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ABSTRACT

In this paper we propose a model of the spatially distributed network based on the spatially correlated preferential
attachments. Nodes in the spatially distributed networks of the real word, such as various urban or biological
networks, aren’t establishing randomly: the probability of emergence of new nodes is higher in the area of already
existing ones. In this work we unite two principles of the real network modeling: the correlated percolation
model and preferential attachment. To regulate spatial limitations of the network, we use density gradient,
which determines the decrease of the probability of the connection emergence between two nodes with increase
of the distance between them. We also consider the consistency of our results in the context of the real-world
system modeling.
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1. INTRODUCTION

Spatial limitations of the world is one of the main factors influencing the formation of many networks topologies.
Interaction in biological systems, such as populations of animal species, is highly dependent on their habitats;1

topologies of city networks are also strongly associated with the nature of their occurrence;2 even social networks
demonstrate the dependency on their spatial configuration.3 There is a fairly clear idea of the principles of a
spatial growth of such systems since they are widely studied in general,4 however, considering such biological
systems as neural cultures, the features of the spatial distribution influence on topology remains insufficiently
studied. The ability of such systems to maintain the optimality of their connections is unique,5 different layers of
the brain neural networks organization show different topological scales and, accordingly, have a different degree
of connectivity(for example see6,7). The existence of synoptic connections8 that unite different parts of the brain
is well known, but studies also show that, in addition to this type of connection, there is also a slow neural
interaction at short distances,9 an important role in the formation of which is played by astrocyte cells.

To our knowledge, the approach to study real biological networks by modeling evolutionary processes and
self-organization in complex networks proved itself as productive. Indeed, there are evidence that the biological
neural ensembles produces activity similar to chimera states in complex networks based on Kuramoto-Sakaguchi
model and Hindmarsh–Rose neuron model.10,11 A number of studies are dedicated to various types of behaviour
observed in complex networks which have analogues in biological brain networks: adaptive coupling in the network
based on randomly couple Rulkov maps,12 inter-layer competition13 and synchronization14 in Kuramoto model.
Results obtained in such researches can shed light on the nature of the processes occurring in the brain, including
pathological ones.

The facts mentioned above reveal great importance of detection of topological features of spatially-distributed
networks along with the understanding of their formation principles. In recent studies, a lot of attention has
been focused on the features of spatially-distributed scale-free networks.15,16 Is has been recently revealed that
spatial-distributed networks aren’t necessary scale-invariant,17,18 e. g., social networks, along with the airport
networks of various countries, demonstrate the features of a small world with the Poisson degree distribution. In
the present paper we investigate how the transition from connectivity at short distances to a scale-free structure
affects the main topological properties of a spatially distributed network.
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Figure 1. The method of network generation

2. METHODS

A numerical model has been developed using principles of spatial growth and preferential attachment. In real
spatially distributed networks such as urban systems and brain neural networks the coordinates of the nodes are
not random, because the probability of emergence of a new node is higher in the vicinity of existing one. To
implement this condition, we use modified correlated percolation model4 which assumes that the probability of
a new node j depends on how densely its surroundings is. In particular, the probability pij is:

pij = e−λRij ·d
−β
i , (1)

where Rij is Euclidian distance between nodes i and j, the density gradient λ defines the decrease of the
probability pij with increasing Rij , β stands for the degree factor which allows to reduce the impact of λ when
the degree of the node i becomes sufficiently large.

To generate the research compliant network we used an algorithm presented on the Fig. 1. At the first step,
we select random coordinates x and y of an initial node with x, y ∈ [2500 : 7500]. Each next no de added in the
network gets randomly assigned coordinates that are satisfying the following conditions:

1. Euclidian distance Rij > 1 for all nodes i.

2. The node must establish connection with the pristine sub-graph. If such connection is formed, the process
of the network growth continues; otherwise, the coordinates are reassigned and the algorithm starts from
step 3 of Fig 1.
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Figure 2. Obtained correlations for networks with varying density gradient λ and number of nodes N : (a) N = 200, (b)
N = 400, (c)N = 600. For each part of the figure, the left part of panel I represents the clustering coefficient C distribution
and the right part is correlation between clustering coefficient C and the number of shortest paths S. Accordingly, the
left part of panel II is visualization of the network, and the right part is the shortest paths S distribution.

New connections in the network are emerging as follows: the probability pij is calculated with Eq. 1. According
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to the 6th step of the scheme on Fig. 1, we generate a set of random numbers with a uniform probability
distribution, normalized in [0, 1]. The smaller than pij value of generated number corresponds to established
connection between nodes, thus we set Wij = Wji = 1 in adjacency matrix.

Such method of network generation provides the emergence of spatially inhomogeneous structures, emergence
of hubs and long-distance connection, which brings the model closer to the real system.

Then, we estimate a few network parameters that reflect its structural and topological features. In particular,
we consider a correlation between global clustering coefficient C averaged over all network, which is characteristic
of the degree of attachment of a node to tightly bounded group, and the number of the shortest paths in the
network S.

3. RESULTS

We consider two networks with different values of the density gradient, λ = 0.002 and λ = 0.007. As follows from
the Eq. 1, the density gradient determines the spatial constraints of network evolution, reducing or increasing the
probability of establishing a connection between nodes depending on the Euclidian distance. Fig 2 illustrates the
structural features of these networks using correlation between clustering coefficient and the number of shortest
paths. As can be seen from these correlation and network visualization presented for N = 200, N = 400, and
N = 600 nodes, different values of λ result in completely different topology.

As follows from Fig. 2(a), the network with λ = 0.002 has rather homogeneous topology close to random
network. Indeed, low value of λ allows to maintain the radius of the nodes efficiency, which means the prevalence
of short-range connections in the network. Correlation between clustering coefficient and the shortest paths
presented on the right part of panel I confirms this conclusions, showing scattered character of nodes location.

On the contrary, increasing value of λ causes more pronounced inhomogeneity in network structure. As shown
in Fig. 2, the large density gradient enhances the dependence of probability of the node emergence on Euclidian
distance from other nodes of the network, resulting in appearance of new nodes only in close proximity to other
nodes. The clustering coefficient distribution on the left part of the panel I shows that the increase of λ also
leads to disintegration of clusters and emergence of nodes capable to maintain long-distance connections.
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Figure 3. Visualizations of (a) the global airline network (Openflight.org) and (b) the resting-state fMRI network of human
brain with corresponding degree distributions.

Fig. 2(b) and Fig. 2(c) present the same correlations with growing of the network capacity, N = 400 and
N = 600, respectively. As can be seen from the results, a picture for both values of N is rather the same:
the network size growth enhances the effects described above. In case with λ = 0.002, although the presence of
hub-like nodes are observed, the whole structure of the network remains rather homogeneous, the nodes establish
mostly short-distance connections. However, with λ = 0.007, the hubs gaining an ability to connect with nodes
at longer distances, which leads to the prevalence of the preferential attachment in the network topology.

Fig. 3 provides the insight on the accordance of obtained results to the way of the real-system organization.
The network of resting-state fMRI of the human brain19 (Fig. 3(b)) represents the structure which topological
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features are dictated by the spatial limitations. At the same time, the global airline network20 on the Fig. 3(a)
is a classic example of spatially distributed scale-free network with power law degree distribution, which is
determined by a sufficient amount of long-range connections. One can see that preferential attachment is the
common property that is shared by both proposed model and this example of real network.

4. CONCLUSION

In our paper the focus of attention was on spatially distributed networks whose structural and topological
properties are changing in the process of evolution, and on the preferential attachment as on the key concept
of complex networks research. Proposed model provides an insight into the mechanisms of real-world network
emergence: we observed formation of inhomogeneous structures when the process of networks evolution was
accompanied by strict spatial limitations, which resulted in scale-free topology and long-distance connections
with hubs.

Obtained results are consistent with several observations made in other investigations of preferential attach-
ments. The same pattern has been observed in the networks of scientific collaboration and citation,21,22 protein
network23 and the Internet indexation.24
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