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Abstract: Relay synchronization in multi-layer networks implies inter-layer synchronization between
two indirectly connected layers through a relay layer. In this work, we study the relay synchronization
in a three-layer multiplex network by introducing degree-based weighting mechanisms. The mecha-
nism of within-layer connectivity may be hubs-repelling or hubs-attracting whenever low-degree or
high-degree nodes receive strong influence. We adjust the remote layers to hubs-attracting coupling,
whereas the relay layer may be unweighted, hubs-repelling, or hubs-attracting network. We establish
that relay synchronization is improved when the relay layer is hubs-repelling compared to the other
cases. We determine analytically necessary stability conditions of relay synchronization state using
the master stability function approach. Finally, we explore the relation between synchronization
and the topological property of the relay layer. We find that a higher clustering coefficient hinders
synchronizability, and vice versa. We also look into the intra-layer synchronization in the proposed
weighted triplex network and establish that intra-layer synchronization occurs in a wider range when
relay layer is hubs-attracting.

Keywords: relay synchronization; multi-layer networks; hubs-attracting; hubs-repelling; master
stability function

1. Introduction

Over the last few decades, the study of complex networks has been a topic of great
interest due to its application in diverse scientific fields [1,2]. Recent advances in network
science revealed that many systems in nature could be represented by multi-layer net-
works [3,4], where elements are interconnected through various links between more than
one layer. Such a framework is well known for illustrating many real-world systems, such
as social networks [5], transportation networks [6], power-grid networks [7], ecological
networks [8], and neuronal networks of the brain [9,10]. A particular subclass of multi-layer
networks are multiplex networks where each layer contains the same number of nodes,
and one-to-one inter-layer connections between the replica nodes from neighboring layers
are allowed.

Due to the interactions of dynamical units within and between the layers, many emer-
gent phenomena occur in the multiplex network. Synchronization [11–15] is one among
them. Different types of synchronization scenarios have been observed in multiplex frame-
work, such as intra-layer synchronization [16,17], inter-layer synchronization [18–20], cluster
synchronization [21,22], explosive synchronization [23–25], and chimera states [26–28].

Relay synchronization in a multiplex network has received much attention from re-
searchers in the past few years. This synchronization phenomenon occurs between two
distant layers, not directly connected but only through a relay layer. First reported in
a star-like network [29,30], this type of synchronization has also been detected in laser
systems [31], circuits of chaotic oscillators [32], and between remote pairs of nodes within
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the network [33]. Besides, it is of great importance in the human brain networks, where the
thalamus [34] acts as a relay between distant cortical areas. Recently, relay synchronization
has been illustrated in multi-layer and multiplex frameworks with different intra-layer
topologies, such as Erdős-Rényi and scale-free [35]. In Reference [36], random inhomo-
geneities of the small-world type have been introduced in the network layers to scrutinize
the robustness of relay synchronization. Continuous and discrete-time systems have been
used as individual units to induce spatiotemporal structures in triplex networks [37,38].
However, in the above cases, the network topology of both the relay and remote layers
are represented by unweighted networks. Although weighted networks, where coupling
weights are heterogeneous, are present in many real-world networks, such as the network
of scientific collaborations [39], structural and functional networks of the brain [40], trans-
portation networks [41], epidemic spreading [42], ecological networks [43], etc., we would
like to emphasize that the recent progress in this direction has been achieved considering
weighted mono-layer networks [44–48] and weighted duplex networks [49–51]. However,
the effect of weighted networks upon synchronization in the multiplex network with more
than two layers is less studied. So, the lack of works on the synchronization in weighted
multi-layer networks encouraged us to unveil the effect of weighted networks upon the
relay synchronization in a multiplex network.

In this regard, we would like to highlight the very recent works by Estrada et al. [52,53],
in which the authors have introduced two opposite approaches to explore the degree-biased
mechanisms on the network dynamics based on the generalization of the graph Laplacian
operator. The Laplacians are defined so that the pairwise weights of connectivity matrix are
introduced as a ratio of degrees of two coupled nodes. As a result, an unweighted graph is
transformed into a weighted directed one following two distinct methods. One forces the
network to obey high-degree nodes, and the other is biased towards the low-degree nodes.
In the first case, referred as hubs-attracting Laplacian [52], a high-degree unit receives
weaker influence from its low-degree neighbor than from a high-degree one. Opposed to
the above, the low-degree units produce more potent effects in the second case, illustrated
by the hubs-repelling Laplacian [53]. These findings have motivated us to dig into the
comparison between the weighted directed networks generated by different degree-based
weighting mechanisms to achieve synchronization in a relay multiplex network.

In this letter, we consider a three-layer multiplex (triplex) network with intra-layer
coupling set up by a random Erdős-Rényi (ER) topology with individual nodes as chaotic
Rössler oscillator. The intra-layer connectivity is set up in such a way that the corresponding
Laplacian matrices are equal to either hubs-attracting or the hubs-repelling Laplacian
matrices. In particular, we set the remote layers to be hubs-attracting and consider three
configurations of relay layer: hubs-attracting, hubs-repelling, and unweighted network.
Further, we estimate the onset of relay synchronization for all three configurations. Our
study shows that the relay synchronization is improved when the relay layer is hubs-
repelling compared to the other two cases. Using analytical tools, we demonstrate the
necessary conditions for the synchronized state. We also explain the enhancing behavior in
terms of clustering coefficient analysis of the relay layer. Apart from this, we also examine
the emergence of intra-layer synchrony for all three configurations.

2. Mathematical Model

We consider a triplex network, schematically presented in Figure 1. The layers are
denoted by k = −1, 0, 1, where k = ±1 indicates remote layers and k = 0 corresponds
to the relay layer. Each layer contains N = 100 nodes following m-dimensional identical
dynamical systems. The nodes are mutually connected with their corresponding replica
nodes from the neighboring layers. The states of the kth layer are represented by the vectors
Xk = (xk,1, xk,2, . . . , xk,N), where xk,i ∈ Rm and i = 1, 2, . . . , N. The dynamics of the ith
node in each layer is governed by the system of ordinary differential equations:
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ẋ−1,i = F(x−1,i)− σ
N
∑

j=1
L

[−1]
ij Gx−1,j + λH[x0,i − x−1,i],

ẋ0,i = F(x0,i)− σ
N
∑

j=1
L

[0]
ij Gx0,j + λH[x1,i + x−1,i − 2x0,i],

ẋ1,i = F(x1,i)− σ
N
∑

j=1
L

[1]
ij Gx1,j + λH[x0,i − x1,i],

(1)

where F : Rm → Rm, G : Rm × Rm → Rm, and H : Rm × Rm → Rm represent the
autonomous evolution of the uncoupled oscillator, intra-layer, and inter-layer coupling
matrices, respectively. In the current study, we suggest that the autonomous evolution of
each node in the triplex network (1) obeys the dynamics of chaotic Rössler oscillators, for
which F(xk,i) is given by

F(xk,i) =

 −yk,i − zk,i
xk,i + ayk,i

b + zk,i(xk,i − c)

. (2)

In system (2), the control parameters are fixed and set equal for all oscillators as
a = b = 0.2, c = 5.7, which provide chaotic dynamics. The intra-layer coupling matrix G
for all the layers is taken as linear diffusive coupling through x-variable, i.e, G = [1, 0, 0]tr,
where tr denotes the transpose of a matrix. The inter-layer coupling is considered to be
through all the state variables. Thus, the inter-layer coupling matrix H is an identity matrix.
Strengths of intra-layer and inter-layer coupling are introduced as σ and λ, respectively.
Laplacian matrix of the kth layer is defined as L[k]ij . These matrices are constructed from the

weighted matrices B[k] = (B
[k]
ij )N×N , where the element B

[k]
ij is obtained by the element-

wise scaling of unweighted adjacency matrix (A
[k]

ij )N×N with the ratios of interacting units

degrees (
dj,k
di,k

)β. The element A
[k]

ij = 1 if the ith and jth nodes are connected with each other

and A
[k]

ij = 0 otherwise, and di,k = ∑N
j=1 A

[k]
ij .

Figure 1. Schematic diagram of a general triplex relay network. The intra-layer coupling with
strength σ is presented with solid lines, and inter-layer coupling with strength λ is depicted with
dashed lines. The two outer layers (k = 1,−1), shown in gray, are connected through the middle
layer k = 0, colored in red.

The parameter β determines if the layer remains unweighted network (U, β = 0)

or converted into weighted directed graph (β = ±1) . For β = 1, matrix B
[k]
ij =

dj
di

A
[k]

ij



Mathematics 2021, 9, 2135 4 of 10

specifies that the high-degree nodes produce strong influence on their low-degree neigh-
bors, and vice versa. For β = −1, B

[k]
ij = di

dj
A

[k]
ij defines the opposite mechanism, the

low-degree units have a strong impact on their high-degree neighbors, and vice versa.
The Laplacian obtained for β = ±1, respectively, corresponds to hubs-repelling [53] and
hubs-attracting [52] Laplacian matrices, and associated networks are called hubs-repelling
and hubs-attracting networks.

Here, the connection topology of each layer is given by Erdős-Rényi (ER) random
graph with the edge connectivity probability prand = 0.05. We transform the network of
each layer to a directed weighted graph by introducing the mechanism of hubs-attracting
(A) and hubs-repelling (R) Laplacian. The remote layers are transformed to the hubs-
attracting network, and the middle (relay) layer could be transformed to one of three
configurations: Hubs-repelling (R, β = −1), unweighted (U, β = 0), and Hubs-attracting
(A, β = 1). We classify the layer stacks regarding the weighting sequence of each layer.
For instance, the triplex network with remote layers Hubs-attracting and middle layer
Hubs-repelling (β = −1) will be denoted as ARA. Consequently, the triplex networks
with middle layers unweighted and Hubs-attracting will be denoted as AUA and AAA,
respectively. We will scrutinize the relay synchronization for all three configurations: AAA,
AUA, and ARA in the next section.

3. Results
3.1. Valuation of Relay Synchronization Error

To analyze the relay synchronization in our networks, we employ the synchronization
error E1,−1 as:

〈E〉1,−1 = lim
T→∞

1
T

∫ ttr+T

ttr
E1,−1(t) dt, (3)

E1,−1(t) =
N

∑
j=1

‖x1,j(t)− x−1,j(t)‖
N

, (4)

where ‖ · ‖ denotes the Euclidean norm, ttr determines the transient of the numerical
simulation, and T is a sufficiently large positive number. To measure the synchronization
errors, the time interval is taken over 1× 105 units after an initial transient of 4× 105 units,
i.e., ttr = 4000 and T = 1000. In all our simulations, we consider the threshold value of
synchronization error to be 10−5 for synchrony.

The triplex network (1) is solved numerically using the Runge–Kutta–Fehlberg algo-
rithm with integration step dt = 0.01 and fixed random initial conditions chosen from the
interval [−1, 1]. For each result, 20 network realizations with random initial conditions
are considered.

We first scrutinize synchronization error for a fixed value of intra-layer coupling
strength σ = 0.02 by varying inter-layer coupling λ. Figure 2 displays three curves for three
different configurations: AAA, AUA, and ARA, respectively. For the AAA configuration,
red dotted line, the synchrony is achieved at the critical coupling λ ≈ 0.074. For the
AUA configuration, black dotted curve, the critical value shifts towards a slightly lower
value of λ. At the same time, for the ARA case, blue dotted curve, the critical value of
synchronization decreases further – the synchrony is reached at λ ≈ 0.07. Thus, one can
conclude that, for a fixed value of intra-layer coupling, the relay synchronization enhances
as the value of β decreases from 1 to −1 within the relay layer, and the remote layers are
fixed to be hubs-attracting (A) network.

Therefore, without introducing parameter mismatch in the relay layer or introducing a
time delay between the layers, changing the weighting mechanism between the middle (re-
lay) layer nodes may effectively improve the relay synchronization in multiplex networks.
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Figure 2. Synchronization error E1,−1 between the outer layers (k = 1, k = −1) as a function of
inter-layer coupling strength λ for the fixed value of intra-layer coupling σ = 0.02. Red, black, and
blue dashed curves represent the synchronization errors for AAA, AUA, and ARA configurations.

3.2. Stability Analysis of Relay Synchronization

Thereafter, we analytically derive the conditions for stability of the relay synchroniza-
tion using Master Stability Function [54] approach. The synchronization solution is given
by, X1 = X0.

Let δX(t) = X1(t)−X−1(t) be the vector describing the difference between the dynam-
ics of the mirror layers. Considering δX = {δx1, δx2, . . . , δxN} to be a small perturbation of
synchronous solution, we have linearized Equation (1) as:

δẋi = [JF(xi)− λH]δxi − σ
N

∑
j=1

L
[1]

ij Gδxj, (5)

where J is the Jacobian operator, and X = {xi} represents the synchronous state
X1 = X−1 satisfying

ẋi = F(xi)− σ
N

∑
j=1

L
[1]

ij Gxj + λH[x0,i − xi]. (6)

In the above equation, x0,i is the state variable of the ith node in the relay layer, which
satisfies the equation of motion

ẋ0,i = F(x0,i)− σ
N

∑
j=1

L
[0]

ij Gx0,j + 2λH[xi − x0,i]. (7)

In the variational Equation (5), the state variable evolves transverse to the synchronization
manifold. Therefore, the Lyapunov exponents of Equation (5) depict the stability of the
synchronization manifold. The maximum Lyapunov exponent (MLE) as a function of the
parameters σ, λ gives a necessary condition for the stability of the inter-layer synchronization
solution. For a stable solution, perturbation along all the transverse directions must die out,
i.e., the values of MLE should be negative. Solving the linearized Equation (5) along with the
non-linear Equations (6) and (7) gives the MLEs transverse to the synchronization manifold.
In Figure 3, we have plotted the MLEs for the same parameter values as in Figure 1 to validate
the stability condition. It clearly shows that the MLE passes zero-level at the exact value of λ
where E1,−1 becomes less than 10−5 for each of the three configurations considered. Therefore,
the analytical stability condition suitably agreed with our numerical results.

3.3. Delineation of Relay Synchronization in Parameter Space

To better understand the enhancement in the relay synchronization, we have plotted
the variation of synchronization error E1,−1 in the (λ, σ)-plane for all the three network
configurations. The results depicted in Figure 4 show that the region of synchronization
increases in ARA (Figure 4c) configuration compared to the other configurations, AAA
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(Figure 4a) and AUA (Figure 4b). Thus, rigorously plotting the synchronization error, we
can perceive the synchronization scenario for all three configurations. It reaffirms our
statement about an enhancement of relay synchronization in ARA configuration of the
multiplex network as compared to AAA and AUA configurations.

Figure 3. Maximum Lyapunov Exponents (MLEs) as a function of λ supporting the results pres-
neted in Figure 1. Red, black, and blue dashed curves display MLEs for AAA, AUA, and ARA
configurations, respectively. Purple horizontal line indicates zero-level.

Figure 4. Variation of synchronization error in the (λ, σ)-plane for (a) AAA, (b) AUA, and (c) ARA
configurations. The color bar denotes the variation of the synchronization error E1,−1 where the deep
red and blue correspond to the desynchronized and synchronized domains, respectively. The subplot
(d) displays the boundaries of synchronization in the (λ, σ)-plane for all considered configurations of
the triplex relay network.

3.4. Structural Analysis

Apart from quantifying the synchronization error and linear stability analysis, for a
profound understanding of enhancement in the relay synchronization, we also go through
the structural analysis of the middle (relay) layer for all three cases. With increasing β from
−1 to 1, we analyze the average clustering coefficient, CC = 1/N ∑N

i=1 Ci, where Ci is a
local clustering coefficient, within the relay layer. As for non-zero β, the network becomes
a weighted directed network, and we follow the formula for local clustering coefficient for
weighted directed network proposed in Reference [55]:
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Ci =
1
2 [B

T(A +A T)A ]ii
sin

i (din
i −1)

, (8)

where din
i and sin

i are the in-degree and input strength of ith node, respectively. Here, we
have taken only the in-component of clustering coefficient, as the hubs-attracting network’s
input strength corresponds to the hubs-repelling network’s output strength, and vice versa.
In Figure 5, we plotted the average clustering coefficient for different values of β within the
relay layer. The largest value (CC = 0.0649) of clustering coefficient corresponds to β = 1
when the relay layer is Hubs-attracting, and for β = −1, when relay layer is Hubs repelling,
the value of clustering coefficient is lowest (CC = 0.0630). It is a well-known fact that the
clustering coefficient plays a crucial role in synchronization. Larger values of clustering
coefficient hinder the synchronization, and smaller values determine the improvement [56].
Due to large clustering, the network splits into dynamical clusters that follow different
trajectories and, as a result, impedes synchronization. Hence, the result depicted in Figure 5
can reasonably explain improving the relay synchronization with ARA configuration.

Figure 5. Average clustering coefficient for increasing value of β within the relay layer.

3.5. Emergence of Intra-Layer Synchronization State

Now, we investigate the intra-layer synchronization in the multiplex network (1). For
intra-layer synchronization, each individual layer evolves on the same time evolution,
which occurs when each individual oscillator in each layer of the multiplex network
is appropriately coupled [17,57]. To quantify the intra-layer synchronization state, we
introduce the synchronization error as,

Eintra =
1
3 ∑

k=−1,0,1
Eintra

k ,

where

Eintra
k = lim

T→∞

1
T

∫ T

0

N

∑
j=2

‖xk,j(t)− xk,1(t)‖
N − 1

is the synchronization error of each layer k. Eintra ≈ 0 indicates the emergence of intra-layer
synchronization in the triplex network.

We have plotted the intra-layer synchronization error Eintra in Figure 6 by varying
the intra-layer coupling strength σ for the three configurations: AAA (red dotted line),
AUA (black dotted line) and ARA (blue dotted line), respectively. From the figure, we can
elucidate that, for all the three cases, the triplex network shows two transitions—one from
desynchrony to synchrony and other one from synchrony to desynchrony state. So, the
intra-layer synchronization appears in a bounded range of intra-layer coupling strength
σ. For AAA configuration, the first transition occurs at intra-layer coupling σ = 0.13
and the second transition takes place at σ = 0.44. For AUA configuration, the intra-layer
synchronization occurs in the range [0.17, 0.38] of intra-layer coupling strength. The range
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shrinks further for the ARA configuration for which synchronization occurs in [0.19, 0.26].
One point of note is that the intra-layer synchronization occurred simultaneously [58],
and desynchronization to synchronization also occurred at the same value of intra-layer
coupling strength σ.

Therefore, intra-layer synchronization for the multiplex network emerges in a bounded
range of coupling strength. The range is wider for AAA configuration compared to AUA and
ARA configurations.

Figure 6. Intra-layer synchronization error Eintra as a function of intra-layer coupling strength σ

for the fixed value of inter-layer coupling strength λ = 0.01. Red, black, and blue dashed curves
represent the synchronization errors for AAA, AUA, and ARA configurations.

4. Discussion and Conclusions

In summary, we have explicitly addressed the emergence of relay synchronization
in weighted triplex networks of chaotic non-linear oscillators. We constructed within-
layer connection topologies following the Erdős-Rényi algorithm for N = 100 nodes. The
pairwise intra-layer interactions are scaled such that the influence produced by the ith node

on the jth node is proportional to the ratio of their degrees
( dj

di

)β. Values of the exponent
β determine changes of the edges’ weights according to one of the triplex configurations:
hubs-repelling (β = −1), hubs-attracting (β = 1), and unweighted network (β = 0).

The current study evidences an enhancement in the relay synchronization if the
middle layer exhibits hubs-repelling interactions compared to hubs-attracting and original
unweighted couplings. We have supported numerical findings by analytical treatment
of the synchronized state stability conducted via master stability function. Moreover, we
have also scrutinized the topological properties of the intra-layer connection within the
relay layers, which helps in understanding that, in the case of hubs-repelling interactions,
the middle layer exhibits a lower clustering coefficient. The latter contributes to a more
efficient relay synchronization in a considered triplex network. Lastly, we investigated the
intra-layer synchronization for the multiplex network which emerges in a bounded range
of intra-layer coupling strength and the range of synchrony expands if the relay layer is
hubs- attracting compared to unweighted and hubs-repelling couplings.

We expect that our investigation considering such mechanisms of network weighting
as hubs-attracting and hubs-repelling will open the door for a new perception of various
collective behaviors emerging in a multi-layer network.
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