet anal-
ysis in neurodynamics. Phys. Usp. 55(9), 845 (2012)

57. P. Gloor, R. Fariello, Generalized epilepsy: some of its
cellular mechanisms differ from those of focal epilepsy.
Trends Neurosci. 11(2), 63–68 (1988)
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